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Abstract. Ring signatures, introduced by Rivest, Shamir and Tauman, enable a
user to sign a message anonymously on behalf of a “ring”. A ring is a group of
users, which includes the signer. We propose a ring signature scheme that has size
O(
√

N) whereN is the number of users in the ring. An additional feature of our
scheme is that it has perfect anonymity.
Our ring signature like most other schemes uses the common reference string
model. We offer a variation of our scheme, where the signer is guaranteed
anonymity even if the common reference string is maliciously generated.

1 Introduction

Ring signatures, introduced by Rivest, Shamir and Tauman [RST06], enable a user to
sign a message anonymously on behalf of a “ring” with the only condition that the user
is a member of the ring. A ring is a collection of users chosen by the signer. The signer
has to be a member of the ring but the other users do not need to cooperate and may be
unaware that they are included in a ring signature.

A variety of applications have been suggested for ring signatures in previous works
(see for example [RST06,Nao02,DKNS04]). The original application given was the
anonymous leaking of secrets. For example, a high-ranking official in the government
wishes to leak some important information to the media. The media want to verify
that the source of information is valid, at the same time the official leaking it desires
anonymity. Ring signatures give us a way to achieve this task, wherein the media can
verify that some high-ranking government official signed the message but cannot ascer-
tain which member actually leaked the secret. Another application is that of designated-
verifier signatures [JSI96]. Ring signatures enable Alice to sign an email and send it to
Bob with the property that Bob cannot convince a third party that Alice actually sent
him this message.

The description of the ring itself is in general linear in the number of members be-
cause it is necessary to specify the users included in the ring. Yet, one might face a
situation wherein we would like to verify many different signatures on the same ring.
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In this case, the size of the ring-signature being sub-linear is quite useful.1 Most ring
signature schemes known today are of linear size in the number of ring members, the
only exception being the scheme in [DKNS04], which is independent of the size of the
ring. Apart from [CWLY06,BKM06,SW06,Boy07], to the best of our knowledge, all
other constructions (including [DKNS04]) are in the random oracle model. The scheme
in [CWLY06] is based on a strong new assumption, while in [BKM06], the scheme uses
generic ZAPs for NP, thus making it impractical. Shacham and Waters [SW06] give a
construction of linear size that is secure under the computational setting of the defi-
nitions in [BKM06]. Boyen [Boy07] gives a linear size ring signature in the common
random string model with perfect anonymity. Our goal is to construct a sub-linear size
ring-signature scheme with perfect anonymity without random oracles.

1.1 Our Contribution

We give the first ring signature of sub-linear size without random oracles. Our scheme
is based on composite order groups with a bilinear map. Security is based on the strong
Diffie-Hellman assumption [BB04] and the subgroup decision assumption [BGN05].
Our scheme has perfect anonymity in the common reference string model. To reduce
the amount of trust in the common reference string, we also offer a variant of our scheme
that gives an unconditional guarantee of anonymity even if the common reference string
is generated maliciously. Both schemes have ring signatures of sizeO(k

√
N) bits,

whereN is the number of users in the ring andk is a security parameter.

TECHNIQUE. The broad idea behind the scheme is as follows: Let the number of mem-
bers in the ring beN . To compute a ring signature, the signer first chooses a random
one-time signature key and issues a signature on the message using this one-time sign-
ing key. Both the public key of the one-time signature and the signature are published.
Next, the signer validates the one-time signature key. In other words, she signs the
one-time signature key with her own signing key. This validation signature has to be
hidden for anonymity. The signer, hence makes two perfectly hiding commitments to
her verification key and the validation signature and publishes these values. She then
makes non-interactive witness-indistinguishable (NIWI) proofs using techniques from
[GOS06,BW06,GS06] that the commitments indeed contain a verification key and a
signature on the one-time signature verification key respectively. Finally, the signer will
prove that the committed verification key belongs to the ring. The main novelty in our
scheme is a sub-linear size proof for a commitment containing one out ofN verification
keys. This proof relies on a technique akin to one-round private information retrieval
(PIR) withO(

√
N) communication complexity, which is used to get a commitment to

the verification key.

2 Ring Signatures – Definitions

[BKM06] contains a comprehensive classification of ring signature definitions. We
achieve security under the strongest of these definitions. In the following, we will mod-

1 Generally speaking, sub-linear size ring signatures are useful when we can amortize the cost
of describing the ring itself over many signatures.



ify their definitions in order to include a common reference string and to define infor-
mation theoretical anonymity.

