TAMPER DETECTION AND NON-MALLEABLE CODES

Protecting Data Against "Tampering"

- Question: How can we protect data against tampering by an adversary?
- Variants of this question studied in cryptography, information theory and coding theory.
 - What kind of tampering are we considering?
 - What protection/guarantees do we want to achieve?
 - Can we use secret keys or randomness?
- Tools: Signatures, MACs, Hash Functions, Error-correcting codes, Error-detecting codes.
- New variants: tamper-detection codes, non-malleable codes.

Motivation: Physical Attacks

Goal: store secret data on a device

- Adversary cannot read the data on the device directly, but can:
 - □ interact with the device via interface
 - tamper with the data on the device.

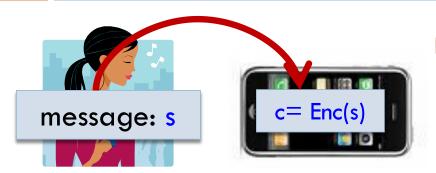
Motivating Example (Signature)

If a single bit of the signing key is flipped, can use the resulting signature to factor the RSA modulus. [BDL97]

Coding against Tampering

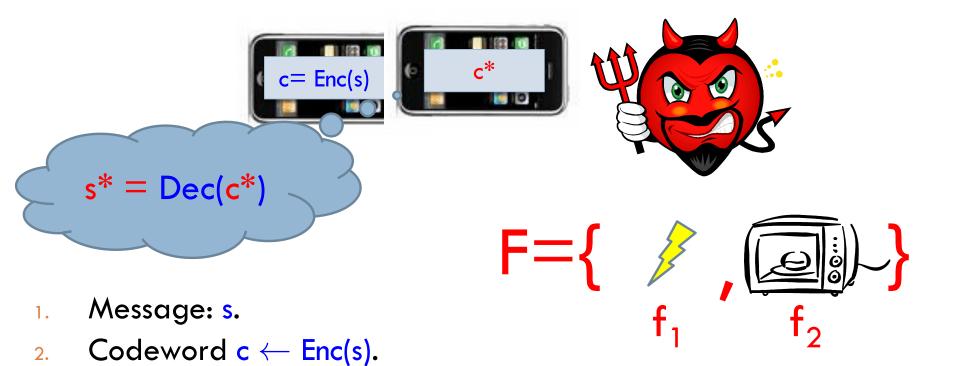
- Solution Idea: encode the data on the device to protect it against tampering.
 - Each execution first decodes the underlying data.

- Example: Use an error-correcting code to protect against attacks that modify a few bits.
- What kind of tampering can we protect against?
- What kind of codes do we need?



- Coding scheme (Enc, Dec) s.t.
 - Enc: $\{0,1\}^k \rightarrow \{0,1\}^n$ can be randomized
 - Dec(Enc(s)) = s
 (with probability 1)

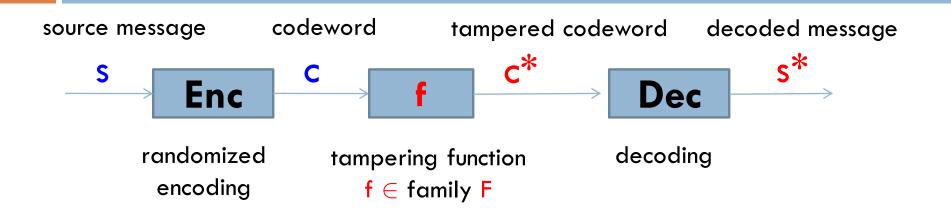
- 1. Message: s.
- 2. Codeword $c \leftarrow Enc(s)$.



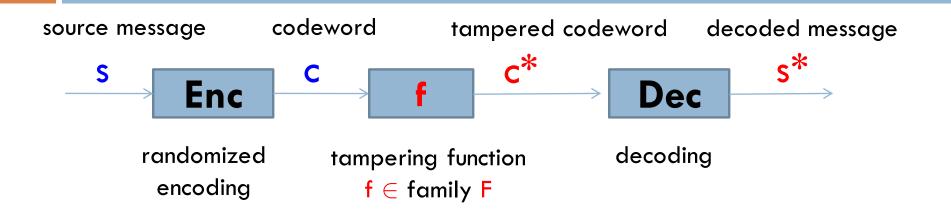
 $f \in F$ adversarial but independent of randomness of c.

Decoded message: $s^* = Dec(c^*)$.

Tampered codeword $c^* = f(c)$.



