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Abstract

Non-interactive zero-knowledge (NIZK) proof systems are fundamental primitives used in many cryp-
tographic constructions, including public-key encryption secure against chosen ciphertext attack, digital
signatures, and various other cryptographic protocols. We introduce new techniques for constructing
NIZK proofs based on groups with a bilinear map. Compared to previous constructions of NIZK proofs,
our techniques yield dramatic reduction in the length of the common reference string (CRS) (our CRS
is proportional to security parameter) and the size of the proofs (proportional to security parameter
times the circuit size). Our novel techniques allow us to answer several long-standing open questions
cryptography:

• We construct the first perfect NIZK argument system for all NP;

• We construct the first universally composable NIZK argument for all NP in the presence of an
adaptive adversary.

• We construct a non-interactive zap for all NP, which is the first that is based on a standard cryp-
tographic security assumption.

Another important contribution of this paper is the introduction of a new “parameter switching” tech-
nique in cryptography, later renamed “lossy encryption” and “dual encryption”. This technique has
proven to be an important new tool for solving multiple other cryptographic problems.
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1 Introduction

Non-interactive zero-knowledge (NIZK) proofs allow a prover to create a proof of membership of an NP
language. The proof can be used to convince anybody that indeed the statement in question belongs to the
language, but the zero-knowledge property ensures that the proof will reveal nothing but the truth of the
statement.

NIZK proofs are fundamental cryptographic primitives used in many constructions, including public-
key encryption secure against chosen ciphertext attack, digital signatures, and various other cryptographic
protocols. The main contribution of this paper is a set of new techniques for constructing NIZK proofs based
on groups with a bilinear map. Compared to previous constructions of NIZK proofs, our techniques yield
significant reductions in the length of the common reference string and the size of the proofs.

The new techniques also allow us to answer long standing open questions in the theory of non-interactive
zero-knowledge.

• We construct the first perfect NIZK argument system for all NP languages.

• We construct the first universally composable NIZK argument for all NP languages in the presence of
an adaptive adversary.

• We construct a non-interactive zap for all NP languages, which is the first that is based on a standard
cryptographic security assumption.

We now describe our contributions in more detail.

1.1 Efficient Non-interactive Zero-Knowledge Proofs

Blum, Feldman, and Micali [BFM88] introduced the notion of NIZK in the common random string model
and showed how to construct computational NIZK proof systems for proving a single statement about any NP
language. The first computational NIZK proof system for multiple theorems was constructed by Blum, De
Santis, Micali, and Persiano [BDMP91]. Both [BFM88] and [BDMP91] based their NIZK systems on certain
number-theoretic assumptions (specifically, the hardness of deciding quadratic residues modulo a composite
number). Feige, Lapidot, and Shamir [FLS99] showed how to construct computational NIZK proofs based
on any trapdoor permutation.

Much research has been devoted to the construction of efficient NIZK proofs [Dam92, KP98, BDP00],
but until now the only known method to do so has been the “hidden random bits” method. By this we
mean a method where the prover has a string of random bits, which are secret to the verifier. By revealing
a subset of these bits, and keeping the rest secret, the prover can convince the verifier of the truth of the
statement in question. Improvements in the efficiency of NIZK proofs have come in the form of various ways
to set up a hidden random bits model and how to use it optimally.

From a birds eye perspective, the main contribution of this paper is to suggest a set of completely
different techniques to construct NIZK proofs. We show that a special type of homomorphic commitment
scheme, where it is possible to prove that a commitment contains 0 or 1, implies NIZK proofs for all NP
languages. This yields very simple and efficient NIZK proof systems. We show that these homomorphic proof
commitments can be constructed from specific number theoretic assumptions related to groups equipped with
a bilinear map. For comparison with the most efficient previous work, please see Table 1.

1.2 Perfect NIZK Arguments

The plethora of research on NIZK mainly considers the case where the zero-knowledge property is true com-
putationally; that is, a computationally bounded party cannot extract any information beyond the correctness
of the theorem being proven. In the case of interactive zero-knowledge, it has long been known that all NP
statements can in fact be proven using perfect (or statistical) zero knowledge arguments [BC86, BCC88];
that is, even a computationally unbounded party would not learn anything beyond the correctness of the
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Reference CRS size Proof Size Assumption
Kilian-Petrank [KP98] O(|C|k2) O(|C|k2) Trapdoor Permutations

Damg̊ard et al. [BDP00] O(|C|k2) O(|C|k2) Quadratic Residuosity
De Santis et al. [DDP99, DDP02] O(k + |C|ε) poly(|C|k) NIZK & One-Way Functions

This paper O(k) O(|C|k) Subgroup Decision [BGN05]
This paper O(k) O(|C|k) Decisional Linear [BBS04]

Table 1: Comparison of CRS size and NIZK proof size for efficient-prover NIZK proof systems for Circuit
SAT, where |C| is the number of gates in the circuit, ε > 0 is an arbitrary constant and k is a security
parameters specifying the bit-length of an element in a group or the domain of a trapdoor permutation.

theorem being proven; though we must assume that the prover, only during the execution of the protocol,
is computationally bounded to ensure soundness. Such systems where the soundness holds computationally
have come to be known as argument systems, as opposed to proof systems where the soundness condition
must hold unconditionally.

Achieving perfect or statistical NIZK has been an elusive goal. The original work of [BFM88] showed
how a computationally unbounded prover can prove to a polynomially bounded verifier that a number is a
quadratic-residue, where the zero-knowledge property is perfect. Statistical ZK (including statistical NIZK1)
for any non-trivial language were shown to imply the existence of a one-way function by Ostrovsky [Ost91]
for both proofs and arguments. Statistical NIZK proof systems were further explored by De Santis, Di
Crescenzo, Persiano, and Yung [DDPY98] and Goldreich, Sahai, and Vadhan [GSV99], who gave complete
problems for the complexity class associated with statistical NIZK proofs. However, these works came far
short of working for all NP languages, and in fact NP-complete languages cannot have (even interactive)
statistical zero-knowledge proof systems unless the polynomial hierarchy collapses [For87, AH91]2. Unless
our computational complexity beliefs are wrong, this leaves open only the possibility of argument systems.

Do there exist statistical NIZK arguments for all NP languages? Despite nearly two decades of research
on NIZK the answer to this question was not known, see Table 2. Here, we answer this question in the
affirmative. A simple modification to the common reference string in our NIZK proof system transforms the
protocol into one with perfect zero-knowledge.

Interactive Non-interactive
Computational zero-knowledge proofs [GMW91] [BFM88]
Statistical zero-knowledge arguments [BC86] This work

Table 2: Existence of zero-knowledge proof and argument systems for NP-complete languages.

We remark that when it comes to perfect NIZK arguments some care is needed when defining sound-
ness. Our perfect NIZK argument has non-adaptive soundness guaranteeing that a cheating prover cannot
construct a convincing NIZK argument for a false statement that is chosen independently of the common
reference string. We do not know whether our perfect NIZK argument has adaptive soundness, where the
adversary may try to forge an NIZK argument for a false statement that is correlated with the common
reference string. Indeed, subsequent to our work, Abe and Fehr[AF07] have shown that so-called direct
black-box reductions cannot be used to establish the adaptive soundness of a perfect NIZK argument so
proving the adaptive soundness of any perfect NIZK arguments based on a standard cryptographic complex-
ity assumption would require novel ideas. However, by using complexity leveraging techniques we can show

1We note that the result of [Ost91] implies the existence of one-way functions even for honest-verifier SZK, and does not
require the simulator to produce the verifier’s random tape. Therefore, it shows the existence of one-way functions from NIZK,
even for a common reference string that is not uniform. See also [PS05] for an alternative proof.

2See also [GOP98] appendix regarding subtleties of this proof, and [SV03] for an alternative proof.
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that our perfect NIZK argument is adaptively sound for small statements, see Appendix A. Furthermore,
we define a new notion that we call adaptive culpable soundness3 and show that our perfect NIZK argument
satisfies this notion of soundness. In our experience, adaptive culpable soundness suffices for most practical
applications of NIZK arguments. We refer to Section 7.1 for the definition of adaptive culpable soundness
and further discussion.

1.3 Universally Composable NIZK Arguments

We generalize our techniques to construct perfect NIZK arguments that satisfy Canetti’s UC definition of
security. Canetti introduced the universal composability (UC) framework [Can01] as a general method to
argue security of protocols in an arbitrary environment. It is a strong security definition; in particular it
implies non-malleability [DDN00], and security when arbitrary protocols are executed concurrently.

We define an ideal functionality that captures the notion of NIZK proofs. We then suggest a protocol that
securely realizes this functionality against adaptive adversaries in the erasure-free model. In the erasure-free
model the adversary can adaptively choose which parties to corrupt and when corrupting a party it learns
the internal state and the entire computational history of this party. Not only do we obtain this degree of
security, our protocol is also perfect zero-knowledge at the same time.

Prior to our result, no NIZK protocol was known to be UC-secure against adaptive adversaries.
In [CLOS02], it was observed that De Santis et al. [DDO+02] achieve UC-security, but only for the setting
with static adversaries. And [CLOS02] and [DN02] both suggest UC secure zero-knowledge proofs, but these
protocols are interactive.

1.4 Non-interactive Zaps

In 2000, Dwork and Naor [DN00] proved a surprising result: that there exist “zaps”, two-round witness-
indistinguishable (WI) proofs in the plain model without a common reference string, where the verifier
asks a single question and the prover sends back a single answer. Furthermore, [DN00] showed that their
constructions allowed for the first message (from verifier to prover) to be reused – so that between a particular
pair of prover and verifier, only one message from verifier to prover is required even if many statements are
to be proven. Such zaps were shown to have a number of fascinating and important applications, beyond
the numerous applications of WI proofs already present in the literature. Dwork and Naor’s work left open
the following tantalizing question: does a non-interactive witness-indistinguishable proof, where the prover
sends a single message to the verifier for some non-trivial NP-language, exist?

Barak, Ong, and Vadhan [BOV03] constructed the first non-interactive zaps for any NP relation by ap-
plying derandomization techniques to the construction of Dwork and Naor, based on trapdoor permutations
and the assumption that (very good) Hitting Set Generators (HSG) against co-nondeterministic circuits
exist. It is known that such HSG’s can be built if there is a function in E that requires exponential-size
nondeterministic circuits – i.e. the assumption states that some uniform exponential deterministic compu-
tations can (only) be sped up by at most a constant power (Time 2cn becomes 2εn), when given the added
power of nondeterminism and advice specific to the length of the input.

We give a new affirmative answer to the question by constructing a non-interactive zap. Our construction
is completely different from the construction of Barak, Ong and Vadhan and uses a different, number-
theoretic computational assumption. Furthermore, our construction is much more efficient than both the
constructions of Dwork-Naor and Barak-Ong-Vadhan (even if these constructions were instantiated with
very efficient NIZK proofs from this paper).