Definition 1 (Ring signature). A ring signature scheme consists of a quadruple of
PPT algorithms(CRSGen,Gen,Sign,Verify) that respectively, generate the common
reference string, generate keys for a user, sign a message, and verify the signature of a
message.

– CRSGen(1k), wherek is a security parameter, outputs the common reference
stringρ.

– Gen(ρ) is run by the user. It outputs a public verification keyvk and a private
signing keysk.

– Signρ,sk(M,R) outputs a signatureσ on the messageM with respect to the ring
R = (vk1, . . . , vkN ). We require that(vk, sk) is a valid key-pair output byGen
and thatvk ∈ R.

– Verifyρ,R(M,σ) verifies a purported signatureσ on a messageM with respect to
the ring of public keysR.

The quadruple (CRSGen,Gen,Sign,Verify) is a ring signature with perfect
anonymity if it has perfect correctness, computational unforgeability and perfect
anonymity as defined below.

Definition 2 (Perfect correctness).We require that a user can sign any message on
behalf of a ring where she is a member. A ring signature(CRSGen,Gen,Sign,Verify)
has perfect correctness if for all adversariesA we have:

Pr
[
ρ← CRSGen(1k); (vk, sk)← Gen(ρ); (M,R)← A(ρ, vk, sk);

σ ← Signsk(M,R) : Verifyρ,R(M,σ) = 1 ∨ vk /∈ R
]

= 1.

Definition 3 (Unforgeability). A ring signature scheme(CRSGen,Gen,Sign,Verify)
is unforgeable (with respect to insider corruption) if it is infeasible to forge a ring
signature on a message without controlling one of the members in the ring. Formally, it
is unforgeable when there is a negligible functionε so for any non-uniform polynomial
time adversariesA we have:

Pr
[
ρ← CRSGen(1k); (M,R, σ)← AVKGen,Sign,Corrupt(ρ) :

Verifyρ,R(M,σ) = 1
]

< ε(k),

– VKGen on query numberi selects a randomizerwi, runs(vki, ski)← Gen(ρ;wi)
and returnsvki.

– Sign(α, M, R) returnsσ ← Signρ,skα
(M,R), provided(vkα, skα) has been gen-

erated byVKGen andvkα ∈ R.
– Corrupt(i) returnswi (from whichski can be computed) provided(vki, ski) has

been generated byVKGen.
– A outputs(M,R, σ) such thatSign has not been queried with(∗,M,R) and R

only contains keysvki generated byVKGen wherei has not been corrupted.



Definition 4 (Perfect anonymity). A ring signature scheme
(CRSGen,Gen,Sign,Verify) has perfect anonymity, if a signature on a mes-
sageM under a ringR and keyvki0 looks exactly the same as a signature on the
messageM under the ringR and keyvki1 . This means that the signer’s key is hidden
among all the honestly generated keys in the ring. Formally, we require that for any
adversaryA:

Pr
[
ρ← CRSGen(1k); (M, i0, i1, R)← AGen(ρ)(ρ);

σ ← Signρ,ski0
(M,R) : A(σ) = 1

]
= Pr

[
ρ← CRSGen(1k); (M, i0, i1, R)← AGen(ρ)(ρ);

σ ← Signρ,ski1
(M,R) : A(σ) = 1

]
,

whereA choosesi0, i1 such that(vki0 , ski0), (vki1 , ski1) have been generated by the
oracleGen(ρ).

We remark that perfect anonymity implies anonymity against full key exposure which
is the strongest definition of anonymity in [BKM06].

3 Preliminaries

We make use of bilinear groups of composite order. These were introduced by Boneh,
Goh and Nissim [BGN05] and can for instance be based on elliptic curves and the
modified Weil-pairing from Boneh and Franklin [BF03]. LetGenBGN be a randomized
algorithm that outputs(p, q,G, GT , e, g) so we have:

– G is a multiplicative cyclic group of ordern := pq

– g is a generator ofG
– GT is a multiplicative group of ordern
– e : G×G→ GT is an efficiently computable map with the following properties:

• Bilinear:∀ u, v ∈ G anda, b ∈ Zn : e(ua, vb) = e(u, v)ab

• Non-degenerate:e(g, g) is a generator ofGT wheneverg is a generator ofG

– The group operations onG andGT can be performed efficiently

We will write Gp andGq for the unique subgroups ofG that have respectively orderp
and orderq. Observe,u 7→ uq mapsu into the subgroupGp.

