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EFFICIENT NONINTERACTIVE PROOF SYSTEMS FOR
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Abstract. Noninteractive zero-knowledge proofs and noninteractive witness-indistinguishable
proofs have played a significant role in the theory of cryptography. However, lack of efficiency has
prevented them from being used in practice. One of the roots of this inefficiency is that noninterac-
tive zero-knowledge proofs have been constructed for general NP-complete languages such as Circuit
Satisfiability, causing an expensive blowup in the size of the statement when reducing it to a circuit.
The contribution of this paper is a general methodology for constructing very simple and efficient
noninteractive zero-knowledge proofs and noninteractive witness-indistinguishable proofs that work
directly for a wide class of languages that are relevant in practice (namely, ones involving the sat-
isfiability of equations over bilinear groups), without needing a reduction to Circuit Satisfiability.
Groups with bilinear maps have enjoyed tremendous success in the field of cryptography in recent
years and have been used to construct a plethora of protocols. This paper provides noninteractive
witness-indistinguishable proofs and noninteractive zero-knowledge proofs that can be used in con-
nection with these protocols. Our goal is to spread the use of noninteractive cryptographic proofs
from mainly theoretical purposes to the large class of practical cryptographic protocols based on
bilinear groups.
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1. Introduction. Noninteractive zero-knowledge proofs and noninteractive wit-
ness-indistinguishable proofs have played a significant role in the theory of cryptog-
raphy. However, lack of efficiency has prevented them from being used in practice.
Our goal is to construct efficient and practical noninteractive zero-knowledge (NIZK)
proofs and noninteractive witness-indistinguishable (NIWI) proofs.

Blum, Feldman, and Micali [3] introduced NIZK proofs. Their paper and sub-
sequent works, e.g., [18, 15, 29, 16], demonstrate that NIZK proofs exist for all of
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NP. Unfortunately, these NIZK proofs are all very inefficient. Although they have led
to interesting theoretical results, such as the construction of public-key encryption
secure against chosen ciphertext attack by Dolev, Dwork, and Naor [17], they have
not been used in practice.

Since we want to construct NIZK proofs that can be used in practice, it is worth-
while to identify the roots of the inefficiency in the above-mentioned NIZK proofs.
One drawback is that they were designed with a general NP-complete language in
mind, e.g., Circuit Satisfiability. In practice, we want to prove statements such as
“the ciphertext c encrypts a signature on the message m” or “the three commitments
ca, cb, cc contain messages a, b, c such that c = ab.” An NP-reduction of even very
simple statements like these gives us big circuits containing thousands of gates, and
the corresponding NIZK proofs become very large.

While we want to avoid an expensive NP-reduction, it is still desirable to have a
general way to express statements that arise in practice instead of having to construct
noninteractive proofs on an ad hoc basis. A useful observation in this context is
that many public-key cryptography protocols are based on finite abelian groups. If
we can capture statements that express relations between group elements, then we
can express statements that come up in practice such as “the commitments ca, cb, cc
contain messages such that c = ab” or “the plaintext of c is a signature on m,” as
long as those commitment, encryption, and signature schemes work over the same
finite group. We will therefore construct NIWI and NIZK proofs for group-dependent
languages.

The next issue to address is where to find suitable group-dependent languages.
We will look at statements related to groups with a bilinear map, which have become
widely used in the design of cryptographic protocols. Not only have bilinear groups
been used to give new constructions of such cryptographic staples as public-key en-
cryption, digital signatures, and key agreement (see [31] and the references therein),
but bilinear groups have enabled the first constructions to achieve goals that had
never been attained before. The most notable of these is the identity-based encryption
scheme of Boneh and Franklin [9] (see also [6, 5, 33]), and there are many others, such
as attribute-based encryption [32, 22], searchable public-key encryption [8, 11, 12],
and one-time double-homomorphic encryption [10]. For an incomplete list of pa-
pers (currently more than 200) on the application of bilinear groups in cryptography,
see [1].

1.1. Our contribution. For completeness, let us recap the definition of a bilin-
ear group. Please note that for notational convenience we will follow the tradition of
mathematics and use additive notation1 for the binary operations in G1 and G2. We
have a probabilistic polynomial time algorithm G that takes a security parameter as
input and outputs (n, G1, G2, GT , e,P1,P2). In some cases, G1 = G2 and P1 = P2,
in which case we write (n, G,GT , e,P).

• G1, G2, GT are descriptions of cyclic groups of order n.
• The elements P1 and P2 generate G1 and G2, respectively.
• e : G1 × G2 is a nondegenerate bilinear map such that e(P1,P2) generates
GT and for all a, b ∈ Zn we have e(aP1, bP2) = e(P1,P2)

ab.

1We remark that in the cryptographic literature it is more common to use multiplicative notation
for these groups, since the “discrete log problem” is believed to be hard in these groups, which is
also important to us. In our setting, however, it will be much more convenient to use multiplicative
notation to refer to the action of the bilinear map.
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• We can efficiently compute group operations, compute the bilinear map, and
decide membership.

In this work, we develop a general set of highly efficient techniques for proving
statements involving bilinear groups. The generality of our work extends in two di-
rections. First, we formulate our constructions in terms of modules over commutative
rings with an associated bilinear map. This framework captures all known bilinear
groups with cryptographic significance—for both supersingular and ordinary elliptic
curves, for groups of both prime and composite order. Second, we consider all mathe-
matical operations that can take place in the context of a bilinear group: addition in
G1 and G2, scalar point–multiplication, addition or multiplication of scalars, and use
of the bilinear map. We also allow both group elements and scalars to be “unknowns”
in the statements to be proved.

Since we cover all operations over the bilinear group, we can prove any statement
formulated in terms of the operations associated with the bilinear group. With our
level of generality, it would, for example, be easy to write a short statement, using
the operations above, that encodes “c is an encryption of the value committed to in
d under the product of the two keys committed to in a and b,” where the encryptions
and commitments being referred to are existing cryptographic constructions based on
bilinear groups. Logical operations like AND and OR are also easy to encode into our
framework using standard techniques in arithmetization.

The proof systems we build are noninteractive. This allows them to be used in
contexts where interaction is undesirable or impossible. We first build highly efficient
witness-indistinguishable proof systems, which are of independent interest. We then
show how to, under certain conditions, transform these into zero-knowledge proof
systems. We also provide a detailed examination of the efficiency of our construc-
tions in various settings (depending on what type of bilinear group and cryptographic
assumption is used).

The security of constructions arising from our framework can be based on any
of a variety of computational assumptions about bilinear groups (three of which we
discuss in detail here).

Informal statement of our results. We consider equations over variables from
G1, G2, and Zn as described in Figure 1. Then we construct efficient witness-indistin-
guishable proofs for the simultaneous satisfiability of a set of such equations. The
witness-indistinguishable proofs have perfect completeness, and there are two com-
putationally indistinguishable types of common reference strings giving, respectively,
perfect soundness and perfect witness-indistinguishability. We refer to section 2 for
precise definitions.

We also consider the question of NIZK. We show that we can give zero-knowledge
proofs for multiscalar multiplication in G1 or G2 and for quadratic equations in Zn.
We can also give zero-knowledge proofs for pairing product equations with tT = 1.
When tT �= 1 we can still give zero-knowledge proofs if we can find P1,Q1, . . . ,Pn,Qn

such that tT =
∏n

i=1 e(Pi, Qi).
In sections 1–7, we give a general description of our techniques. In sections 8,

9, and 10 we then offer three concrete instantiations that illustrate the use of our
techniques. They are based on, respectively, the subgroup decision assumption [10],
the assumption that the decision Diffie–Hellman problem is hard in both G1 and G2,
also known as the symmetric external Diffie–Hellman assumption (SXDH), and the
decisional linear (DLIN) assumption [7]. We note that there are many other possible
instantiations. The instantiations illustrate the variety of ways in which bilinear
groups can be constructed. We can choose prime order groups or composite order
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Variables:a

X1, . . . ,Xm ∈ G1, Y1, . . . ,Yn ∈ G2, x1, . . . , xm′ , y1, . . . , yn′ ∈ Zn.

Pairing product equation:

n∏
i=1

e(Ai,Yi) ·
m∏
i=1

e(Xi,Bi) ·
m∏
i=1

n∏
j=1

e(Xi,Yj)γij = tT

for constants Ai ∈ G1, Bi ∈ G2, tT ∈ GT , γij ∈ Zn.
Multiscalar multiplication equation in G1:

b

n′∑
i=1

yiAi +

m∑
i=1

biXi +

m∑
i=1

n′∑
j=1

γijyjXi = T1

for constants Ai, T1 ∈ G1 and bi, γij ∈ Zn.
Multiscalar multiplication equation in G2:

n∑
i=1

aiYi +
m′∑
i=1

xiBi +
m′∑
i=1

n∑
j=1

γijxiYj = T2

for constants Bi, T2 ∈ G2 and ai, γij ∈ Zn.
Quadratic equation in Zn:

n′∑
i=1

aiyi +

m′∑
i=1

xibi +

m′∑
i=1

n′∑
j=1

γijxiyj ≡ t mod n

for constants ai, bi, γij , t ∈ Zn.

aWe list variables in Zn in two separate groups because we will treat them differently in the
NIWI proofs. If we wish to deal with only one group of variables in Zn, we can add equations in
Zn of the form x1 = y1, x2 = y2, etc.

bWith multiplicative notation, these equations would be multiexponentiation equations. We
use additive notation for G1 and G2, since this will be notationally convenient in the paper, but
again stress that the discrete logarithm problem will typically be hard in these groups.

Fig. 1. Equations over groups with bilinear map.

groups, we can have G1 = G2 and G1 �= G2, and we can make various cryptographic
assumptions. All three security assumptions have been used in the cryptographic
literature to build interesting protocols.

For all three instantiations, the techniques presented here yield efficient witness-
indistinguishable proofs. In particular, the cost in proof size of each extra equation
is constant and independent of the number of variables in the equation. The size of
the proofs can be computed by adding the cost, measured in group elements from G1

or G2, of each variable and each equation listed in Table 1. We refer the reader to
sections 8, 9, and 10 for more detailed tables. The tables should be read with care
because the size of the group elements depends on the type of bilinear group [19]. We
expect the SXDH-based instantiation to yield the smallest proofs when taking the
size of group elements into account.
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Table 1

Number of group elements each variable or equation adds to the size of an NIWI proof.

Subgroup decision SXDH DLIN
Variable in G1 or G2 1 2 3
Variable in Zn or Zp 1 2 3
Paring product equation 1 8 9
Multiscalar multiplication in G1 or G2 1 6 9
Quadratic equation in Zn or Zp 1 4 6

1.2. Related work. As we mentioned before, early work on NIZK proofs demon-
strated that all NP-languages have noninteractive proofs, but did not yield efficient
proofs. One cause for these proofs being inefficient in practice was the need for an
expensive NP-reduction to, e.g., Circuit Satisfiability. Another cause of inefficiency
was the reliance on the so-called hidden bits model, which even for small circuits is
inefficient.

Groth, Ostrovsky, and Sahai [28, 27] investigated NIZK proofs for Circuit Satisfia-
bility using bilinear groups. This addressed the second cause of inefficiency since their
techniques give efficient proofs for Circuit Satisfiability, but to use their proofs one
must still make an NP-reduction to Circuit Satisfiability. We stress that while [28, 27]
used bilinear groups, their application was to build proof systems for Circuit Satisfia-
bility. Here, we devise entirely new techniques to deal with general statements about
equations in bilinear groups, without having to reduce to an NP-complete language.

Addressing the issue of avoiding an expensive NP-reduction, we have works by
Boyen and Waters [12, 13] that suggest efficient NIWI proofs for statements related
to group signatures. These proofs are based on bilinear groups of composite order
and rely on the subgroup decision assumption.

Groth [24] was the first to suggest a general group-dependent language and NIZK
proofs for statements in this language. He investigated satisfiability of pairing prod-
uct equations and allowed only group elements to be variables. He looked at the
special case of prime order groups G,GT with a bilinear map e : G × G → GT and,
based on the DLIN assumption [7], constructed NIZK proofs for such pairing prod-
uct equations. However, even for very small statements, the very different and much
more complicated techniques of Groth yield proofs consisting of thousands of group
elements (whereas ours would be in the tens). Our techniques are much easier to
understand, significantly more general, and vastly more efficient.

We summarize our comparison with other works on NIZK proofs in Table 2.

Table 2

Classification of NIZK proofs according to usefulness.

Inefficient Efficient

Circuit Satisfiability Example: Kilian and Petrank [29] Groth, Ostrovsky, and
Sahai [28, 27]

Group-dependent language Groth [24] (restricted case) this work

We note that there have been many earlier works (starting with [21]) dealing
with efficient interactive zero-knowledge protocols for a number of algebraic relations.
Here, we focus on noninteractive proofs. We also note that even for interactive zero-
knowledge proofs, no set of techniques was known for dealing with general algebraic
assertions arising in bilinear groups, as we do here.
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1.3. New techniques. The authors of [28, 27, 24] start by constructing nonin-
teractive proofs for simple statements and then combine many of them to get more
powerful proofs. The main building block in [28], for instance, is a proof that a given
commitment contains either 0 or 1, which has little expressive power on its own. Our
approach is the opposite: we directly construct proofs for very expressive languages;
as such, our techniques are very different from those of previous work.

The way we achieve our generality is by viewing the groupsG1, G2, GT as modules
over the ring Zn. The ring Zn itself can also be viewed as a Zn-module. We therefore
look at the more general question of satisfiability of quadratic equations over Zn-
modules A1, A2, AT with a bilinear map; see section 3 for details. Since many bilinear
groups with various cryptographic assumptions and various mathematical properties
can be viewed as modules, we are not bound to any particular bilinear group or any
particular assumption.

Given modules A1, A2, AT with a bilinear map, we construct new modules B1, B2,
BT , also equipped with a bilinear map, and we map the elements in A1, A2, AT to
B1, B2, BT . The latter modules will typically be larger thereby giving us room to
hide the elements of A1, A2, AT . More precisely, we devise commitment schemes that
map variables from A1, A2 to the modules B1, B2. The commitment schemes are
homomorphic both with respect to the module operations and also with respect to
the bilinear map.