A further point of comparison would be to look more closely at the assumptions used, for instance in
the context of Naor’s classification of assumption based on falsifiability [Nao03]. While our assumption,
the decisional linear assumption, is an “efficiently falsifiable” assumption according to Naor’s classification,

3In earlier versions of this paper, posted online, we referred to this notion as “co-soundness.” However, as many researchers
have reported finding this terminology confusing, we have renamed it “adaptive culpable soundness” here, in hopes that this
name is more descriptive.
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it appears that the assumption about the existence of HSG’s against co-nondeterministic circuits, or the
assumption about functions in E with large nondeterministic circuits, are “none of the above” assumptions
according to Naor’s classification, since we wouldn’t have time to actually “run” a suggested nondeterministic
(or co-nondeterministic) circuit that claims to break the assumption.4

1.5 Subsequent work, and the impact of our techniques.

Lossy Encryption: In [GOS06b], the original conference version of this paper, we introduced the notion of
“parameter switching” technique in encryption keys (see section three of this paper). In particular, in section
three we define homomorphic proof commitments that alow parameter switching in the key generation to
allow either producing perfectly hiding or perfect binding keys, with the requirement that it is computation-
ally indistinguishable to tell which of the two modes are being used. This “parameter switching” technique
proved incredibly useful in cryptography. The technique was also named (and renamed) several times. In
[KN08], Kol and Naor called it ”Meaningful/Meaningless” encryption, in [PVW08], Peikert, Vaikuntanathan
and Waters called it ”Dual-Mode Encryption”, and in [BHY09] Bellare, Hofheinz and Yilek called it ”Lossy
Encryption”. All these works utilized our “parameter-switching” methodology. The last name, of ”Lossy
Encryption” gained popularity. For example, Hemenway, Libert, Ostrovsky and Vergnaud [HLOV09] gave
constructions of “lossy encryption” from rerandomizable encryption, statistically-hiding oblivious transfer,
universal hash proofs, private information retrieval schemes and homomorphic encryption. For further dis-
cussion of the importance of lossy encryption, see [HO10].

Groth-Sahai Proofs: Following our introduction of NIZK proofs based on groups with bilinear maps, there
has been many works exploring this direction of research. Boyen and Waters [BW06, BW07] developed NIZK
techniques for groups with a bilinear map that were useful for constructing group signatures. Groth [Gro06]
also worked on group signatures and formulated a general language for capturing statements arising in groups
with a bilinear map with a corresponding NIZK proof that had a constant factor overhead. While the work
presented in this paper gives a statistical NIZK for circuit satisfiability, for the class of statements that can
be formulated in terms of the operations associated with the bilinear group, Groth and Sahai [GS08] showed
direct constructions of statistical NIZK that do not require NP reductions and thus are efficient in practice
in many applications. We note that while recent work on NIZK proofs [Gro10] has used other techniques to
get NIZK proofs for Circuit SAT that are even more efficient asymptotically, techniques based on bilinear
maps introduced in this paper and further developed in [GS08] remain the only ones so far to give practical
NIZK proofs for a wide class of applications based on bilinear maps.

2 Definitions: Non-interactive Proofs

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we call x the statement and w the
witness. Let L be the language consisting of statements in R.

A non-interactive proof system [BFM88] for a relation R consists of a common reference string generation
algorithm K, a prover P and a verifier V . We require that they all be probabilistic polynomial time
algorithms, i.e., we are looking at efficient prover proofs. The common reference string generation algorithm
produces a common reference string σ of length Ω(k). The prover takes as input (σ, x, w) and produces
a proof π. The verifier takes as input (σ, x, π) and outputs 1 if the proof is acceptable and 0 if rejecting

4We note that there is some uncertainty as to how to interpret Naor’s classification with respect to these derandomization-
style assumptions. We take a view that we think is consistent with the spirit of Naor’s classification by asking the question
– if the assumption is false, then is there necessarily a reasonably efficient (PPT) algorithmic demonstration of the falsehood
of this assumption? To us, it appears that the answer is “Yes” for our assumption, but appears to be “No” for the [BOV03]
assumptions; this is simply because for the latter assumptions, it is important that the breaking algorithm could be non-
deterministic – and if it is, then how can we efficiently verify that it indeed does break the assumption? It would be very
interesting if in fact there were a positive answer to this. Of course the question of falsifiability is less important than the
question of whether an assumption is actually true; alas, we find ourselves unequipped to address this issue.
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the proof. We call (K,P, V ) a non-interactive proof system for R if it has the completeness and soundness
properties described below.

Perfect completeness. A proof system is complete if an honest prover with a valid witness can convince
an honest verifier. For all adversaries A we have

Pr
[
σ ← K(1k); (x,w)← A(σ);π ← P (σ, x, w) : V (σ, x, π) = 1 if (x,w) ∈ R

]
= 1.

Perfect or Computational soundness. A proof system is sound if it is infeasible to convince an honest
verifier when the statement is false. For all polynomial size families {xk} of statements xk /∈ L and all
adversaries A we have

Pr
[
σ ← K(1k);π ← A(σ, xk) : V (σ, xk, π) = 1

]
= 0.

In computational soundness, we only quantify over non-uniform polynomial-time adversaries, and we
only require the above probability to be negligible in k.5

Perfect knowledge extraction. A proof system is a proof of knowledge if the witness can be extracted
from the proof. We call (K,P, V ) a proof of knowledge for R if there exists a probabilistic polynomial time
knowledge extractor E = (E1, E2) such that E1 returns a correctly distributed common reference string σ
with an extraction key ξ that allows E2 to extract a witness from a proof.

For all adversaries A we have

Pr
[
σ ← K(1k) : A(σ) = 1

]
= Pr

[
(σ, ξ)← E1(1k) : A(σ) = 1

]
,

and
Pr

[
(σ, ξ)← E1(1k); (x, π)← A(σ);w ← E2(σ, ξ, x, π) : (x,w) ∈ R if V (σ, x, π) = 1

]
= 1.

Since perfect knowledge extraction implies the existence of a witness for the statement being proven, it
implies perfect soundness.

Computational or Perfect (adaptive multi-theorem) zero-knowledge [FLS99]. A proof system
is zero-knowledge if the proofs do not reveal any information about the witnesses. We say a non-interactive
proof (K,P, V ) is zero-knowledge if there exists a polynomial time simulator S = (S1, S2), where S1 returns
a simulated common reference string σ together with a simulation trapdoor τ that enables S2 to simulate
proofs without access to the witness. For all non-uniform polynomial time adversaries A we have

Pr
[
σ ← K(1k) : AP (σ,·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← S1(1k) : AS(σ,τ,·,·)(σ) = 1

]
,

where S(σ, τ, x, w) = S2(σ, τ, x) for (x,w) ∈ R and both oracles6 output failure if (x,w) /∈ R.
If the two probabilities are equal, we say that (K,P, V ) is perfect zero-knowledge.

Non-erasure zero-knowledge. In modeling adaptive UC security without erasures, an honest prover
may be corrupted at some time. To handle such cases, we want to extend the zero-knowledge property such
that not only can we simulate an honest party making a proof, we also want to be able to simulate how it
constructed the proof. Once the party is corrupted, the adversary will learn the witness and the randomness
used; we want to create convincing randomness so that it looks like the simulated proof was constructed by
an honest prover using this randomness.

We say a non-interactive proof (K,P, V ) is a non-erasure NIZK argument or proof for R if there exists a
probabilistic polynomial time simulator S = (S1, S2, S3) so for all non-uniform polynomial time adversaries
A we have

Pr
[
σ ← K(1k) : APR(σ,·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← S1(1k) : ASR(σ,τ,·,·)(σ) = 1

]
,

5We call a function f : N→ [0, 1] negligible if for all c > 0 there exists a K so for all k > K we have f(k) ≤ k−c. We write
f(k) ≈ g(k) if |f(k)− g(k)| is negligible. A function f is overwhelming if f(k) ≈ 1.

6The notation AP (σ,·,·) and AS(σ,τ,·,·) means that A has access to a subroutine (called an oracle) that on input (x,w)
returns a proof π. The adversary only sees this input-output functionality; it does not a priori know which type of oracle it has
access to.
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where PR(σ, x, w) picks randomness r, runs π ← P (σ, x, w; r) and returns π, r, and where SR picks random-
ness ρ, runs π ← S2(σ, τ, x; ρ); r ← S3(σ, τ, x, w, ρ) and returns π, r, both of the oracles outputting failure

if (x,w) /∈ R.
If the two probabilities are equal, we speak of perfect non-erasure zero-knowledge. Obviously, non-

erasure zero-knowledge implies zero-knowledge, and perfect non-erasure zero-knowledge implies perfect zero-
knowledge.

Witness-indistinguishability and non-interactive zap. We call (P, V ) a non-interactive zap for R if
(P, V ) is a non-interactive proof (with trivial key generation K(1k) = 1k) with witness-indistinguishability.

Witness-indistinguishability means that proof does not reveal which witness the prover used. For all
non-uniform polynomial time interactive adversaries A we have

Pr
[
(x,w0, w1)← A(1k);π ← P (1k, x, w0) : A(π) = 1 and (x,w0), (x,w1) ∈ R

]
≈ Pr

[
(x,w0, w1)← A(1k);π ← P (1k, x, w1) : A(π) = 1 and (x,w0), (x,w1) ∈ R

]
.

A hybrid argument shows that this definition of witness-indistinguishability is equivalent to a definition
where we give the adversary access to multiple proofs using either witness w0 or witness w1.

3 Homomorphic Proof Commitments

We will use a non-interactive commitment scheme with some special properties that we define in this section.
Recall first that in a non-interactive commitment scheme there is a key generator, which generates a public
commitment key ck. The commitment key ck defines a message space Mck, a randomizer space Rck and a
commitment space Cck. We will require that the key generation algorithm is probabilistic polynomial time
and outputs keys of length θ(k). It will in general be obvious which key we are using, so we will sometimes
omit it in our notation. There is an efficient commitment algorithm com that takes as input the commitment
key, a message and a randomizer and outputs a commitment, c = com(m; r). We call (m, r) an opening of c.

The commitment scheme must be binding and hiding. Binding means that it is infeasible to find two
openings with different messages of the same commitment. Hiding means that given a commitment it is
infeasible to guess which message is inside the commitment. We want a commitment scheme that has two
different flavors of keys. The commitment key can be perfectly binding, in which case a valid commitment
uniquely defines one possible message. Alternatively, the commitment key can be perfectly hiding, in which
case the commitment reveals no information whatsoever about the message. In fact, we can create perfect
hiding keys together with some trapdoor information such that we can open a commitment to any message.
We require that these two kinds of keys are computationally indistinguishable.

We will consider commitments, where both the message space (M,+, 0), the randomizer space (R,+, 0)
and the commitment space (C, ·, 1) are finite abelian groups. The commitment scheme should be homomor-
phic, i.e., for all messages and randomizers we have

com(m1 +m2; r1 + r2) = com(m1; r1)com(m2; r2).

