
Evaluating Security of Voting Schemes in the Universal
Composability Framework

Jens Groth∗

BRICS†, University of Aarhus and Cryptomathic A/S‡.

Remark. Appears in ACNS 2004, this is the full paper. It contains a proof of Theorem 1,
some more details on security against adaptive adversaries in the erasure-free model, and a
conclusion.

Abstract

In the literature, voting protocols are considered secure if they satisfy requirements
such as privacy, accuracy, robustness, etc. It can be time consuming to evaluate a voting
protocol with respect to all these requirements and it is not clear that the list of known
requirements is complete. Perhaps because of this many papers on electronic voting do
not offer any security proof at all.

As a solution to this, we suggest evaluating voting schemes in the universal com-
posability framework. We investigate the popular class of voting schemes based on
homomorphic threshold encryption. It turns out that schemes in this class realize an
ideal voting functionality that takes the votes as input and outputs the result. This ideal
functionality corresponds closely to the well-known ballot box model used today in man-
ual voting. Security properties such as privacy, accuracy and robustness now follow as
easy corollaries. We note that some security requirements, for instance incoercibility,
are not addressed by our solution.

Security holds in the random oracle model against a non-adaptive adversary. We
show with a concrete example that the schemes are not secure against adaptive adver-
saries. We proceed to sketch how to make them secure against adaptive adversaries in
the erasure model with virtually no loss of efficiency. We also sketch how to achieve
security against adaptive adversaries in the erasure-free model.

Keywords: Voting, homomorphic threshold encryption, universal composability.

∗Jens Groth, homepage: www.brics.dk/∼jg, e-mail: jg@brics.dk.
†Basic Research in Computer Science (www.brics.dk), funded by the Danish National Research Founda-

tion.
‡Cryptomathic A/S, Jægerg̊ardsgade 118, 8000 Århus C, Denmark (www.cryptomathic.com)

1



1 Introduction

We consider the security of voting protocols. As time has progressed, more and more security
requirements have been published in the literature. Examples of such requirements are privacy,
accuracy, fairness, robustness, universal verifiability, incoercibility and receipt-freeness [BM03,
LGT+03]. With this growing list of requirements, designers of voting protocols face two
problems: if they do not know the literature well they may miss a security requirement, and
even if they do cover all known requirements this does not guarantee that new yet to be
discovered requirements are satisfied by their voting scheme.

To partially solve these problems we suggest evaluating voting schemes in the universal
composability (UC) framework of Canetti [Can01]. In the UC framework, an execution of
a multi-party computation protocol is compared to an execution where a trusted ideal func-
tionality handles the data and produces the output. A protocol is said to be secure if an
adversary operating in a real-life model can be simulated in the ideal process model with the
ideal functionality. In the case of voting, the ideal functionality takes as input the votes and
outputs the result of the election. This ideal functionality corresponds to the old method of
voters marking their choice on paper and putting the ballot in a box, which is opened once
the election is over.

Let us see how this solution addresses some of the properties that we mentioned. Privacy
and accuracy are automatically satisfied since it is a part of the model that input to the ideal
functionality is not revealed in any way to the adversary and the ideal functionality does
compute the result correctly. Robustness follows too; in the UC framework, we can corrupt
parties and still have a good simulation in the ideal process. Fairness follows from the fact
that the ideal functionality does not reveal any partial tallies during the process.

Our approach has the advantage that it covers many security requirements in a single
security model. This simplifies security proofs since we only need to prove universal compos-
ability to prove all these specific security requirements. Our approach is also pro-active in
the sense that using a general security model may mean that security requirements yet to be
discovered are covered.

We do not claim to solve all security issues with this approach. In particular, universal
composability of a voting scheme does not guarantee universal verifiability, incoercibility,
receipt-freeness or protection against hackers. However, considering that many security issues
are dealt with, and considering that the properties dealt with are often defined vaguely in
papers dealing with voting schemes, we do find that this application of the UC framework is
worthwhile to investigate.

The UC framework allows for modular composition. In short, this means that if we take a
hybrid protocol, where part of the protocol is specified by an ideal functionality, then we can
freely plug in any protocol that securely realizes this ideal functionality. Most voting schemes
presented in the literature make shortcuts. They assume we have a broadcast channel with
memory or an anonymous broadcast channel. Often they also assume some public keys are
set up and assume that voters are registered without specifying how this is done. We take
this approach too and assume these things are provided through an ideal functionality. The
modular composition theorem of the UC framework tells us that this is a sound approach
and that we may later insert any protocol that realizes this functionality to get a full-blown

2



election protocol.
The specific class of voting protocols we look at in this paper is based on homomorphic

threshold encryption. Many such schemes have been proposed in the literature [CGS97, DJ01,
BFP+01, DGS03], only the first one of these offers a security proof. We prove that indeed these
schemes realize an ideal voting functionality when the adversary is non-adaptive. The schemes
are not secure against adaptive adversaries, however, we propose a simple modification to
make them secure against adaptive adversaries in the erasure model. We suggest another
modification based on Paillier encryption that gives security against adaptive adversaries in
the erasure-free model.

2 Preliminaries

In this section, we present the various tools used in the class of voting schemes we intend
to investigate. Before doing so, we offer a brief introduction to the idea behind this class of
voting protocols.

The idea behind voting based on homomorphic encryption. We assume that the
parties have access to a message board where everybody may post messages, everybody can
read the messages posted on the message board, messages cannot be deleted, and all messages
are authenticated, for instance with digital signatures. All communication will take place
through this message board. Public data pertaining to the election is also posted on the
message board. In particular, a public key pk for a cryptosystem is posted.