We base our ring signature scheme on two assumptions - namely, the strong Diffie-
Hellman Assumption [BB04] inGp and the subgroup decision assumption [BGN05].

SUBGROUP DECISION ASSUMPTION. Informally, in the above setting of composite or-
der groups, the subgroup decision assumption holds if random elements fromG andGq

are computationally indistinguishable. Formally, for generatorGenBGN, the subgroup
decision assumption holds if there is a negligible functionε so for any non-uniform



polynomial time adversaryA:

Pr
[
(p, q,G, GT , e, g)← GenBGN(1k);n := pq; r ← Z∗

n;h := gr :

A(n, G,GT , e, g, h) = 1
]

− Pr
[
(p, q,G, GT , e, g)← GenBGN(1k);n := pq; r ← Z∗

q ;h := gpr :

A(n, G,GT , e, g, h) = 1
]
≤ ε(k).

STRONG DIFFIE-HELLMAN ASSUMPTION IN Gp. The strong Diffie-Hellman assump-
tion holds inGp if there is a negligible functionε so for all non-uniform adversaries
that run in polynomial time in the security parameter:

Pr
[
(p, q,G, GT , e, g)← GenBGN(1k);x← Z∗

p :

A(p, q,G, GT , e, gq, gqx, gqx2
, . . .) = (c, g

q
x+c ) ∈ Zp ×Gp

]
< ε(k).

UNDERLYING SIGNATURE SCHEME. Boneh and Boyen [BB04] suggest two signature
schemes. One that is secure against weak chosen message attack, see below, and one
which is secure against adaptive chosen message attack. We will use the scheme that is
secure against weak chosen message attack, since it has a shorter public key and this
leads to a simpler and more efficient ring signature.

We define the scheme to be secure against weak message attack if there is a negli-
gible functionε so for all non-uniform polynomial time interactive adversariesA:

Pr
[
(M1, . . . ,Mq)← A(1k); (vk, sk)← KeyGen(1k);σi ← Signsk(Mi);

(M,σ)← A(vk, σ, . . . , σq) : Verifyvk(M,σ) = 1 andM /∈ {M1, . . . ,Mq}
]

< ε(k).

The Boneh-Boyen signature scheme adapted to the composite order bilinear group
model is weak message attack secure under the strong Diffie-Hellman assumption.

– Key generation:Given a group(p, q,G, GT , e, g) we pick a randomsk ← Z∗
n and

computevk := gsk. The key pair is(vk, sk).
– Signing: Given a secret keysk ∈ Z∗

n and a messageM ∈ {0, 1}`, output the
signatureσ := g

1
sk+M . By convention,1/0 is defined to be0 so that in the unlikely

event thatsk+M = 0, we haveσ := 1. We requirè < |p|, this is quite reasonable
since we can always use a cryptographic hash-function to shorten the message we
sign.

– Verification: Given a public keyvk, a messageM ∈ {0, 1}` and a signature
σ ∈ G, verify that

e(σ, vk · gM ) = e(g, g).

If equality holds output “Accept”. Otherwise, output “Reject”.



Boneh and Boyen [BB04] prove that their signature scheme is existentially unforge-
able under weak chosen message attack provided the strong Diffie-Hellman assumption
holds in prime order groups. This proof translates directly to the composite group order
model. Our concern is only whether a signature is forged in the orderp subgroupGp,
i.e., an adversary that knowsp andq finds (M,σ) so e(vkgM , σ)q = e(g, g)q. As in
[BB04] it can be shown to be infeasible to forge a signature inGp under a weak chosen
message attack assuming the strong Diffie-Hellman assumption holds inGp.

A COMMITMENT /ENCRYPTION SCHEME. We use a commitment/encryption scheme
based on the subgroup decision assumption from [BGN05]. The public key will be a
description of the composite order group as well as an elementh. The elementh is a
random element, chosen to have ordern (perfect hiding commitment) or orderq (en-
cryption). The subgroup decision assumption implies that perfect hiding commitment
keys and encryption keys are indistinguishable.