We will require that the message space has a generator 1, and also that it has at least order 3. The
property that sets homomorphic proof commitments apart from other homomorphic commitments is that
there is a way to prove that a commitment contains 0 or 1. More precisely, if the key is of the perfect binding
type, then it is possible to prove that there exists an opening (m, r) ∈ {0, 1} × R. On the other hand, if it
is a perfect hiding key, then the proof will be perfectly witness-indistinguishable, i.e., it is impossible to tell
whether the message is 0 or 1.

Homomorphic proof commitment. (Kbinding,Khiding, com,Topen, P01, V01) is a homomorphic proof com-
mitment scheme if it satisfies the following properties for all non-uniform polynomial time adversaries A.

6



Key indistinguishability:

Pr
[
(ck, xk)← Kbinding(1k) : A(ck) = 1

]
≈ Pr

[
(ck, tk)← Khiding(1k) : A(ck) = 1

]
.

Homomorphic property:

Pr
[
mode← {binding,hiding}; (ck, ∗)← Kmode :

∀(m1, r1), (m2, r2) ∈M×R : com(m1 +m2; r1 + r2) = com(m1; r1)com(m2; r2)
]

= 1.

Perfect binding:

Pr
[
(ck, xk)← Kbinding(1k) : ∃(m1, r1), (m2, r2) ∈M×R such that m1 6= m2 and com(m1; r1) = com(m2; r2)

]
= 0.

Perfect trapdoor opening:

Pr
[
(ck, tk)← Khiding(1k); (m1,m2)← A(ck); r1 ← R; r2 ← Topentk(m1, r1,m2) :

com(m1; r1) = com(m2; r2) if m1,m2 ∈M
]

= 1.

Perfect trapdoor opening indistinguishability:

Pr
[
(ck, tk)← Khiding(1k); (m1,m2)← A(ck); r1 ← R; r2 ← Topentk(m1, r1,m2) : m1,m2 ∈M and A(r2) = 1

]
= Pr

[
(ck, tk)← Khiding(1k); (m1,m2)← A(ck); r2 ← R : m1,m2 ∈M textnormalandA(r2) = 1

]
.

Perfect completeness:

Pr
[
mode← {binding,hiding}; (ck, ∗)← Kmode(1k); (m, r)← A(ck);π ← P01(ck,m, r) :

V01(ck, com(m; r), π) = 1 if (m, r) ∈ {0, 1} ×R
]

= 1.

Perfect soundness:

Pr
[
(ck, xk)← Kbinding(1k); (c, π)← A(ck) : ∃(m, r) ∈ {0, 1}×R so c = com(m; r) if V01(ck, c, π) = 1

]
= 1.

Perfect witness indistinguishability:

Pr
[
(ck, tk)← Khiding(1k); (r0, r1)← A(ck);π ← P01(ck, 0, r0) :

r0, r1 ∈ R and com(0; r0) = com(1; r1) and A(π) = 1
]

= Pr
[
(ck, tk)← Khiding(1k); (r0, r1)← A(ck);π ← P01(ck, 1, r1) :

r0, r1 ∈ R and com(0; r0) = com(1; r1) and A(π) = 1
]
.

Perfect extractability. We can strengthen the definition of a homomorphic proof commitment by
requiring that we generate perfect binding keys such that we also have an extraction key that permits
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extraction of the message inside the commitment. We say the commitment scheme has perfect extractability
if there is an extraction algorithm Ext such that

Pr
[
(ck, xk)← Kbinding(1k) : ∀(m, r) ∈ {0, 1} ×R : Extxk(com(m; r)) = m

]
.

Perfect non-erasure witness indistinguishability. Consider a multi-party computation protocol,
where we want to prove adaptive security. The adversary may corrupt some party, and in the security proof
we may have to simulate the randomness and a computational history for this party that would explain its
public view. If this party has computed some commitment and a proof that the commitment contains 0 or
1, then we can explain the randomness in the commitment by making a trapdoor opening. Here we will
strengthen the witness indistinguishability such that we can also explain the proof. Given a proof, which
may be created with one witness and some randomness, we want to come up with convincing randomness
that could explain the use of another witness. Let Rproof be the randomizer space used in the proof. We say
the commitment scheme has perfect non-erasure witness indistinguishability if there is a polynomial time
simulator S01 such that for all interactive adversaries A we have

Pr
[
(ck, tk)← Khiding(1k); (m, r0, r1)← A(ck); ρ0 ← Rproof ;π ← P01(ck,m, r0; ρ0); ρ1 ← S01(ck,m, r0, r1, ρ0) :

(m, r0, r1) ∈ {0, 1} ×R×R and com(m; r0) = com(1−m; r1) and A(π, ρ1) = 1
]

= Pr
[
(ck, tk)← Khiding(1k); (m, r0, r1)← A(ck); ρ1 ← Rproof ;π ← P01(ck, 1−m, r1; ρ1) :

(m, r0, r1) ∈ {0, 1} ×R×R and com(m; r0) = com(1−m; r1) and A(π, ρ1) = 1
]
.

In the following sections we give two candidates for commitment schemes with these properties.

4 Homomorphic Proof Commitments based on the Subgroup De-
cision Assumption

Boneh, Goh and Nissim [BGN05] suggested an encryption scheme with interesting homomorphic properties
that can be used to build a homomorphic proof commitment scheme. We first describe the setup used in
this cryptosystem.

Let GBGN be a randomized algorithm that on security parameter k outputs (p, q,G,GT , e, g) such that

• p, q are primes with p < q

• G,GT are descriptions of cyclic groups of order n = pq

• e : G×G→ GT is a bilinear map, i.e., ∀u, v ∈ G ∀a, b ∈ Z : e(ua, vb) = e(u, v)ab

• g is a random generator for G and e(g, g) generates GT

• Group operations, deciding group membership and the bilinear map are efficiently computable.

Let Gq be the subgroup of G of order q. The subgroup decision problem is to distinguish elements of G
from elements of Gq.

Definition 1 The subgroup decision assumption holds for generator GBGN if for any non-uniform polynomial
time adversary A we have

Pr
[
(p, q,G,GT , e, g)← GBGN(1k);n = pq; r ← Z∗n;h = gr : A(n,G,GT , e, g, h) = 1

]
≈ Pr

[
(p, q,G,GT , e, g)← GBGN(1k);n = pq; r ← Z∗q ;h = gpr : A(n,G,GT , e, g, h) = 1

]
.
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Example. Boneh, Goh and Nissim [BGN05] introduced the subgroup decision assumption and suggested
the following candidate for a generator GBGN. Pick k-bit primes p < q and let n = pq. Find the smallest `
such that P = `n−1 is prime and P ≡ 2 mod 3. Consider the points on the elliptic curve y2 ≡ x3 +1 mod P .
This curve has P + 1 = `n points, so it has a subgroup G of order n. Let GT be the order n subgroup of
F∗P 2 and let e : G×G→ GT be the modified Weil-pairing from Boneh and Franklin [BF03]. To get a point

(x, y) on the curve we can pick at random y ← ZP and compute x ≡ (y2 − 1)
P+1

3 mod P . Letting γ = (x, y)
we now have that g = γ` is a random generator for G provided gp 6= 1 and gq 6= 1.

4.1 A Homomorphic Proof Commitment Scheme

We will use the subgroup decision assumption to create a homomorphic proof commitment scheme. To
create a perfectly binding key, we set up groups with a bilinear map, where the subgroup decision problem is
hard. We pick a generator g and an element h of order q. To commit to m ∈ Zp, we form gmhr for random
r ∈ Zn. This is the cryptosystem from [BGN05]. On the other hand, if we want to make perfectly hiding
commitments, we choose h of order n, in which case we have a standard Pedersen commitment [Ped91].

It is possible to make a non-interactive proof that a commitment contains 0 or 1. Consider the commit-
ment c = gmhr. If h ∈ Gq, this uniquely defines m ∈ Zp. Observe, m ∈ {0, 1} if and only if one of c or cg−1

has order 1 or q. Our task therefore reduces to proving that e(c, cg−1) has order 1 or q. Since

e(c, cg−1) = e(gmhr, gm−1hr) = e(gm, gm−1)e(hr, g2m−1hr) = e(h, (g2m−1hr)r),

we can simply reveal the proof π = (g2m−1hr)r and the verifier can check the above equation. Since h has
order q, this implies e(c, cg−1) has order 1 or q.7 With these ideas in mind, we offer a homomorphic proof
commitment scheme in Figure 1.

Theorem 2 The protocol described in Figure 1 is a homomorphic proof commitment scheme with perfect
extraction and perfect non-erasure witness indistinguishability if the subgroup decision assumption holds for
GBGN.

Proof. The subgroup decision assumption implies that it is hard to distinguish perfect binding keys and
perfect hiding keys. It is straightforward to see that on either type of key the commitment scheme is
homomorphic. When h has order q, we have perfect binding and perfect extraction. When h has order n,
we have a unique trapdoor opening to any message. This leaves to demonstrate that we have a witness-
indistinguishable proof of a commitment containing 0 or 1.

Let us first prove that we have perfect completeness. No matter whether ck is a perfect binding
key or a perfect hiding key, it is the case that for m ∈ {0, 1} we have e(c, cg−1) = e(gmhr, gm−1hr) =
e(g, g)m(m−1)e(hr, g2m−1hr) = e(h, π).

Let us now demonstrate that we have perfect soundness on perfect binding keys. We can always write
c = gmhr for some uniquely defined m ∈ Zp. We have e(c, cg−1) = e(g, g)m(m−1)e(h, (g2m−1hr)r). Since
h has order q, e(h, π) has order 1 or q. The verification e(c, cg−1) = e(h, π) implies that e(c, cg−1) has
order 1 or q. Since e(c, cg−1) = e(g, g)m(m−1)e(h, (g2m−1hr)r), we see that e(g, g)m(m−1) has order 1 or q.
Since e(g, g) is a generator for GT this means that m(m − 1) = 0 mod p and therefore m = 0 mod p or
m = 1 mod p.