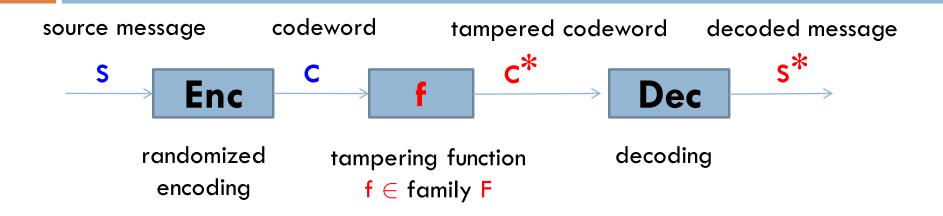
- Differences from "standard" coding problems:
 - No notion of distance between original and tampered codeword. Focus on the family of functions being applied.
 - Tampering is "worst-case", but choice of function f does not depend on randomness of encoding.



Goal:

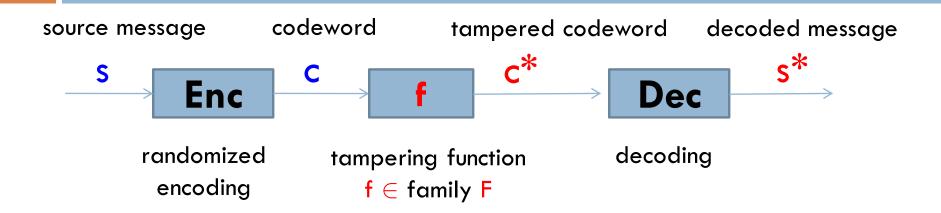
For "interesting" families F, design coding scheme (Enc, Dec) which provides "meaningful guarantees" about the outcome of the tampering experiment.

Correction



- \square Tamper-Correction: require that $s^* = s$
- □ Error-Correcting Codes for Hamming Distance: The family $F = \{f \text{ s.t. } \forall x \text{ dist}(x, f(x)) < d \}$
- Too limited for us! Must preserve some relationship between original and tampered codeword.
 - E.g., cannot protect against overwriting with random value.

Tamper Detection



□ Tamper-Detection: If tampering occurs, then we require that $s^* = \bot$ (error) with overwhelming probability.

Definition: An (F, ε) -Tamper Detection Code guarantees:

$$\forall$$
 s, f \in F : Pr[Dec(f(Enc(s))) $\neq \bot$] $\leq \varepsilon$

Tamper Detection

An (F, ε) -Tamper Detection Code guarantees:

```
\forall s, f \in F : Pr[Dec(f(Enc(s))) \neq \bot] \leq \varepsilon
```

□ Error-Correcting Codes provide tamper detection for the family $F = \{f \text{ s.t. } \forall x \text{ 0} < \text{dist}(x, f(x)) < d \}$

Tamper Detection: AMD Codes

```
An (F, \varepsilon)-Tamper Detection Code guarantees:

\forall s, f \in F : Pr[Dec(f(Enc(s))) \neq \bot] \leq \varepsilon
```

- □ Algebraic Manipulation Detection (AMD) Codes [CDFPW08]: Tamper detection for $F = \{ f_e(x) = x + e : e \neq 0 \}$
- Intuition: Can add any error e you want, but must choose it before you see the codeword.
- \Box Encoding is necessarily randomized. Choice of $f_e \in F$ must be independent of randomness.

Tamper Detection: AMD Codes

```
An (F, \varepsilon)-Tamper Detection Code guarantees:
```

```
\forall s, f \in F : Pr[Dec(f(Enc(s))) \neq \bot] \leq \varepsilon
```

- □ Algebraic Manipulation Detection (AMD) Codes [CDFPW08]: Tamper detection for $F = \{ f_e(x) = x + e : e \neq 0 \}$
- \square Construction: Enc(s) = (s, r, sr + r³) operations in \mathbb{F}_{2^k} .
 - □ Proof Idea: Enc(s) + e is valid iff p(r) = 0 where p is a non-zero poly of deg(p) ≤ 2 .
- □ Construction Generalizes to get a rate 1 code: Message size k, codeword size $n = k + O(\log k + \log 1/\epsilon)$

Tamper Detection: AMD Codes

```
An (F, \varepsilon)-Tamper Detection Code guarantees:

\forall s, f \in F : Pr[Dec(f(Enc(s))) \neq \bot] \leq \varepsilon
```

- □ Algebraic Manipulation Detection (AMD) Codes [CDFPW08]: Tamper detection for F = { f_e(x) = x + e : e ≠ 0 }
- Many applications of AMD codes:
 - Secret Sharing and Fuzzy Extractors [CDFPW08]
 - Error-Correcting Codes for "Simple" Channels [GS10]
 - Multiparty Computation [GIPST14]
 - Related-Key Attack Security
 - **...**

Tamper Detection: Beyond AMD?