Our techniques for constructing witness-indistinguishable proofs are fairly in-
volved mathematically, but we will try to present some high level intuition here.
(We give more detailed intuition later in section 6, where we present our main proof
system.) The main idea is the following: because our commitment schemes are ho-
momorphic and we equip them with a bilinear map, we can take the equation that
we are trying to prove and just replace the variables in the equation with commit-
ments to those variables. Of course, because the commitment schemes are hiding,
the equations will no longer be valid. Intuitively, however, we can extract the addi-
tional terms introduced by the randomness of the commitments: if we give away these
terms in the proof, then this would be a convincing proof of the equation’s validity
(again, because of the homomorphic properties). But giving away these terms might
destroy witness-indistinguishability. Suppose, however, that there is only one “addi-
tional term” introduced by substituting the commitments. Then, because it would
be the unique value which makes the equation true, giving it away would preserve
witness-indistinguishability! In general, we are not so lucky. But if there are many
terms, the nice algebraic environment allows us to randomize the terms such that their
distribution is uniform over all possible terms satisfying the equation. We now get
witness-indistinguishability because all possible witnesses after randomization yield
the same uniform distribution of terms satisfying the equation.

1.4. Applications. Independently of our work, Boyen and Waters [13] have
constructed noninteractive proofs that they use for group signatures (see also their
earlier paper [12]). These proofs can be seen as examples of the NIWI proofs in the
first instantiation based on the subgroup decision problem.

Subsequent to the announcement of our work, several papers have built upon it:
Chandran, Groth, and Sahai [14] have constructed ring-signatures of sublinear size
using the NIWI proofs in the first instantiation, which is based on the subgroup de-
cision problem. Groth and Lu [26] have used the NIWI and NIZK proofs from the
third instantiation to construct an NIZK proof for the correctness of a shuffle. Groth
[25] has used the NIWI and NIZK proofs from the third instantiation to construct a
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fully anonymous group signature scheme. Belenkiy, Chase, Kohlweiss, and Lysyan-
skaya [2] have used the second and third instantiations to construct noninteractive
anonymous credentials. Green and Hohenberger [23] have used the third instantiation
in a universally composable adaptive oblivious transfer protocol. Also, by attaching
NIZK proofs to semantically secure public-key encryption in any instantiation, we get
an efficient noninteractive verifiable cryptosystem. Boneh [4] has suggested using this
for optimistic fair exchange [30], where two parties use a trusted but lazy third party
to guarantee fairness.

1.5. Roadmap. The main result is the NIWI proof that can be found in section
7. Sections 3, 4, 5, and 6 explain the structure of the NIWI proof, which goes through
modules, commitments, a description of the common reference string (CRS), and an
explanation of how the NIWI proof works. For a concrete illustration of the steps,
we refer the reader to the instantiation in section 8. Other instantiations are given in
sections 9 and 10. In many cases, our NIWI proofs can also be used as NIZK proofs,
which we discuss in section 11.

2. Noninteractive witness-indistinguishable proofs.
Notation. We write y = A(x; r) when the algorithmA, on input x and randomness

r, outputs y. We write y ← A(x) for the process of picking randomness r uniformly
at random and setting y = A(x; r). More generally, we write y ← S for sampling
y from the set S according to some probability distribution on S, using the uniform
distribution as the default when nothing else is specified.

We write a← A; b← B(a); . . . for running the experiment where a is chosen from
A, then b is chosen from B, which may depend on a, etc. This yields a probability dis-
tribution over the outputs, and we write Pr

[
a← A; b← B(a); . . . : C(a, b, . . .)

]
for the

probability of the condition C(a, b, . . .) being satisfied after running the experiment.
The security of our schemes is governed by a security parameter k, which can be

used to scale up the security. Given two functions f, g : N → [0, 1], we write f(k) ≈
g(k) when |f(k) − g(k)| = O(k−c) for every constant c. We say that f is negligible
when f(k) ≈ 0 and that it is overwhelming when f(k) ≈ 1. We say that two families
of probability distributions {S1(k)}k∈N, {S2(k)}k∈N are indistinguishable when they
are the same for all sufficiently large k ∈ N, and we say they are computationally
indistinguishable if for all nonuniform polynomial time adversaries A we have

Pr
[
y ← S1(k) : A(1k, y) = 1

]
≈ Pr

[
y ← S2(k) : A(1k, y) = 1

]
.

Group dependent languages. Let R be an efficiently computable ternary relation.
For triplets (gk, x, w) ∈ R we call gk the setup, x the statement, and w the witness.
Given some gk, we let L be the language consisting of statements x that have a
witness w so (gk, x, w) ∈ R. For a relation that ignores gk this is, of course, the
standard definition of an NP-language. We will be more interested in the case where
gk describes a bilinear group, though.

Noninteractive proofs. A noninteractive proof system for a relation R with setup
consists of four probabilistic polynomial time algorithms: a setup algorithm G, a CRS
generation algorithm K, a prover P , and a verifier V . The setup algorithm outputs a
setup (gk, sk). In our paper, gk will be a description of a bilinear group. The setup
algorithm may output some related information sk, for instance, the factorization
of the group order. A cleaner case, however, is when sk is just the empty string,
meaning the protocol is built on top of the group without knowledge of any trapdoors.
The CRS generation algorithm takes (gk, sk) as input and produces a CRS σ. The
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prover takes as input (gk, σ, x, w) and produces a proof π. The verifier takes as input
(gk, σ, x, π) and outputs 1 if the proof is acceptable and 0 if rejecting the proof.
We call (G,K, P, V ) a noninteractive proof system for R with setup G if it has the
completeness and soundness properties described below.

Perfect completeness. A noninteractive proof is complete if an honest prover can
convince an honest verifier whenever the statement belongs to the language and the
prover holds a witness testifying to this fact.

Definition 1 (perfect completeness). We say (G,K, P, V ) is perfectly complete
if for all adversaries A we have 2

Pr
[
(gk, sk)← G(1k);σ ← K(gk, sk); (x,w)← A(gk, σ);π ← P (gk, σ, x, w) :

V (gk, σ, x, π) = 1 if (gk, x, w) ∈ R
]
= 1.

Perfect soundness. A noninteractive proof is sound if it is impossible to prove a
false statement.

Definition 2 (perfect soundness). We say (G,K, P, V ) is perfectly sound if for
all adversaries A we have

Pr
[
(gk, sk) ← G(1k);σ ← K(gk, sk); (x, π)← A(gk, σ) :

V (gk, σ, x, π) = 0 if x /∈ L
]
= 1.

Perfect culpable soundness. In the standard definition of soundness given above,
the adversary tries to create a valid proof for x ∈ L̄. Groth, Ostrovsky, and Sahai
[28, 24] generalized the notion of soundness to disallowing false proofs of statements
x ∈ Lguilt, where Lguilt is a language that may depend on gk and σ. They call this
notion culpable soundness.3 Standard soundness is a special case with Lguilt = L̄, but
the notion can be used to capture other interesting cases as well. The instantiation in
section 8 uses groups of composite order n = pq and offers an example where culpable
soundness captures the inability of the adversary to produce convincing proofs for
statements that are false in the order p subgroups of G and GT (here Lguilt ⊆ L̄ is
the language of statements that are false in the order p subgroups).

Definition 3 (perfect culpable soundness). We say (G,K, P, V ) has perfect
Lguilt-soundness if for all adversaries A we have

Pr
[
(gk, sk) ← G(1k);σ ← K(gk, sk); (x, π)← A(gk, σ) :

V (gk, σ, x, π) = 0 if x ∈ Lguilt

]
= 1.

Composable witness-indistinguishability. A statement may have many possible
witnesses. A noninteractive proof is witness-indistinguishable if the proof does not
reveal which of those witnesses the prover has used. The standard definition of
witness-indistinguishability requires that proofs using different witnesses for the same
statement are computationally indistinguishable. We will use a stronger definition
of witness-indistinguishability called composable witness-indistinguishability. In this

2Since the probability is exactly 1, the definition quantifies over all gk in the support of G and
all (gk, x,w) ∈ R.

3In an earlier version of their paper, Groth, Ostrovsky, and Sahai [28] used the term cosoundness
instead of culpable soundness.
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definition there is a reference string simulator S that generates a simulated CRS, and
we require that the adversary cannot distinguish a real CRS from a simulated CRS.
We also require that on a simulated CRS there is no information whatsoever to distin-
guish the different witnesses that might have been used to construct the proof. The
advantage of this definition is that different types of proofs using the same type of
real/simulated CRS can share the same CRS, which facilitates easier security proofs.
We will use this composability property in the instantiations in sections 8, 9, and 10.

Definition 4 (composable witness-indistinguishability). We say (G,K, P, V ) is
composable witness-indistinguishable if there is a probabilistic polynomial time simu-
lator S such that for all nonuniform polynomial time adversaries A we have

Pr
[
(gk, sk)← G(1k);σ ← K(gk, sk) : A(gk, σ) = 1

]
≈ Pr

[
(gk, sk)← G(1k);σ ← S(gk, sk) : A(gk, σ) = 1

]
,

and for all adversaries A we have

Pr
[
(gk, sk)← G(1k);σ ← S(gk, sk); (x,w0, w1)← A(gk, σ);

π ← P (gk, σ, x, w0) : A(π) = 1
]

= Pr
[
(gk, sk)← G(1k);σ ← S(gk, sk); (x,w0, w1)← A(gk, σ);

π ← P (gk, σ, x, w1) : A(π) = 1
]
,

where we require (gk, x, w0), (gk, x, w1) ∈ R.

Composable zero-knowledge. A zero-knowledge proof is a proof that shows that
the statement is true, but does not reveal anything else. Traditionally, this is defined
by having a simulator (S1, S2) that can simulate, respectively, the CRS and the proof.
The first part of the simulator outputs a simulated CRS and a simulation trapdoor τ ,
and the second part of the simulator uses the simulation trapdoor to simulate proofs
for statements without knowing the corresponding witnesses. The standard definition
of (multitheorem) zero-knowledge then says that real proofs on a real CRS should be
computationally indistinguishable from simulated proofs on a simulated CRS.

We obtain a strong notion of zero-knowledge, called composable zero-knowledge
[24]. Composable zero-knowledge implies standard zero-knowledge [24] and has the
advantage that it is simpler to work with, since it separates the computational in-
distinguishability into two separate parts addressing, respectively, the CRS and the
proofs. In composable zero-knowledge, the real CRS and the simulated CRS are com-
putationally indistinguishable. Moreover, the adversary, even when it gets access to
the secret simulation key τ , cannot distinguish real proofs from simulated proofs on
a simulated CRS.

Definition 5 (composable zero-knowledge). We say (G,K, P, V ) is composable
zero-knowledge if there exists a probabilistic polynomial time simulator (S1, S2) such
that for all nonuniform polynomial time adversaries A we have

Pr
[
(gk, sk)← G(1k);σ ← K(gk, sk) : A(gk, σ) = 1

]
≈ Pr

[
(gk, sk)← G(1k); (σ, τ)← S1(gk, sk) : A(gk, σ) = 1

]
,



1202 JENS GROTH AND AMIT SAHAI

and for all adversaries A we have

Pr
[
(gk, sk)← G(1k); (σ, τ)← S1(gk, sk); (x,w)← A(gk, σ, τ);

π ← P (gk, σ, x, w) : A(π) = 1
]

= Pr
[
(gk, sk)← G(1k); (σ, τ)← S1(gk, sk); (x,w)← A(gk, σ, τ);

π ← S2(gk, σ, τ, x) : A(π) = 1
]
,

where A outputs (x,w) so (gk, x, w) ∈ R.

3. Modules with bilinear maps. Let (R,+, ·, 0, 1) be a finite commutative
ring. Recall that an R-module A is an abelian group (A,+, 0) where the ring acts on
the group such that

∀r, s ∈ R, ∀x, y ∈ A : (r+s)x = rx+sx∧r(x+y) = rx+ry∧r(sx) = (rs)x∧1x = x.

A cyclic group G of order n can in a natural way be viewed as a Zn-module. We
will observe that all the equations in Figure 1 can be viewed as equations over Zn-
modules with a bilinear map. To generalize completely, let R be a finite commutative
ring and let A1, A2, AT be finite R-modules with a bilinear map f : A1 × A2 → AT .
We will consider quadratic equations over variables x1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2

of the form

n∑
j=1

f(aj , yj) +

m∑
i=1

f(xi, bi) +

m∑
i=1

n∑
j=1

γijf(xi, yj) = t.

In order to simplify notation, let us for x1, . . . , xn ∈ A1, y1, . . . , yn ∈ A2 define

�x · �y =
n∑

i=1

f(xi, yi).

The equations can now be written as

�a · �y + �x ·�b+ �x · Γ�y = t,

where �a ∈ An
1 ,

�b ∈ Am
2 , Γ ∈ Matm×n(R). We note for future use that due to

the bilinear properties of f , we have for any matrix Γ ∈ Matm×n(R) and for any
�x ∈ Am

1 , �y ∈ An
2 that �x · Γ�y = Γ��x · �y.

Let us now return to the equations in Figure 1 and see how they can be recast as
quadratic equations over Zn-modules with a bilinear map.
Pairing product equations: DefineR = Zn, A1 = G1, A2 = G2, AT = GT , f(x, y) =

e(x, y) and rewrite4 the pairing product equation as ( �A·�Y)( �X · �B)( �X ·Γ�Y) = tT .
Multiscalar multiplication in G1: Define R = Zn, A1 = G1, A2 = Zn, AT =

G1, f(X , y) = yX and rewrite the multiscalar multiplication equation as
�A · �y + �X ·�b+ �X · Γ�y = T1.

Multiscalar multiplication in G2: Define R = Zn, A1 = Zn, A2 = G2, AT =
G2, f(x,Y) = xY and rewrite the multiscalar multiplication equation as

�a · �Y + �x · �B + �x · Γ�Y = T2.
4We use multiplicative notation here because usually GT is written multiplicatively in the liter-

ature. When we work with the abstract modules, however, we will use additive notation.
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Quadratic equation in Zn: DefineR = Zn, A1 = Zn, A2 = Zn, AT = Zn, f(x, y) =

xy mod n and rewrite the quadratic equation in Zn as �a · �y + �x ·�b+ �x · Γ�y ≡
t mod n.

We will therefore first focus on the more general problem of constructing noninterac-
tive composable witness-indistinguishable proofs for satisfiability of quadratic equa-
tions over R-modules A1, A2, AT (using additive notation for all modules) with a
bilinear map f .

4. Commitment from modules. In our NIWI and NIZK proofs we will com-
mit to the variables x1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2. We do this by mapping them
into other R-modules B1, B2 and making the commitments in those modules.