Finally, let us show that we have perfect non-erasure witness indistinguishability on a perfect hiding
key. Suppose we have c = g0hr0 = g1hr1 . Since h is a generator for G there is a unique proof π such
that e(c, cg−1) = e(h, π) and both witnesses make us produce the same proof. So we have perfect witness
indistinguishability. Furthermore, since the prover algorithm is deterministic we automatically get perfect
non-erasure witness indistinguishability since there is no randomness to reconstruct. �

7In the first version of this paper, we had a more complicated proof for proving a commitment containing 0 or 1. Boyen and
Waters [BW06] observed that the simpler proof given here suffices for making a non-interactive witness-indistinguishable proof
for a commitment containing 0 or 1.
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Perfectly binding key generation Kbinding(1k):

1. (p, q,G,GT , e, g)← GBGN(1k)

2. n = pq

3. x← Z∗q
4. h = gpx

5. Let ck = (n,G,GT , e, g, h)

6. Let xk = (ck, q)

7. Return (ck, xk)

Perfectly hiding key generation Kbinding(1k):

1. (p, q,G,GT , e, g)← GBGN(1k)

2. n = pq

3. x← Z∗n
4. h = gx

5. Let ck = (n,G,GT , e, g, h)

6. Let tk = (ck, x)

7. Return (ck, tk)

Commitment comck(m):

The key ck defines message space Zp, randomizer space Zn and commitment space G. To commit
to message m ∈ Zp do

1. r ← Zn
2. Return comck(m; r) = gmhr

Extraction Extxk(c):

On a perfect binding key we can use xk = (ck, q) to extract m of length O(log k) from c = gmhr

as follows. Compute cq = (gmhr)q = (gq)m and exhaustively search for m.

Trapdoor opening Topentk(m, r,m′):

Given a commitment c = gmhr under a perfectly hiding commitment key we have
c = gm

′
hr−(m′−m)/x. So we can create a perfectly hiding commitment and open it to any value

we wish if we have the trapdoor key tk = (ck, x). The trapdoor opening algorithm returns

r′ = r − (m′−m)
x mod n.

WI proof P01(ck,m, r):

Given m, r ∈ {0, 1} × Zn we make the WI proof for commitment to 0 or 1 as π = (g2m−1hr)r.

Verification V01(ck, c, π):

To verify a WI proof π of commitment c containing 0 or 1, check e(c, cg−1) = e(h, π).

Figure 1: Homomorphic proof commitment scheme based on the subgroup decision assumption.

5 Homomorphic Proof Commitments based on the Decisional Lin-
ear Assumption

We will now describe another example of a homomorphic proof commitment scheme, this time based on the
linear encryption scheme by Boneh, Boyen and Shacham [BBS04].10



Let GDLIN be a randomized algorithm that takes a security parameter as input and outputs (p,G,GT , e, g)
such that

• p is a prime

• G,GT are descriptions of groups of order p

• e : G×G→ GT is a bilinear map, i.e., ∀u, v ∈ G ∀a, b ∈ Z : e(ua, vb) = e(u, v)ab

• g is a random generator of G and e(g, g) generates GT

• Deciding group membership, group operations and the bilinear map are all efficiently computable.

The decisional linear assumption was first introduced by Boneh, Boyen and Shacham [BBS04] and has
since been used in several cryptographic constructions. We call a tuple of the form (fr, hs, gr+s) a linear
tuple with respect to (f, h, g). When the basis (f, h, g) is obvious from context, we omit mention of it. The
decisional linear problem is to distinguish a linear tuple from a random tuple.

Definition 3 (Decisional Linear Assumption) We say the decisional linear assumption holds for the
bilinear group generator GDLIN if for all non-uniform polynomial time adversaries A we have

Pr
[
(p,G,GT , e, g)← GDLIN(1k);x, y ← Z∗p; r, s← Zp : A(p,G,GT , e, g, gx, gy, gxr, gys, gr+s) = 1

]
≈ Pr

[
(p,G,GT , e, g)← GDLIN(1k);x, y ← Z∗p; r, s, d← Zp : A(p,G,GT , e, g, gx, gy, gxr, gys, gd) = 1

]
.

Example. Boneh and Franklin [BF03] give an example of groups with a bilinear map, where the decisional
linear assumption may hold. Let p ≡ 2 mod 3 be a k-bit prime, and choose a small ` such that q = `p − 1
is prime. Then the elliptic curve y2 ≡ x3 + 1 mod q has `p points. We can let G be the order p subgroup of
this curve and GT = F∗q2 . The bilinear map is the modified Weil-pairing. We can pick a point on the curve

by choosing y ← Zq at random and setting x ≡ (y2 − 1)
q+1
3 mod q. Let γ = (x, y) and g = γ`. Then g is a

random generator for G provided g 6= 1.

5.1 A Homomorphic Proof Commitment Scheme

We will use the decisional linear assumption to create a homomorphic proof commitment. The idea is to
let g, f, h be generators of G and u, v, w another triple of elements in G. A perfect hiding commitment key
will contain (u, v, w), which is a linear tuple with respect to g, f, h. Then for any message m ∈ Zp and
randomizer (r, s) ∈ Zp × Zp we have a commitment (umfr, vmhs, wmgr+s), which is a random linear tuple
itself and therefore reveals nothing about m. On the other hand, if (u, v, w) is not a linear tuple, then the
commitment is perfectly binding. The decisional linear assumption implies that it is hard to distinguish
perfect binding keys and perfect hiding keys.

Theorem 4 The protocol in Figure 2 is a homomorphic proof commitment scheme with perfect extraction
and perfect non-erasure witness-indistinguishability if the decision linear assumption holds for GDLIN.

Proof. Under the decisional linear assumption for GDLIN no non-uniform polynomial time adversary can
distinguish between (u, v, w) being a linear tuple or not so perfectly binding keys and perfectly hiding keys
are computationally indistinguishable.

The commitment scheme is homomorphic under entry-wise multiplication because for either type of
commitment key we have

com(m1 +m2; r1 + r2, s1 + s2) = (um1+m2fr1+r2 , vm1+m2hs1+s2 , wm1+m2gr1+r2+s1+s2)

= (um1fr1 , vm1hs1 , wm1gr1+s1)(um2fr2 , vm2hs2 , wm2gr2+s2) = com(m1; r1, s1)com(m2; r2, s2).
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Perfectly binding key generation Kbinding(1k):

1. (p,G,GT , e, g)← GDLIN(1k)

2. x, y ← Z∗p
3. f = gx, h = gy

4. ru, sv ← Zp
5. (u, v, w) = (fru , hsv , gru+sv+z), where z ← Z∗p
6. Let ck = (p,G,GT , e, g, f, h, u, v, w)

7. Let xk = (ck, x, y, z) and return (ck, xk)

Perfectly hiding key generation Khiding(1k):

1. (p,G,GT , e, g)← GDLIN(1k)

2. x, y ← Z∗p
3. f = gx, h = gy

4. ru, sv ← Zp
5. (u, v, w) = (fru , hsv , gru+sv )

6. Let ck = (p,G,GT , e, g, f, h, u, v, w)

7. Let tk = (ck, ru, sv) and return (ck, tk)

Commitment comck(m): The key ck defines message space Zp, randomizer space Zp × Zp and commitment
space G3. To commit to message m ∈ Zp pick (r, s)← Zp × Zp and return

c = (c1, c2, c3) = com(m; r, s) = (umfr, vmhs, wmgr+s).

Extraction Extxk(c): On a perfect binding key we can extract m of length O(log k) from c = (c1, c2, c3) as

follows. Compute (gz)m = c3c
−1/x
1 c

−1/y
2 and exhaustively search for m.

Trapdoor opening Topentk(m, (r, s),m′): Given a commitment c = (umfr, vmhs, wmgr+s) under a perfectly

hiding commitment key we have c = (um
′
fr−(m′−m)ru , vm

′
hs−(m′−m)sv , wm

′
gr+s−(m′−m)(ru+sv)). So we

can create a perfectly hiding commitment and open it to any value we wish if we have the trapdoor key
tk = (ru, sv) by returning (r′, s′) computed as r′ = r− (m′ −m)ru mod p and s′ = s− (m′ −m)sv mod p.

WI proof P01(ck,m, (r, s)): Given witness consisting of an opening (m, r, s) ∈ {0, 1} × Zp × Zp we make a
proof as follows. Choose t← Zp and let

π11 = (u2m−1fr)r π12 = v(2m−1)rhrs−t π13 = w(2m−1)rg(r+s)r+t

π21 = u(2m−1)sfrs+t π22 = (v2m−1hs)s π23 = w(2m−1)sg(r+s)s−t

Return the proof π = (π11, π12, π13, π21, π22, π23).

Verification V01(ck, c, π): On input (ck, c, π) compute π3j = π1jπ2j for j = 1, 2, 3. Accept the proof if and
only if

e(f, π11) = e(c1, c1u
−1) e(f, π12)e(h, π21) = e(c1, c2v

−1)e(c2, c1u
−1)

e(h, π22) = e(c2, c2v
−1) e(f, π13)e(g, π31) = e(c1, c3w

−1)e(c3, c1u
−1)

e(g, π33) = e(c3, c3w
−1) e(h, π23)e(g, π32) = e(c2, c3w

−1)e(c3, c2v
−1).

Figure 2: Homomorphic proof commitment scheme based on the decisional linear assumption.

It is straightforward to see that the protocol is perfectly binding and has perfect extraction when (u, v, w)
is not a linear tuple. On the other hand, when (u, v, w) is a linear tuple then every commitment is a linear
tuple and thus perfectly hiding. We can compute a unique trapdoor opening of a commitment to an arbitrary
message.
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Perfect completeness of the witness-indistinguishable proof on either type of keys follows from direct
verification. Let us now prove that the proof is perfectly sound on perfect binding keys.

The commitment uniquely defines m, r, s ∈ Zp such that c1 = umfr, c2 = vmhr, c3 = wmgr+s. We wish
to prove that given a valid proof π it must be the case that m ∈ {0, 1}. Define r0, s0, t0 and r1, s1, t1 such
that c = (fr0 , hs0 , gt0) and c = (ufr1 , vhs1 , wgt1). For i = 1, 2 let

mi1 = logf (πi1) mi2 = logh(πi1) mi3 = logg(πi3).

Let
m31 = m11 +m21 m32 = m12 +m22 m33 = m13 +m23.

¿From the verification we get

m11 = r0r1 m12 +m21 = r0s1 + s0r1

m22 = s0s1 m13 +m31 = r0t1 + t0r1

m33 = t0t1 m23 +m32 = s0t1 + t0s1

This means

(r0 + s0 − t0)(r1 + s1 − t1)

= r0r1 + r0s1 + s0r1 + s0s1 + t0t1 − (r0t1 + t0r1 + s0t1 + t0s1)

= m11 +m12 +m21 +m22 +m33 −m13 −m31 −m23 −m32 = 0.

We conclude
t0 = r0 + s0 or t1 = r1 + s1,

so at least one of (c1, c2, c3) and (c1u
−1, c2v

−1, cw−1) must be a linear tuple. This shows that c or c ·
com(−1; 0, 0) is a commitment to 0.