In this example, we assume for simplicity that the voters only have two choices. We
encode “yes” as 1, while “no” is encoded as 0. A voter casts his vote by encrypting the vote
and posting it on the message board, i.e., posting Epk(0) or Epk(1). Since the messages are
authenticated, everybody can check whether an eligible voter cast the vote.

The cryptosystem should have a homomorphic property:

Epk(m1; r1) · Epk(m2; r2) = Epk(m1 + m2; r1 + r2).

When everybody has cast his vote we may therefore compute the product of all the ciphertexts
and get an encryption of the number of “yes” votes.

Now the authorities must decrypt this ciphertext containing the result of the election. For
this purpose, we assume that the cryptosystem has threshold decryption. The authorities each
hold a secret share of the private key and if sufficiently many of them cooperate, they may
decrypt the ciphertext. However, no coalition below the threshold value is able to decrypt
any of the encrypted votes; this preserves privacy.

To prevent cheating we require that voters attach a non-interactive zero-knowledge proof
that their ciphertext contains either 0 or 1. Otherwise, it would for instance be easy to
cast 100 “yes”-votes by posting Epk(100). Standard non-interactive zero-knowledge proofs
are too cumbersome to be used in practice, therefore this is typically done through a 3-move
honest verifier zero-knowledge proof of correctness of a vote made non-interactive through the
Fiat-Shamir heuristic.

3



In this section, we define Σ-protocols [CDS94], the type of 3-move honest verifier zero-
knowledge proofs that we use. We then note that these proofs in the random oracle model
[BR93] can be transformed into non-interactive zero-knowledge proofs. We prove that in the
random oracle model, we are dealing with a proof of knowledge, and for any prover there
exists an emulator that also produces corresponding witnesses. This can be seen as a random
oracle parallel of witness extended emulation as defined by Lindell [Lin01]. Finally, we define
the kind of homomorphic threshold encryption that we need.

Σ-protocols. A Σ-protocol is a special type of 3-move proof system. Say we have an element
x and a language L. The prover P knows a witness w for x ∈ L and wants to convince the
verifier V that x ∈ L. We assume that both parties have access to a common reference string
σ chosen with a suitable distribution. Some Σ-protocols do not require this, and in that case,
we can of course just let σ be the empty string. The protocol goes like this: The prover sends
an initial message a, receives a random challenge e and produces an answer z. V can now
evaluate (σ, x, a, e, z) and decide whether to accept or reject the proof.

A Σ-protocol satisfies the following properties.

Completeness: Given (x, w) where w is a witness for x ∈ L the prover will with overwhelm-
ing probability convince the verifier, if they both follow the protocol.

Special Soundness: There exists an efficient extractor that for any x given two acceptable
proofs (a, e, z) and (a, e′, z′) with the same initial message but different challenges can
compute a witness w for x ∈ L.

Special Honest Verifier Zero-Knowledge: There exists an efficient simulator that given
x, e can create a “proof” (a, e, z) for x ∈ L, which is indistinguishable from a real proof
with challenge e.

Non-interactive zero-knowledge proofs. Given access to a random oracle O we can
transform a Σ-protocol into a non-interactive proof system. To get the challenge e we form
the initial message a, query O with (x, a, aux) to get the challenge e and then compute the
answer z.1 The proof is then (a, z, aux). To verify such a proof query O with (x, a, aux) to
get e and then run the verifier from the Σ-protocol.

Using standard techniques, we can prove that we get a non-interactive proof system with
the following properties:

Completeness: Given (x, w) where w is a witness for x ∈ L the verifier will accept if both
the prover and the verifier follow the protocol.

Soundness: A dishonest prover cannot convince the verifier if x /∈ L.

Zero-Knowledge: There exist a simulator SO that given x ∈ L can create a convincing
proof (a, z, aux) indistinguishable from a real proof provided it has the following ability

1Typically, aux will contain the identity of the prover in order to prevent somebody else to duplicate the
proof and claim to have made it.

4



to modify the oracle. It may give (x, a, aux, e) to O and provided (x, a, aux) has not
been queried before O assigns the value e to be the answer to query (x, a, aux).

The random oracle model is an idealization of the Fiat-Shamir heuristic, see [BR93]. In the
Fiat-Shamir heuristic the prover uses a cryptographic hash-function to produce the challenge
as e = hash(x, a, aux).

Witness extended emulation in the random oracle model. A Σ-protocol is a proof
of knowledge in the random oracle model. We formulate this in the form of witness extended
emulation in the following way. Given some adversary that produces a vector of elements
x ∈ L and valid proofs of memberships of L, there is an emulator EA that produces identically
distributed elements together with the corresponding witnesses for memberships of L.

Theorem 1 For all adversaries A there exists an expected polynomial time emulator EA such
that for all distinguishers D (even unbounded ones) we have

P [(~x, ~p, s)← AO(z) : (~x, ~p) ∈ V ∧DO(~x, ~p, s, z) = 1]

≈ P [(~x, ~p, ~w, s)← EO
A (z) : (~x, ~p) ∈ V ∧ (~x, ~w) ∈ W ∧DO(~x, ~p, s, z) = 1],

where z is some advice with length bounded by a polynomial in k, O is a random oracle, V is
the set of vector pairs (~x, ~p) such that ~p contains valid proofs for the elements in ~x belonging to
L, and W is the set of pairs (~x, ~w) where ~w contains witnesses for the elements of ~x belonging
to L.2

We construct the emulator EA as follows: It runs a copy of AO(z) to get output (~x, ~p, s).
During the run, it saves the state of A whenever it makes a query to O. EA will now attempt
to find witnesses for the elements in ~x belonging to L. If any of the proofs have been made
without querying the oracle, i.e., A simply guessed the oracle value we surrender, however,
this only has negligible probability of happening.

