
BRICS
Basic Research in Computer Science

Strong Privacy Protection in
Electronic Voting

Jens Groth
Gorm Salomonsen

BRICS Report Series RS-04-13

ISSN 0909-0878 July 2004

B
R

IC
S

R
S

-04-13
G

roth
&

S
alom

onsen:
S

trong
P

rivacy
P

rotection
in

E
lectronic

Voting

Copyright c© 2004, Jens Groth & Gorm Salomonsen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/04/13/

Strong Privacy Protection in Electronic
Voting

Jens Groth∗ Gorm Salomonsen†

July 19, 2004

Abstract

We give suggestions for protection against adversaries with
access to the voter’s equipment in voting schemes based on homo-
morphic encryption. Assuming an adversary has complete knowl-
edge of the contents and computations taking place on the client
machine we protect the voter’s privacy in a way so that the ad-
versary has no knowledge about the voter’s choice. Furthermore,
an active adversary trying to change a voter’s ballot may do so,
but will end up voting for a random candidate.

To accomplish the goal we assume that the voter has access
to a secondary communication channel through which he can
receive information inaccessible to the adversary. An example
of such a secondary communication channel is ordinary mail.
Additionally, we assume the existence of a trusted party that will
assist in the protocol. To some extent, the actions of this trusted
party are verifiable.

1 Introduction

Central to many protocols for electronic voting is the assurance of pri-
vacy. Privacy means that nobody but the voter himself knows which

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

†Cryptomathic

1

vote he cast. Voting schemes typically ensure privacy under the assump-
tion that the client machine is uncompromised. In [DJ02], Damg̊ard
and Jurik go beyond this assumption and propose a scheme for protect-
ing the privacy of the voter against an adversary who has full access to
the client machine. Additionally, an active adversary with access to the
client machine cannot cast a vote for the candidate of his choice; instead
the scheme forces the adversary to vote for a random candidate. This
increases the robustness of the scheme; an adversary cannot change the
result of the election to something of his own wish. Unfortunately, their
scheme is only practical in elections with few candidates. The goal of
this paper is to propose a way of increasing privacy and robustness in
elections with many candidates.

Two other notions strengthening the privacy requirement of voting
schemes have been proposed in the literature: Incoercibility says that an
adversary should not be able to force a voter to reveal his vote. Receipt-
freeness says that the voter himself should not be able to prove to any-
body how he voted. Both concepts can be demanded to various extents.
In the weakest formulations, we can achieve incoercibility by erasing the
memory after having cast the vote; while in the strongest formulations
some physical assumptions seem to be needed [HS00]. Protection against
adversaries with access to the client machine is of a somewhat different
nature than incoercibility and receipt-freeness since the voter may not
know that his equipment has been compromised. A scheme may for in-
stance achieve incoercibility and/or receipt-freeness by enabling the voter
to produce a false, but convincing, transcript of his computations that
he can show to the coercer. In contrast to this, we assume that the ad-
versary has full access to the client machine on which an unsuspecting
voter is producing a vote; therefore, the adversary does have access to
the correct transcript of the computations going on.

In an Internet voting protocol, the voter uses a client machine to
enter his vote and transmit it over the Internet. There are many realistic
adversaries that could have access to the client machine, for instance
hackers and system administrators. In addition, due to disk swapping,
etc., it is not always the case that data is erased. A subsequent user
of the client machine may therefore be able to see what has occurred in
prior sessions.

The idea in [DJ02] for protection against adversaries with access to
the client machine is the following: Each candidate is represented by a
number 0 ≤ j < L, where L is the number of candidates. A trusted party

2

selects for each voter a permutation π. By secondary means, for instance
through ordinary mail, the voter receives a ballot with the candidates
and their permuted numbers, π(0), . . . , π(L− 1). He enters π(j) to vote
for candidate j. The client machine encodes and encrypts π(j) and sends
it to the election authorities. This can be seen as a combination of two
means to protect the voter’s privacy. An adversary without access to the
secondary channel does not know which candidate is represented by π(j).
On the other hand, an adversary with access to the secondary channel
but without access to the client machine only sees an encrypted message
and has no clue about the vote. Realistic adversaries will not have access
to both the client machine and the secondary channel at the same time,
and therefore this combination protects voter privacy in a stronger sense
than what is accomplished by voting protocols.