Let us for now just consider how to commit to elements from one R-module A.
The public key for the commitment scheme will describe another R-module B and R-
linear maps ι : A→ B and p : B → A. Operations in the module and computation of
the map ι will be efficiently computable, but p is hard to compute.5 The public key will
also contain elements u1, . . . , um̂ ∈ B. To commit to x ∈ A we pick r1, . . . , rm̂ ← R
at random and compute the commitment

c := ι(x) +
m̂∑
i=1

riui.

Our commitment scheme will have two types of commitment keys.
Binding key: A binding key defines (B, ι, p, u1, . . . , um̂), where ∀i : p(ui) = 0 and

p ◦ ι is nontrivial. The commitment c := ι(x) +
∑m̂

i=1 riui therefore contains
the nontrivial information p(c) = p(ι(x)) about x. In particular, if p ◦ ι is the
identity map on A, then the commitment is perfectly binding to x.

Hiding key: A hiding key defines (B, ι, p, u1, . . . , um̂), where ι(A) ⊆ 〈u1, . . . , um̂〉.
The commitment c := ι(x) +

∑m̂
i=1 riui therefore perfectly hides the element

x when r1, . . . , rm̂ are chosen at random from R.
Computational indistinguishability: The main security requirement that we need

in the paper is that the distribution of binding keys and the distribution of hid-
ing keys are computationally indistinguishable. Witness-indistinguishability
of our NIWI proofs and later the zero-knowledge property of our NIZK proofs
will rely on this.

The treatment of commitments using the language of modules generalizes several
previous works dealing with commitments over bilinear groups, including [10, 28, 27,
24, 34].

Since we will often be committing to many elements at a time, let us define some
convenient notation. Given elements x1, . . . , xm ∈ A, we will write �c := ι(�x) + R�u
with R ∈Matm×m̂(R) for making commitments c1, . . . , cm computed as ci := ι(xi) +∑m̂

j=1 rijuj .

5. Setup. In our NIWI and NIZK proofs the setup and the CRS are

gk defining (R, A1, A2, At, f),

σ together with gk defining (B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , �u, �v,H1, . . . , Hη).

5There are scenarios where a secret key will make p efficiently computable and p◦ ι is the identity
map. In this case the commitment scheme is a public key encryption scheme with p being the
decryption operation.
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A1 × A2 AT

B1 × B2 BT

ι1 p1 ι2 p2 ιT pT

f

F

∀x ∈ A1, ∀y ∈ A2 : F (ι1(x), ι2(y)) = ιT (f(x, y)),

∀x ∈ B1, ∀y ∈ B2 : f(p1(x), p2(y)) = pT (F (x, y))

Fig. 2. Modules and maps between them.

Part of the CRS specifies B1, ι1, p1, u1, . . . , um̂ and B2, ι2, p2, v1, . . . , vn̂, which are
commitment keys for A1 and A2. We note that many of these components may be
given implicitly instead of being described explicitly in the CRS.

Another part of the CRS specifies a third R-module BT together with R-linear
maps ιT : AT → BT and pT : BT → AT and a bilinear map F : B1 × B2 → BT .
We require that the maps are commutative as described in Figure 2 and, with the
exception of p1, p2, and pT , that they are efficiently computable. For notational
convenience, we define for �x ∈ Bn

1 , �y ∈ Bn
2 that

�x • �y =

n∑
i=1

F (xi, yi).

Due to the bilinear properties of F we have for all vectors and matrices with appro-
priate dimensions

�x • Γ�y = Γ��x • �y.

The final part of the CRS is a set of matrices H1, . . . , Hη ∈ Matm̂×n̂(R) that all
satisfy �u •Hi�v = 0. The exact number of matrices H1, . . . , Hη that is needed depends
on the concrete setting. In many cases, we need no matrices at all and we have η = 0,
but there are also cases where they are needed, as we shall see in the instantiation in
section 10.

There are two different settings of interest to us.
Soundness setting: In the soundness setting, we have binding commitment keys.

This means p1(�u) = �0 and p2(�v) = �0, and the maps p1 ◦ ι1 and p2 ◦ ι2 are
nontrivial. We will also want pT ◦ ιT to be nontrivial.

Witness-indistinguishability setting: In the witness-indistinguishability setting
we have hiding commitment keys, such that ι1(A1) ⊆ 〈u1, . . . , um̂〉 and ι2(A2)
⊆ 〈v1, . . . , vn̂〉. We also require that H1, . . . , Hη generate the R-module of all
matrices H ∈ Matm̂×n̂(R) such that �u •H�v = 0. As we will see in the next
section, these matrices play a role in the randomization of the NIWI proofs.

Computational indistinguishability: The (only) computational assumption made
in this paper is that the two settings can be set up in a computationally in-
distinguishable way. The instantiations show that there are many ways to get
such computationally indistinguishable soundness and witness-indistinguish-
ability setups.
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6. Proving that committed values satisfy a quadratic equation. Recall
that in our setting, a quadratic equation looks like

(1) �a · �y + �x ·�b+ �x · Γ�y = t,

with constants �a ∈ An
1 ,
�b ∈ Am

2 ,Γ ∈ Matm×n(R), t ∈ AT . We will first consider the
case of a single quadratic equation of the above form. The first step in our NIWI
proof will be to commit to all the variables �x, �y. The commitments are of the form

(2) �c = ι1(�x) +R�u, �d = ι2(�y) + S�v,

with R ∈ Matm×m̂(R), S ∈ Matn×n̂(R). The prover’s task is to convince the verifier
that the commitments contain �x ∈ Am

1 , �y ∈ An
2 that satisfy the quadratic equation.

(Note that for all equations we will use these same commitments.)
Intuition. Before giving the construction let us give some intuition. In the previ-

ous sections, we have carefully set up our commitments such that the commitments
themselves also “behave” like the values being committed to: they also belong to
modules (the B modules) equipped with a bilinear map (the map F , also implicitly
used in the • operation). Given that we have done this, a natural idea is to take the
quadratic equation (1), and “plug in” the commitments (2) in place of the variables;
let us evaluate:

ι1(�a) • �d+ �c • ι2(�b) + �c • Γ�d.

After some computations, where we expand the commitments (2), make use of the
bilinearity of •, and rearrange terms (the details can be found in the proof of Theorem
6), we get(

ι1(�a) • ι2(�y) + ι1(�x) • ι2(�b) + ι1(�x) • Γι2(�y)
)

+ ι1(�a) • S�v +R�u • ι2(�b) + ι1(�x) • ΓS�v +R�u • Γι2(�y) +R�u • ΓS�v.

By the commutative properties of the maps, the first group of three terms is equal to
ιT (t) if (1) holds. Looking at the remaining terms, note that �u and �v are part of the
CRS and therefore known to the verifier. Using the fact that bilinearity implies that
for any �x, �y we have �x •Γ�y = Γ��x • �y, we can sort the remaining terms so they match
either �u or �v to get (again see the proof of Theorem 6 for details)

(3) ιT (t) + �u •
(
R�ι2(�b) +R�Γι2(�y) +R�ΓS�v

)
+
(
S�ι1(�a) + S�Γ�ι1(�x)

)
• �v.

Now, for the sake of intuition, let us make some simplifying assumptions. Let us
assume that we are working in a symmetric case where A1 = A2, B1 = B2, and
�u = �v, and, so, the above equation can be simplified further to get

ιT (t) + �u •
(
R�ι2(�b) +R�Γι2(�y) +R�ΓS�u+ S�ι1(�a) + S�Γ�ι1(�x)

)
.

Now, suppose the prover gives to the verifier as his proof �π =
(
R�ι2(�b) +

R�Γι2(�y) + R�ΓS�u + S�ι1(�a) + S�Γ�ι1(�x)
)
. The verifier would then check that

the following verification equation holds:

ι1(�a) • �d+ �c • ι2(�b) + �c • Γ�d = ιT (t) + �u • �π.
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Suppose further p1 ◦ ι1, p2 ◦ ι2, pT ◦ ιT are the identity maps on A1, A2, AT . It
is easy to see that the proof is convincing in the soundness setting, because in that
setting we have that p1(�u) = �0. Then the verifier would know (but not be able to
compute) that by applying the maps p1, p2, pT we get

�a • p2(�d) + p1(�c) •�b+ p1(�c) • Γp2(�d) = t+ p1(�u) • p2(�π) = t.

This gives us soundness, since �x := p1(�c) and �y := p2(�d) satisfy the equations.
The remaining problem is to get witness-indistinguishability. Recall that in the

witness-indistinguishability setting, the commitments are perfectly hiding. Therefore,
in the verification equation, nothing except for �π holds any information about �x and
�y (except for the information that can be inferred from the quadratic equation itself).
So, let us consider two cases:

1. Suppose that �π is the unique value such that the verification equation is
valid. In this case, we trivially have witness-indistinguishability, since the
uniqueness means that any witness would lead to the same value for �π.

2. The simple case above might seem too good to be true, but let us see what
it means if it is not true. If two values �π and �π′ both satisfy the verification
equation, then just subtracting the equations shows that �u • (�π − �π′) = 0.
On the other hand, recall that in the witness-indistinguishability setting, the
�u vectors generate the entire space where �π and �π′ live, and furthermore we
know that the matrices H1, . . . , Hη generate all H such that �u • H�u = 0.
Therefore, let us choose r1, . . . , rη at random and consider the distribution
�π′′ = �π +

∑η
i=1 riHi�u. We thus obtain the same distribution on �π′′ that

satisfies the verification equation regardless of whether we started from �π or
�π′ or any other proof.

Thus, for the symmetric case we obtain a witness-indistinguishable proof system.
For the general nonsymmetric case, instead of having just �π for the �u part of (3), we

would also have a proof �θ for the �v part. In this case, we would also have to make sure
that this split does not reveal any information about the witness. What we will do
is to randomize the proofs such that they get a uniform distribution on all �π, �θ that
satisfy the verification equation. If we pick T ← Matn̂×m̂(R) at random, we have

that �θ+T�u completely randomizes �θ. The part we add in �θ can be “subtracted” from
�π by observing that

ιT (t) + �u • �π + �θ • �v = ιT (t) + �u •
(
�π − T��v

)
+
(
�θ + T�u

)
• �v.

This leads to a uniform distribution of proofs for the general nonsymmetric case as
well.

6.1. The general case. Having explained the intuition behind the proof system,
we proceed to a formal description of how the prover handles a single equation and
the security properties the procedure has.
Prover: Pick T ← Matn̂×m̂(R), r1, . . . , rη ←R at random. Compute

�π := R�ι2(�b) +R�Γι2(�y) +R�ΓS�v − T��v +
η∑

i=1

riHi�v,

�θ := S�ι1(�a) + S�Γ�ι1(�x) + T�u

and return the proof (�θ, �π).
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Verifier: Return 1 if and only if

ι1(�a) • �d+ �c • ι2(�b) + �c • Γ�d = ιT (t) + �u • �π + �θ • �v.

Perfect completeness of our NIWI proof will follow from the following theorem re-
gardless of whether we are in the soundness setting or the witness-indistinguishability
setting.

Theorem 6. Given �x ∈ Am
1 , �y ∈ An

2 , R ∈ Matm×m̂(R), S ∈ Matn×n̂(R) satisfy-
ing

�c = ι1(�x) +R�u, �d = ι2(�y) + S�v, �a · �y + �x ·�b+ �x · Γ�y = t,

we have for all choices of T, r1, . . . , rη that the proofs �π, �θ constructed as above will be
accepted.

Proof. The commutative property of the linear and bilinear maps gives us ι1(�a) •
ι2(�y) + ι1(�x) • ι2(�b) + ι1(�x) • Γι2(�y) = ιT (t). For any choice of T, r1, . . . , rη we have

ι1(�a) • �d+ �c • ι2(�b) + �c • Γ�d

= ι1(�a) •
(
ι2(�y) + S�v

)
+
(
ι1(�x) +R�u

)
• ι2(�b) +

(
ι1(�x) +R�u

)
• Γ
(
ι2(�y) + S�v)

)
= ι1(�a) • ι2(�y) + ι1(�x) • ι2(�b) + ι1(�x) • Γι2(�y)

+R�u • ι2(�b) +R�u • Γι2(�y) +R�u • ΓS�v + ι1(�a) • S�v + ι1(�x) • ΓS�v

= ιT (t) + �u •
(
R�ι2(�b) +R�Γι2(�y) +R�ΓS�v

)
+
(
S�ι1(�a) + S�Γ�ι1(�x)

)
• �v

= ιT (t) + �u •
(
R�ι2(�b) +R�Γι2(�y) +R�ΓS�v

)
+

η∑
i=1

ri(�u •Hi�v)− �u • T��v

+T�u • �v +
(
S�ι1(�a) + S�Γ�ι1(�x)

)
• �v

= ιT (t) + �u • �π + �θ • �v.

Theorem 7. In the soundness setting, where we have p1(�u) = �0 and p2(�v) = �0,
a valid proof implies

p1(ι1(�a)) · p2(�d) + p1(�c) · p2(ι2(�b)) + p1(�c) · Γp2(�d) = pT (ιT (t)).

Proof. An acceptable proof �π, �θ satisfies ι(a)•�d+�c•ι2(�b)+�c•Γ�d = ιT (t)+�u•�π+�θ•�v.
The commutative property of the linear and bilinear maps gives us

p1(ι1(�a)) · p2(�d) + p1(�c) · p2(ι2(�b)) + p1(�c) · Γp2(�d)
= pT (ιT (t)) + p1(�u) · p2(�π) + p1(�θ) · p2(�v) = pT (ιT (t)).

Observe as a particularly interesting case that when p1 ◦ ι1, p2 ◦ ι2, pT ◦ ιT are
the identity maps on A1, A2, and AT , respectively, this means that �x := p1(�c) and

�y := p2(�d) give us a satisfying solution to the equation �a · �y + �x ·�b + �x · Γ�y = t. In
this case, the theorem says that the proof is perfectly sound in the soundness setting.
In the case where they are not the identity maps, it is still possible to have a form
of culpable soundness; see the instantiation in section 8 for an example based on
composite order bilinear groups.