Let us consider the case where A did make a query to get the challenge e in each of its
proofs. Consider a query (x, a, aux) that A used in a proof p = (a, z, aux). Since we saved
the state of A after this query we can run A again this time giving random answers to all
subsequent queries to O. We can hope that in the end A includes a new proof (a, z′, aux)
where we have selected e′ 6= e. In that case we may by the special soundness property extract
a witness w for x ∈ L. EA simply repeats this procedure for each proof in ~p until it has
new proofs for all of the elements in ~x. With overwhelming probability, these new proofs use
different challenges and therefore witnesses can be extracted.

2It is instructive to consider this theorem in connection with the cryptosystem TDH0 in [SG02]. TDH0
is a cryptosystem where a Σ-protocol made non-interactive with a random oracle is used to prove knowledge
of the plaintext. Intuitively one might argue CCA2 security by saying that the adversary already knows the
answer when submitting decryption requests. However, Gennaro and Shoup show that this argument fails
since rewinding is used to get the plaintexts, and since decryption requests may depend on oracle queries made
before several other oracle queries we risk an exponential blow-up when tracking back through the decryption
requests. Our theorem does not solve this problem. What our theorem can be used to prove, however, is that
TDH0 is non-malleable.

5



We have to argue that EA runs in expected polynomial time. Let timeA(k) be a polynomial
bound on the running time of A. Consider the state of A after having made a query to the
random oracle. Let p be the probability that A is going to use the answer to make a valid
proof. In case A does use the answer EA uses an expected 1/p simulated runs of A from
this point to get an oracle answer that is used to make a valid proof in a simulated run.
Since each simulated run of A takes at most time timeA(k), the expected time used by EA

on this state is at most p1
p
timeA(k). Since the running time of A is timeA(k), it can make at

most timeA(k) queries to the random oracle. Therefore, timeA(k)2 is an upper bound on the
expected running time of EA. �

Homomorphic threshold encryption. A (t, n)-threshold cryptosystem is a public key
cryptosystem where the secret key is shared between n authorities A1, . . . , An. If t of them
cooperate they may decrypt ciphertexts, but any group of less than t authorities cannot learn
anything about the contents of a ciphertext.

We use a key generation algorithm K to generate the keys. In general, all elements of the
cryptosystem, messages, randomness and ciphertexts belong to suitable groups. We write the
ciphertext space with multiplicative notation and the other groups with additive notation.
The key generation algorithm produces a public key pk which is used for encryption, secret
keys sk1, . . . , skn used for decryption, and verification keys vk1, . . . , vkn that are public and
used for verifying that the authorities act according to the protocol.

Encryption works as usual. To decrypt a ciphertext the authorities use their secret keys to
produce decryption shares. Given t decryption shares anybody can combine them to get the
plaintext. The verification keys are used by the authorities to make a zero-knowledge proof
that they have provided the correct decryption shares.

We require that the cryptosystem have the following properties.

Semantic security: The cryptosystem must be semantically secure.

Errorless decryption: With overwhelming probability, the key generation algorithm selects
keys such that there is probability 1 for the decryption to yield the message encrypted.3

Homomorphicity: For all messages m1, m2 and randomizers r1, r2 we have Epk(m1+m2; r1+
r2) = Epk(m1; r1) · Epk(m2; r2).

Simulatability of decryption: There is an algorithm S that takes as input a ciphertext
c, a message m and the secret shares of any group of t − 1 authorities and produces
simulated decryption shares for all the remaining authorities that c decrypts to m. S
must be such that even with knowledge of the corresponding t − 1 keys the simulated
decryption shares are indistinguishable from real decryption shares.

3Most known cryptosystems have this property. However, in the notion of deniable encryption [CDNO97]
the goal is to make it possible to deny that a particular thing was encrypted by producing honest looking
randomness for an entirely different plaintext.

6



3 Universal Composability

The universal composability framework is described in details in [Can01]. The main gist is to
compare a real-life execution of a protocol with an ideal process. We say a real-life protocol
π realizes an ideal functionality F if an adversary A in the real-life model cannot gain more
than an adversary S in the ideal process does. More precisely, we have an environment Z
that gives inputs to parties, sees outputs from parties and learns which parties are corrupted,
and we say π securely realizes F if Z cannot distinguish the real-life protocol with adversary
A from the ideal process with simulator S.

In the ideal process, the ideal functionality handles everything taking place in the protocol.
The parties in the protocol hand their inputs from Z directly and securely to F . F computes
the parties outputs and sends it to them. When a party receives a message from F , it outputs
this message. S is restricted to corrupting some of the parties and blocking messages from F
to the honest parties. On the other hand, in the real-life execution the parties carry out the
protocol π to produce their outputs.

One main feature in this framework is security under modular composition. Let us say we
have a protocol ρ that realizes the ideal functionality F . Say that ρ is used as a sub protocol
in π and write this as πρ. We may then form the hybrid πF where calls to ρ are replaced with
calls to F . It is a theorem that πρ securely realizes πF .

Key generation and message board hybrid model. We will take advantage of the
modular composition theorem and work in a hybrid model where we assume we have protocols
that realize the key generation and message board functionality described in Figure 1. For
distributed key generation protocols refer to [BF97, GJKR99, FS01, ACS02]. This enables us
to concentrate on the voting protocol itself.