To commit to a messagem ∈ G, we pick r ← Zn at random and compute the
commitmentc := mhr. Whenh has ordern, this is a perfectly hiding commitment to
m. However, ifh has orderq, the commitment uniquely determinesm’s projection on
Gp. Let λ be chosen soλ = 1 mod p andλ = 0 mod q. Given the factorization ofn,
we can compute

mp = cλ = mλhλr = mλ.

We can also commit to a messagem ∈ Zn by computinggmhr. If h has ordern,
then this is a perfectly hiding Pedersen commitment. Ifh has orderq, then the commit-
ment uniquely determinesm mod p.

NON-INTERACTIVE WITNESS-INDISTINGUISHABLE PROOFS. A non-interactive proof
enables us to prove that a statement is true. The proof should be complete, meaning that
if we know a witness for the statement being true, then we can construct a proof. The
proof should be sound, meaning that it is impossible to construct a proof for a false state-
ment. We will use non-interactive proofs that have perfect witness-indistinguishability.
This means that given two different witnesses for the statement being true, the proof
reveals no information about which witness we used when we constructed the proof.

We will use the public key for the perfectly hiding commitment scheme described
above as a common reference string for our NIWI proofs. Whenh has ordern we
get perfect witness-indistinguishability. However, ifh has orderq, then the proof has
perfect soundness inGp.

One type of statement that we will need to prove is that a commitmentc is of the
form c = gmhr for m ∈ {0, 1}. Boyen and Waters [BW06], building on [GOS06],
give a non-interactive witness-indistinguishable proof for this kind of statement,π =
(g2m−1hr)r, which is verified by checkinge(c, cg−1) = e(h, π). Whenh has order
n, this proof has perfect witness-indistinguishability, becauseπ is uniquely determined
from the verification equation so all witnesses must give the same proof. On the other
hand, if h has orderq, then the verification shows thate(c, cg−1) has orderq. This
impliesm = 0 mod p or m = 1 mod p.

We will also need non-interactive witness-indistinguishable proofs for more ad-
vanced statements. Groth and Sahai [GS06] show that there exist very small non-
interactive witness-indistinguishable proofs for a wide range of statements. These



proofs have perfect completeness on both types of public key for the commit-
ment scheme, perfect soundness inGp, when h has orderq, and perfect witness-
indistinguishability whenh has ordern.

4 Sub-linear Size Ring Signature Scheme Construction

We will give a high level description of the ring signature. We have a signer that knows
skα corresponding to one of the verification keys in the ringR = {vk1, . . . , vkN} and
wants to sign a messageM . The verification keys are for the Boneh-Boyen signature
scheme. There are three steps in creating a signature:

1. The signer picks one-time signature keys,(otvk, otsk) ← KeyGenone−time(1k).
The messageM will be signed with the one-time signature scheme. The verification
keyotvk and the one-time signature will both be public. The signer will certifyotvk
by signing it with a Boneh-Boyen signature undervkα.

2. The signer needs to hidevkα and the certifying signature onotvk. She will
therefore make two perfectly hiding commitments to respectivelyvkα and the
signature. Using techniques from [GS06] she makes a non-interactive witness-
indistinguishable proof that the commitments contain a verification key and a sig-
nature onotvk.

3. Finally, the signer will prove that the committed verification key belongs to the
ring. The main novelty in our scheme is this sub-linear size proof. She arranges
R in an ν × ν matrix, whereν =

√
N . She commits to the row of the matrix

that containsvkα and makes a non-interactive witness-indistinguishable proof for
having done this. She then makes a non-interactive witness-indistinguishable proof
that the committed verification key appears in this row.

We now present a detailed description of the ring signature scheme.CRSGen
generates a common reference that contains the description of a composite order group
and a public key for the perfectly hiding commitment scheme.

CRSGen(1k)

1. (p, q,G,GT , e, g)← GenBGN(1k)
2. n := pq ; x← Z∗

n ; h := gx

3. Output(n, G,GT , e, g, h) /* Perfectly hiding commitment scheme

The users’ key generation algorithmGen takes as input a common reference
string and outputs a signing public-private key pair(vk, sk). In our case, it will output
keys for the Boneh-Boyen signature scheme that is secure against weak message attack.

Gen(n, G,GT , e, g, h)

1. sk ← Z∗
n ; vk := gsk

2. Output(vk, sk) /* Boneh-Boyen signature scheme with public key(g, vk)



A user with keys (vkα, skα) wants to sign a messageM under the ring
R = {vk1, . . . , vkN} of sizeN . Let i, j be values such thatα = (i − 1)ν + j, where
ν =
√

N .2 It is useful to think ofR as aν × ν matrix. Thenvkα = vk(i−1)ν+j is the
entry in rowi and columnj.