Theorem 8. In the witness-indistinguishable setting where ι1(A1) ⊆ 〈u1, . . . , um̂〉,
ι2(A2) ⊆ 〈v1, . . . , vn̂〉, and H1, . . . , Hη generate all matrices H such that �u •H�v = 0,
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all satisfying witnesses �x, �y,R, S yield proofs �π ∈ 〈v1, . . . , vn̂〉m̂ and �θ ∈ 〈u1, . . . , um̂〉n̂
that are uniformly distributed conditioned on the verification equation ι1(�a) • �d + �c •
ι2(�b) + �c • Γ�d = ιT (t) + �u • �π + �θ • �v.

Proof. Since ι1(A1) ⊆ 〈u1, . . . , um̂〉 and ι2(A2) ⊆ 〈v1, . . . , vn̂〉 there existA,B,X, Y

such that ι1(�a) = A�u, ι1(�x) = X�u and ι2(�b) = B�v, ι2(�y) = Y �v. We have �c = (X+R)�u

and �d = (Y + S)�v. The proof is (�π, �θ) given by

�θ = S�ι1(�a) + S�Γ�ι1(�x) + T�u =
(
S�A+ S�Γ�X + T

)
�u,

�π = R�ι2(�b) +R�Γι2(�y) +R�ΓS�v))− T��v +
η∑

i=1

riHi�v

=
(
R�B +R�ΓY +R�ΓS − T�

)
�v +

(
η∑

i=1

riHi

)
�v.

We choose T at random, so we can think of �θ being a uniformly random variable
given by �θ = Θ�v for a randomly chosen matrix Θ. We can think of �π as being written
�π = Π�v, where Π is a random variable that depends on Θ.

By perfect completeness all satisfying witnesses yield proofs where ι1(�a) • �d+ �c •
ι2(�b) + �c • Γ�d − ιT (t) − �θ • �v = �u • �π = �u • Π�v. Conditioned on the random variable
Θ, we therefore have that any two possible solutions �π, �π′ satisfy �u • (Π − Π′)�v = 0.
Since H1, . . . , Hη generate all matrices H such that �u • H�v = 0, we can write this
as Π = Π′ +

∑η
i=1 riHi. In constructing �π we form it as (R�B + R�ΓY + R�ΓS −

T�)�v+(
∑η

i=1 riHi)�v for randomly chosen r1, . . . , rη ∈ R. We therefore get a uniform

distribution over all �π that satisfy the equation conditioned on �θ. Since �θ is uniformly
chosen, we conclude that for any witness we get a uniform distribution over (�θ, �π)
conditioned on it being an acceptable proof.

6.2. Linear equations. As a special case, we will consider the proof system
when �a = 0 and Γ = 0. In this case the equation is simply

�x ·�b = t.

The scheme can be simplified in this case by choosing T = 0 in the proof, which gives
�θ := �0 and �π := R�ι2(�b)+

∑η
i=1 riHi�v. Theorem 6 still applies with T = 0. Theorem

7 says p1(�c) · p2(ι2(�b)) = pT (ιT (t)), which will give us soundness. Finally, we have the
following theorem.

Theorem 9. In the witness-indistinguishable setting where ι1(A1) ⊆ 〈u1, . . . , um̂〉,
ι2(A2) ⊆ 〈v1, . . . , vn̂〉, and H1, . . . , Hη generate all matrices H such that �u •H�v = 0,
all satisfying witnesses �x, �y,R, S yield the uniform distribution of the proof �π ∈
〈v1, . . . , vn̂〉m̂ conditioned on the verification equation �c • ι2(�b) = ιT (t) + �u • �π be-
ing satisfied.

Proof. As in the proof of Theorem 8 we can write �π = Π�v. Any witness gives a
proof that satisfies

�c • ι1(�b)− ιT (t) = �u • �π = �u •Π�v.

Since H1, . . . , Hη generate all matrices H such that �u •H�v = 0, we have that Π has
a uniform distribution over all matrices Π satisfying the verification equation.
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6.3. The symmetric case. An interesting special case is when B := B1 = B2,
m̂ ≥ n̂ with u1 = v1, . . . , um̂ = vm̂, and for all x, y ∈ B we have F (x, y) = F (y, x).
We call this the symmetric case. In the symmetric case, we can simplify the scheme
by just padding �θ with zeros in the end to extend the length to m̂, call this vector �θ′,
and reveal the proof �φ = �π + �θ′. In the verification, we check that

ι1(�a) • �d+ �c • ι2(�b) + �c • Γ�d = ιT (t) + �u • �φ.

Theorems 6 and 8 still hold in this setting. With respect to soundness we have the
following theorem.

Theorem 10. In the soundness setting, where we have p1(�u) = �0, a valid proof
implies

p1(ι1(a)) · p2(�d) + p1(�c) · p2(ι(�b)) + p1(�c) · Γp2(�d) = pT (ιT (t)).

Proof. An acceptable proof �φ satisfies ι1(�a) • �d+�c • ι2(�b) +�c •Γ�d = ιT (t) + �u • �φ.
The commutative property of the linear and bilinear maps gives us

p1(ι1(�a)) · p2(�d) + p1(�c) · p2(ι(�b)) + p1(�c) · Γp2(�d) = pT (ιT (t)) + p1(�u) · p2(�φ)
= pT (ιT (t)).

We can simplify the computation of the proof in the symmetric case. We have

�π := R�ι2(�b) +R�Γι2(�y) +R�ΓS�v − T��v +
η∑

i=1

riHi�v,

�θ := S�ι1(�a) + S�Γ�ι1(�x) + T�u,

and we extend θ to θ′ by padding it with m̂− n̂ 0’s. Another way to accomplish this
padding is by padding T with m̂ − n̂ 0-rows and S with m̂ − n̂ 0-columns and each
Hi with m̂− n̂ 0-columns. We then have

�φ := R�ι2(�b)+R�Γι2(�y)+R�ΓS′�u−(T ′)��u+
η∑

i=1

riH
′
i�u+(S′)�ι1(�a)+(S′)�Γ�ι1(�x)+T ′�u.

Since the map is symmetric, we have �u • (T ′ − (T ′)�)�u = 0, so we can simplify the
proof as

�φ := R�ι2(�b) +R�Γι2(�y) + (S′)�ι1(�a) + (S′)�Γ�ι1(�x) +R�ΓS′�u+

η′∑
i=1

riH
′
i�u.

7. NIWI proof for satisfiability of a set of quadratic equations. We
will now give the full composable NIWI proof for satisfiability of a set of quadratic
equations in a module with a bilinear map, i.e., the language

L =
{
{(�ai,�bi,Γi, ti)}Ni=1

∣∣∣ ∃�x, �y ∀i : �ai · �y + �x ·�bi + �x · Γi�y = ti

}
.

The proof will have Lguilt-soundness for

Lguilt =

{
{(�ai,�bi,Γi, ti)}Ni=1

∣∣∣
∀�x, �y ∃i : p1(ι1(�ai)) · �y + �x · p2(ι2(�bi)) + �x · Γi�y �= pT (ιT (ti))

}
.
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Observe as an important special case that if p1 ◦ ι1, p2 ◦ ι2, pT ◦ ιT are the identity
maps on A1, A2, and AT , then Lguilt = L̄, making soundness and Lguilt-soundness the
same notion.

The cryptographic assumption we make is that the CRS is created by one of two
algorithms K and S, and that their outputs are computationally indistinguishable.
The first algorithm outputs a CRS that specifies a soundness setting, whereas the
second algorithm outputs a CRS that specifies a witness-indistinguishability setting.
Setup: (gk, sk) = ((R, A1, A2, AT , f), sk)← G(1k).
CRS generators: The CRS defines (B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , �u, �v,H1, . . . ,

Hη). It can be generated as a soundness string σ ← K(gk, sk) or as a witness-
indistinguishability string σ ← S(gk, sk).

Prover: The input consists of gk, σ, a list of quadratic equations {(�ai,�bi,Γi, ti)}Ni=1,
and a satisfying witness �x ∈ Am

1 , �y ∈ An
2 .

Pick at random R ← Matm×m̂(R) and S ← Matn×n̂(R) and commit to all

the variables as �c := �x+R�u and �d := �y + S�v.
For each equation (�ai,�bi,Γi, ti) make a proof as described in section 6. In
other words, pick Ti ← Matn̂×m̂(R) and ri1, . . . , riη ←R and compute

�πi := R�ι2(�bi) +R�Γiι2(�y) +R�ΓiS�v − T�
i �v +

η∑
j=1

rijHj�v,

�θi := S�ι1(�ai) + S�Γ�
i ι1(�x) + Ti�u.

Output the proof (�c, �d, {(�πi, �θi)}Ni=1).

Verifier: The input is gk, σ, {(�ai,�bi,Γi, ti)}Ni=1, and the proof is (�c, �d, {(�πi, �θi)}).
For each equation check that

ι1(�ai) • �d+ �c • ι2(�bi) + �c • Γi
�d = ιT (ti) + �u • �πi + �θi • �v.

Output 1 if all the checks pass; else output 0.
Theorem 11. The proof system (G,K, P, V ) given above is an NIWI proof for

satisfiability of a set of quadratic equations with perfect completeness, perfect Lguilt-
soundness, and composable witness-indistinguishability.

Proof. Perfect completeness follows from Theorem 6.
Consider a proof (�c, �d, {(�πi, �θi)}) on a soundness string. Define �x := p1(�c), �y :=

p2(�d). It follows from Theorem 7 that for each equation we have

p1(ι1(�ai)) · �y + �x · p2(ι2(�bi)) + �x · Γi�y

= p1(ι1(�ai)) · p2(�d) + p1(�c) · p2(ι2(�bi)) + p1(�c) · Γip2(�d) = pT (ιT (ti)).

This means we have perfect Lguilt-soundness.
We have assumed that soundness strings and witness-indistinguishability strings

are computationally indistinguishable. Consider now a witness-indistinguishability
string σ. The commitments are perfectly hiding, so they do not reveal the witness
�x, �y that the prover uses in the commitments �c, �d. Theorem 8 says that in each
equation either of two possible witnesses yields the same distribution on the proof for
that equation. A straightforward hybrid argument then shows that we have perfect
witness-indistinguishability.

Proof of knowledge. We observe that if K outputs an additional secret piece of
information ξ that makes it possible to efficiently compute p1 and p2, then ξ makes
it possible to extract the witness �x = p1(�c) and �y = p2(�d).
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Proof size. The size of the CRS is m̂ elements in B1 and n̂ elements in B2 in
addition to the description of the modules, the maps, and H1, . . . , Hη. The size of the
proof is m+Nn̂ elements in B1 and n+Nm̂ elements in B2.

Typically, m̂ and n̂ will be small, giving us a proof size that is O(m + n + N)
elements in B1 and B2. The proof size may thus be smaller than the description of
the statement, which can be of size up to Nn elements in A1, Nm elements in A2,
Nmn elements in R, and N elements in AT .

7.1. NIWI proofs for bilinear groups. We will now outline the strategy for
making NIWI proofs for satisfiability of a set of quadratic equations over bilinear
groups. As we described in section 3, there are four different types of equations
corresponding to the following four combinations of Zn-modules:

Pairing product equations: A1 = G1, A2 = G2, AT = GT , f(X ,Y) = e(X ,Y).
Multiscalar multiplication in G1: A1 = G1, A2 = Zn, AT = G1, f(X , y) = yX .
Multiscalar multiplication in G2: A1 = Zn, A2 = G2, AT = G2, f(x,Y) = xY.
Quadratic equations in Zn: A1 = Zn, A2 = Zn, AT = Zn, f(x, y) = xy mod n.

The CRS will specify commitment schemes to, respectively, scalars and group ele-
ments. We first commit to all the variables and then make the NIWI proofs that
correspond to the types of equations that we are looking at. It is important that
we use the same commitment schemes and commitments for all equations; i.e., for
instance, we commit to a scalar x only once, and we use the same commitment in
the proof whether x is involved in a multiscalar multiplication in G2 or a quadratic
equation in Zn. The use of the same commitment in all the equations is necessary
to ensure a consistent choice of x throughout the proof. As a consequence of this we
use the same module B′

1 to commit to x in both multiscalar multiplication in G2 and
quadratic equations in Zn. We therefore end up with at most four different modules
B1, B

′
1, B2, B

′
2 to commit to, respectively, X , x,Y, y variables.

8. Instantiation based on the subgroup decision assumption.

Setup. The first instantiation is based on the composite order groups introduced
by Boneh, Goh, and Nissim [10]. The setup algorithm GBGN outputs (gk, sk), where
gk = (n, G,GT , e,P) describes a bilinear group of composite order n and sk = (p,q)
consists of two primes such that n = pq. Boneh, Goh, and Nissim also introduced
the subgroup decision assumption, which says that it is hard to distinguish a random
element of order q from a random element of order n.

Definition 12 (subgroup decision assumption). We say the subgroup decision
assumption holds for GBGN if for all nonuniform polynomial time A

Pr[(gk, sk)← GBGN(1
k);α← Z

∗
n;U := αpP : A(gk,U) = 1]

≈ Pr[(gk, sk)← GBGN(1
k);α← Z

∗
n;U := αP : A(gk,U) = 1].

Statements. Based on the subgroup decision assumption we will construct NIWI
proofs for the language consisting of pairing product equations, multiscalar multiplica-
tion equations, and quadratic equations as described in Figure 1. A statement consists
of NP pairing product equations of the form

∏
i e(Ai,Yi) ·

∏
i,j e(Yi,Yj)γij = tT , NM

multiscalar multiplication equations of the form
∑

i aiYi+
∑

i xiBi+
∑

i,j γijxiYj = T ,
NQ quadratic equations of the form

∑
i aixi +

∑
i,j γijxixj ≡ t mod n, and a claim

that there are x1, . . . , xm ∈ Zn and Y1, . . . ,Yn ∈ G that satisfy all equations.
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Formally, given a setup gk = (n, G,GT , e,P), we define the language:

L =
{(
{( �Ai,Γ

P
i , tT i)}NP

i=1, {(�aj, �Bj ,ΓM
j , Tj)}NM

j=1, {(�bk,Γ
Q
k , tk)}

NQ

k=1

) ∣∣∣
∃m,n ∈ N, ∃�x ∈ Z

m
n , ∃�Y ∈ Gn, ∀i ∈ [NP ], ∀j ∈ [NM ], ∀k ∈ [NQ] :

�Ai ∈ Gn ∧ ΓP
i ∈Matn×n(Zn) ∧ tT i ∈ GT ∧ ( �Ai · �Y)(�Y · ΓP

i
�Y) = tT i

∧ �aj ∈ Z
m
n ∧ �Bj ∈ Gn ∧ ΓM

j ∈Matm×n(Zn) ∧ Tj ∈ G ∧ �aj · �Y + �x · �Bj + �x · ΓM
j
�Y = Tj

∧ �bk ∈ Z
m
n ∧ ΓQ

k ∈Matm×m(Zn) ∧ tk ∈ Zn ∧ �x ·�bk + �x · ΓQ
k �x ≡ tk mod n

}
.