We note that in FKM we allow A to block voters’ messages. This is to cover all the benign
and malicious failures that may occur when voters try to cast their vote; everything from the
Internet connection being unstable to an adversary deliberately cutting the cables to groups
of voters with a particular political opinion. A typical requirement of a voting system is that
it should be available, i.e., voters wanting to vote should have access to vote. This covers
protecting against denial of service attacks, etc., but is not part of what the cryptographic
protocol can accomplish. Therefore, we specifically allow the adversary to block votes. We
quantify over all adversaries in the security proof, so in particular the security proof also holds
for non-blocking adversaries that do not block messages, i.e., it holds for voting systems with
the availability property. In contrast, for simplicity we do not allow the adversary to block
inputs from the authorities. This choice is reasonable since any voting system must have
appropriate back-up procedures to ensure that all authorities can communicate as needed.

Another remark pertains to resubmission of votes. Depending on the requirements, some-
times dictated by law, it may or may not be allowed for voters to change their votes. For
simplicity, we treat the case where voters cannot change their mind, and therefore we only
allow a single message not to be blocked. Security can be proved quite similarly in the case
where we allow voters to change their mind.

7



Functionality FKM

FKM proceeds as follows, running with parties V1, . . . , Vm, A1, . . . , An and an adversary A.

• Generate keys for the homomorphic threshold cryptosystem
(pk, vk1, . . . , vkn, sk1, . . . , skn). Send (public key, sid, pk) to all parties and A.
Send (verification keys, sid, vk1, . . . , vkn) to all the authorities and A. For
i = 1, . . . , n send (secret share, sid, ski) to Ai.

• Upon receiving (message, sid,m) from party Vi store (message, sid, Vi, m) and
send it to A.

• Upon receiving (no-block, sid, Vi, m) from A check whether (message, sid, Vi, m)
has been stored. In that case, store (post, sid, Vi, m) and ignore subsequent
(no-block, sid, Vi, . . .) messages from A.

• Upon receiving (tally, sid) from A, send all stored (post, sid, Vi, m) messages to
A1, . . . , An. Ignore subsequent (tally, sid) requests.

• Upon receiving (post, sid,m) from party Ai send (post, sid, Ai, m) to A1, . . . , An

and A.

Figure 1: The key generation and message board functionality, FKM.

Functionality FVOTING

FVOTING proceeds as follows, running with parties V1, . . . , Vm, A1, . . . , An and an
adversary S.

• Upon receiving (vote, sid, Vi, v) from Vi store it and send (vote, sid, Vi) to S.
Ignore future (vote, sid, . . .) messages from Vi.

• Upon receiving (no-block, sid, Vi) from S check whether some (vote, sid, Vi, v) has
been stored. In that case, add v to the result and ignore subsequent
(no-block, sid, Vi) messages from S.

• Upon receiving (result, sid) from S compute the result and send
(result, sid, result) to S and A1, . . . , An and halt.

Figure 2: The voting functionality, FVOTING.

Voting protocol. Before describing the protocol that we use to realize the ideal voting
functionality in Figure 2, we need to discuss how to encode the voters’ choice as a plaintext to
be encrypted. In [DJ01, BFP+01, DGS03] this is done by assigning each candidate a number
j ∈ {0, . . . , L − 1} and encoding the candidate as M j, where M is a strict upper bound on
the number of votes any candidate can receive. Adding many such votes gives a result on the
form

∑L−1
j=0 vjM

j where vj is the number of votes on candidate number j. Votes and result

8



can be embedded in a message space on the form ZN provided N ≥ ML. More generally we
require that there is an encoding such that:

• Each valid vote v can be encoded as Encode(v).

• The sum of the encodings yields an encoding of the result, Encode(result).

• It is possible to efficiently extract the result from an encoding.

• The encodings can be embedded in the message space of the cryptosystem.

We describe the voting protocol based on homomorphic threshold encryption in Figure 3.
Examples of such voting protocols can be found in [CGS97, DJ01, BFP+01, DGS03].

Voting Protol πFKM
VOTING

The voting protocol for voters V1, . . . , Vm and authorities A1, . . . , An with access to ideal
functionality FKM and random oracle O is as follows.

1. Invoke FKM to give each voter V1, . . . , Vm the public key and give each authority
A1, . . . , An all the verification keys and its own secret key.

2. Each voter Vi with a public key pk on the incoming message tape and a valid vote
vi on the input tape computes ci ← Epk(Encode(vi)). He creates a proof pi for the
vote being correct using a Σ-protocol with O’s answer on (ci, ai, pk, sid, Vi) as the
challenge ei.

He sends (message, sid, ci, pi) to FKM.

3. Authority Aj with the public key and the verification keys on its tape and a secret
share of the private key on its tape does the following. When receiving a bunch of
broadcast votes it computes C as the product of all the votes with valid proofs.
Then it computes the decryption share dsj. It also forms a proof pj for the
decryption share being correct using the verification key vkj. The challenge in this
proof is computed with O.

It sends (post, sid, dsj, pj) to FKM.

4. Each authority picks the first t decryption shares with valid proofs that it receives
and computes the plaintext of C.

It interprets the plaintext as Encode(result) and outputs (result, sid, result).

Figure 3: The voting protocol πFKM
VOTING.

Ideal process adversary. To prove security of the voting protocol we need to provide an
ideal process adversary S that fares as well as A does in the FKM-hybrid model. S is described
in Figure 4.