On a perfect hiding key, both c and c · com(−1; 0, 0) are linear tuples. Define, (r0, s0) and (r1, s1) =
(r0 − ru, s0 − sv) such that c = (fr0 , hs0 , gr0+s0) and c · com(−1; 0, 0) = (fr1 , hs1 , gr1+s1). The witness is
on the form (0, r0, s0) or (1, r1, s1). In the proof we pick t ← Zp at random. All we need to observe now is
that opening (0, r0, s0) with randomness t gives the same proof as using opening (1, r1, s1) using randomness
t′ = t+ r0s1− s0r1. Perfect non-erasure witness indistinguishability now follows from the observation that if
we have a proof generated with randomness t, then once we get the witness there are two possibilities: It can
be the same witness as used in the proof, in which case we are done. Or it can be the other witness, which
we with knowledge of ru, sv can compute and which also allows us to compute randomness t′ corresponding
to this witness. �

6 Computational NIZK Proof for Circuit SAT

We will now describe an NIZK proof for Circuit SAT. We use a public key for a homomorphic proof com-
mitment scheme as the common reference string. In the real proofs the common reference string will be a
perfect binding key while in the simulation it will be a perfect hiding key. The prover gets as input a circuit
C, which without loss of generality consists of NAND-gates. He also gets a witness w, consisting of wires
w1, . . . , wout such that the wires respect the circuit and the output wire is true, wout = 1. We write C(w) = 1
when this is the case.

The prover’s strategy is straightforward. He commits to each wire and for each commitment makes a
proof that it contains 0 or 1. This way, the verifier is guaranteed that the prover has committed to truth
values for each wire. The prover makes a trivial commitment to the output wire using randomness rout = 0
such that the verifier can check that indeed the output is 1. What remains is to convince the verifier that
the committed wires respect the NAND-gates of the circuit.

We make the following observation, leaving the proof to the reader.8

8Similar equations exist for all other binary gates so it is not necessary to restrict the circuit to NAND-gates. We only
restrict ourselves to NAND-gates because it simplifies the exposition.
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Lemma 5 Let M be a finite cyclic group with neutral element 0 and generator 1. Let b0, b1, b2 ∈ {0, 1}.
If the order of the group is at least 4, then

b2 = ¬(b0 ∧ b1) if and only if b0 + b1 + 2b2 − 2 ∈ {0, 1}.

If the order of the group is 3, then

b2 = ¬(b0 ∧ b1) if and only if b0 + b1 + 2b2 − 2 ∈ {0, 1} and b0 + b1 + b2 − 1 ∈ {0, 1}.

In the following, we focus on the case where the message space of the commitment scheme has order at least
4, leaving the case of order 3 to the reader. Given commitments c0, c1, c2 containing plaintexts b0, b1, b2 the
homomorphic property of the commitment scheme implies that c0 · c1 · c22 · com(−2; 0) is a commitment to
b0 + b1 + 2b2 − 2. A proof that this commitment contains 0 or 1 shows that b2 = ¬(b0 ∧ b1). The prover will
make such a proof for each NAND-gate in the circuit.

Common reference string:

1. (ck, xk)← Kbinding(1k)

2. The common reference string is σ = ck.

Statement: The statement is a circuit C built from NAND-gates. The claim is that there exist wires
w = (w1, . . . , wout) such that C(w) = 1.

Proof: Input (σ,C,w) such that C(w) = 1

1. Commit to each bit wi as ri ← R; ci = com(wi; ri)

2. For the output wire let rout = 0 and cout = com(1; 0)

3. For all ci make a WI proof πi of existence of an opening (wi, ri) so wi ∈ {0, 1} and
ci = com(wi; ri)

4. For all NAND-gates do the following: It has input wires numbered i, j and output wire k.
Using message wi + wj + 2wk − 2 and randomness ri + rj + 2rk make a WI proof πijk for
cicjc

2
kcom(−2; 0) containing message 0 or 1.

5. Return the proof π consisting of all the commitments and proofs

Verification: Input (σ,C, π).

1. Check that all wires have a corresponding commitment and cout = com(1; 0).

2. Check that all commitments have a proof of the message being 0 or 1.

3. Check that all NAND-gates with input wires i, j and output wire k have a proof πijk for
cicjc

2
kcom(−2; 0) containing 0 or 1

4. Return 1 if all checks pass, else return 0

Figure 3: Computational NIZK proof for Circuit SAT.

Theorem 6 The protocol in Figure 3 is an NIZK proof of knowledge for Circuit SAT. It has perfect complete-
ness, perfect soundness, and computational zero-knowledge. If the homomorphic proof commitment scheme
has perfect extractability then the NIZK proof is a perfect proof of knowledge. If the commitment scheme
has perfect non-erasure witness indistinguishability then the NIZK proof has computational non-erasure zero-
knowledge.

Proof. Knowing a satisfying assignment w for C, we have truth-values for all wires that are consistent with
the NAND-gates and with the output wire being 1. Perfect completeness follows from the homomorphic
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property of the commitment scheme and the perfect completeness of the proofs of committed messages being
either 0 or 1.

We prove in Lemma 7 that we have perfect soundness. If the commitment scheme is extractable, then we
can extract the wire-values from the commitments, which by the perfect soundness corresponds to a witness
w such that C(w) = 1.

By the indistinguishability of perfect binding keys and perfect hiding keys for the commitment scheme,
we have

Pr
[
σ ← K(1k) : AP (σ,·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← S1(1k) : AP (σ,·,·)(σ) = 1

]
,

where the oracle outputs failure if (x,w) /∈ R.
Lemma 8 shows that if we simulate the common reference string by (σ, τ) = (ck, tk)← Khiding(1k) then

we have perfect zero-knowledge, so we conclude that we have computational zero-knowledge for (K,P, V ).
Lemma 8 also shows that we get perfect non-erasure zero-knowledge on a simulated common reference string,
so we conclude that (K,P, V ) has computational non-erasure zero-knowledge. �

Lemma 7 (K,P, V ) has perfect soundness.

Proof. Since we prove for each wire that the commitment contains either 0 or 1, we have made a perfectly
binding commitment to a truth-value for each wire. By Lemma 5, the WI proofs for the gates imply that all
committed truth-values respect the NAND-gates. Finally, we know that the output commitment is com(1; 0),
so the output bit is 1. �

Lemma 8 (Sσ, P, V ), where Sσ is Khiding restricted to the first part of its output, has perfect zero-knowledge.
If the homomorphic proof commitment scheme has perfect non-erasure witness indistinguishability then we
get perfect non-erasure zero-knowledge.

Proof. Let us first describe the three simulator algorithms. S1 = Khiding generates the common reference
string σ = ck as well as the simulation key τ = tk

S2 on input (σ, τ, C) sets coutput = com(1; 0). For all other wires, it selects a commitment ci = com(0; ri)
with ri ← R. Later, when S3 learns a witness w it can compute the corresponding messages wi ∈ {0, 1} for
all these ciphertexts and open them as r′i = Topentk(0, ri, wi).

For each of these commitments S2 using witness (0, ri) makes a WI proof that they contain 0 or 1. For
each NAND-gate with wires i, j and k, S2 trapdoor opens ck to 1 as r′k ← Topentk(0, rk, 1). Using the
witness (0, ri + rj + 2r′j) it can now make a WI proof that cicjc

2
kcom(−2; 0) contains 0 or 1.

Later, S3 learns the witness w and therefore knows the messages wi ∈ {0, 1}. It trapdoor opens all
commitments as r′i ← Topentk(0, ri, wi). Now ci = com(wi; r

′
i), where C(w) = 1. By the perfect witness

indistinguishability of the proofs we cannot distinguish the simulation from a proof having used this witness.
Furthermore, if the WI proofs have perfect non-erasure witness indistinguishability then we can reconstruct
randomness in the WI proofs that corresponds to these openings of the commitments. �

Corollary 9 If the subgroup decision assumption holds for GBGN, then there exists an NIZK proof for
Circuit SAT with perfect completeness, perfect soundness, perfect knowledge extraction and computational
non-erasure zero-knowledge. The common reference string has size O(k) and the proofs have size O(|C|k).

Corollary 10 If the decisional linear assumption holds for GDLIN, then there exists an NIZK proof for
Circuit SAT with perfect completeness, perfect soundness, perfect knowledge extraction and computational
non-erasure zero-knowledge. The common reference string has size O(k) and the proofs have size O(|C|k).

Remark on the uniform random string model. Consider the homomorphic proof commitment in
Section 5 based on the decisional linear assumption. We note that if we let g, f, h, u, v, w be randomly
chosen elements of G, then with overwhelming probability they will form a viable common reference string
such that (u, v, w) are a non-linear tuple with respect to (f, h, g) and therefore the resulting commitment
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scheme is perfectly binding. If, for instance, the group is the one suggested by Boneh and Franklin [BF03],
then all that is needed to define G is the prime p. Thus, we can implement our NIZK proofs in the uniform
random string model, where the random string is first used to obtain a k-bit prime p using standard methods
(just dividing up the uniform random string into k-bit chunks and checking one-by-one if they are prime will
do), and then the remaining randomness is used to randomly determine g, f, h, u, v, w (by picking random
order p points on the curve). Such an NIZK proof will not have perfect soundness, but it will have statistical
soundness since the probability of (u, v, w) being a linear tuple is exponentially small in k. In the uniform
random string model this is optimal, since for any NIZK proof system with a uniform random string there
is a risk of accidentally selecting a simulation string so it is impossible to achieve perfect soundness.

7 Perfect NIZK Argument for Circuit SAT

In this section, we will construct an NIZK argument for Circuit SAT with perfect zero-knowledge. The main
idea is a simple modification of the NIZK proof for Circuit SAT in Figure 3. Instead of using a perfect
binding key as the common reference string, we use a perfect hiding key as the common reference string.

Theorem 11 (Sσ, P, V ) is an NIZK argument for Circuit SAT with perfect completeness, computational
soundness and perfect zero-knowledge, where Sσ is Khiding restricted to the first part of its output. If the
homomorphic proof commitment scheme has perfect non-erasure witness indistinguishability, then the protocol
is perfect non-erasure zero-knowledge.

Proof. As in the proof of Theorem 6, we can show that the protocol has perfect completeness. Perfect zero-
knowledge and perfect non-erasure zero-knowledge follows from Lemma 8. This leaves us with the question
of soundness.

Consider a non-uniform polynomial time adversary A and an arbitrary family of polynomially bounded
size unsatisfiable circuits {Ck}. From the key indistinguishability of the homomorphic proof commitment
scheme and the perfect soundness of (K,P, V ) we have

Pr
[
σ ← Sσ(1k);π ← A(σ,Ck) : V (σ,Ck, π) = 0

]
≈ Pr

[
σ ← K(1k);π ← A(σ,Ck) : V (σ,Ck, π) = 0

]
= 0.

�

7.1 Adaptive Culpable Soundness

In the examples based on the subgroup decision assumption and the decisional linear assumption, we do not
know whether (Sσ, P, V ) is an NIZK argument with computational adaptive soundness where the adversary
can choose the statement x after seeing the common reference string. When an adversary can choose a
statement adaptively it may express properties about the common reference string itself. For instance, C
could be a circuit corresponding to the statement that ck is a perfectly hiding commitment key. Now we
can no longer argue soundness on the basis that the two common reference strings are indistinguishable,
since switching from Sσ to K also switches to a setting where C is satisfiable. The best we can do, see
Appendix A, is to use complexity leveraging techniques to get adaptive soundness for circuits that are small
(but non-trivial) compared to the security parameter.