Soundness will hold in the order p subgroups of G,GT , and Zn. More precisely,
define λ ∈ Zn as an integer satisfying λ ≡ 1 mod p and λ ≡ 0 mod q. We will get
Lguilt-soundness for

Lguilt=
{(
{( �Ai,Γ

P
i , tT i)}NP

i=1, {(�aj, �Bj ,ΓM
j , Tj)}NM

j=1, {(�bk,Γ
Q
k , tk)}

NP

k=1

) ∣∣∣
∀m,n ∈ N, ∀�x ∈ (λZn)

m, ∀�Y ∈ (λG)n, ∃i ∈ [NP ], ∃j ∈ [NM ], ∃k ∈ [NQ] :

�Ai /∈ Gn ∨ ΓP
i /∈Matn×n(Zn) ∨ tT i /∈ GT ∨ ( �Ai · �Y)(�Y · ΓP

i
�Y) �= tT

λ
i

∨ �aj /∈ Z
m
n ∨ �Bj /∈ Gn ∨ ΓM

j /∈Matm×n(Zn) ∨ Tj /∈ G ∨ �aj · �Y + �x · �Bj + �x · ΓM
j
�Y

�= λTj
∨ �bk /∈ Z

m
n ∨ ΓQ

k /∈Matm×m(Zn) ∨ tk /∈ Zn ∨ �x ·�bk + �x · ΓQ
k �x�≡tk mod p

}
.

Multiscalar multiplication equations. We will build our full NIWI proof from a
combination of NIWI proofs for pairing product equations, multiscalar multiplica-
tion equations, and quadratic equations. First consider the case where we only have
multiscalar multiplication equations. Define LM (LM

guilt) to be L (Lguilt) restricted to
NP = NQ = 0 such that it only has NM multiscalar multiplication equations.

We can use our framework to get NIWI proofs for LM. The multiscalar multipli-
cation case corresponds to R = Zn, A1 = Zn, A2 = G,AT = G, f(x,Y) = xY, and
equations of the form �a · �Y + �x · �B + �x · Γ�Y = T over variables �x ∈ Am

1 and �Y ∈ An
2 .

The setup gk = (n, G,GT , e,P) implicitly defines A1, A2, AT , f . It also implicitly
defines B1 = B2 = BT = G and F (X ,Y) = e(X ,Y) and the linear maps6

ι1(x) = xP , ι2(Y) = Y, ιT (T ) = e(P , T ),
p1(xP) = λx mod n, p2(Y) = λY, pT (e(P , T )) = λT .

Since λ2 ≡ λ mod n, the maps commute as described in Figure 2. That is, we have

(x,Y) xY

(xP ,Y) e(P , xY)

(ι1, ι2) ιT

f

F

6To uniquely define the maps let the setup include a bit indicating whether p is the large or the
small prime factor of n.
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and we have

(λx, λY) λxY

(xP ,Y) e(P , xY)

(p1, p2) pT

f

F

The CRS σ consists of an element U ∈ G. In the soundness setting it is generated
as U = αpP , and in the witness-indistinguishability setting it is generated as U = αP ,
where α← Z

∗
n. The subgroup decision assumption implies that soundness strings and

witness-indistinguishability strings are computationally indistinguishable.
We will be using U as a commitment key in both B1 and B2. In order to commit

to x ∈ A1 = Zn we pick r ∈ Zn and compute the commitment C := ι1(x) + rU =
xP + rU ∈ B1 = G. In order to commit to Y ∈ A2 = G we pick s← Zn and compute
the commitment D := ι2(Y) + sU = Y + sU ∈ B2 = G.

On a soundness string, U describes a binding key for both commitment schemes.
We have p1(U) ≡ p1(αpP) ≡ λαP ≡ 0 mod n and p2(U) = λαpU = O. Furthermore,
the maps p1 ◦ ι1(x) = p1(xP) = λx mod n, p2 ◦ ι2(Y) = p2(Y) = λY, and pT ◦ ιT (T ) =
pT (e(P , T )) = λT are all nontrivial. A commitment C ∈ B1 defines the committed
value uniquely in λZn, and a commitment D ∈ B2 defines the committed value
uniquely in λG.

On a witness-indistinguishability string, U describes a hiding key for both com-
mitment schemes. Since U is a generator for B1 = B2 = G, we have ι1(A1) =
ι1(Zn) = G = 〈U〉 and ι2(A2) = ι2(G) = G = 〈U〉. This implies that the commitment
schemes are perfectly hiding. The only solution H ∈ Mat1×1(Zn) to U •HU = 1, i.e.,
e(U , HU) = 1, is H = 0. We therefore do not need to include any H1, . . . , Hη in the
CRS.

Theorem 11 now gives us an NIWI proof for the simultaneous satisfiability of a
set of multiscalar multiplication equations with perfect completeness, perfect LM

guilt-
soundness, and composable witness-indistinguishability.

Pairing product equations. Now consider the case where we have only pairing
product equations. Define LP (LP

guilt) to be L (Lguilt) restricted to NM = NQ = 0 such
that it has only NP pairing product equations. Using our framework, this corresponds
to R = Zn, A1 = A2 = G,AT = GT , f(x, y) = e(x, y), and equations of the form

( �A · �Y)(�Y · Γ�Y) = tT over variables Y1, . . . ,Yn ∈ G. The setup also defines modules
B1 = B2 = G and BT = GT and the bilinear map F (X ,Y) = e(X ,Y). We use the
maps ι2(Y) = Y and p2(Y) = λY described in the multiscalar multiplication case
above together with ιT (zT ) = zT and pT (zT ) = zλT to get the commutative diagram

A1 = G × A2 = G AT = GT

B1 = G × B2 = G BT = GT

ι2 p2 ι2 p2 ιT pT

f(X ,Y) = e(X ,Y)

F (X ,Y) = e(X ,Y)

Using the same type of CRS as in the multiscalar multiplication case described
above, we get an NIWI proof for the simultaneous satisfiability of pairing prod-



1214 JENS GROTH AND AMIT SAHAI

uct equations with perfect completeness, perfect LP
guilt-soundness, and composable

witness-indistinguishability.
Quadratic equations in Zn. Finally, consider the case where we have only quadratic

equations. Define LQ (LQ
guilt) to be L (Lguilt) restricted to NP = NM = 0 such that

it has only NQ quadratic equations in Zn. Using our framework, this corresponds
to R = Zn, A1 = A2 = AT = Zn, f(x, y) = xy mod n, and equations of the form

�x ·�b+ �x · Γ′�x ≡ t mod n over variables x1, . . . , xm ∈ Zn. The setup also defines mod-
ules B1 = B2 = G and BT = GT and the bilinear map F (xP , yP) = e(xP , yP). We
use the maps ι1(x) = xP and p1(xP) = λx described in the multiscalar multiplication
case above together with ιT (t) = e(P , tP) and pT (e(P , tP)) = λt mod n to get the
commutative diagram

A1 = Zn × A2 = Zn AT = Zn

B1 = G × B2 = G BT = GT

ι1 p1 ι1 p1 ιT pT

f(x, y) = xy mod n

F (X ,Y) = e(X ,Y)

Using the same type of CRS as in the multiscalar multiplication case described
above, we get an NIWI proof for the simultaneous satisfiability of quadratic equa-
tions with perfect completeness, perfect LQ

guilt-soundness, and composable witness-
indistinguishability.

The general case. In the three special cases described above, we used the same
type of CRS σ = U . To get an NIWI proof for the simultaneous satisfiability of
equations, we will combine them by using the same U for all three types of equations.
The same commitments to scalars xi ∈ Zn are used both in multiscalar multiplication
equations and in quadratic equations in Zn, and the same commitments to variables
Yj ∈ G are used both in pairing product equations and in multiscalar multiplication
equations to enforce consistency across different types of equations. The full NIWI
proof for L is as follows:
Setup: (gk, sk) := ((n, G,GT , e,P), (p,q))← G(1k), where n = pq.
Soundness string: On input (gk, sk) return σ := U , where U := rpP for random

r ∈ Z
∗
n.

Witness-indistinguishability string: On input (gk, sk) return σ := U , where U :=
rP for random r ∈ Z

∗
n.

Prover: On input (n, G,GT , e,P ,U), a set of N = NP +NM +NQ equations, and a

witness �x, �Y do:
1. Commit to the scalars x1, . . . , xm ∈ Zn and the group elements Y1, . . . ,
Yn ∈ G as

Ci := xiP + riU , Di := Yi + siU

for randomly chosen �r ∈ Z
m
n , �s ∈ Z

n
n.

2. For each pairing product equation ( �A · �Y)(�Y ·Γ�Y) = tT make a proof as
described in section 6.3:

φ := �s� �A+ �s�(Γ + Γ�)�Y + �s�Γ�sU

=
n∑

i=1

siAi +
n∑

i=1

n∑
j=1

(γij + γji)siYj +
n∑

i=1

n∑
j=1

γijsisjU .
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3. For each multiscalar multiplication equation �a · �Y + �x · �B + �x · Γ�Y = T
the proof is

φ : = �r� �B + �r�Γ�Y + �r�Γ�sU + �s��aP + �s�Γ�xP

=

m∑
i=1

riBi +
m∑
i=1

n∑
j=1

riγijYj +
m∑
i=1

n∑
j=1

γijrisjU

+

n∑
i=1

si

⎛⎝ai +

m∑
j=1

γijxj

⎞⎠P .
4. For each quadratic equation �x ·�b+ �x · Γ�x = t in Zn we have

φ := �r��bP + �r�(Γ + Γ�)�xP + �r�Γ�rU

=

⎛⎝ m∑
i=1

ribi +

m∑
i=1

m∑
j=1

(γij + γji)rixj

⎞⎠P +

m∑
i=1

m∑
j=1

γijrirjU .

Verifier: On input (n, G,GT , e,P ,U), a set of equations, and a proof �C, �D, {φi}Ni=1

do:
1. For each pairing product equation ( �A · �Y)(�Y · Γ�Y) = tT with proof φ

check that

n∏
i=1

e(Ai,Di) ·
n∏

i=1

n∏
j=1

e(Di,Dj)
γij = tT e(U , φ).

2. For each multiscalar multiplication �a · �Y + �x · �B+ �x ·Γ�Y = T with proof
φ check that

n∏
i=1

e(aiP ,Di) ·
m∏
i=1

e(Ci,Bi) ·
m∏
i=1

n∏
j=1

e(Ci,Dj)
γij = e(P , T )e(U , φ).

3. For each quadratic equation �x ·�b + �x · Γ�x = t in Zn with proof φ check
that

m∏
i=1

e(Ci, biP) ·
m∏
i=1

m∏
j=1

e(Ci, Cj)γij = e(P ,P)te(U , φ).

Theorem 13. The NIWI proof for L given above has perfect completeness, perfect
Lguilt-soundness, and composable witness-indistinguishability.

Proof. Perfect completeness follows from the perfect completeness of each of
the three types of proofs. Perfect Lguilt-soundness follows from Theorem 7 since
we use the same commitments and maps p1, p2 across different types of equations,
thus making the order p solutions �x = p1(�C), �Y = p2( �D) consistent with each other
for all three types of equations. The subgroup decision assumption implies that
soundness and witness-indistinguishability CRSs are indistinguishable. On a witness-
indistinguishability string the commitments are perfectly hiding, and we get perfect
witness-indistinguishability from Theorem 8.

Size. The size of the NIWI proof is m+n+N group elements in G, where m is the
number of variables in �x, n is the number of variables in �Y, and N = NP +NM +NQ

is the total number of equations.
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9. Instantiation based on the SXDH assumption.
Setup. The setup algorithm GSXDH returns a prime order bilinear group gk =

(p, G1, G2, GT , e,P1,P2). We will assume the decision Diffie–Hellman problem is
hard in both groups; this is known as the symmetric external Diffie–Hellman (SXDH)
assumption.

Definition 14 (SXDH assumption). We say the SXDH assumption holds for
GSXDH if for all nonuniform polynomial time A and all b ∈ {1, 2} we have

Pr[gk ← GSXDH(1
k);α, t← Z

∗
p : A(gk, αPb, tPb, αtPb) = 1]

≈ Pr[gk ← GSXDH(1
k);α, t, r ← Z

∗
p : A(gk, αPb, tPb, rPb) = 1].

Statements. The setup gk = (p, G1, G2, GT , e,P1,P2) defines the ring Zp and
modules Zp, G1, G2, GT and bilinear maps corresponding to, respectively, multiplica-
tion in Zp, scalar-multiplication in G1 and G2, and the pairing e : G1 ×G2 → GT .

With this setup we can define pairing product equations, multiscalar multiplica-
tion equations and quadratic equations as follows:
Pairing product equations: Using our framework, this corresponds to R = Zp,

A1 = G1, A2 = G2, AT = GT , f(x, y) = e(x, y), and equations of the form

( �A · �Y)( �X · �B)( �X · Γ�Y) = tT .
Multiscalar multiplication in G1: Using our framework, this corresponds to R =

Zp, A1 = G1, A2 = Zp, AT = G1, f(X , y) = yX , and equations of the form
�A · �y + �X ·�b+ �X · Γ�y = T1.

Multiscalar multiplication in G2: Using our framework, this corresponds to R =
Zp, A1 = Zp, A2 = G2, AT = G2, f(x,Y) = xY, and equations of the form

�a · �Y + �x · �B + �x · Γ�Y = T2.
Quadratic equation in Zp: Using our framework, this corresponds toR = Zp, A1 =

Zp, A2 = Zp, AT = Zp, f(x, y) = xy mod p, and equations of the form

�a · �y + �x ·�b+ �x · Γ�y = t.
We consider statements that consist of sets of pairing product equations, mul-

tiscalar multiplications in G1 and G2, and quadratic equations as described above.
The equations are over variables x1, . . . , xm′ , y1, . . . , yn′ ∈ Zp, and X1, . . . ,Xm ∈ G1

and Y1, . . . ,Yn ∈ G2. We let L be the language of statements where there exists a
solution �x, �y, �X , �Y that simultaneously satisfies all equations of all types.