9



Ideal process adversary S

S operates in the ideal process with dummy voters Ṽ1, . . . , Ṽm and dummy authorities
Ã1, . . . , Ãn. It has input z. It controls the random oracle O in the sense that it may
assign a response e to a query q. This means that it can simulate proofs.
S runs a simulated FKM-hybrid execution with simulated adversary A. We write
V1, . . . , Vm and A1, . . . , An to denote simulated parties.

• S forwards all messages between A and Z.

• S simulates the invocation of FKM. Having done this it knows the secret shares of
the private key of all the authorities, in other words S may decrypt messages
encrypted under the public key.

• Suppose A on behalf of a corrupt Vi sends (message, sid, ci, pi) and sends
(no-block, sid, Vi, ci, pi) to FKM. S checks whether the proof is valid and in that
case it decrypts ci to get a vote vi. It submits (vote, sid, Vi, vi) to FVOTING on
behalf of Ṽi and sends (no-block, sid, Vi) to FVOTING.

• Upon receiving (vote, sid, Vi) from FVOTING it knows that Ṽi got (vote, sid, Vi, vi)
as input from Z. It does not know the actual vote vi.

As long as Vi has not received the public key for the election S ignores the problem,
but if Vi has or gets the public key for the election S must simulate Vi trying to cast
a vote. It forms ci = Epk(0) and simulates a proof pi for ci containing a valid vote.
It simulates Vi sending (message, sid, Vi, ci, pi) to FKM and sends the resulting
(message, sid, Vi, ci, pi) to the copy of A.

If it later receives (no-block, sid, Vi, m) from A, S simulates FKM receiving this
message, and it sends (no-block, sid, Vi) to FVOTING.

• Upon A sending (tally, sid) to FKM, S lets the simulated FKM send the list of
stored messages (post, sid, Vi, ci, pi) to A1, . . . , An.

It sends (tally, sid) to FVOTING and learns the result.

Let C be the product of all the ci’s. S uses the simulation property of the threshold
cryptosystem to simulate shares dsj for the honest Aj’s such that C decrypts to the
actual result. Furthermore, it also simulates proofs pj of the shares being correct.

• After A has delivered both the keys and the messages to honest Aj, S simulates
that Aj sends the decryption share (post, sid, Aj, dsj, pj) to FKM.

• When Aj has received both the public keys and t decryption shares, then S delivers
the (result, sid, result) message from FVOTING to Ãj.

Figure 4: The ideal process adversary S.

10



Theorem 2 The voting protocol hybrid πFKM
VOTING securely realizes FVOTING for the class of

non-adaptive adversaries that corrupt less than t authorities.

Proof. We will take a walk one step at a time from the FKM-hybrid model to the ideal process.
In doing so we will use expected polynomial time algorithms and rewind the environment.
This is all right as long as we do not do this in the FKM-hybrid model or the ideal process
itself.

Exp1. Define Exp1 to be the following modification of the FKM-hybrid model. After A has
submitted the command (tally, sid) to FKM we use the honest authorities’ secret shares to
decrypt the encrypted votes with valid proofs sent by A on behalf of corrupt voters. We look
at the tapes of the honest voters and if they are not blocked by A, we add their votes to the
corrupt voters’ votes. This gives us the result of the election.

By the simulation property of the threshold cryptosystem, we may now simulate the honest
authorities’ decryption shares such that they fit with the result. To do this simulation we do
not need knowledge of the honest authorities’ secret shares. Using our ability to control the
random oracle, we may also simulate proofs of these decryption shares being correct.

HYBFKM
π,Z,A ≈ P1. We define P1 to be the probability of Z outputting 1 in Exp1. It is not

possible for Z to distinguish whether it is running in the FKM-hybrid model or experiment
Exp1. The result is the same in both cases and indistinguishability follows from the zero-
knowledge property of the proofs and the simulation property of the threshold cryptosystem.

We remark that the honest authorities in the zero-knowledge proof choose the challenge
as an oracle query of, among other things, an initial message a in the proof. Since a can be
chosen from a superpolynomial space A and Z cannot guess it beforehand, and therefore they
cannot query the oracle about this thing beforehand. For that reason they do not detect that
the oracle is being programmed.

Exp2. Define Exp2 as the following modification of Exp1. We look at the execution in the
interval between key generation having been done and A not yet having submitted (tally, sid)
to FKM. After the key generation, we may for each honest voter and each possible vote it can
get as input pre-generate the (message, sid, ci, pi) message.

Let A be an algorithm that takes as input the tapes of A, Z and the pre-generated
encrypted votes. It runs the entire execution in this interval, and in the end, it outputs the
views of A and Z. From the views, we may read off the states of A and Z, restart them, and
continue the experiment.

According to Theorem 1 we may replace A with an expected polynomial time algorithm
EA that indistinguishably outputs the same as A, but in addition provides the witnesses for
the proofs made by corrupt voters. These witnesses include the votes of these corrupt parties
and therefore we do not need to decrypt anything with the honest authorities’ secret shares
of the private key.

P1 ≈ P2. We define P2 as the probability that Z outputs 1 at the end of experiment Exp2.
It follows from Theorem 1 that P1 ≈ P2.

11



Exp3. Define Exp3 the following way. Instead of letting the honest voters encrypt their
votes and proving in zero-knowledge that the ciphertexts contain correct votes, we let them
encrypt 0 and simulate the proofs of correctness. For each possible vote that Z could give
to an honest voter Vi, we construct such a 0-vote and feed A with these ciphertexts and
simulated proofs.