An (F, ε) -Tamper Detection Code guarantees:

$$\forall$$
 s, f \in F : Pr[Dec(f(Enc(s))) $\neq \bot$] $\leq \varepsilon$

- Question: Can we go beyond AMD codes?
- What function families F allow for tamper-detection codes?

- Can't allow functions that are (close to) "identity".
- Can't allow functions that are (close to) "constant".
- Can't allow functions that are "too complex":
 - \Box e.g., f(x) = Enc(Dec(x) + 1)

Tamper Detection: General Result

Theorem [Jafargholi-W15]:

For any function family F over n-bit codewords, there is an (F, ε)-TDC as long as $|F| < 2^{2^{\alpha n}}$ for $\alpha < 1$ and each $f \in F$ has few fixed points and high entropy.

- □ Few fixed-points: $Pr_x[f(x) = x]$ is small.
- □ High entropy: \forall c: $Pr_x[f(x) = c]$ is small.

Rate of code is $\approx 1 - \alpha$

Tamper Detection: General Result

Theorem [Jafargholi-W15]:

For any function family F over n-bit codewords, there is an (F, ε)-TDC as long as $|F| < 2^{2^{\alpha n}}$ for $\alpha < 1$ and each $f \in F$ has few fixed points and high entropy.

- Proof is via probabilistic method argument construction is inherently inefficient.
- □ Can be made efficient for $|F| = 2^{\text{poly}(n)}$.
- Examples:
 - \neg F = { Polynomials p(x) of "low" degree}
 - Arr F = { Affine functions Ax + b over "large" field}

Tamper Detection: Construction

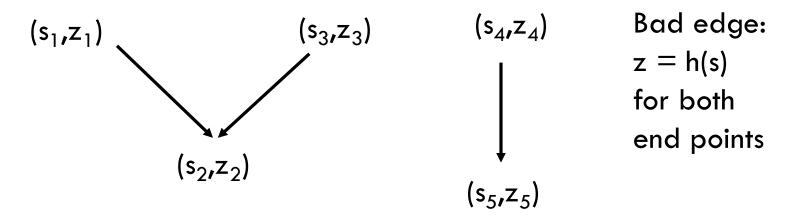
□ First, focus on weak TDC (random-message security):

```
\forall f \in F : \Pr_{S} [ Dec(f(Enc(s))) \neq \bot ] \leq \varepsilon
```

- \square Family of codes indexed by function $h:\{0,1\}^k \to \{0,1\}^v$
 - $Enc_h(s) = (s, h(s))$ and $Dec_h(s,z) = \{ s \text{ if } z = h(s) \text{ else } \bot \}$
 - \square Output size ν is $\log(1/\varepsilon) + O(1)$ bits.
- For any family F with given restrictions, a random code
 (Ench, Dech) is a wTDC with overwhelming probability.
 - \square Can choose h from a t-wise indep function family where $t = \log |F|$.

Tamper Detection: Analysis

Construction: Enc_h(s) = (s, h(s)) , $Dec_h(s,z) = \{ s \text{ if } z = h(s) \text{ else } \bot \}$ Represent tampering function f as a graph:



- □ When is (Enc_h, Dec_h) a bad code? Too many bad edges!
- Unfortunately, "badness" is not independent.
- Can edge-color this graph with few colors (low in-degree).
 Within each color, "badness" is independent.

Tamper Detection: Construction

- Can go from weak to strong tamper detection via leakage resilient (LR) codes.
- □ **Definition** [**DDV10**]: A code (LREnc, LRDec) is an (F, ℓ , ϵ)-LR code if \forall s, \forall f ∈ F where f : $\{0,1\}^n \to \{0,1\}^\ell$ we have: f(LREnc(s)) \approx_{ϵ} f(Uniform)
- \square Construction LREnc_h(s) = (r, h(r) + s)
 - Size of randomness r is $\max\{\ell, \log\log|F|\} + O(\log 1/\epsilon)$.
 - \square Can use t-wise indep function h where $t = O(|\log F|)$.