Commitments. Consider a group G of prime order p. With entrywise addition
we get the Zp-module B := G2. We will use a commitment key of the form

u1 = (P ,Q) := (P , αP), u2 = (U ,V),

where α← Z
∗
p is chosen at random. We can choose u2 = (U ,V) in two different ways:

u2 := tu1 or u2 := tu1 − (O,P) for a random t ∈ Z
∗
p. The former choice of u2 gives

a perfectly binding commitment key, whereas the latter choice of u2 gives a perfectly
hiding commitment key. The two types of commitment keys are computationally
indistinguishable under the decision Diffie–Hellman assumption.

Let us now describe how to commit to an element X ∈ G1 using randomness
r1, r2 ∈ Zp:

ι1(Z) := (O,Z), p(Z1,Z2) := Z2 − αZ1, c := ι(X ) + r1u1 + r2u2.

On a binding key where u2 = tu1, we have that p ◦ ι is the identity map on G and
p(u1) = p(u2) = O. The commitment c = ((r1 + r2t)P , (r1 + r2t)Q+X ) corresponds
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to an ElGamal encryption of X . On a hiding key on the other hand, u1 and u2 are
linearly independent. This means u1, u2 form a basis for B = G2 and ι(G) ⊆ 〈u1, u2〉,
giving a perfectly hiding commitment.

Commitment to a scalar x ∈ Zp using randomness r ∈ Zp works as follows:

u := u2 + (O,P), ι′(z) := zu, p′(z1P , z2P) := z2 − αz1, c := ι′(x) + ru1.

On a binding key p′ ◦ ι′ is the identity map and p′(u1) = 0, so the commitment scheme
is perfectly binding, and in fact the commitment c = ((r + xt)P , (r + xt)Q + xP) is
an ElGamal encryption of xP . On a hiding key we have u = tu1, so u ∈ 〈u1〉, which
implies ι′(Zp) ⊆ 〈u1〉. A hiding key therefore gives us a perfectly hiding commitment
scheme.

Common reference string. The CRS is of the form (u1, u2, v1, v2), where (u1, u2) is
a commitment key for the group G1 implicitly defining maps ι1, p1, ι

′
1, p

′
1 as described

above, and (v1, v2) is a commitment key for G2 implicitly defining maps ι2, p2, ι
′
2, p

′
2

as described above.

We will always use B1 = G2
1, B2 = G2

2, and we define BT := G4
T with addition

being entrywise multiplication. The map F is defined as follows:

F : G2
1 ×G2

2 → G4
T ,

((
X1

X2

)
,

(
Y1
Y2

))
�→
(

e(X1,Y1) e(X1,Y2)
e(X2,Y1) e(X2,Y2)

)
.

On a witness-indistinguishability string, we have hiding commitment keys u1, u2

and v1, v2, where each pair of vectors is linearly independent. The four elements
F (u1, v1), F (u1, v2), F (u2, v1), F (u2, v2) are also linearly independent in the witness-
indistinguishability scenario. This implies that when H is the 2 × 2 matrix with
0-entries, �u •H�v only has the trivial solution. Therefore, the CRS does not need to
include any matrices H1, . . . , Hη for the pairing product equations. The same holds
true for the other types of equations; we do not need any matrices H1, . . . , Hη in the
CRS.

Pairing product equations. First consider the restricted language LP ⊂ L, where
the statements have only pairing product equations. The CRS describesR = Zp, A1 =
G1, A2 = G2, AT = GT ; B1 = G2

1, B2 = G2
2, BT = G4

T ; commitment keys u1, u2, v1, v2;
and the following commuting linear and bilinear maps:

(X ,Y) e(X ,Y)

((
O
X

)
,

(
O
Y

)) (
1 1
1 e(X ,Y)

)
(ι1, ι2) ιT

f

F

For the following maps we recall u1 = (P1, α1P1) and v1 = (P2, α2P2):
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(X2 − α1X1,Y2 − α2Y1) e(X2 − α1X1,Y2 − α2Y1)

((
X1

X2

)
,

(
Y1
Y2

)) (
e(X1,Y1) e(X1,Y2)
e(X2,Y1) e(X2,Y2)

)
(p1, p2) pT

f

F

This gives us the setup from section 5, and we can use the NIWI proofs described
in section 6 on the pairing product equations.

Multiscalar multiplication in G1 or G2. For multiscalar multiplications in G1, we
will need maps ι̃T : G1 → G4

T and p̃T : G4
T → G1. For multiscalar multiplications

in G2 we will need maps ι̂T : G2 → G4
T and p̂T : G4

T → G2. The two cases are
symmetric, so we will just focus on multiscalar multiplication in G2 here.

We define

ι̂T (Z) := F (ι′1(1), ι2(Z)) = F (u, (O,Z)), p̂T = e−1(pT (z)),

where e−1(e(P1,Z)) := Z. In the soundness setting ι̂T ◦ p̂T is the identity map on
G2.

We have F (ι′1(x), ι2(Y)) = F (ι′1(1), ι2(xY)) = ι̂T (xY) by the linearity and bi-
linearity of the maps, and p′1(x1P1, x2P1)p2(Y1,Y2) = (x2 − α1x1)(Y2 − α2Y1) =
x2Y2 − α1x1Y2 − α2(x2Y1 − α1x1Y1) = p̂T (F ((x1P1, x2P2), (Y1,Y2))). This gives us
the following commutative diagram of linear and bilinear maps:

A1 = Zp × A2 = G2 AT = GT

B1 = G2
1 × B2 = G2

2 BT = G4
T

ι′1 p′1 ι2 p2 ι̂T p̂T

f(x,Y) = xY

F

Using this setup, we can apply the NIWI proof from section 6 to multiscalar
multiplication equations in G2. The case of multiscalar multiplication in G1 is treated
similarly.

Quadratic equations. For quadratic equations in Zp we define the maps ι′T : Zp →
G4

T and p′T : G4
T → Zp as follows:

ι′T (t) := F (ι′1(1), ι
′
2(t)) = F (u, tv), p′T (z) := loge(P1,P2)(pT (z)).

In the soundness setting p′T ◦ ι′T is the identity map on Zp. To see that the maps
satisfy the two commutative properties from Figure 2, observe that F (ι′1(x), ι

′
2(y)) =

F (ι′1(1), ι2(xy)) = ι′(xy) by the linearity and bilinearity of the maps, and

p′1(x1P1, x2P1)p
′
2(y1P2, y2P2) = (x2 − α1x1)(y2 − α2y1)

= x2y2 − α1x1y2 − α2(x2y1 − α1x1y1) = p′T (F ((x1P1, x2P2), (y1P2, y2P2))).

This gives us the following setup:
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A1 = Zp × A2 = Zp AT = Zp

B1 = G2
1 × B2 = G2

2 BT = G4
T

ι′1 p′1 ι2 p2 ι′T p′T

f(x, y) = xy mod p

F

NIWI proof. We now give the full NIWI proof for L.
Setup: gk := (p, G1, G2, GT , e,P1,P2)← GSXDH(1

k).
Soundness string: On input gk return σ := (u1, u2, v1, v2), where u2 = t1u1 and

v2 = t2v1 for random t1, t2 ← Zp.
Witness-indistinguishability string: On input gk return σ := (u1, u2, v1, v2), where

u2 = t1u1 − (O,P1) and v2 = t2v1 − (O,P2) for random t1, t2 ← Zp.

NIWI proof: On input gk, σ, a set of equations, and a witness �X , �Y, �x, �y do:
1. Commit to the group elements �X ∈ Gm

1 and the scalars �x ∈ Z
m′
p as

�c := ι1( �X )+R�u, �c′ := ι′1(x)+�ru1, where R← Matm×2(Zp), �r ← Z
m′
p .

Commit to the group elements �Y ∈ Gn
2 and the scalars �y ∈ Z

n′
p as

�d := ι2(�Y)+S�v, �d′ := ι′2(y)+�sv1, where S ← Matn×2(Zp), �s← Z
n′
p .

2. For each pairing product equation ( �A · �Y)( �X · �B)( �X · Γ�Y) = tT make
a proof as described in section 6. Writing it out, we have for T ←
Mat2×2(Zp) the following proof:

�π := R�ι2( �B) + R�Γι2(�Y) + (R�ΓS − T�)�v,
�θ := S�ι1( �A) + S�Γ�ι1( �X ) + T�u.

For each linear equation �A · �Y = tT we use �π := �0 and �θ := S�ι1( �A).
There is a bijective correspondence between S� �A = p1(�θ) and �θ =

ι1(S
� �A). The proof can therefore be communicated by sending S� �A,

which consists of two group elements in G1.
For each linear equation �X · �B = tT we use �π := R�ι2( �B) and �θ := �0.
As above, the proof can be communicated by sending the two group
elements R� �B in G2.

3. For each multiscalar multiplication equation �A · �y + �X ·�b+ �X · Γ�y = T1
in G1 the proof is for random T ← Mat1×2(Zp)

�π := R�ι′2(�b) +R�Γι′2(�y) + (R�Γ�s− T�)v1,

θ := �s�ι1( �A) + �s�Γ�ι1( �X ) + T�u.

For each linear equation �A·�y = T1 the proof is �π := �0 and θ := �s�ι1( �A).
There is a bijective correspondence between �s� �A = p1(�θ) and θ =

ι1(�s
� �A). The proof can therefore be communicated by sending �s� �A,

which consists of one group element in G1.
For each linear equation �X · �b = T1 the proof is �π := R�ι′2(�b) and
θ := 0. As above, the proof can be communicated by sending the two
field elements R��b.
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4. For each multiscalar multiplication equation �a · �Y + �x · �B + �x · Γ�Y = T2
in G2 the proof is for random T ← Mat2×1(Zp)

π := �r�ι2( �B) + �r�Γι2(�Y) + (�r�ΓS − T�)�v,
�θ := S�ι′1(�a) + S�Γ�ι′1(�x) + Tu1.

For each linear equation �a · �Y = T2 the proof is π := 0 and �θ := S�ι′1(�a).
There is a bijective correspondence between S��a = p′1(�θ) and �θ =
ι′1(S

��a). The proof can therefore be communicated by sending S��a,
which consists of two field elements.
For each linear equation �x · �B = T2 the proof is π := �r�ι2( �B) and �θ := 0.
As above, the proof can be communicated by sending the single group
element �r� �B.

5. For each quadratic equation �a · �y + �x ·�b + �x · Γ�y = t in Zp the proof is
for random T ← Zp

π := �r�ι′2(�b) + �r�Γι′2(�y) + (�r�Γ�s− T )v1,

θ := �s�ι′1(�a) + �s�Γ�ι′1(�x) + Tu1.

For each linear equation �a · �y = t we use π := 0 and θ := �s�ι′1(�a). There
is a bijective correspondence between �s��a = p′1(θ) and θ = ι′1(�s��a). The
proof can therefore be communicated by sending �s��a, which consists of
one field element.
For each linear equation �x · �b = t we use π := �r�ι′2(�b). As above, the

proof can be communicated by sending the single field element �r��b.
Verifier: On input (gk, σ), a set of equations, and a proof �c, �d,�c′, �d′, {�πi, �θi}Ni=1 do:

1. For each pairing product equation ( �A· �Y)( �X · �B)( �X ·Γ�Y) = tT with proof

(�π, �θ) check that

ι1( �A) • �d+ �c • ι2( �B) + �c • Γ�d = ιT (tT ) + �u • �π + �θ • �v.

2. For each multiscalar equation �A·�y+ �X ·�b+ �X ·Γ�y = T1 in G1 with proof
(�π, θ) check that

ι1( �A) • �d′ + �c • ι′2(�b) + �c • Γ�d′ = ι̃T (T1) + �u • �π + F (θ, v1).

3. For each multiscalar equation �a · �Y+�x · �B+�x ·Γ�Y = T2 in G2 with proof
(π, �θ) check that

ι′1(�a) • �d+ �c′ • ι2( �B) + �c′ • Γ�d = ι̂T (T2) + F (u1, π) + �θ • �v.

4. For each quadratic equation �a · �y + �x ·�b + �x · Γ�y = t in Zp with proof
(π, θ) check that

ι′1(�a) • �d′ + �c′ • ι′2(�b) + �c′ • Γ�d′ = ι′T (t) + F (u1, π) + F (θ, v1).

Theorem 15. The protocol is an NIWI proof with perfect completeness, perfect
soundness, and composable witness-indistinguishability for satisfiability of a set of
equations over a bilinear group where the SXDH problem is hard.

Proof. Perfect completeness follows from Theorem 6. Perfect soundness follows
from Theorem 7 since the p ◦ ι maps are identity maps on Zp, G1, G2, and GT . The
SXDH assumption gives us that the two types of CRSs are computationally indis-
tinguishable. On a witness-indistinguishability string, the commitments are perfectly
hiding, and we get perfect witness-indistinguishability from Theorem 8.
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Size. The modules we work in are B1 = G2
1 and B2 = G2

2, so each element in a
module consists of two group elements from, respectively, G1 and G2. Table 3 lists
the cost of all the different types of equations.

Table 3

Cost of each variable and equation measured in elements from G1, G2, and Zp.

Assumption: SXDH G1 G2 Zp

Variables x ∈ Zp,X ∈ G1 2 0 0
Variables y ∈ Zp,Y ∈ G2 0 2 0
Pairing product equations 4 4 0

- Linear equation: �A · �Y = tT 2 0 0

- Linear equation: �X · �B = tT 0 2 0
Multiscalar multiplication equations in G1 2 4 0

- Linear equation: �A · �y = T1 1 0 0

- Linear equation: �X ·�b = T1 0 0 2
Multiscalar multiplication equations in G2 4 2 0

- Linear equation: �a · �Y = T2 0 0 2

- Linear equation: �x · �B = T2 0 1 0
Quadratic equations in Zp 2 2 0
- Linear equation: �a · �y = t 0 0 1

- Linear equation: �x ·�b = t 0 0 1

10. Instantiation based on the DLIN assumption.

Setup. Let GDLIN be a generator of a bilinear group (p, G,GT , e,P). The de-
cisional linear (DLIN) assumption introduced by Boneh, Boyen, and Shacham [7]
states that given (αP , βP , rαP , sβP , tP) for random α, β, r, s it is hard to tell whether
t = r + s or t is random.