P2 ≈ P3. Let P3 be the probability that Z outputs 1 after experiment Exp3. In Exp3, we
still use the real votes to fit the result in the end, and we do not at any point use the honest
authorities’ shares of the private key. Therefore, by the semantic security of the cryptosystem,
the result is the same and Z cannot distinguish the two experiments. Neither does it allow
us to distinguish the views of A and Z that A produces, so these transcripts must still look
like correct views of A and Z acting according to their programs.

Exp4. We define Exp4 as a modification of Exp3 where we go back to using decryption to
get A’s votes. Instead of using the votes supplied by EA, we decrypt the corrupt voters’
ciphertexts with valid proofs and use these votes. We may now replace EA with A since we
do not need the votes directly. By definition, A produces valid transcripts of how A and Z
behave with these inputs and we may therefore replace A with the execution of A and Z.

P3 ≈ P4. By Theorem 1 we may shift back from EA to A without being able to tell the
difference. Since A produces two good transcripts for how A and Z work we may now
go back to using A and Z also in the interval between key generation and A submitting
(tally, sid) to FKM.

P4 ≈ IDEALFVOTING,Z,S. The ideal process and Exp4 are actually the same experiment. In
Exp4 we submit 0-votes on behalf of honest parties and simulate the proofs, just as S does.
When A submits (vote, sid, Vi, ci, pi) on behalf of an honest voter we check the proof and
decrypt just as S does. To create something that looks as decryption shares that produce the
result we simulate this just as S does. �

Recycling keys. One could ask whether the keys can be reused for several elections. The
security proof fails in this case for the same reasons as described in [SG02] and Footnote
2. The problem is that we can prove non-malleability of the cryptosystem used to encrypt
votes but not prove security with respect to general adaptive chosen ciphertext attacks. If
we use the same keys in several elections, we give the adversary access to a decryption of the
ciphertexts containing the results and therefore an adaptive chosen ciphertext attack. While
we see no way to use this attack in practice, we cannot guarantee security.

If we really want to use the keys for several elections that is possible though. We can
simply demand that the voter makes a proof of knowledge where votes can be straight-line
extracted. For instance, the voter can encrypt votes under a second public key and prove that
this has been done correctly. Then votes may be extracted directly from this ciphertext and
no rewinding is needed. The authorities tally the votes by stripping away the extra proof and
ciphertext and carrying out the usual tallying procedure with the remaining ciphertext.

12



4 Adaptive adversaries

An adaptive adversary is one that decides during the execution of the protocol which parties
to corrupt. After corruption of a party, the adversary may learn some data from earlier
computations. To guard against such problems we may specifically specify in protocols that
parties should erase certain data. We call this the erasure model. Sometimes the more
strict erasure-free security model is preferred. In this model, the party’s entire computational
history is revealed upon corruption.

The voting schemes are not adaptively secure. The schemes [CGS97, DJ01, BFP+01,
DGS03] are in fact not secure in the adaptive setting, even when we allow erasures. Let us
sketch a counter-argument for the case of a yes/no election using the scheme in [CGS97] with
2 voters, 3 authorities and a threshold t = 2. We refer the reader to [CGS97] for a description
of the scheme.

Consider an environment Z and adversaryA, whereA forwards everything it sees to Z and
follows instructions from Z on how to behave. Z first asks A to activate the key-generation
step of FKM and to deliver all the keys to the relevant parties. Then Z selects at random
that all voters should vote yes or all voters should vote no. It lets the first voter post its vote
and then it flips a coin to decide whether to block the second voter or not. If both voters
were allowed to post their votes, Z carries out the entire election according to the protocol. If
only the first voter was allowed to post his vote, Z lets A activate A1 to obtain its decryption
share. Then it flips a coin and corrupts either A2 or A3. From the secret share it obtains it
may now compute the result of the election. If everything works out OK, Z outputs 1. If we
are operating in the real-life model everything will work out OK and Z will output 1 with
100% probability.

To finish the argument we will show that any S cannot make Z accept with more than
50% probability. First, S must provide public keys g, h = gs for an ElGamal cryptosystem.
Second it must provide verification keys h1 = gs1 , h2 = gs2 , h3 = gs3 to the authorities. Here
s, s1, s2, s3 may or may not be known to S and may or may not be chosen according to the
protocol. Having given these keys to Z S must now produce the vote (x, y) for the first voter.
At this point it cannot know the result since if it queries FVOTING for the result, then Z has
50% probability of letting the second voter vote, and then the result will be wrong and Z
will be able to distinguish. From now on, we look at the case where (x, y) has been produced
without knowledge of the result, and where this is the only vote to be cast. S must try to
make it look like (x, y) decrypts to the result. First, it must produce a decryption share w1

for the first authority. Then depending on Z’s coin-flip, it must give either s2 or s3 to Z
according to which authority Z decides to corrupt. To make Z accept with more than 50%
probability, S must be able to make it look like (x, y) decrypts to the result in both cases. In
other words, we have

Gresult = y/w
λ1,{1,2}
1 xs2λ2,{1,2} = y/w

λ1,{1,3}
1 xs3λ3,{1,3} ,

where the Lagrange coefficients are λ1,{1,2} = 2, λ2,{1,2} = −1, λ1,{1,3} = 3/2, λ3,{1,3} = −1/2.
This implies that we can compute w1 = x2s2−s3 and y = Gresultx3s2−2s3 . However, since (x, y)

13



was chosen before the result was known to S there is at least 50% probability that S could
not have done this. Z only has 50% probability of outputting 1 in the ideal process and it
can therefore distinguish.