Although we do not know whether our perfect NIZK argument system has adaptive soundness, we can
prove that the perfect NIZK argument has a useful adaptive soundness property, which we will call adaptive
culpable soundness. Consider any NP-language Lguilt that only contains unsatisfiable circuits. Adaptive
culpable soundness says that it is infeasible for an adversary to find an unsatisfiable circuit and a witness for
membership of Lguilt and at the same time form a valid perfect NIZK argument for satisfiability. One way
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of interpreting adaptive culpable soundness is that if the adversary proves a false statement, then it cannot
know that it succeeded in proving a false statement. (Intuitively, a witness for the unsatisfiability of a circuit
in Lguilt is seen as the “proof of knowledge” of guilt.)

Definition 12 (Adaptive culpable soundness for a NIZK for circuit satisfiability) We say that a
NIZK proof system for circuit satisfiability (Sσ, P, V ) has adaptive culpable soundness if for all polynomial-
time decidable binary relations Rguilt consisting of unsatisfiable circuits C and witnesses wguilt, and for all
non-uniform polynomial time adversaries A, we have that

Pr
[
σ ← Sσ(1k); (C, π,wguilt)← A(σ) : V (σ,C, π) = 1 and (C,wguilt) ∈ Rguilt

]
≈ 0.

Theorem 13 The perfect NIZK argument for circuit satisfiability (Sσ, P, V ) based on homomorphic proof
commitments has adaptive culpable soundness.

Proof. By the indistinguishability of perfect binding keys and perfect hiding keys and the perfect soundness
of (K,P, V ), we have for all non-uniform polynomial time adversaries A that

Pr
[
σ ← Sσ(1k); (C, π,wguilt)← A(σ) : V (σ,C, π) = 1 and (C,wguilt) ∈ Rguilt

]
≈ Pr

[
σ ← K(1k); (C, π,wguilt)← A(σ) : V (σ,C, π) = 1 and (C,wguilt) ∈ Rguilt

]
= 0.

�

Let us give an example to illustrate the significance of Theorem 13. Consider a scenario where first a
common reference string and public key/private key pair for some (binding) encryption scheme are chosen
honestly, and given to an adversary. Then, the adversary chooses a arbitrary ciphertext c. An adversary
might try to cheat and create a fake NIZK argument that the plaintext for c has some property, which it
does not have. Unfortunately, since the ciphertext was chosen after the common reference string, ordinary
non-adaptive soundness does not seem to prevent this. However, according to Theorem 13 this cheating is
not possible, because the private decryption key serves as a witness that the statement is false: Using the
decryption key one can decrypt the ciphertext and check that the statement is false.

In the next section we will see that adaptive culpable soundness of the perfect NIZK argument is exactly
what we need to build universally composable NIZK arguments. Due to the great generality of the UC
framework, we take this as an indication that adaptive soundness may not be so important after all and that
adaptive culpable soundness suffices for most real life applications.

8 Universally Composable Non-interactive Zero-Knowledge

8.1 Modeling Non-interactive Zero-Knowledge Arguments

The universal composability (UC) framework (see [Can01] for a detailed description) is a strong security
model capturing security of a protocol φ under the concurrent execution of arbitrary other protocols. We
model all other things not directly related to the protocol through an environment Z. The environment
can at its own choosing give inputs to the parties running the protocol, and according to the protocol
specification, the parties can give outputs to the environment. In addition, there is an adversary A that
attacks the protocol. A can communicate freely with the environment. It can also corrupt parties, in which
case it learns the entire history of that party and gains complete control over the actions of this party. The
environment learns whenever a party is corrupted.

To model security we use a simulation paradigm. We specify the ideal functionality F that the protocol
should realize. The ideal functionality F can be seen as a trusted party that handles the entire protocol
execution and tells the parties what they would output if they executed the protocol correctly. We look at an

17



ideal process where the parties simply pass on inputs from the environment to F and whenever receiving a
message from F they output it to the environment. In the ideal process, we have an ideal process adversary
S. S does not learn the content of messages sent from F to the parties, but is in control of when, if ever, a
message from F is delivered to the designated party. S can corrupt parties and at the time of corruption it
will learn all inputs the party has received and all outputs it has sent to the environment. As the real world
adversary, S can freely communicate with the environment.

We now compare running the real protocol with running the ideal process and say that φ securely realizes
F if no environment can distinguish between the two worlds. This means, the protocol is secure, if for any
polynomial time A running in the real world with φ, there exists a polynomial time S running in the ideal
process with F , so no non-uniform polynomial time environment can distinguish the two worlds.

The standard zero-knowledge functionality FZK as defined in [Can01] goes as follows: On input
(prove,P, V, sid, ssid, x, w) from a party P the functionality FZK checks that (x,w) ∈ R and in that case
sends (proof,P, V, sid, ssid, x) to V .9 It is thus part of the model that the prover will send the proof to a
particular receiver and that this receiver will learn who the prover is. This is a very reasonable model when
we talk about interactive zero-knowledge proofs of knowledge. We remark that we can securely realize this
functionality with only small modifications in the UC NIZK argument that we are about to suggest.

When we talk about NIZK arguments we do not always know who is going to receive the NIZK argument.
We simply create a string π, which is the NIZK argument. We may create this string in advance and later
decide to whom to send it. Furthermore, anybody who intercepts the string π can verify the truth of the
statement and can use the string to convince others about the truth of the statement. The NIZK argument
is not deniable [Pas03]; quite on the contrary, it is transferable. For this reason, and because the protocol
and the security proof becomes a little simpler, we suggest a different functionality FNIZK to capture the
essence of NIZK arguments, see Figure 4.

Parameterized with relation R and running with parties P1, . . . , Pn and adversary S.

Proof: On input (prove,sid, ssid, x, w) from party P ignore if (x,w) /∈ R. Send (prove,x) to S and
wait for answer (proof , π). Upon receiving the answer store (x, π) and send (proof , sid, ssid, π)
to P .

Verification: On input (verify, sid, ssid, x, π) from V check whether (x, π) is stored. If not send
(verify,x, π) to S and wait for an answer (witness,w). Upon receiving the answer, check
whether (x,w) ∈ R and in that case, store (x, π). If (x, π) has been stored return
(verification,sid, ssid,1) to V , else return (verification,sid, ssid,0).

Figure 4: NIZK argument functionality FNIZK.

We will in Section 8.3 give a universally composable NIZK argument in the common reference string
model. We model the access to the common reference string as an ideal functionality FCRS (see Figure 6)
that generates a common reference string Σ according to some probability distribution and sends (crs, sid,Σ)
to all parties. We will show that in the FCRS-hybrid model where parties can get a trusted common reference
string they can securely realize FNIZK. We will not consider how to implement FCRS-hybrid model, there are
various options ranging from blindly trusting a single party to generate common reference strings to using
multi-party computation in a pre-processing step. However, the universal composition theorem [Can01]
shows that any protocol that securely realizes FCRS can be used as a subroutine in the UC NIZK protocol
φNIZK to securely realize FCRS.

9The role of the session identifier sid and subsession identifier ssid is to distinguish different functionalities F and calls to
these functionalities.
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8.2 Tools

We will use an adaptive culpable sound (the concrete language Lguilt of import will appear in the security
proof) perfect non-erasure NIZK argument (Sσ, P, V ) with non-erasure zero-knowledge simulator (S1, S2, S3)
as described in the previous section. In addition, we use the following cryptographic tools to securely realize
FNIZK.

Perfectly hiding commitment scheme with extraction. A perfectly hiding commitment scheme
with extraction (Kextract,Khiding, com,Ext) works as follows. We can run a key generation algorithm hk ←
Khiding(1k) to get a hiding key hk, or we can alternatively run a key generation algorithm (hk, xk) ←
Kextract(1

k) in which case we get both a hiding key hk and an extraction key xk. (Khiding, com) is a
perfectly hiding commitment scheme. On the other hand, (Kextract, com,Ext) is a commitment scheme with
perfect extractability (i.e., a public-key cryptosystem with errorless decryption) as defined below.

Pr
[
(hk, xk)← Kextract(1

k) : ∀(m, r) : Extxk(comhk(m; r)) = m
]

= 1. (1)

We demand that no non-uniform polynomial time adversary A can distinguish between keys generated
by either Khiding and Kextract. This implies that the cryptosystem is semantically secure against chosen
plaintext attack since the perfectly hiding commitment does not reveal what the message is. Observe that
homomorphic proof commitment schemes with extraction imply the existence perfectly hiding commitment
schemes with extraction.

Encryption with pseudorandom ciphertexts. A public-key cryptosystem (Kpseudo, E,D) has pseu-
dorandom ciphertexts of length `E(k) if for all non-uniform polynomial time adversaries A we have

Pr
[
(pk, dk)← Kpseudo(1k) : AEpk(·)(pk) = 1

]
≈ Pr

[
(pk, dk)← Kpseudo(1k) : ARpk(·)(pk) = 1

]
, (2)

where Rpk(m) runs c← {0, 1}`E(k) and every time returns a fresh c. We require that the cryptosystem has
errorless decryption.

Trapdoor permutations over domain {0, 1}
`E(k)

2 −1 imply pseudorandom cryptosystems as we can use
the Goldreich-Levin hard-core bit [GL89] of a trapdoor permutation to make a one-time pad. Trapdoor

permutations over {0, 1}
`E(k)

2 −1 can for instance be constructed from the RSA assumption assuming `E(k)
is large enough [CFGN96].

In our concrete setting, we note that the example we gave for GBGN implies the existence of a public-key
cryptosystem with pseudorandom ciphertexts assuming the subgroup decision assumption holds. The public
key is (n,G,GT , e, g, h) where n = pq and h has order q and a ciphertext is of the form c = gmhr. Recall
that we constructed G as the order n supgroup of the points on the elliptic curve y2 ≡ x3 + 1 mod P , where
P = `n−1 and P ≡ 2 mod 3. One can sample a random non-trivial point ρ = (x, y) on the curve of by picking

y ← ZP and setting x ≡ y P+1
3 . The point ρn is a point of order at most `. The point (x′, y′) = ρnc therefore

uniquely defines c. By choosing c′ at random in {0, 1}`K(k) such that c′ ≡ y′ mod P we get a pseudorandom

encoding of c in {0, 1}`E(k). To decrypt c′ we first compute y′ ≡ c′ mod P and x′ ≡ (y′)
P+1

3 mod P and then
c = (x′, y′)d, where d ≡ 0 mod ` and d ≡ 1 mod n. We can now decrypt c by computing cq = (gq)m and
doing a brute force search for m provided it is small enough.