Definition 16 (DLIN assumption). The DLIN assumption holds for GDLIN if
for all nonuniform polynomial time A we have

Pr[gk ← GDLIN(1
k);α, β, r, s← Z

∗
p : A(gk, αP , βP , rαP , sβP , (r + s)P) = 1]

≈ Pr[gk ← GDLIN(1
k);α, β, r, s, t← Z

∗
p : A(gk, αP , βP , rαP , sβP , tP) = 1].

Statements. The setup gk = (p, G,GT , e,P) describes three Zp-modules Zp, G,
and GT . A statement will consist of a set of equations, which can include quadratic
equations in Zp, multiscalar multiplication equations in G, and pairing product equa-
tions. The equations are over variables x1, . . . , xm ∈ Zp and Y1, . . . ,Yn ∈ G.

Pairing product equations: Using our framework, this corresponds to R = Zp,

A1 = G,A2 = G,AT = GT , f(x, y) = e(x, y), and equations of the form ( �A·�Y)
· (�Y · Γ�Y) = tT .

Multiscalar multiplication in G: Using our framework, this corresponds to R =
Zp, A1 = Zn, A2 = G,AT = G2, f(x,Y) = xY, and equations of the form

�a · �Y + �x · �B + �x · Γ�Y = T .
Quadratic equation in Zn: Using our framework, this corresponds toR = Zp, A1 =

Zn, A2 = Zn, AT = Zn, f(x, y) = xy mod p, and equations of the form

�x ·�b+ �x · Γ�x = t.

We will construct NIWI proofs for the language L that consists of statements
with pairing product equations, multiscalar multiplication equations, and quadratic
equations for which there is a choice of �x, �Y satisfying all equations simultaneously.
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Commitments. We will now describe how to commit to elements in Zp and G.
The commitments will belong to the Zp-module B = G3 formed by entrywise addition.
The commitment key is of the form

u1 := (U ,O,P) = (αP ,O,P), u2 := (O,V ,P) = (O, βP ,P), u3 = (W1,W2,W3),

where α, β ← Z
∗
p. The vector u3 can be chosen as either u3 := ru1 + su2 or u3 :=

ru1+su2− (O,O,P), giving, respectively, a binding key and a hiding key. The DLIN
assumption says that it is hard to tell whether three elements rU , sV , tP have the
property that t = r + s, which implies that the two types of commitment keys are
computationally indistinguishable.

For committing to Y ∈ G using randomness (s1, s2, s3)← Z
3
p we define

ι(Z) := (O,O,Z), p(Z1,Z2,Z3) := Z3−
1

α
Z1−

1

β
Z2, giving us c := ι(Y)+

3∑
i=1

siui.

On a binding key we have that p◦ι is the identity map and p(u1) = p(u2) = p(u3) = O,
so the commitment is perfectly binding, and in fact c = ((s1+rs3)U , (s2+ss3)V , (s1+
s2 + (r + s)s3)P + Y) is a linear encryption [7] of Y with p being the decryption
algorithm. On a hiding key u1, u2, u3 are linearly independent, so they form a basis
for B = G3 and therefore ι(G) ⊆ 〈u1, u2, u3〉, so the commitment scheme is perfectly
hiding. The commitment scheme described here coincides with the scheme of [34]. We
note that the different, and less efficient, commitment scheme of [24] can be similarly
described in our language of modules.

To commit to a scalar x ∈ Zp using randomness r1, r2 ∈ Zp we use

ι′(z) := zu, p′(z1P , z2P , z3P) := z3−
1

α
z1−

1

β
z2, giving us c := xu+r1u1+r2u2,

where u := u3 + (O,O,P). On a binding key, p′ ◦ ι′ is the identity map on Zp and
p′(u1) = p′(u2) = 0, so the commitment c = ((r1 + rx)U , (r2 + sx)V , (r1 + r2 + x(r +
s))P + xP) is perfectly binding. On a hiding key, we have that u = ru1 + su2, so
ι′(Zp) ⊆ 〈u1, u2〉 and the commitment scheme is perfectly hiding.

Common reference string. The CRS is of the form (u1, u2, u3), which implicitly
defines maps ι, p, ι′, p′ and commitment schemes in B = G3 as described above.

We use the module BT := G9
T with addition corresponding to entrywise multi-

plication. We use two different bilinear maps F, F̃ . The map F̃ : G3 × G3 → G9
T is

defined as follows:

F̃ :

⎛⎝⎛⎝ X1

X2

X3

⎞⎠ ,

⎛⎝ Y1Y2
Y3

⎞⎠⎞⎠ �→
⎛⎝ e(X1,Y1) e(X1,Y2) e(X1,Y3)

e(X2,Y1) e(X2,Y2) e(X2,Y3)
e(X3,Y1) e(X3,Y2) e(X3,Y3)

⎞⎠ .

The symmetric map F is defined by

F (x, y) :=
1

2
F̃ (x, y) +

1

2
F̃ (y, x).

We use the notation • and •̃ when using F and F̃ , respectively, as the underlying
bilinear maps.
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Pairing product equations. For pairing product equations we define

ιT (z) :=

⎛⎝ 1 1 1
1 1 1
1 1 z

⎞⎠ ,

pT

⎛⎝⎛⎝ z11 z12 z13
z21 z22 z23
z31 z32 z33

⎞⎠⎞⎠ := z33z
− 1

α
13 z

− 1
β

23

(
z31z

− 1
α

11 z
− 1

β

21

)− 1
α
(
z32z

−1/α
12 z

− 1
β

22

)− 1
β

.

The map pT corresponds to first decrypting down the columns using the decryption
key α, β for the linear encryption scheme [7] and then decrypting along the resulting

row. We note that pT ◦ ιT is the identity map. Both F̃ and F satisfy the two
commutative properties in Figure 2.

Some computation shows that the nine elements F̃ (ui, uj) are linearly independent
in the witness-indistinguishability setting. This implies that whenH is the 3×3 matrix
with 0-entries, �u •̃ H�u only has the trivial solution. On the other hand, the map F has
nontrivial solutions to �u • H�u corresponding to the identities F (ui, uj) = F (uj , ui).
Some computation shows that the matrices

H1 =

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ , H2 =

⎛⎝ 0 0 1
0 0 0
−1 0 0

⎞⎠ , H3 =

⎛⎝ 0 0 0
0 0 1
0 −1 0

⎞⎠
form a basis for the matrices H such that �u •H�u = 0. Since these matrices are fixed,
we do not need to define them explicitly in the CRS.

Multiscalar multiplication equations. We will now look at the case of multiscalar
multiplication in G. We define

ι̃T (Z) := F̃ (ι′(1), ι2(Z)) = F̃ (u, (O,O,Z)), ι̂T (Z) := F (ι′(1), ι2(Z)) = F (u, (O,O,Z)),

p̃T (z) = p̂T (z) := e−1(pT (z)), where e−1(e(P ,Z)) := Z.

In the soundness setting p̃T ◦ ι̃ and p̂T ◦ ι̂T are the identity maps on G. F̃ sat-
isfies the two commutative properties, since by the linear and bilinear properties
F̃ (ι′(x), ι(Y)) = F̃ (ι′(1), ι(xY)) = ι̃T (xY) and p′(x1P , x2P , x3P)p(Y1,Y2,Y3) = (x3−
1
αx1 − 1

βx2)(Y3 − 1
αY1 −

1
βY2) = p̃T (F̃ ((x1P , x2P , x3P), (Y1,Y2,Y3)). F also satis-

fies the two commutative properties, since the bilinearity gives us F (ι′(x), ι(Y)) =

F (ι′(1), ι(xY)) = ι̂T (xY) and p′(x)p(y) = 1
2p

′(x)p(y) + 1
2p

′(y)p(x) = 1
2 p̃T (F̃ (x, y)) +

1
2 p̃T (F̃ (y, x)) = p̂T (F (x, y)).

In the witness-indistinguishability setting, when H is the 2× 3 matrix containing
0-entries, (u1, u2) •̃ H�u only has the trivial solution, whereas H1 =

(
0 1 0−1 0 0

)
generates

the matrices H such that (u1, u2) •H�u = 0.
Quadratic equations. Finally, we have the case of quadratic equations in Zp. We

define

ι̃′T (z) := F̃ (ι′(1), ι′(z)), ι′T (z) := F (ι′(1), ι′(z)), p′T (z) := loge(P,P)(pT (z)).

On a soundness string p′T ◦ ι̃′T and p′T ◦ ι′T are the identity maps on Zp.
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F̃ satisfies the commutative properties from Figure 2, since by the linear and bilin-
ear properties F̃ (ι′(x), ι′(y)) = F̃ (ι′(1), ι′(xy)) = ι̃T (xy) and p′(x1P , x2P , x3P)p′(y1P ,
y2P , y3P) = (x3 − 1

αx1 − 1
βx2)(y3 − 1

αy1 −
1
β y2) = pT (F̃ ((x1P , x2P , x3P), (y1P , y2P ,

y3P)). F also satisfies the two commutative properties, since the bilinearity gives us
F (ι′(x), ι′(y)) = F (ι′(1), ι′(xy)) = ι′T (xy) and p′(x)p′(y) = 1

2p
′(x)p′(y)+ 1

2p
′(y)p′(x) =

1
2p

′
T (F̃ (x, y)) + 1

2p
′
T (F̃ (y, x)) = p′T (F (x, y)).

For F̃ we have only the trivial matrix H = 0, and for F we have the nontrivial
basis H1 =

(
0 1−1 0

)
.

NIWI proof. Having described the modules, maps, and matrices that are implic-
itly given by the CRS above, we are now ready to give the full NIWI proof.
Setup: gk := (p, G,GT , e,P)← GDLIN(1

k).
Soundness string: On input gk return σ := (u1, u2, u3), where u1 = (αP ,O,P), u2 =

(O, βP ,P), u3 = ru1 + su2 for random α, β ← Z
∗
p and r, s← Zp.

Witness-indistinguishability string: On input gk return σ := (u1, u2, u3), where
u1 = (αP ,O,P), u2 = (O, βP ,P), u3 = ru1 + su2 − (O,O,P) for random
α, β ← Z

∗
p and r, s← Zp.

Prover: For notational convenience let �v = (u1, u2). On input gk, σ, a set of equa-

tions, and a witness �x, �Y do:
1. Commit to the scalars �x ∈ Z

m
p and the group elements �Y ∈ Gn as

�c := ι′(�x) +R�v, �d := ι(�Y) + S�u

for randomly chosen R← Matm×2(Zp), S ← Matn×3(Zp).

2. For each pairing product equation ( �A·�Y)(�Y·Γ�Y) = tT make a proof as de-
scribed in section 6 using the symmetric map F and random r1, r2, r3 ←
Zp:

�φ := S�ι( �A) + S�(Γ + Γ�)ι(�Y) + S�ΓS�u+

3∑
i=1

riHi�u.

For each linear equation �A · �Y = tT we use the asymmetric map F̃ to
get the proof

�π = �0, �θ := S�ι( �A).

The reason we use the asymmetric F̃ for the linear equation is that there
are no nontrivial matrices H such that �u •̃ H�u = 0, which simplifies the
proof. Observe that �θ = ι(S� �A) = S�ι( �A) and, conversely, p(�θ) = S� �A
is easily computable in this special setting, since ι(A) = (O,O,A). We

can therefore reveal just the proof �φ := p(�θ) = S� �A, which consists of
only three group elements.

3. For each multiscalar multiplication equation �a · �Y + �x · �B + �x · Γ�Y = T2
we use the symmetric map F . There is one matrix H1 that generates all
H such that �v •H�v. The proof is for random r1 ← Zp

�φ := R�ι( �B)+R�Γι(�Y)+(S′)�ι′(�a)+(S′)�Γ�ι′(�x)+R�ΓS′�u+ r1H1�u.

For each linear equation �a · �Y = T we use the asymmetric map F̃ to get
the proof

�π = �0, �θ := S�ι′(�a).
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It suffices to reveal the value �φ = S��a. Since �θ determines �φ uniquely,
this does not compromise the perfect witness-indistinguishability we
have on witness-indistinguishability strings. The verifier can compute
�θ = ι′(�φ). The proof now consists of only three elements in Zp.

For each linear equation �x · �B = T we use F̃ to get the proof

�π := R�ι( �B), �θ = �0.

We can use �φ = R� �B as the proof, since it allows the verifier to compute
�π = ι(�φ). The proof therefore consists of only two group elements.

4. For each quadratic equation �x ·�b+�x ·Γ�x = t in Zp we use the symmetric
map F . There is one matrix H1 that generates all H such that �v •H�v.
The proof is for random r1 ← Zp

�φ := R�ι′(�b) +R�(Γ + Γ�)ι′(x) +R�ΓR�v + r1H1�v.

For each linear equation �x ·�b = t we use the asymmetric map F̃ to get
the proof �π := R�ι′(�b). It suffices to reveal just �φ = R��b, from which

the verifier can compute �π = ι′(�φ).
Verifier: On input (gk, σ), a set of equations, and a proof �c, �d, {�φi}Ni=1 do:

1. For each pairing product equation ( �A · �Y)(�Y · Γ�Y) = tT with proof �φ
check that

ι( �A) • �d+ �d • Γ�d = ιT (tT ) + �u • �φ.

For each linear equation �A · �Y = tT with proof �φ check that

ι( �A) •̃ �d = ιT (tT ) + ι(�φ) •̃ �u.

2. For each multiscalar multiplication �a · �Y + �x · �B+ �x ·Γ�Y = T with proof
�φ check that

ι′(�a) • �d+ �c • ι( �B) + �c • Γ�d = ι̂T (T ) + �u • �φ.

For each linear equation �a · �Y = T with proof �φ check that

ι′(�a) •̃ �d = ι̂T (T ) + ι′(�φ) •̃ �u.

For each linear equation �x · �B = T with proof �φ check that

�c •̃ ι( �B) = ι̂T (T ) + �v •̃ ι(�φ).

3. For each quadratic equation �x ·�b + �x · Γ�x = t in Zp with proof �φ check
that

�c • ι′(�b) + �c • Γ�c = ι′T (t) + �v • �φ.

For each linear equation �x ·�b = t with proof �φ check that

�c •̃ ι′(�b) = ι′T (t) + �v •̃ ι′(�φ).
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Theorem 17. The protocol is an NIWI proof with perfect completeness, perfect
soundness, and composable witness-indistinguishability for satisfiability of a set of
equations over a bilinear group where the DLIN problem is hard.