In [DJ02], the basic voting scheme is based on a homomorphic
public-key threshold cryptosystem. The problem when receiving a vote
Epk(π(j)) where the chosen candidate is permuted is to create a correct
encrypted vote Epk(j) on the candidate, in other words to invert the
permutation under the encryption. They propose a multi-party com-
putational method for doing this, but unfortunately it is, even if the
trusted party helps, not efficient enough to handle elections with many
candidates.

We have a simple idea to speed up computations. Instead of giving
each voter a random permutation, we assign the same permutations to
groups of voters. Instead of converting each individual vote, we then
try to convert entire groups of votes. The vote conversion protocol in
[DJ02] does not work with groups of voters so we have to invent a new
protocol for doing so. Additionally, we must now manage the groups
of voters so that the adversary still cannot link the individual voters to
their permutations.

2 Background Information

2.1 Voting Scheme

We look at elections where M is a strict upper bound on the number of
voters and L is the number of candidates or options, possibly including
dummy candidates for blank votes, etc. A vote on candidate j, where
0 ≤ j < L, is represented by the number M j . To vote on such a candidate
the voter in the basic scheme encrypts M j and sends it to the authorities

3

together with a zero-knowledge proof of knowledge that the content of
the ciphertext is a legitimate vote on some candidate.

We assume the parties have access to an authenticated broadcast
channel with memory. We imagine this as a message board where each
party has a segment where only he can write, for instance implemented
through digital signatures, and nobody can erase anything. This means
that each participant in the protocol can post a message in a manner so
everybody is assured of the sender’s identity and that everybody else has
received the same message. The voters send their encrypted votes to the
authorities by posting them on the message board. This way everybody
can check that only eligible voters cast a vote, and that those voters cast
at most one vote.

For encryption, a homomorphic public-key threshold cryptosystem is
used. By homomorphic we mean Epk(M

i + M j) = Epk(M
i)Epk(M

j).
This means that by multiplying the valid encrypted votes, E1, . . . , EM ′

with the number of votes M ′ < M , we get an encryption of
∑L−1

j=0 vjM
j ,

where vj is the number of votes on candidate number j. Several voting
schemes of this type have been suggested and they look very promising
for real life application, see for instance [CGS97],[DJ01],[BFP+01] and
[DGS03].

To protect privacy we secret share the private key between N au-
thorities using a (t, N) threshold scheme. This means that less than
t authorities cannot decrypt ciphertexts, while t cooperating authorities
are capable of decrypting ciphertexts. Each individual voter’s vote there-
fore remains secret unless t authorities unite. To compute the result of
the election the authorities cooperate to decrypt the product of all the
ciphertexts corresponding to valid votes. In the end, they broadcast the
result of the election.

2.2 Extras Needed for Strong Privacy

In order to protect the voter using a monitored piece of equipment we
must give him some extra information not present on the machine. We
therefore assume some kind of secondary channel from which he can
get some input from the authorities managing the election. This can
for instance be a paper ballot sent to the voter by ordinary mail, be
some information given to the voter when registering for the election,
or be information he receives over his mobile phone. We assume that
the adversary does not have access to both this channel and the client
machine at the same time.

4

When assuming a secondary channel to the voter it seems like in
most reasonable scenarios there is a single entity having knowledge of the
voter’s information. Certainly, we can think of schemes that remedy this
deficiency, for instance, where the voter receives several ballots that have
been printed in different locations, however, such measures go beyond
the scope of this paper. We therefore assume there is a single party that
is trusted to create and deliver some secret information to each voter. In
terms of privacy, this single party is not trusted; the protocol will provide
privacy as long as the adversary does not control both the client machine
and the single party. On the other hand, a malicious single party may
be able to tamper with the correctness of the result. So what we are
presenting is actually a privacy/correctness tradeoff.