Adaptive security in the erasure model. We can deal with an adversary that may
adaptively corrupt voters quite easily. The voters simply erase the plaintext vote and the
randomness after they have computed the encrypted vote. This way an adaptive adversary
does not learn anything by corrupting a voter. We find the erasure model to be somewhat
reasonable since a good voting system should specify that voters delete the randomness and
the vote used in order to give some rudimentary receipt-freeness.

To guard against adversaries that adaptively corrupt authorities we can use techniques
from [CGJ+99, JL00, LP01]. Let us briefly sketch how to do this. All the homomorphic
cryptosystems in [CGS97, BFP+01, DJ01, DGS03] require that in the decryption process we
raise the ciphertext C or part of the ciphertext to a secret value s. In the abovementioned
schemes we share s using a polynomial f of degree t − 1, and give each authority a share
si = f(i). Lagrange interpolation can then be used to perform the decryption. As we saw
before, this technique causes trouble in the adaptive setting. However, if we instead use a
linear secret sharing of s, i.e., select s1, . . . , sn−1 at random and sn = s −

∑n−1
i=1 si, then we

can cope with an adaptive adversary. To recover if an authority fails to provide its decryption
share, we also use polynomials f1, . . . , fn of degree t − 1 to secret share s1, . . . , sn. I.e.,
fi(0) = si and si,j = fi(j). Authority j knows all the shares {si,j}i=1,...,n. The verification
keys now also include trapdoor commitments, for instance Pedersen commitments, to the
si,j’s. In the simulation, we pick all the shares s1, . . . , sn at random. When the first honest
authority is about to compute its share, it computes the share such that it fits with the result
and all the other authorities’ shares, and it simulates a proof of correctness. The authorities
have to go through a more complicated protocol to compute the result and anybody wishing
to verify the result also has to do more work, but it is still well within what is practical. The
voters do not pay any performance penalty when having to use this type of voting scheme
instead of the original type of voting scheme, for them the protocol looks the same.

Adaptive security in the erasure-free model. Let us also briefly sketch how to con-
struct a voting scheme that securely realizes the ideal voting functionality against adaptive
adversaries in the erasure-free model.

Damg̊ard and Nielsen [DN03] suggest a threshold cryptosystem secure against adaptive
adversaries in the erasure-free model, which is based on Paillier encryption [Pai99]. It turns
out that their solution is well suited for voting. The idea is to have the public key contain
a ciphertext K = Epk(1; rK). To encrypt a vote vi, the voter lets ci = KviEpk(0; ri). By the
homomorphic property of Paillier encryption ci = Epk(vi; r

vi
Kri)

4. Taking the product of all
the voters’ encrypted votes we therefore get a ciphertext C encrypting the result. Now, the
authorities can use threshold decryption techniques to decrypt C and get the result. To prove
security of the protocol we have to present a simulator S that fares as well as any adversary
A. The idea in the protocol is that S can choose K = Epk(0; rK). This enables S to simulate

4We use multiplicative notation for the randomness in Paillier encryption.

14



an encrypted vote by setting ci = Epk(0; rS,i). If the voter is corrupted then S learns the real
vote vi and must simulate the encryption. It does so by setting ri = rS,ir

−vi
K , which makes

ci = KviEpk(0; ri).
The next question is how a voter should prove that he has submitted a legal vote. In

[DN00] a practical scheme for UC commitment and UC zero-knowledge proofs is suggested.
The voter can make a UC commitment to vi and prove in zero-knowledge that vi is on the
correct form and that ci encrypts vi. The zero-knowledge proofs of correctness of a vote
suggested in [DGS03] are non-erasure Σ-protocols, see [DN03] for a definition, i.e., if we
simulate a proof, and later learn the witness, then we can simulate the prover’s internal tape.
This means that we can also simulate an honest voter’s proof of correctness of a vote should
he ever be corrupted. These proofs are interactive, however, using the Fiat-Shamir heuristic
we can make them non-interactive.
S faces another problem than simulating honest voters and simulating their tapes as they

are corrupted. Suppose the adversary creates an encrypted vote on behalf of one of the
corrupt voters. Then S will have to figure out what to submit to the voting functionality on
behalf of said voter. It cannot use the ciphertext of the voter because in the simulation the
“encrypted” vote is just an encryption of 0 and does not tell us what v is. However, since the
corrupt voter is using a UC commitment scheme S learns vi when the commitment is made;
the UC commitment scheme is set up such that for any corrupt voter S can extract the vote
vi.

Unfortunately, the UC commitment scheme from [DN00] is not practical for our purpose.
The problem is that each voter needs to receive his own commitment key, and in a large
election this implies that we have to generate quite a lot of keys and distribute them to the
voters. Using non-malleable commitments, Damg̊ard and Groth [DG03] show how to make
it possible to remove this requirement of each voter having his own set of commitment keys.
We therefore suggest using their UC commitment scheme instead. This does create a new
problem though, since the non-malleable commitments they suggest are not that efficient. To
solve this problem we therefore use the simulation-sound trapdoor commitments of [GMY03].

We have now sketched the voters’ actions in the protocol. Remaining is to describe how
to decrypt the ciphertext C containing the result. Here the idea is that the public key will
contain an encryption R = Epk(0; rR). Using R, the authorities create a rerandomization of
C before decryption. In the simulation, however, we use R = Epk(1; rR) and therefore we can
set up the “rerandomization” of C such that we get an encryption of the result. After this,
the authorities can carry out a standard threshold decryption protocol to get the result. We
refer to [DN03] for a description of how to carry out this rerandomization.