The example we gave for GDLIN also implies the existence of public-key encryption with pseudorandom
ciphertexts under the decisional linear assumption. Here we get a ciphertext consisting of three group

elements (u, v, w) = (fr, hs, gr+sm), which can be encoded as three strings of length `E(k)
3 using the same

technique as the one we described above for GBGN.

Tag-based simulation-sound trapdoor commitment. A tag-based commitment scheme has four algo-
rithms (Ktag−com, commit,Tcom,Topen). The key generation algorithm Ktag−com produces a commitment
key ck as well as a trapdoor key tk. There is a commitment algorithm that takes as input the commitment
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key ck, a message m and any tag tag and outputs a commitment c = commitck(m, tag; r). To open a com-
mitment c with tag tag we reveal m and the randomness r. Anybody can now verify c = commitck(m, tag; r).
As usual, the commitment scheme must be both hiding and binding.

In addition, to these two algorithms there are also a couple of trapdoor algorithms Tcom,Topen that
allow us to create an equivocal commitment and later open this commitment to any value we prefer. We
create an equivocal commitment and an equivocation key as (c, ek) ← Tcomtk(tag). Later we can open it
to any message m as r ← Topenek(c,m, tag), such that c = commitck(m, tag; r). We require that equivocal
commitments and openings are indistinguishable from real openings. For all non-uniform polynomial time
adversaries A we have

Pr
[
(ck, tk)← Ktag−com(1k) : AR(·,·)(ck) = 1

]
≈ Pr

[
(ck, tk)← Ktag−com(1k) : AO(·,·)(ck) = 1

]
, (3)

where R(m, tag) returns a randomly selected randomizer and O(m, tag) computes (c, ek) ←
Tcomtk(m, tag); r ← Topenek(c,m, tag) and returns r. Both oracles ignore tags that have already been
submitted once.

The tag-based simulation-soundness property means that a commitment using tag remains binding even
if we have made equivocations for commitments using different tags. For all non-uniform polynomial time
adversaries A we have

Pr
[
(ck, tk)← K(1k); (c, tag,m0, r0,m1, r1)← AO(·)(ck) : tag /∈ Q and (4)

c = commitck(m0, tag; r0) = commitck(m1, tag; r1) and m0 6= m1

]
≈ 0,

where O(commit, tag) computes (c, ek) ← Tcomtk(tag), returns c and stores (c, tag, ek), and
O(open, c,m, tag) returns r ← Topenck(ek, c,m, tag) if (c, tag, ek) has been stored, and where Q is the
list of tags for which equivocal commitments have been made by O.

The term tag-based simulation-sound commitment comes from Garay, MacKenzie and Yang [GMY06],
while the definition presented here is from MacKenzie and Yang [MY04]. The latter paper offers a construc-
tion based on one-way functions.

Strong one-time signatures. We remind the reader that strong one-time signatures allow a non-uniform
polynomial time adversary to ask for a signature on one arbitrary message. It must be infeasible to forge a
signature on any different message and infeasible to come up with a different signature on the same message.
Strong one-time signatures can be constructed from one-way functions.

8.3 UC NIZK

The standard technique to prove that a protocol securely realizes an ideal functionality in the UC framework
is to show that the ideal model adversary S can simulate the entire protocol execution including the adversary
A and the parties P1, . . . , Pn on top of the ideal functionality. We use the notation P̃i for a real party in the
ideal process, which simply forwards inputs and outputs between the environment and the ideal functionality,
and Pi for a simulated party. In our case, there are two hurdles to overcome in constructing a UC NIZK
argument and proving that it is secure: First, S may learn that a statement C has been proved by P̃ and
has to simulate the UC NIZK argument π output by P without knowing the witness. Furthermore, if P is
corrupted at some point then S can corrupt P̃ and learn the witness but must now simulate the randomness
of P that would lead it to produce π. The second problem is that whenever S sees an acceptable UC NIZK
argument π for a statement C then an honest verifier would accept. S must therefore input a witness w to
FNIZK such that the ideal functionality can instruct Ṽ to accept.

The main idea in overcoming these hurdles is to commit to the witness w and make a non-erasure NIZK
argument that the commitment contains a witness w such that C(w) = 1. The non-erasure property of the
NIZK argument allows us to simulate NIZK arguments and the prover’s random coins.
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This leaves us with the commitment scheme. On one hand, when S simulates UC NIZK arguments we
want to make equivocal commitments that can be opened arbitrarily since S does not know the witness yet.
On the other hand, when S sees a UC NIZK argument that it did not construct itself we want it to be able
to extract the witness, since it havs to give a witness to FNIZK.

We construct such a commitment scheme from the tools specified in the previous section in a manner
related to the construction of a UC commitment by Canetti et al. [CLOS02]. We use a tag-based simulation-
sound trapdoor commitment scheme to commit to each bit of w. If w has length ` this gives us commitments
c1, . . . , c`. For honest provers S can use the trapdoor key tk to create equivocal commitments that can be
opened to arbitrary bits. This enables S to simulate the commitments of the honest provers, and when
learning w upon corruption it can simulate the randomness the provers used to commit to the witness w.

We still have an extraction problem since S may not be able to extract a witness from tag-based commit-
ments created by the adversary. To solve this problem we encrypt the openings of the commitments. Now
S can extract witnesses, but we have reintroduced the problem of equivocation. In a simulated commitment
there may be two different openings of a commitment ci to respectively 0 and 1, however, if the opening is
encrypted then we are stuck with one possible opening. This is where the pseudorandomness property of
the cryptosystem comes in handy. S can simply make two ciphertexts, one containing an opening to 0 and
one containing an opening to 1. Since the ciphertexts are pseudorandom, S can later open the ciphertext
containing the desired opening and plausibly claim that the other ciphertext was chosen as a random string.
To recap, the idea so far to commit to a bit b is to make a commitment ci to this bit, and create a ciphertext
ci,b containing an opening of ci to b, while choosing ci,1−b as a random string.

The commitment scheme is once again equivocable, however, once again we must be careful that S can
extract a message from an adversarial commitment during the simulation. The problem is that since S
equivocates commitments for honest provers it may be the case that the adversary can produce equivo-
cable commitments. This means, the adversary can produce some simulation-sound commitment ci and
encryptions ci,0, ci,1 of openings to respectively 0 and 1. To resolve this issue we will select the tags for the
commitments in a way so the adversary is forced to use a tag that has not been used to make an equivocable
commitment. When an honest prover is making a commitment, S select keys for a strong one-time signature
scheme (vk, sk) ← Ksign(1k) and uses tag = (vk, C) when making the commitment ci. The verification
key vk will be published together with the commitment the commitment (as well as something else) will be
signed under this key. The adversary must use different tags since it cannot forge signatures and therefore
the commitment is binding and only one of the ciphertexts can contain an opening of ci.

If the adversary corrupts a party P that has used vk earlier, then it may indeed sign messages using vk
and can therefore use vk in the tag for commitments. However, since we also include the statement C in the
tag for the commitment using vk, the adversary can only create an equivocable commitment in a UC NIZK
argument for the same statement C. We observe that in this particular case S does not need to extract the
witness w because it is revealed during the corruption of the prover P̃ .

Finally, in order to make the UC NIZK argument perfect zero-knowledge we wrap all the commitments
ci and the ciphertexts ci,b inside a perfectly hiding commitment c. In the simulation, however, S generates
the key for this commitment scheme in a way such that it is instead a cryptosystem enabling it to extract
the plaintexts. This last step is only added to make the UC NIZK argument perfect zero-knowledge; it can
be omitted if perfect zero-knowledge is not needed.

The resulting protocol can be seen in Figure 5. We use the notation from Section 8.2.

Theorem 14 The protocol φNIZK described in Figure 7 securely realizes FNIZK in the FCRS-hybrid model.

Proof. Let A be an arbitrary polynomial time adversary. We will describe a corresponding polynomial time
ideal process adversary S such that no non-uniform polynomial time environment can distinguish whether
φNIZK is running in the FCRS-hybrid model with parties P1, . . . , Pn and adversary A or the ideal process is
running with FNIZK, S and dummy parties P̃1, . . . , P̃n.
S starts by invoking a copy of A. It will run a simulated interaction of A, the parties and the environment.

In particular, whenever the simulated A communicates with the environment, S just passes this information
along. And whenever A corrupts a party Pi, S corrupts the corresponding dummy party P̃i.
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Common reference string generation:

1. hk ← Khiding(1k)

2. (ck, tk)← Ktag−com(1k)

3. (pk, dk)← Kpseudo(1k)

4. (σ, τ)← S1(1k)

5. Return Σ = (hk, ck, pk, σ)

Proof: On input (Σ, C, w) such that C(w) = 1 do

1. (vk, sk)← Ksign(1k)

2. For i = 1 to ` select ri at random and let ci = commitck(wi, (vk, C); ri)

3. For i = 1 to ` select Rwi
at random and set ci,wi

= Epk(ri;Rwi
) and choose ci,1−wi

as a
random string.

4. Choose r at random and let c = comhk(c1, c1,0, c1,1, . . . , c`, c`,0, c`,1; r)

5. Create an NIZK argument π for the statement that there exists w and randomness such
that c has been produced as described in steps 3,4 and 5 and C(w) = 1.

6. s← signsk(C, vk, c, π)

7. Return Π = (vk, c, π, s)

Verification: On input (Σ, C,Π)

1. Parse Π = (vk, c, π, s)

2. Verify that s is a signature on (C, vk, c, π) under vk.

3. Verify the NIZK argument π

4. Return 1 if all checks work out, else return 0

Figure 5: UC NIZK argument (KUC, V UC, PUC).

Common reference string: On input (start,sid) run Σ← KUC(1k).

Send (crs,sid,Σ) to all parties and halt.

Figure 6: Common reference string functionality FCRS used in our UC NIZK protocol φNIZK.

Proof: Party P waits until receiving (crs,sid,Σ) from FCRS.

On input (prove,sid, ssid, C,w) such that C(w) = 1 run Π← PUC(Σ, C, w). Output
(proof,sid, ssid,Π).

Verification: Party V waits until receiving (crs,sid,Σ) from FCRS.

On input (verify,sid, ssid, C,Π) run b← V UC(Σ, C,Π). Output (verification,sid, ssid, b).

Figure 7: Protocol φNIZK securely realizing FNIZK using (KUC, V UC, PUC) from Figure 5.

Simulating FCRS. S chooses the common reference string in the following way: It selects, (hk, xk) ←
Kextract(1

k); (ck, tk) ← Ktag−com(1k); (pk, dk) ← Kpseudo(1k) and (σ, τ) ← S1(1k). This means S is capa-
ble of extracting plaintexts committed under hk, able to create and equivocate simulation-sound trapdoor
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commitments, decrypt pseudorandom ciphertexts and simulate NIZK arguments and later upon learning a
witness simulate convincing randomness for creating this witness.