2.3 Homomorphic Cryptosystems and Integer
Commitment Schemes

As mentioned above we use a public-key homomorphic threshold cryp-
tosystem for the election. There is a public key pk published on the mes-
sage board for all to see. Furthermore, there are N authorities sharing
the private key. The message space of the election is Zn for some integer
n ≥ ML. Ciphertexts belong to a group that we write multiplicatively.
The homomorphic property of the cryptosystem is the following: If we
have two plaintexts m1, m2 encrypted with randomness r1, r2 as E1 =
Epk(m1; r1) and E2 = Epk(m2; r2) then E1E2 = Epk(m1 + m2; r1 + r2).
An example of such a cryptosystem is the Paillier style cryptosystem
from [DJ01].

We also use a homomorphic integer commitment scheme. Also for
this scheme, a public key K is published. The message space is the
entire set of integers and the commitment scheme is homomorphic in
the sense that for c1 = comK(m1; r1) and c2 = comK(m2; r2) we have
c1c2 = comK(m1 + m2; r1 + r2). An example of such a homomorphic
integer commitment scheme is given in [DF02].

3 Managing the Groups of Voters

The idea in our scheme is to have a trusted third party that divides the
voters into disjoint groups S1, . . . , SQ. When votes are tabulated, we pool
together the votes from one group and handle the entire bundle in the
same manner. Having divided the voters into groups we face the problem

5

of combining the votes in the groups in a way that does not reveal to
which group each individual voter belongs. Revealing the voter’s group
affiliation would weaken the security of the scheme since an adversary
might then learn the permutation associated with said voter.

For this purpose, a verifiable secret shuffle seems like the right choice.
Such a scheme allows the trusted party to re-encrypt all the votes, per-
mute them, and prove in zero-knowledge that indeed he has made such
a permutation. Efficient verifiable secret shuffles have been suggested in
[FS01, Nef01, Gro03]. The latter allows us to use most of the known
homomorphic cryptosystems. They have the additional advantage that
in a natural way the trusted party can commit to the permutation before
receiving any encrypted votes. We do the division of the voters by letting
the first group be the first |S1| ciphertexts coming out of the shuffle, the
second group is the following |S2| ciphertexts from the shuffle, etc. We
can use the convention that voters not having submitted a vote automat-
ically are assigned the vote Epk(0; 0), which will not affect the outcome of
the election but will ensure that their group membership remains secret.

Let us look quickly at the shuffle scheme in [Gro03] to be more pre-
cise and to describe the few modifications of it we need for our pur-
pose. Given ciphertexts E1, . . . , EM ′ the goal is to shuffle them accord-
ing to a permutation ψ into a new set of ciphertexts E ′

1, . . . , E
′
M ′ so

that the corresponding plaintexts m1, . . . , mM ′ and m′
1, . . . , m

′
M ′ satisfy

m′
1 = mψ(1), . . . , m

′
M ′ = mψ(M ′). We do this in two steps. First the

trusted party commits to ψ(1), . . . , ψ(M ′), in that order. By making
the commitments public, he essentially commits to the permutation ψ
of the voters. The first step can be done independently of the actual
ciphertexts without compromising the security of the shuffle scheme,
and if need be it is possible already at this stage to prove in special
honest verifier zero-knowledge that he has committed to a permuta-
tion of the voters. In the next step the trusted party receives the ci-
phertexts E1, . . . , EM ′ and re-encrypts and permutes them by setting
E′

1 = Eψ(1)Epk(0), . . . , E′
M ′ = Eψ(M ′)Epk(0). Finally, he proves that the

commitments to ψ(1), . . . , ψ(M ′) were correctly formed and that he has
shuffled the encryptions according to the same secret permutation ψ.