Tamper Detection: Construction

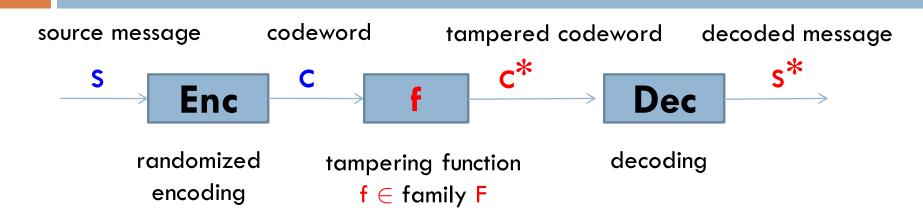
- Can go from weak to strong tamper detection via leakage resilient (LR) codes.
- □ **Definition** [**DDV10**]: A code (LREnc, LRDec) is an (F, ℓ , ϵ)-LR code if \forall s, \forall f ∈ F where f : $\{0,1\}^n \to \{0,1\}^\ell$ we have: f(LREnc(s)) \approx_{ϵ} f(Uniform)

- Strong Tamper-Detection: Enc(s) = wtdEnc(LREnc(s))
- □ Tamper f \Rightarrow Leak f'(c) = {1 if wtdDec(c) $\neq \bot$, 0 else }

Tamper Detection: Limitations

- Tamper detection fails for functions with many fixed points, or low entropy.
- This is inherent, but perhaps not so bad.
 - Fixed-points: nothing changes!
 - Low-entropy: not much remains!
- Can we relax tamper-detection and still get meaningful security?

Non-Malleability [Dziembowski-Pietrzak-W10]



- \square Non-Malleability: either $s^* = s$ or s^* is "unrelated" to s.
 - Analogous to non-malleability in cryptography [DDN91].
- Harder to define formally (stay tuned).
- Examples of "malleability":
 - The value s* is same as s, except with 1st bit flipped.
 - \blacksquare If s begins with 0, then $s^* = s$. Otherwise $s^* = \bot$.

Defining Non-Malleability

<u>Definition</u>: A code (Enc, Dec) is (F, ε)-non-malleable if \forall f \in F \exists simulator $\mathsf{Sim}_{\mathsf{f}}$ that outputs an *identity* or a constant function g such that \forall s:

$$c \leftarrow Enc(s)$$
, $c^* \leftarrow f(c)$
Output $s^*=Dec(c^*)$

$$g \leftarrow Sim_f$$

Output $s^*=g(s)$

General Results for Non-Malleability

- □ For every code (Enc, Dec) there exists a bad function f, for which the scheme is malleable.

 - Bad f depends heavily on (Enc, Dec).

Theorem [DPW10, CG13, FMVW14, JW15]:

For any function family F over n-bit codewords, there is an non-malleable code for F as long as $|F| < 2^{2^{\alpha n}}$ for $\alpha < 1$.

- \square Rate of code is $\approx 1 \alpha$
- □ If $|F| = 2^{\text{poly}(n)}$ then code can be made efficient.

General Results for Non-Malleability

Same construction for non-malleable codes and tamper detection. Combine "weak tamper detection" and "leakage resilient" codes: Enc(s) = wtdEnc(LREnc(s)).

- Intuition: few possible outcomes of tampering codeword c.
 - Tamper detection succeeds: ⊥
 - \square fixed point f(c) = c: "same"
 - \square low entropy value f(c) = c' has many pre-images: Dec(c')

Can think of this as small leakage on LREnc(s).

Much Recent Work

- Explicit efficient constructions:
 - Bit-wise tampering [DPW10,CG13]: each bit of codeword is tampered independently but arbitrarily.
 - Permuting bits of codeword [AGM+14]
 - Split-state model [DKO13, ADL13, ADKO15,CGL15]: Codeword split into two parts that are tampered independently but arbitrarily.

- Applications:
 - CCA security amplification [AGM+14,CMT+15,CDT+15]
 - Non-malleable commitments from OWFs [GPR15]

Application to Tamper-Resilient Security

- Non-malleable codes can protect physical devices against tampering attacks.
 - Store data s on a device in encoded form Enc(s)
 - Each time device is invoked: decode, compute, re-encode
- Tampering of Enc(s) can be simulated by either leaving the data unchanged, or completely overwriting it with a new unrelated value.
- Device has to re-encode the codeword each time with fresh randomness. Is this necessary?

Continuous Tampering and Re-Encoding

Non-malleable codes only consider one tampering attack per codeword. Can we allow continuous tampering of a single codeword?

Continuous non-malleable codes (4 flavors):

[FMV+14, JW15]

- Device can "self-destruct" if tampering detected?
- "Persistent" tampering?

Continuous Non-Malleable Codes



No restrictions on F

Conclusions

- Defined tamper-detection codes and (continuous) nonmalleable codes.
- One general construction. Based on probabilistic method,
 but can be made efficient for "small" function families.
- □ Open Questions:
 - Explicit constructions of tamper detection codes and nonmalleable codes. More families. Simpler. Better rate.
 - More applications.
 - To non-malleable cryptography
 - To other areas?

Thank you!