
TAMPER DETECTION

AND

NON-MALLEABLE CODES

Daniel Wichs (Northeastern U)

Protecting Data Against “Tampering”

 Question: How can we protect data against tampering by
an adversary?

 Variants of this question studied in cryptography,
information theory and coding theory.

 What kind of tampering are we considering?

 What protection/guarantees do we want to achieve?

 Can we use secret keys or randomness ?

 Tools: Signatures, MACs, Hash Functions, Error-correcting
codes, Error-detecting codes.

 New variants: tamper-detection codes, non-malleable codes.

Motivation: Physical Attacks

 Goal: store secret data on a device

 Adversary cannot read the data on

the device directly, but can:

 interact with the device via interface

 tamper with the data on the device.

Motivating Example (Signature)

 If a single bit of the signing key is flipped, can use the

resulting signature to factor the RSA modulus. [BDL97]

sk

m Signsk(m)

Coding against Tampering

 Solution Idea: encode the data on the device to
protect it against tampering.

 Each execution first decodes the underlying data.

 Example: Use an error-correcting code to protect
against attacks that modify a few bits.

 What kind of tampering can we protect against?

 What kind of codes do we need?

1. Message: s.

2. Codeword c Ã Enc(s).

3. Tampered codeword c* = f(c).

f 2 F adversarial but independent of randomness of c.

4. Decoded message: s* = Dec(c*).

The “Tampering Experiment”

message: s c= Enc(s)

 Coding scheme (Enc, Dec) s.t.

 Enc : {0,1}k → {0,1}n

can be randomized

 Dec(Enc(s)) = s
(with probability 1)

c= Enc(s)

The “Tampering Experiment”

c*

F={ },
f1 f2

1. Message: s.

2. Codeword c Ã Enc(s).

3. Tampered codeword c* = f(c).

f 2 F adversarial but independent of randomness of c.

4. Decoded message: s* = Dec(c*).

s* = Dec(c*)

The “Tampering Experiment”

 Differences from “standard” coding problems:

 No notion of distance between original and tampered

codeword. Focus on the family of functions being applied.

 Tampering is “worst-case”, but choice of function f does not

depend on randomness of encoding.

Enc Dec
s c

source message codeword

randomized

encoding

f

tampering function

f 2 family F

c*

decoding

tampered codeword

s*
decoded message

The “Tampering Experiment”

Goal:

For “interesting” families F, design coding scheme

(Enc, Dec) which provides “meaningful guarantees”

about the outcome of the tampering experiment.

Enc Dec
s c

source message codeword

randomized

encoding

f

tampering function

f 2 family F

c*

decoding

tampered codeword

s*
decoded message

Correction

 Tamper-Correction: require that s* = s

 Error-Correcting Codes for Hamming Distance: The family
F = {f s.t. 8 x dist(x, f(x)) < d }

 Too limited for us! Must preserve some relationship between
original and tampered codeword.
 E.g., cannot protect against overwriting with random value.

Enc Dec
s c

source message codeword

randomized

encoding

f

tampering function

f 2 family F

c*

decoding

tampered codeword

s*
decoded message

Tamper Detection

Enc Dec
s c

source message codeword

randomized

encoding

f

tampering function

f 2 family F

c*

decoding

tampered codeword

s*
decoded message

 Tamper-Detection: If tampering occurs, then we require

that s* = ? (error) with overwhelming probability.

 Definition: An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F : Pr[Dec(f(Enc(s))) ≠ ⊥] ≤ 𝜀

Tamper Detection

 Error-Correcting Codes provide tamper detection for the

family F = {f s.t. 8 x 0 < dist(x, f(x)) < d }

Algebraic Manipulation Detection (AMD)

An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F : Pr[Dec(f(Enc(s))) ≠⊥] ≤ 𝜀

Tamper Detection: AMD Codes

 Algebraic Manipulation Detection (AMD) Codes [CDFPW08] :

Tamper detection for F = { fe(x) = x + e : e ≠ 0 }

 Intuition: Can add any error e you want, but must choose it
before you see the codeword.

 Encoding is necessarily randomized. Choice of fe 2 F must be

independent of randomness.

An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F : Pr[Dec(f(Enc(s))) ≠⊥] ≤ 𝜀

Tamper Detection: AMD Codes

 Algebraic Manipulation Detection (AMD) Codes [CDFPW08] :

Tamper detection for F = { fe(x) = x + e : e ≠ 0 }

 Construction: Enc(s) = (s, r, sr + r3) operations in 𝔽2𝑘.