4 Inverting Permutations

So far we have the following components of a protocol: The trusted party
can organize the voters into groups S1, . . . , SQ, select and distribute to the

6

voters in these groups permutations π1, . . . , πQ, and when receiving the
encrypted votes shuffle those ciphertexts into place such that the first |S1|
shuffled ciphertexts are those corresponding to voters with permutation
π1, etc.

We want a method to transform the ciphertexts where votes are per-
muted under some permutation πi into something that can be used in the
basic voting protocol, i.e., an encryption of votes that are not permuted.
Since we are just focusing on one such group let us simplify notation
by calling the relevant permutation π, say that there are T voters in
the group with corresponding ciphertexts E1, . . . , ET . We proceed by
computing the product of the ciphertexts, giving us a ciphertext E en-
crypting

∑L−1
j=0 vjM

π(j), where vj is the number of votes on candidate j.
We shall provide a multi-party computation protocol for the authorities
to transform E into a new ciphertext E ′ encrypting

∑L−1
j=0 vjM

j . We first
assume that π is known. Later in the section, we shall investigate the
case where π is unknown.

We invert the permutation in two steps. First the authorities create
an encryption ERπ of a number Rπ =

∑L−1
j=0 RjM

π(j). The numbers
Rj must for each j be chosen so that Rj + vj < M . We will reveal
Rj + vj and the purpose of Rj is to hide vj . At the same time they

produce ER as an encryption of R =
∑L−1

j=0 RjM
j . In the second step the

authorities decrypt ERπE to get the plaintext
∑L−1

i=0 (Rj+vj)M
π(j). They

let E′ be E−1
R Epk(

∑L−1
i=0 (Rj + vj)M

j ; 0), containing the wanted plaintext
∑L−1

j=0 vjM
j .

The crucial point is to generate ERπ and ER in a distributed way.
A possibility is the following: For each i = 1, . . . , N , authority i se-
lects Ri,0, . . . , Ri,L−1 at random from {0, . . . , bM−T

N
c} and generates an

encryption ERπ ,i = Epk(
∑L−1

j=0 Ri,jM
π(j)). This way ERπ =

∏N
i=1ERπ ,i

will have the required properties. Similarly each authority generates
ER,i = Epk(

∑L−1
j=0 Ri,jM

j), and ER can be computed as
∏N

i=1ER,i.
Each authority can prove in zero-knowledge that it has generated ERπ ,i

and ER,i correctly by making integer commitments ci,0, . . . , ci,L−1 to
Ri,0, . . . , Ri,L−1, use range proofs as in [Bou02] to show that they are
in the correct interval, and use equivalence proofs to show that ERπ ,i

has the same content as
∏L−1

j=0 c
Mπ(j)

j and ER,i has the same content as
∏L−1

j=0 c
Mj

j .
As an alternative to showing the permutation in open, the trusted

party may also select for each group of voters a hidden permutation. A
permutation for a group can be provided by the trusted party through

7

making ciphertexts Eπ,0 = Epk(M
π(0)), . . . , Eπ,L−1 = Epk(M

π(L−1)) and
Eπ−1,0 = Epk(M

π−1(0)), . . . , Eπ−1,L−1 = Epk(M
π−1(L−1)) public. The tally

servers may produce ER in the same way as they did above. When pro-
ducing ERπ they form ERπ ,i in a different way. Tally server i still uses the
commitments ci,0, . . . , ci,L−1 in the proof of correctness of ER in the same

way as above, however, this time it forms ERπ ,i as Epk(0)
∏L−1

j=0 E
Ri,j

π,j , and
uses multiplication proofs to demonstrate that this ciphertext has been
correctly formed.