Sign(n,G,GT ,e,g,h,skα)(M,R)

1. (otvk, otsk)← KeyGenone−time(1k) ; σone−time ← Signotsk(M,R)

/* This was step 1 in the high level description: a one-time signature on the
message and the ring. The pair(otvk, σone−time) will be public.

2. r ← Zn ; C := vkαhr ; σα := g
1

skα+otvk ; s ← Zn ; L := σαhs ; πL :=
g

r
skα+otvk +(skα+otvk)s · hrs

/* This was step 2 in the high level description.σα is the signer’s certifying
signature onotvk. C,L are perfectly hiding commitments to respectivelyvkα and
σα. πL is a NIWI proof [GS06] thatC,L contain respectively a verification key
and a signature onotvk. All that remains is to make a NIWI proof thatC contains
somevkα ∈ R without revealing which one. The rest of the protocol is this NIWI
proof.

3. rl ← Zn ; Cl := hrl ; πC
l := (g−1hrl)rl for 0 ≤ l < ν , l 6= i− 1;

ri−1 := −
∑

l 6=i−1 rl ; Ci−1 := ghri−1 ; πC
i−1 := (ghri−1)ri−1

/* The commitmentsC0, . . . , Cν−1 are chosen soCi−1 is a commitment to
g, whereas the others are commitments to 1. The proofsπ0, . . . , πν−1 are
NIWI proofs [GOS06,BW06] that eachC0, . . . , Cν−1 contains either1 or
g. Since the commitments have been chosen such that

∏ν−1
l=0 Cl = g, this

tells the verifier that there is exactly oneCi−1 that containsg, while the
other commitments contain1. We will use this in a PIR-like fashion to pick
out row i in the ν × ν matrix R. Observe, for all1 ≤ m ≤ ν we have
Am :=

∏ν−1
l=0 e(Cl, vklν+m) = e(g, vk(i−1)ν+m)e(h,

∏ν−1
l=0 vkrl

lν+m), which is a
commitment toe(g, vk(i−1)ν+m).

4. sm ← Zn ; Bm := vkν(i−1)+mhsm ; πB
m := g−sm ·

∏ν−1
l=0 vkrl

lν+m for 1 ≤ m ≤ ν

/* B1, . . . , Bν are commitments to the verification keys in rowi of R. Re-
call A1, . . . , Aν contain rowi of R paired withg. πB

1 , . . . , πB
ν are NIWI proofs

[GS06] thatB1, . . . , Bν contain elements that paired withg give the contents of
A1, . . . , Aν . This demonstrates to the verifier thatB1, . . . , Bν indeed does contain
row i of R.

5. tm ← Zn ; Dm := htm ; πD
m := (g−1htm)tm for 1 ≤ m ≤ ν , m 6= j

tj := −
∑

m6=j tm ; Dj := ghtj , πD
j := (ghtj )tj

2 Without loss of generality we assumeN is a square. IfN is not a square, we can simply copy
vk1 sufficiently many times to makeN a square.



/* D1, . . . , Dν are commitments soDj contains g, and the other commit-
ments contain1. The NIWI proofs [GOS06,BW06]πD

1 , . . . , πD
ν convince the

verifier thatD1, . . . , Dν contain1 or g. Combining this with
∏ν

m=1 Dm = g
shows that exactly oneDj is a commitment tog, while the others contain1.

6. πC := gsj−r
∏ν

m=1 vktm

(i−1)ν+mhsmtm

/* A :=
∏ν

m=1 e(Bm, Dm) = e(g, vk(i−1)ν+j)e(h, gsj
∏ν

m=1 vktm

(i−1)ν+mhsmtm)
is a commitment toe(g, vkα). πC is a NIWI proof [GS06] that the content ofC
paired withg corresponds to the content inA.

7. Output the signatureσ :=
(
otvk, σone−time, C, L, πL, {C0, . . . , Cν−1}, {πC

0 , . . . , πC
ν−1},

{B1, . . . , Bν}, {πB
1 , . . . , πB

ν }, {D1, . . . , Dν}, {πD
1 , . . . , πD

ν }, πC

)
.