 Proof Idea: Enc(s) + e is valid iff p(r) = 0 where p is a non-
zero poly of deg(p) ≤ 2.

 Construction Generalizes to get a rate 1 code:

Message size k, codeword size n =k + O(log k + log 1/𝜀)

An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F : Pr[Dec(f(Enc(s))) ≠⊥] ≤ 𝜀

Tamper Detection: AMD Codes

 Algebraic Manipulation Detection (AMD) Codes [CDFPW08] :

Tamper detection for F = { fe(x) = x + e : e ≠ 0 }

 Many applications of AMD codes:

 Secret Sharing and Fuzzy Extractors [CDFPW08]

 Error-Correcting Codes for “Simple” Channels [GS10]

 Multiparty Computation [GIPST14]

 Related-Key Attack Security
 ...

An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F : Pr[Dec(f(Enc(s))) ≠⊥] ≤ 𝜀

Tamper Detection: Beyond AMD?

Question: Can we go beyond AMD codes?

 What function families F allow for tamper-detection codes?

 Can’t allow functions that are (close to) “identity”.

 Can’t allow functions that are (close to) “constant”.

 Can’t allow functions that are “too complex”:

 e.g., f(x) = Enc(Dec(x) + 1)

An (F, 𝜀)-Tamper Detection Code guarantees:

∀ s , f ∈ F : Pr[Dec(f(Enc(s))) ≠⊥] ≤ 𝜀

Tamper Detection: General Result

Theorem [Jafargholi-W15]:

For any function family F over n-bit codewords, there is an

(F, 𝜀)-TDC as long as |F|< 22
𝛼𝑛

for 𝛼 < 1 and each f ∈ F
has few fixed points and high entropy.

 Few fixed-points: Prx[f(x) = x] is small.

 High entropy: ∀ c: Prx[f(x) = c] is small.

Rate of code is ≈ 1 − 𝛼

Tamper Detection: General Result

Theorem [Jafargholi-W15]:

For any function family F over n-bit codewords, there is an

(F, 𝜀)-TDC as long as |F|< 22
𝛼𝑛

for 𝛼 < 1 and each f ∈ F
has few fixed points and high entropy.

 Proof is via probabilistic method argument - construction

is inherently inefficient.

 Can be made efficient for |F| = 2poly(𝑛).

 Examples:

 F = { Polynomials p(x) of “low” degree}

 F = { Affine functions Ax + b over “large” field}

Tamper Detection: Construction

 First, focus on weak TDC (random-message security):

∀ f ∈ F : Pr
𝑠

[Dec(f(Enc(s))) ≠ ⊥] ≤ 𝜀

 Family of codes indexed by function h : 0,1 𝑘 → 0,1 𝑣

Ench(s) = (s, h(s)) and Dech(s,z) = { s if z = h(s) else ⊥}

 Output size 𝑣 is log(1/𝜀) + O(1) bits.

 For any family F with given restrictions, a random code

(Ench, Dech) is a wTDC with overwhelming probability.

 Can choose h from a t-wise indep function family where t = log|F|.

Tamper Detection: Analysis

Construction: Ench(s) = (s, h(s)) , Dech(s,z) = { s if z = h(s) else ⊥}

Represent tampering function f as a graph:

 When is (Ench , Dech) a bad code? Too many bad edges!

 Unfortunately, “badness” is not independent.

 Can edge-color this graph with few colors (low in-degree).
Within each color, “badness” is independent.

(s1,z1)

(s2,z2)

(s3,z3) (s4,z4)

(s5,z5)

Bad edge:

z = h(s)

for both

end points

Tamper Detection: Construction

 Can go from weak to strong tamper detection via leakage
resilient (LR) codes.

 Definition [DDV10]: A code (LREnc, LRDec) is an (F, ℓ, 𝜀)-LR

code if ∀ s, ∀ f ∈ F where f : 0,1 𝑛 → 0,1 ℓ we have:

f(LREnc(s)) ≈𝜀 f(Uniform)

 Construction LREnch(s) = (r, h(r) + s)

 Size of randomness r is max{ ℓ , loglog|F|} + O(log 1/𝜀).

 Can use t-wise indep function h where t = O(|log F|).

Tamper Detection: Construction

 Can go from weak to strong tamper detection via leakage
resilient (LR) codes.