After receiving the votes the tally servers have to create an encryption
of

∑L−1
i=0 (Rj + vj)M

j . Since
∑L−1

j=0 (Rj + vj)M
π(j) =

∑L−1
j=0 (Rπ−1(j) +

vπ−1(j))M
j is revealed we can form E−1

R

∏L−1
j=0 E

Rπ−1(j)+vπ−1(j)

π−1,j to get the

required ciphertext E′ encrypting
∑L−1

j=0 vjM
j .

Of course when making the ciphertexts this way the tally servers need
assurance that Eπ,0, . . . , Eπ,L−1 and Eπ−1,0, . . . , Eπ−1,L−1 correspond to a
hidden permutation. This can be proved in zero-knowledge by running a
shuffle proof twice. We now show that Eπ−1,0, . . . , Eπ−1,L−1 shuffles into
Eι,0 = Epk(M

0; 0), . . . , Eι,L−1 = Epk(M
L−1; 0), and that Eι,0, . . . , Eι,L−1

shuffles into Eπ,0, . . . , Eπ,L−1 using the same permutation as in the first
shuffle.

5 Analysis of the Protocol

5.1 Privacy

The main purpose of the protocol is to strengthen privacy. Suppose
we divide the voters into L groups and assign them the permutations
π1, . . . , πL, where πi(j) = j + i mod L. The adversary does not know to
which group a voter belongs, unless a huge amount of voters has been
corrupted. Therefore, on seeing π(j) he has no knowledge about j.

The protocol is an add-on to the standard voting protocols based on
homomorphic encryption. This means, even if the trusted party that
creates permutations and distributes them is dishonest, the privacy pro-
tection of the standard protocol is intact and protects the voter’s privacy.
Only when the adversary has access to both the secondary channel and
the client machine can he compromise the privacy of the voter.

8

5.2 Correctness

The proposed method can also hamper, somewhat, attackers that try
to modify the result of an election. Regarding the latter we achieve,
when the protocol works at its best, that an attacker can submit only
a random vote on some other candidate than the one chosen by the
voter. Obviously, this is not ideal since in the real world votes are usually
not distributed equally between candidates. However, it is better than
nothing.

We note that a little trick can be deployed to see whether an elec-
tion has been conducted without a massive attack on the robustness of
the election. The trick consists in creating some dummy candidates that
cannot be chosen by honest voters. If the result shows votes on these
candidates then some sort of cheating has occurred. We cannot differ-
entiate the types of cheating though. It may be because hackers have
attacked and thus some votes had been cast at random. It may also be
a group of discontent voters that try to make it look like an attack by
hackers has taken place.

Let us look at the case where the voters only have a moderate number
of candidates to choose from and may only cast one vote. In this case
we may select a family of permutations P , so that for any two pairs
of candidates (i, j), (a, b) where i 6= j and a 6= b, the probability when
choosing π at random from P for π(i) = a, π(j) = b is 1

L(L−1)
. If a voter

holds a random permutation from P and the adversary does not know
this permutation, then the adversary has no idea of the voters choice i
even when seeing a = π(i). Furthermore, if he chooses b 6= π(i) then he
simply votes for a random candidate j 6= i. As an example of such a
family of permutations we may if L is a power of a prime interpret the
candidates as elements in a finite field of order L and let the family of
permutations be the L(L− 1) non-constant lines in the field.

The scheme above can be used with known permutations dividing
voters into |P | groups of equal size and assigning each of the groups a
permutation from P . The adversary still does not know to which group
a voter belongs. However, when the number of candidates is large this is
not a practical approach. We may decide to reduce the number of permu-
tations in the family. To protect privacy we only need L permutations,
but an attacker having some idea of a voter’s preference may then cheat
with that vote. As an alternative, we can hide the permutations using
the protocol with hidden permutations. Certainly, a determined attacker
may collect ballots from voters to get a picture of the permutations in

9

play; however, this will require a huge effort. Likewise, an adversary
might corrupt some of the authorities and through their choices of R’s
used to hide the election outcomes in the groups obtain some statistical
information about the permutations, but again this requires much effort
from the adversary with little success to be expected.