Since the voter has to make a UC commitment to vi, this protocol is less efficient than the
static solutions already proposed in the literature. It is still practical though. The authorities
also have to carry out more work, but also from their point of view the protocol is practical.

5 Conclusion

We have proved that the popular type of voting protocols based on homomorphic threshold
encryption realizes an ideal voting functionality against non-adaptive adversaries. This implies

15



in particular that the voting scheme satisfies important properties such as privacy, accuracy,
robustness and fairness. We have sketched how to modify this type of voting scheme to be
secure against adaptive adversaries in both the erasure model and the erasure-free model.

This does not mean that all problems are solved. The universal composability framework
treats corruption as an either/or matter. It does not deal with securing the voting machines
themselves. Work addressing issues such as incoercibility, receipt-freeness and protection
against hackers therefore remains important.

6 Acknowledgment

Thanks to Ivan Damg̊ard for asking whether the schemes based on homomorphic threshold
encryption are secure in the universal composability framework.

References

[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation mod-
ulo a shared secret with application to the generation of shared safe-prime prod-
ucts. In proceedings of CRYPTO ’02, LNCS series, volume 2442, pages 417–432,
2002.

[BF97] Dan Boneh and Matthew K. Franklin. Efficient generation of shared rsa keys. In
proceedings of CRYPTO ’97, LNCS series, volume 1294, pages 425–439, 1997.

[BFP+01] Oliver Baudron, Pierre-Alain Fouque, David Pointcheval, Guillaume Poupard, and
Jacques Stern. Practical multi-candidate election scheme. In PODC ’01, pages
274–283, 2001.

[BM03] Mike Burmester and Emmanouil Magkos. Towards secure and practical e-elections
in the new era. In D. Gritzalis, editor, Secure Electronic Voting, pages 63–72.
Kluwer Academic Publishers, 2003.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In ACM Conference on Computer and Commu-
nications Security 1993, pages 62–73, 1993.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS 2001, pages 136–145, 2001. Full paper available
at http://eprint.iacr.org/2000/67.

[CDNO97] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryp-
tion. In proceedings of CRYPTO ’97, LNCS series, volume 1294, pages 90–104,
1997.

16



[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In proceedings of CRYPTO
’94, LNCS series, volume 893, pages 174–187, 1994.

[CGJ+99] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin.
Adaptive security for threshold cryptosystems. In proceedings of CRYPTO ’99,
LNCS series, volume 1666, pages 98–115, 1999.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and opti-
mally eficient multi-authority election scheme. In proceedings of EUROCRYPT
’97, LNCS series, volume 1233, pages 103–118, 1997.

[DG03] Ivan Damg̊ard and Jens Groth. Non-interactive and reusable non-malleable com-
mitment schemes. In STOC ’03, pages 426–437, 2003.

[DGS03] Ivan Damg̊ard, Jens Groth, and Gorm Salomonsen. The theory and implemen-
tation of an electronic voting system. In D. Gritzalis, editor, Secure Electronic
Voting, pages 77–100. Kluwer Academic Publishers, 2003.

[DJ01] Ivan Damg̊ard and Mads J. Jurik. A generalisation, a simplification and some ap-
plications of paillier’s probabilistic public-key system. In 4th International Work-
shop on Practice and Theory in Public Key Cryptosystems, PKC 2001, LNCS
series, volume 1992, 2001.

[DN00] Ivan Damg̊ard and Jesper Buus Nielsen. Improved non-committing encryption
schemes based on a general complexity assumption. In proceedings of CRYPTO
’00, LNCS series, volume 1880, pages 432–450, 2000.

[DN03] Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient mul-
tiparty computation from threshold homomorphic encryption. In proceedings of
CRYPTO ’03, LNCS series, volume 2729, pages 247–264, 2003.

[FS01] Pierre-Alain Fouque and Jacques Stern. Fully distributed threshold rsa under
standard assumptions. In proceedings of ASIACRYPT ’01, LNCS series, volume
2248, pages 310–330, 2001.

[GJKR99] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. In proceedings of
EUROCRYPT ’99, LNCS series, volume 1592, pages 293–310, 1999.

[GMY03] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-
knowledge protocols using signatures. In proceedings of EUROCRYPT ’03,
LNCS series, volume 2656, pages 177–194, 2003. Full paper available at
htpp://eprint.iacr.org/2003/037.

[JL00] Stanislaw Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryptogra-
phy: Introducing concurrency, removing erasures. In proceedings of EUROCRYPT
’00, LNCS series, volume 1807, pages 221–242, 2000.

17



[LGT+03] Costas Lambrinoudakis, Dimitris Gritzalis, Vassilis Tsoumas, Maria Karyda, and
Spyros Ikonomopoulos. Secure electronic voting: The current landscape. In
D. Gritzalis, editor, Secure Electronic Voting, pages 101–122. Kluwer Academic
Publishers, 2003.

[Lin01] Yehuda Lindell. Parallel coin-tossing and constant round secure two-party compu-
tation. In proceedings of CRYPTO ’01, LNCS series, volume 2139, pages 408–432,
2001.

[LP01] Anna Lysyanskaya and Chris Peikert. Adaptive security in the threshold setting:
From cryptosystems to signature schemes. In proceedings of ASIACRYPT ’01,
LNCS series, volume 2248, pages 331–350, 2001.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite residuosity classes.
In proceedings of EUROCRYPT ’99, LNCS series, volume 1592, pages 223–239,
1999.

[SG02] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against
chosen ciphertext attack. Journal of Cryptology, 15(2):75–96, 2002.

18