Verify(n,G,GT ,e,g,h,R)(M,σ)

1. Verify thatσone−time is a one-time signature ofM,R underotvk.
2. Verify thate(L,Cgotvk) = e(g, g)e(h, πL).
3. Verify thate(Cl, Clg

−1) = e(h, πC
l ) for all 0 ≤ l < ν and

∏ν
l=1 Cl = g.

4. ComputeAm :=
∏ν

l=1 e(Cl, vk(l−1)ν+m) and verifyAm = e(g,Bm)e(h, πB
m) for

all 1 ≤ m ≤ ν.
5. Verify thate(Dm, Dmg−1) = e(h, πD

m) for all 1 ≤ m ≤ ν and
∏ν

m=1 Dm = g.
6. ComputeA :=

∏ν
m=1 e(Bm, Dm) and verifyA = e(C, g)e(h, πC).

7. “Accept” if all the above steps verify correctly, otherwise “Reject”.

Theorem 1. The scheme presented in the previous section is a ring signature scheme
with perfect correctness, perfect anonymity and computational unforgeability under the
subgroup decision assumption, the strong Diffie-Hellman assumption and the assump-
tion that the one-time signature is unforgeable.

Sketch of Proof.Perfect correctness follows by inspection. Perfect anonymity fol-
lows from the fact thatotvk and σone−time are generated the same way, no matter
which signing key we use, and the fact that whenh has ordern, then all the com-
mitments are perfectly hiding and the proofs are perfectly witness-indistinguishable
[GOS06,BW06,GS06].

Computational unforgeability can be proven in three steps. By the subgroup deci-
sion assumption it is possible to switch from usingh of ordern in the common ref-
erence string to useh of orderq with only negligible change in the probability of a
forgery happening. The commitments are now perfectly binding inGp and the NIWI
proofs are perfectly sound inGp [GOS06,BW06,GS06], soC contains some uncorrupt
vkα ∈ R andL contains a signatureσα on otvk undervkα. By the properties of the
one-time signature scheme,otvk has not been used in any other signature, and thusσα

is a forged Boneh-Boyen signature onotvk. By the strong Diffie-Hellman assumption
this probability is negligible. �

5 Untrusted Common Reference String Model

Suppose we do not trust the common reference string. There are two possible prob-
lems: maybe it is possible to forge signatures, or maybe the ring signatures are not



anonymous. The possibility of forgery can in many cases be viewed as an extended ring
signature, we know that one of theN ring-members or the key generator signed the
message. This may not be so problematic, if for instance one of the ring members was
the key generator this is not a problem since that member can sign anyway. A breach of
anonymity seems more problematic. If we consider the example from the introduction,
where a high-ranking official wants to leak a secret to the media, she needs to have
strong guarantees of her anonymity. We will modify our scheme to get a (heuristically)
unconditional guarantee of anonymity.

In the scheme presented earlier the common reference string isρ =
(n, G,GT , e, g, h). If we generate the groups as described in [BGN05] it is easy to
verify that we have a group of ordern with a bilinear mape, where all group operations
can be computed efficiently. It is also easy to find a way to represent the group elements,
so we can check thatg, h ∈ G [GOS06]. What is hard to check is how many prime fac-
torsn has and what the order ofg andh is. We make the following observation, which
follows from the proof of anonymity: Ifh has ordern, then the ring signature has per-
fect anonymity. We will therefore not includeh in the common reference string but
instead provide a method for the signer to choose a full orderh as she creates the ring
signature.

To get anonymity,h should have ordern. If we pick a random element inG there is
overwhelming probability that it has ordern, unlessn has a small prime factor. Lenstra’s

ECM factorization algorithm [Len87] heuristically takesO(e(1+o(1))
√

(ln p)(ln ln p))
steps to find the prime factorp. Therefore, it is heuristically possible to verify that
n only has superpolynomial prime factors and we can pick random elements that with
overwhelming probability have ordern.

We will modify the key generation such that a user also picks a random element
hi ∈ G when creating her key. The signer’s anonymity will be guaranteed if the element
she picks has ordern. When she wants to issue a signature, she pickst ← Zn at
random and usesh :=

∏N
i=1 hti−1

i . We will argue in the proof of Theorem 2 that with
overwhelming probability over the choice oft, that elementh she generates this way
has ordern. Using thish she then creates the ring signature as described in the previous
section.