We can imagine voting schemes where the voters may cast multiple
votes at once. In other words they submit a vote on the form

∑L−1
j=0 δjM

j

where δj = 1 for the candidates selected and δj = 0 otherwise. Again, this
may necessitate hiding the permutations. Otherwise, an attacker might
be able to detect certain patterns in the voter’s choice and correlate that
with the permutations in play to determine the choice. Having an idea
for instance that a particular voter probably intends to vote for candidate
1,5,6 and 9 and seeing numbers 2,3,4,10 he might find that there is indeed
a permutation π so that π(1) = 2, π(6) = 3, π(5) = 4 and π(9) = 10. This
would give him good reason to believe that he had guessed the voter’s
choice correctly.

5.3 Power of the Trusted Party

Since we rely on a trusted party to perform some of the operations in the
protocol, it is relevant to consider how much trust we have to place in this
party. First, we note that what we do here is to give an extra guarantee
of privacy. No matter how the trusted party may try to cheat, the voter’s
privacy protection under the original basic voting scheme is still effective.
But of course, with a cheating third party the extra guarantees we try to
provide against adversaries with access to the client machine no longer
hold.

The voting protocol itself is still used for verification of the validity
of the votes. Furthermore, the trusted party does have to prove the
correctness of the shuffle. Therefore, the trusted party cannot add votes
or remove votes. The only possible cheating left consists in sending the
voter an invalid ballot. If the voter receives an invalid ballot, he may this
way be tricked into voting for another candidate than he wishes to vote
for. Moreover, since the voter in this protocol has a personal ballot there
is no public information available enabling him to discover the problem.
However, we may imagine that the voter can request from the trusted
party an opening of the commitment indicating in which group he is to
be placed. In the open permutation protocol, he can this way directly see
whether his ballot matches the permutation of his group. Of course, this
method only works in scenarios where the adversary with control over

10

the client machine is kept from sending in such a request. We can remedy
this latter deficiency with another method, namely giving the voter two
ballots and having him indicate, publicly, which ballot he is using. We
then require by default that the trusted party open the ballot the voter
has not used. This cut-and-choose protocol limits the possibilities for
the trusted party to cheat. A cheating trusted party is then going to be
caught with high probability when sending out more than a fraction of
false ballots.

5.4 Efficiency

Our scheme does not alter the efficiency of the voting scheme on the
client side. For the voter the extra privacy protection comes for free.
On the server side, we compare the efficiency of our scheme with that of
[DJ02]. Both in their article and in ours we have formulated the schemes
in broad terms of some homomorphic cryptosystem, etc. However, no
matter which operation is the most expensive one in their scheme, they
require the servers to perform Θ(ML) operations each and the trusted
party to perform Θ(ML) operations. In comparison, in our scheme in
both the known permutations scenario and the hidden permutations sce-
nario the servers use O(QL+M) operations each, and the trusted party
uses O(QL + M) operations. Looking at the schemes using, say, the
generalized Paillier encryption of [DJ01] for encryption and the integer
commitment scheme from [DF02] it also seems like the constants in their
protocol are higher than ours. Taking as a toy example an election with
1,000,000 voters and 101 candidates, we can save at least a factor 100
compared to their scheme. This is enough to make our scheme practical.

References

[BFP+01] Oliver Baudron, Pierre-Alain Fouque, David Pointcheval,
Guillaume Poupard, and Jacques Stern. Practical multi-
candidate election scheme. In proceedings of PODC ’01, pages
274–283, 2001.

[Bou02] Fabrice Boudot. Efficient proofs that a committed number
lies in an interval. In proceedings of EUROCRYPT ’00, LNCS
series, volume 1807, pages 431–444, 2002.

11

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmak-
ers. A secure and optimally eficient multi-authority election
scheme. In proceedings of EUROCRYPT ’97, LNCS series,
volume 1233, pages 103–118, 1997.