Proof. Perfect completeness follows from Theorem 6. Perfect soundness follows
from Theorem 7 since the p ◦ ι maps are identity maps on Zp, G, and GT . The DLIN
assumption gives us that the two types of CRSs are computationally indistinguishable.
On a witness-indistinguishability string, the commitments are perfectly hiding, and
we get perfect witness-indistinguishability from Theorem 10.

Size. The module we work in is B = G3, so each element in the module consists
of three group elements from G. In some of the linear equations, we can compute
p(�φ) efficiently and we have ι(p(�φ)) = �φ, which gives us a shorter proof. Table 4 lists
the cost of all the different types of equations.

Table 4

Cost of each variable and equation measured in elements from Zp and G.

Assumption: DLIN G Zp

Variables x ∈ Zp,Y ∈ G 3 0
Pairing product equations 9 0

- Linear equation: �A · �Y = tT 3 0
Multiscalar multiplication equations 9 0

- Linear equation: �a · �Y = T 0 3

- Linear equation: �x · �B = T 2 0
Quadratic equations in Zp 6 0

- Linear equation: �x ·�b = t 0 2

11. Zero-knowledge. We will now show that in many cases it is possible to
make zero-knowledge proofs for satisfiability of quadratic equations. An obvious strat-
egy is to use our NIWI proofs directly; however, one could imagine such proofs might
not be zero-knowledge because the zero-knowledge simulator might not be able to
compute any witness for satisfiability of the equations. It turns out that the strategy
is better than it seems at first; we will often be able to modify the set of quadratic
equations into an equivalent set of quadratic equations where a witness can be found
and which has the same distribution of proofs.

We will consider the case where A1 = R, A2 = AT , f(r, y) = ry. We remark that
it is quite common to have A1 = R; in bilinear groups both multiscalar multiplication
equations in G1, G2 and quadratic equations in Zn have this structure.

The first stage of the simulator S1 will output a witness-indistinguishability string
and a simulation trapdoor τ that makes it possible to trapdoor open the commitments
in B1. More precisely, τ = �s ∈ Rm̂ so ι1(1) = ι1(0) + �s��u. Define c := ι1(1), which is
a commitment to δ = 1 with trivial randomness. The idea in the simulation is that
we can rewrite the statement as

�ai · �y + f(−δ, ti) + �x ·�bi + �x · Γ�y = 0.

We have introduced a new variable δ, and choosing all variables to be 0 gives a satis-
fying witness. In the simulation, the simulator S2 will use the trapdoor information
τ to open c to 0, and it can now use the NIWI proof from section 7.

We are now ready to give the NIZK proof for the language L consisting of
statements with quadratic equations that are simultaneously satisfiable as defined
in section 6. These are statements consisting of one or more equations of the form
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�a · �y + �x ·�b + �x · Γ�y = t such that there is some choice of �x, �y that satisfies all equa-
tions. The witness for membership of L is w = (�x, �y). The NIZK proof will have
perfect Lguilt-soundness as defined in section 6. When Lguilt = L̄, this corresponds to
standard perfect soundness.
Setup: (gk, sk) = ((R, A1, A2, AT , f), sk)← G(1k), where A1 = R and A2 = AT .
Soundness string: σ = (B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , �u, �v,H1, . . . , Hη)← K(gk,

sk).
Prover: This protocol is exactly the same as in the NIWI proof; we do not even

need to rewrite the equations. The input consists of gk, σ, a list of quadratic
equations {(�ai,�bi,Γi, ti)}Ni=1, and a satisfying witness �x, �y.
Pick at random R ← Matm×m̂(R) and S ← Matn×n̂(R) and commit to all

the variables as �c := ι1(�x) +R�u and �d := ι2(�y) + S�v.

For each equation (�ai,�bi,Γi, ti) make a proof as described in section 6. In
other words, pick Ti ← Matn̂×m̂(R) and ri1, . . . , riη ←R and compute

�πi := R�ι2(�bi) +R�Γι2(�y) +R�ΓS�v − T�
i �v +

η∑
j=1

rijHj�v,

�θi := S�ι1(�ai) + S�Γ�ι1(�x) + Ti�u.

Output the proof (�c, �d, {(�πi, �θi)}Ni=1).

Verifier: The input is gk, σ, {(�ai,�bi,Γi, ti)}Ni=1, and the proof (�c, �d, {(�πi, �θi)}).
For each equation check that

ι1(�ai) • �d+ �c • ι2(�bi) + �c • Γi
�d = ιT (ti) + �u • �πi + �θi • �v.

Output 1 if all the checks pass; else output 0.
Simulation string: (σ, τ) = ((B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , �u, �v,H1, . . . , Hη), �s)

← S1(gk, sk), where ι1(1) = ι1(0) + �s��u.
Proof simulator: The input consists of gk, σ, a list of quadratic equations {(�ai,�bi,

Γi, ti)}Ni=1, and the simulation trapdoor τ = �s.

Rewrite each equation as �ai · �y + �x · �bi + f(δ,−ti) + �x · Γi�y = 0. Define
�x := �0, �y := �0, and δ = 0 to get a witness that satisfies all the modified
equations.
Pick at random R ← Matm×m̂(R) and S ← Matn×n̂(R), and commit to all

the variables as �c := �0 + R�u and �d := �0 + S�v. We also use c := ι1(1) =
ι1(0) + �s��u and append it to �c.

For each modified equation (�ai,�bi,−ti,Γi, 0) make a proof as described in

section 6. Return the simulated proof {(�c, �d, �πi, �θi)}Ni=1.
Theorem 18. The protocol described above is a composable NIZK proof for

satisfiability of quadratic equations with perfect completeness, perfect Lguilt-soundness,
and composable zero-knowledge.

Proof. Perfect completeness on a soundness string follows from the perfect com-
pleteness of the NIWI proof: the simulator knows an opening of c := ι1(1) to

c = ι1(0) +
∑m̂

i=1 siui. It therefore knows a witness �0,�0, δ = 0 for satisfiability of

all the modified equations. It therefore outputs a proof {(�c, �d, �πi, �θi)}Ni=1 such that for
all i we have

ι1(�ai) • �d+ �c • ι2(�bi) + F (ι1(1),−ι2(ti)) + �c • Γi
�d = ιT (0) + �u • �πi + �θi • �v.
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The commutative property of the maps gives us F (ι1(1), ι2(ti)) = ιT (f(1, ti)) = ιT (ti),
so the NIZK proofs satisfy the equations that the verifier checks. Perfect completeness
on a simulation string now follows from the perfect completeness of the NIWI proof
as well.

Perfect Lguilt-soundness follows from the perfect Lguilt-soundness of the NIWI
proof.

We will now show that on a simulation string we have perfect zero-knowledge.
The commitments �c, �d, and c = ι1(1) are perfectly hiding and therefore have the
same distribution whether we use witness �x, �y, δ = 1 or �0,�0, δ = 0. Theorem 8
now tells us that the proofs �πi, �θi made with either type of opening of �c, �d, c are
uniformly distributed over all possible choices of {(�πi, �θi)}Ni=1 that satisfy the equations

ι1(�ai) • �d + �c • �bi + �c • Γ�d = ιT (t). We therefore have perfect zero-knowledge on a
simulation string.

Since the NIZK proof is exactly the same as the NIWI proof, there is no additional
cost associated with getting composable zero-knowledge for full quadratic equations.
If we look at linear equations, there are two cases to consider. On a linear equation
of the form �x · �b = t, the simulator can rewrite it as �x · �b + f(−δ, t) = 0, which is
a linear equation of the same form. The shorter NIWI proofs for this type of linear
equation can therefore also be perfectly simulated on a simulation string. NIWI proofs
for linear equations of the form �a · �y = t, on the other hand, cannot be simulated as
easily, because if the simulator rewrites the equation as �a · �y + (−δ, t) = 0, then it
is no longer a linear equation. To get composable zero-knowledge for the latter type
of linear equation, the prover can instead use the NIWI proof for the full quadratic
equation.

11.1. NIZK proofs for bilinear groups. Let us now consider bilinear groups
and the four types of quadratic equations given in Figure 1. If we set up the CRS
such that we can trapdoor open, respectively, ι′1(1) and ι′2(1) to 0, then multiscalar
multiplication equations and quadratic equations in Zn are of the form for which we
can get a perfect simulation.

In the case of pairing product equations we do not know how to get zero-knowledge,
since even with the trapdoors we may not be able to compute a witness. We do ob-
serve, though, that in the special case where all tT = 1 the choice of �X = �O, �Y = �O
is a satisfactory witness. Since we also use the witness �X = �O, �Y = �O in the other
types of equations, the simulator can use this witness in the simulation. In the special
case where all tT = 1 we can therefore make NIZK proofs for satisfiability of a set of
quadratic equations.

In another special case where we have a pairing product equation with tT =∏n
i=1 e(Pi,Qi) for some known Pi,Qi there is another technique that can be useful

in getting zero-knowledge. In this case, we can add the equations δZi − δQi = O to
the set of multiscalar multiplication equations in G2 and rewrite the pairing product
equation as ( �A· �Y)( �X · �B)(�P · �Z)( �X ·Γ�Y) = 1. This gives us pairing product equations
of the type where we can make zero-knowledge proofs. We can therefore also make
zero-knowledge proofs for a set of quadratic equations over a bilinear group if all the
pairing product equations have tT of the form tT =

∏n
i=1 e(Pi,Qi) for some known

Pi,Qi.
The case of pairing product equations points to a couple of differences between

witness-indistinguishable proofs and zero-knowledge proofs using our techniques. NIWI
proofs can handle any target tT , whereas zero-knowledge proofs can handle only spe-
cial types of target tT . Furthermore, if tT �= 1, the size of the NIWI proof for this
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equation is constant, whereas the NIZK proof for the same equation may be larger.

We conclude our discussion of NIZK proofs with Tables 5 and 6 that give the
costs for proving the satisfiability of a set of quadratic equations in the SXDH and
DLIN instantiations. For the subgroup decision instantiation, NIZK proofs for sets of
quadratic equations where all tT = 1 are the same as those given in Figure 1.

Table 5

Cost of each variable and equation in an NIZK proof in the SXDH instantiation.

Assumption: SXDH G1 G2 Zp

Variables x ∈ Zp,X ∈ G1 2 0 0
Variables y ∈ Zp,Y ∈ G2 0 2 0
Pairing product equations with tT = 1 4 4 0

- Linear equation: �A · �Y = 1 2 0 0

- Linear equation: �X · �B = 1 0 2 0
Multiscalar multiplication equations in G1 2 4 0

- Linear equation: �A · �y = T1 1 0 0

- Linear equation: �X ·�b = O 0 0 2
Multiscalar multiplication equations in G2 4 2 0

- Linear equation: �a · �Y = O 0 0 2

- Linear equation: �x · �B = T2 0 1 0
Quadratic equations in Zp 2 2 0
- Linear equation: �a · �y = t 0 0 1

- Linear equation: �x ·�b = t 0 0 1

Table 6

Cost of each variable and equation in an NIZK proof in the DLIN instantiation.

Assumption: DLIN G Zp

Variables x ∈ Zp,Y ∈ G 3 0
Pairing product equations with tT = 1 9 0

- Linear equation: �A · �Y = 1 3 0
Multiscalar multiplication equations 9 0

- Linear equation: �a · �Y = O 0 3

- Linear equation: �x · �B = T 2 0
Quadratic equations in Zp 6 0

- Linear equation: �x ·�b = t 0 2

12. Conclusion and an open problem. Our main contribution in this paper
is the construction of efficient noninteractive cryptographic proofs for use in bilinear
groups. Our proofs can be instantiated with many different types of bilinear groups,
and the security of our proofs can be based on many different types of intractability
assumptions. We have given three concrete examples of instantiations based on,
respectively, the subgroup decision assumption, the SXDH assumption, and the DLIN
assumption.

Because of their interest for applications, we have focused on bilinear groups
in our instantiations. However, our techniques generalize beyond bilinear groups;
for instance, we do not require the modules to be cyclic (as is the case for bilinear
groups). It is possible that other types of modules with a bilinear map exist, which
are not constructed from bilinear groups. The existence of such modules might lead to
efficient NIWI and NIZK proofs based on entirely different intractability assumptions.
We leave the construction of such modules with a bilinear map as an interesting open
problem.
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Appendix. Quick reference to notation.
Bilinear groups:

G1, G2, GT : cyclic groups with bilinear map e : G1 ×G2 → GT .
P1,P2: generators of, respectively, G1 and G2.
Group order: prime order p or composite order n.

Modules with bilinear map:
R: finite commutative ring (R,+, ·, 0, 1).
A1, A2, AT , B1, B2, BT : R-modules.
f, F : bilinear maps f : A1 ×A2 → AT and F : B1 ×B2 → BT .

�x · �y :=

n∑
i=1

f(xi, yi), �x • �y :=

n∑
i=1

F (xi, yi).

Properties that follow from bilinearity:

�x ·M�y = M��x · �y, �x •M�y = M��x • �y.

Commutative diagram of maps in setup:

A1 × A2 AT

B1 × B2 BT

ι1 p1 ι2 p2 ιT pT

f

F

Commutative properties:

F (ι1(x), ι2(y)) = ιT (f(x, y)), f(p1(x), p2(y)) = pT (F (x, y)).

Equations:
(Secret) variables: �x ∈ Am

1 , �y ∈ An
2 .

(Public) constants: �a ∈ An
1 ,
�b ∈ Am

2 ,Γ ∈Matm×n(R), t ∈ AT .

Equations: �a · �y + �x ·�b+ �x · Γ�y = t.
Commitments:

Commitment keys: �u ∈ Bm̂
1 , �v ∈ Bn̂

2 .
Commitments:

�c := ι1(�x) +R�u ∈ Bm
1 , �d := ι2(�y) + S�v ∈ Bn

2 .

NIWI proofs:
Additional setup information: H1, . . . , Hη such that �u •Hi�v = 0.
Randomness in proofs: T ← Matn̂×m̂(R), r1, . . . , rη ←R.
Proofs:

�π := R�ι2(�b) +R�Γι2(�y) +R�ΓS�v − T��v +
η∑

i=1

riHi�v,

�θ := S�ι1(�a) + S�Γ�ι1(�x) + T�u.

Verification: ι1(�a) • �d+ �c • ι2(�b) + �c • Γ�d = ιT (t) + �u • �π + �θ • �v.
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