5.1 Ring Signature with Unconditional Anonymity

Our modified ring signature scheme(CRSGen′,Gen′,Sign′,Verify′) works as fol-
lows:

– CRSGen′(1k) outputsρ′ := (n, G,GT , e, g, h′)← CRSGen(1k)
– Gen′(ρ′) uses Lenstra’s ECM factorization algorithm to check thatn has no poly-

nomial size prime factors. It runs(vki, ski) ← Gen(ρ′) and pickshi at random
from G. It setsvk′i := (vki, hi) and outputs(vk′i, ski).3

3 For practical purposes, say with 1024-bitn and ring-size less than 10000, checking thatn has
no prime factors smaller than 40 bits is sufficient to guarantee that each time the user signs a
message there is less than one in a million risk of the signature not being perfectly anonymous.
Since Lenstra’s ECM factorization algorithm is only run once during key generation and is
reasonably efficient when looking for 40-bit prime factors this cost is reasonable.



– Sign′ρ′,skα
(M,R′) sets R := (vk1, . . . , vkN ) for R′ =

((vk1, h1), . . . , (vkN , hN )). It picks t ← Zn and setsh :=
∏N

i=1 hti−1

i . It
setsρ := (n, G,GT , e, g, h) and creates a ring signatureσ ← Signρ,skα

(M,R). It
outputsσ′ := (t, σ).

– Verify′ρ′,R′(M,σ′) sets R := (vk1, . . . , vkN ) and h :=
∏N

i=1 hti−1

i as the
signing algorithm. It setsρ := (n, G,GT , e, g, h) and outputs the response of
Verifyρ,R(M,σ).

Theorem 2. The quadruple(CRSGen′,Gen′,Sign′,Verify′) is a ring signature
scheme with perfect correctness, heuristic statistical anonymity and computational un-
forgeability under the subgroup decision and strong Diffie-Hellman assumptions.

Sketch of proof.To prove computational unforgeability we will modifyGen′ such that it
pickshi of orderq. Using the groups suggested in [BGN05] we can construct convinc-
ing randomness that would leadGen′ to pick such anhi. We can therefore answer any
corruption queries the adversary makes. By the subgroup decision assumption, no non-
uniform polynomial time adversary can distinguish between seeing correctly generated
hi’s of ordern andhi’s of orderq. It must therefore have at most negligibly smaller
chance of producing a forgery after our modification. Nowh =

∏N
i=1 hti−1

i has orderq
for any t ∈ Zn. The proof of Theorem 1 shows that a polynomial time adversary with
has negligible chance of producing a forgery onh of orderq.

We will now prove heuristic statistical anonymity, even when the common refer-
ence string is maliciously generated by the adversary. Consider an honest signer with
keys(vkα, hα), skα. From the run of Lenstra’s ECM factorization algorithm we know
heuristically thatn has no polynomial size prime factors. Therefore, with overwhelming
probability the randomly chosenhα has ordern. We will argue that with overwhelming
probability over the choice oft, the signer picksh that has ordern. Whenh has order
n all commitments will be perfectly hiding and all proofs will be perfectly witness-
indistinguishable [GS06], so we will get perfect anonymity.

It remains to argue that with overwhelming probability overt the elementh =∏N
i=1 hti−1

i has ordern. Consider a generatorγ for G and letx1, . . . , xN be the discrete
logarithms ofh1, . . . , hN with respect toγ. We wish to argue that for any prime factor
p|n we have

∑N
i=1 ti−1xi 6= 0 mod p.

Given a primep|n we will show that there is at mostN − 1 choices oft mod p so∑N
i=1 ti−1xi = 0 mod p. To see this, consider the following system of linear equations:

V x =


1 t1 t21 . . . tN−1

1

1 t2 t22 . . . tN−1
2

...
...

...
...

...
1 tN t2N . . . tN−1

N




x1

x2

...
xN

 =


0
0
...
0

 .

V is a Vandermonde matrix and has non-zero determinant if allt1, . . . , tN are dif-
ferent. Sincexα 6= 0 mod p this implies that we cannot findN different t1, . . . , tN
so

∑N
i=1 ti−1

i xi = 0 mod p. When choosingt at random there is at least probability
1 − N−1

p that
∑N

i=1 ti−1xi 6= 0 mod p. Sincep is superpolynomial, this probability



is negligible. The same argument holds for all other prime factors inn, so with over-
whelming probabilityh is a generator ofG. �
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