[DF02] Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding
integer commitment scheme based on groups with hidden or-
der. In proceedings of ASIACRYPT ’02, LNCS series, volume
2501, pages 125–142, 2002.

[DGS03] Ivan Damg̊ard, Jens Groth, and Gorm Salomonsen. The the-
ory and implementation of an electronic voting system. In
D. Gritzalis, editor, Secure Electronic Voting, pages 77–100.
Kluwer Academic Publishers, 2003.

[DJ01] Ivan Damg̊ard and Mads J. Jurik. A generalisation, a simplifi-
cation and some applications of paillier’s probabilistic public-
key system. In proceedings of PKC ’01, LNCS series, volume
1992, 2001.

[DJ02] Ivan Damg̊ard and Mads J. Jurik. Client/server tradeoffs for
online elections. In proceedings of PKC ’02, LNCS series,
volume 2274, 2002.

[FS01] Jun Furukawa and Kazue Sako. An efficient scheme for proving
a shuffle. In proceedings of CRYPTO ’01, LNCS series, volume
2139, pages 368–387, 2001.

[Gro03] Jens Groth. A verifiable secret shuffle of homomorphic en-
cryptions. In proceedings of PKC ’03, LNCS series, volume
2567, pages 145–160, 2003.

[HS00] Martin Hirt and Kazue Sako. Efficient receipt-free voting
based on homomorphic encryption. In proceedings of EURO-
CRYPT ’00, LNCS series, volume 1807, pages 539–556, 2000.

[Nef01] Andrew C. Neff. A verifiable secret shuffle
and its application to e-voting. In CCS ’01,
pages 116–125, 2001. Full paper available at
http://www.votehere.net/vhti/documentation/egshuf.pdf.

12

Recent BRICS Report Series Publications

RS-04-13 Jens Groth and Gorm Salomonsen.Strong Privacy Protec-
tion in Electronic Voting. July 2004. 12 pp. Preliminary ab-
stract presented at Tjoa and Wagner, editors,13th Interna-
tional Workshop on Database and Expert Systems Applications,
DEXA ’02 Proceedings, 2002, page 436.

RS-04-12 Olivier Danvy and Ulrik P. Schultz. Lambda-Lifting in
Quadratic Time. June 2004. 34 pp. To appear inJournal of
Functional and Logic Programming. This report supersedes the
earlier BRICS report RS-03-36 which was an extended version
of a paper appearing in Hu and Rodŕıguez-Artalejo, editors,
Sixth International Symposium on Functional and Logic Pro-
gramming, FLOPS ’02 Proceedings, LNCS 2441, 2002, pages
134–151.

RS-04-11 Vladimiro Sassone and Paweł Sobociński. Congruences for
Contextual Graph-Rewriting. June 2004. 29 pp.

RS-04-10 Daniele Varacca, Hagen V̈olzer, and Glynn Winskel. Proba-
bilistic Event Structures and Domains. June 2004.

RS-04-9 Ivan B. Damg̊ard, Serge Fehr, and Louis Salvail. Zero-
Knowledge Proofs and String Commitments Withstanding Quan-
tum Attacks. May 2004. 22 pp.

RS-04-8 Petr Jaňcar and Jiř ı́ Srba. Highly Undecidable Questions for
Process Algebras. April 2004. 25 pp. To appear in Lévy, Mayr
and Mitchell, editors, 3rd IFIP International Conference on
Theoretical Computer Science, TCS ’04 Proceedings, 2004.

RS-04-7 Mojḿır K řetı́nský, Vojt ěch Řehák, and Jan Strejček. On the
Expressive Power of Extended Process Rewrite Systems. April
2004. 18 pp.

RS-04-6 Gudmund Skovbjerg Frandsen and Igor E. Shparlinski. On
Reducing a System of Equations to a Single Equation. March
2004. 11 pp. To appear in Schicho and Singer, editors,ACM
SIGSAM International Symposium on Symbolic and Algebraic
Computation, ISSAC ’04 Proceedings, 2004.