 Definition [DDV10]: A code (LREnc, LRDec) is an (F, ℓ, 𝜀)-LR

code if ∀ s, ∀ f ∈ F where f : 0,1 𝑛 → 0,1 ℓ we have:

f(LREnc(s)) ≈𝜀 f(Uniform)

 Strong Tamper-Detection: Enc(s) = wtdEnc(LREnc(s))

 Tamper f ⇒ Leak f’(c) = {1 if wtdDec(c) ≠ ⊥, 0 else }

Tamper Detection: Limitations

 Tamper detection fails for functions with many fixed

points, or low entropy.

 This is inherent, but perhaps not so bad.

 Fixed-points: nothing changes!

 Low-entropy: not much remains!

 Can we relax tamper-detection and still get meaningful

security?

Non-Malleability [Dziembowski-Pietrzak-W10]

 Non-Malleability: either s*= s or s* is “unrelated” to s.

 Analogous to non-malleability in cryptography [DDN91].

 Harder to define formally (stay tuned).

 Examples of “malleability”:

 The value s* is same as s, except with 1st bit flipped.

 If s begins with 0, then s* = s. Otherwise s* = ?.

Enc Dec
s c

source message codeword

randomized

encoding

f

tampering function

f 2 family F

c*

decoding

tampered codeword

s*
decoded message

Defining Non-Malleability

g ← Simf

Output s*= g(s)
≈𝜀

Definition: A code (Enc, Dec) is (F, 𝜀)-non-malleable if

8 f 2 F 9 simulator Simf that outputs an identity or a

constant function g such that 8 s:

c Ã Enc(s) , c* Ã f(c)

Output s*=Dec (c*)

General Results for Non-Malleability

 For every code (Enc, Dec) there exists a bad function f,
for which the scheme is malleable.

 f(c) = Enc(Dec(c) + 1).

 Bad f depends heavily on (Enc, Dec).

Theorem [DPW10, CG13, FMVW14, JW15]:

For any function family F over n-bit codewords, there is an

non-malleable code for F as long as |F|< 22
𝛼𝑛

for 𝛼 < 1.

 Rate of code is ≈ 1 − 𝛼

 If |F| = 2poly(𝑛) then code can be made efficient.

General Results for Non-Malleability

 Same construction for non-malleable codes and tamper

detection. Combine “weak tamper detection” and

“leakage resilient” codes: Enc(s) = wtdEnc(LREnc(s)).

 Intuition: few possible outcomes of tampering codeword c.

 Tamper detection succeeds: ⊥

 fixed point f(c) = c: “same”

 low entropy value f(c) = c’ has many pre-images: Dec(c’)

 Can think of this as small leakage on LREnc(s).

Much Recent Work

 Explicit efficient constructions:

 Bit-wise tampering [DPW10,CG13]: each bit of codeword is

tampered independently but arbitrarily.

 Permuting bits of codeword [AGM+14]

 Split-state model [DKO13, ADL13, ADKO15,CGL15] : Codeword split

into two parts that are tampered independently but arbitrarily.

 Applications:

 CCA security amplification [AGM+14,CMT+15,CDT+15]

 Non-malleable commitments from OWFs [GPR15]

Application to Tamper-Resilient Security

 Non-malleable codes can protect physical devices against
tampering attacks.

 Store data s on a device in encoded form Enc(s)

 Each time device is invoked: decode, compute, re-encode

 Tampering of Enc(s) can be simulated by either leaving the
data unchanged, or completely overwriting it with a new
unrelated value.

 Device has to re-encode the codeword each time with fresh
randomness. Is this necessary?

Continuous Tampering and Re-Encoding

 Non-malleable codes only consider one tampering attack

per codeword. Can we allow continuous tampering of a

single codeword?

 Continuous non-malleable codes (4 flavors):

[FMV+14, JW15]

 Device can “self-destruct” if tampering detected?

 “Persistent” tampering?

Continuous Non-Malleable Codes

Self-Destruct, Persistent

(weakest)

No Self-Destruct, Non-Persistent

(strongest)

Self-Destruct,

Non-Persistent

No Self-Destruct,

Persistent

Few fixed points, High entropy

No restrictions on F

Few fixed pointsHigh entropy

Conclusions

 Defined tamper-detection codes and (continuous) non-
malleable codes.

 One general construction. Based on probabilistic method,
but can be made efficient for “small” function families.

 Open Questions:

 Explicit constructions of tamper detection codes and non-
malleable codes. More families. Simpler. Better rate.

 More applications.

 To non-malleable cryptography

 To other areas?

Thank you!