Let Σ = (hk, ck, pk, σ). S simulates FCRS sending (crs,sid,Σ) to all parties. Whenever the simulated A
decides to deliver such a message to a party Pi, S will simulate Pi receiving this string.

Simulating uncorrupted provers. Suppose S receives (proof,sid, ssid, C) from FNIZK. This means
that some dummy party P̃ received input (prove,sid, ssid, C,w), where C(w) = 1. S must simulate the
output a real party P would make, however, it may not know w.
S creates (vk, sk) ← Ksign(1k), sets tag = (vk, C) and forms ` equivocal commitments (ci, eki) ←

Tcomtk(tag). S then simulates openings of the ci’s to both 0 and 1. For all i = 1 to ` and b = 0 to 1 it
computes ρi,b ← Topeneki(ci, b, tag). It selects ri,b at random and sets ci,b = Epk(ρi,b; ri,b). S computes
c = Ehk(c1, c1,0, c1,1, . . . , c`, c`,0, c`,1; r) for a random r. Let x be the statement that there exists a witness
w and randomness such that c has been correctly generated using w and C(w) = 1. S chooses randomness
ρ and simulates the NIZK argument for x being true as π ← S2(σ, τ, x; ρ). Finally, S creates a one-time
signature s on (C, vk, c, π).

Let Π = (vk, c, π, s) and return (proof,Π) to FNIZK. FNIZK subsequently sends (proof,sid, ssid,Π) to
P̃ and S delivers this message so P̃ can output the proof to the environment.

Simulating uncorrupted verifiers. Suppose S receives (verify,C,Π) from FNIZK. This means an
honest dummy party Ṽ has received (verify,sid, ssid, C,Π) from the environment.
S checks the UC NIZK argument, b ← V UC(Σ, C,Π). If invalid, it sends (witness,no witness) to

FNIZK and delivers the resulting message (verification,sid, ssid, 0) to Ṽ that outputs this rejection to the
environment.

On the other hand, if Π is valid S must extract a witness w. If C has ever been proved by an honest
prover that was later corrupted, S already knows a witness and does not need to run the following extrac-
tion procedure. If the witness is not known already S uses the extraction key xk to extract a plaintext
c1, c1,0, c1,1, . . . , c`, c`,0, c`,1 from c. Since S knows the decryption key dk, it can then decrypt all ci,b. This
gives S plaintexts ρi,b. It checks for each i whether ci = commitck(b, (vk, C); ρi,b) and in that case b is a
possible candidate for the i-th bit of w.

If successful in all of this, S lets w be these bits. However, if any of the bits are ambiguous, i.e., wi could
be both 0 and 1, or if any of them are inextractable, then S sets w = no witness. S sends (witness,w) to
FNIZK and delivers the resulting output message to Ṽ that outputs it to the environment.

We will later argue that the probability of the UC NIZK argument being valid, yet S not being able to
extract a witness to give to FNIZK is negligible. That means, with overwhelming probability S inputs a valid
witness w to FNIZK when Π is an acceptable UC NIZK argument for satisfiability of C.

Simulating corruption. Suppose a simulated party Pi is corrupted by A. Then S has to simulate the
transcript of Pi. S starts by corrupting P̃i thereby learning all UC NIZK arguments the party has verified.
It is straightforward to simulate Pi’s internal tapes when running these verification processes.
S also learn all statements C that the party has proved together with the corresponding witnesses w.

Recall, the UC NIZK arguments Π have been provided by S. We now describe how S can simulate the
randomness that would lead Pi to produce such a UC NIZK argument Π. Since S created ci, ci,0, ci,1 such
that ci,0 contains a 0-opening of ci and ci,1 contains a 1-opening of ci it can produce good looking randomness
to claim that the party committed to wi. This also gives us convincing randomness for constructing all these
commitments and for producing the ciphertext c. S can now run the simulator algorithm S3 to simulate
randomness that would lead the prover to have produced the proof π.

Hybrids. We wish to argue that no non-uniform polynomial time environment can distinguish between
the adversary A running with parties executing φNIZK in the FCRS-hybrid model and the ideal adversary
S running in the FNIZK-hybrid model with dummy parties. In order to do so we define several hybrid
experiments and show that the environment cannot distinguish between any of them. Figure 8 gives an
overview of how different components of the proofs are handled. We will now give the full description of the
hybrid experiments and the security proof.

H0: This is φNIZK running in the FCRS-hybrid model with adversary A and parties P1, . . . , Pn.
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H0 (φNIZK) H1 H2 H3 H4 H5 H6 H7 ≡ SIM (FNIZK)
Hiding key hk Khiding Generated by Kextract

Tag-based commitments ci Commitment to wi Equivocated tag-based commitment to wi
Ciphertexts ci,1−wi

Random bit-string Encrypts opening of ci to 1− wi
Verifying signature s Adversary wins if forgery Disallow forged one-time signatures
Verifying Π Abort unless unique ci openings
Verifying Π Extract witness w
Proof π Make real NIZK proof π Simulate π

Figure 8: Sketch of the difference between the hybrid experiments H0 through H7.

H1: We modify H0 by running (hk, xk) ← Kextract(1
k) instead of hk ← Khiding(1k) when generating the

common reference string Σ.

H0 and H1 are indistinguishable, because it is hard to distinguish which key generation algorithm
creates hk.

H2: We modify H1 in the way an uncorrupted prover P creates tag-based simulation-sound trapdoor com-
mitments c1, . . . , c` to the bits of the witness. Let tag = (vk, C) as chosen in the protocol. Instead of
creating ci by selecting ri at random and setting ci = commitck(wi, tag; ri), we create an equivocal com-
mitment (ci, eki)← Tcomtk(tag) and subsequently produce randomness ρi,wi

← Topeneki(ci, wi, tag).
We continue the proof using ρi,wi instead of ri.

H1 and H2 are indistinguishable because it is hard to distinguish tag-based commitments and their
openings from tag-based equivocal commitments and their equivocations to the same messages (3).

H3: In H3, we make another modification to the procedure followed by an honest prover. We are already
creating ci as an equivocal commitment and equivocating it with randomness ρi,wi

that would open
it to contain wi. We run the equivocation procedure once more to also create convincing randomness
that would explain ci as a commitment to 1−wi. This means, we compute ρi,1−wi ← Topeneki(ci, 1−
wi, tag). Instead of selecting ci,1−wi

as a random string, we choose to encrypt ρi,1−wi
as ci,1−wi

=
Epk(ρi,1−wi

; ri,1−wi
) for a randomly chosen ri,1−wi

. We still pretend that ci,1−wi
is a randomly chosen

string when we carry out the NIZK proof π or if the prover is ever corrupted.

H2 and H3 are indistinguishable because of the pseudorandomness property of the cryptosystem (2).
Suppose we could distinguish H2 and H3, then we could distinguish between an encryption oracle and
an oracle that supplies randomly chosen strings.

H4: Consider the case where an honest party V receives (verify,sid, ssid, C,Π). Suppose Π is indeed an
acceptable UC NIZK argument and the one-time signature scheme has verification key vk. If vk was
selected by an honest party in making a UC NIZK argument and this party is still uncorrupted, yet
(C,Π) differ from the UC NIZK argument this honest party produced, then we output failure to the
environment.

To argue that H3 and H4 are indistinguishable we need to show that the probability of failure is
negligible. This follows from the fact that outputting failure corresponds to creating a forgery of the
strong one-time signature scheme.

H5: Again, we look at the case of an uncorrupted verifier that has an acceptable UC NIZK argument
Π for some C to verify. If (C,Π) were produced by an uncorrupted prover we do not change the
protocol, neither do we modify the protocol if C has been proved by an honest prover that has later
been corrupted. In all other cases, we use the extraction key xk in an attempt to decrypt c to get a
plaintext on the form c1, c1,0, c1,1, . . . , c`, c`,0, c`,1. Then we use the decryption key dk to attempt to
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decrypt the ci,b’s to get ρi,b so ci,b = commitck(b, (vk, C); ρi,b). We output failure if we encounter a
ci = commitck(0, (vk, C), ρi,0) = commitck(1, (vk, C), ρi,1).

Tag-based simulation-soundness (4), of the commitment scheme implies that H4 and H5 are indis-
tinguishable. To see this consider the tag (vk, C). Outputting failure corresponds to breaking the
binding property of the commitment scheme, unless we have previously created an equivocal commit-
ment with tag (vk, C). In H4, we ruled out the possibility of vk coming from a UC NIZK argument of
a party that is still uncorrupted. This leaves us with the possibility of A corrupting an honest prover
P , learning the secret key sk corresponding to vk and making a UC NIZK argument using the tag
(vk, C). If we have ever created an equivocal commitment using this tag, we did it for this prover.
However, this means that C stems from the same honest prover that has now been corrupted, and in
that case we do not try to extract ρi,b’s.

H6: As in H5, we try to extract ρi,0, ρi,1’s. We output failure if we cannot decrypt c to get
c1, c1,0, c1,1, . . . , c`, c`,0, c`,1. We also output failure if there is an i such that we cannot decrypt
either ci,0 or ci,1 to give us ρi,b so ci = commitck(b, (vk, C); ρi,b). We ruled out the possibility of both
ρi,0 and ρi,1 being an opening of ci in H5, so if everything is OK so far we have a uniquely defined w
such that for all i we have ci = commitck(wi, (vk, C); ρi,wi

). We output failure if C(w) 6= 1.

Call c well-formed if we can extract c1, c1,0, c1,1, . . . , c`, c`,0, c`,1 from c using xk, and for all i = 1 to `
at least one of the ci,0, ci,1 will have a proper ρi,b so ci = commitck(b, (vk, C); ρi,b), and if all of these
openings are unique then the bits constitute a witness w for C(w) = 1. Observe, from the perfect
extractability of the commitment scheme and the errorless decryption property of the pseudorandom
cryptosystem, we have that the randomness used in creating (hk, xk) and (pk, dk) is a witness to c
being malformed unless indeed it is well-formed. This gives us an NP-language Lguilt of malformed c
for which we know a malformation-witness. The adaptive culpable soundness of the NIZK argument
now tells us that with overwhelming probability c is well-formed and we have negligible chance of
outputting failure. This means H5 and H6 are indistinguishable.

H7: Instead of making real NIZK arguments for uncorrupted provers we use the non-erasure zero-knowledge
simulators. We use π ← S2(σ, τ, ·; ρ) with ρ random to simulate the honest provers’ NIZK arguments
that c has been correctly generated. Finally, if any such prover is corrupted we use r ← S3(σ, τ, x, π, ·, ρ)
to create convincing randomness that would make the prover output π on the witness for c being
correctly generated.

The non-erasure zero-knowledge property of the NIZK proof implies that H6 and H7 are indistinguish-
able.

SIM: This is the ideal process running with FNIZK and S.

H7 is already very similar to the ideal process. Honest provers in H7 make UC NIZK arguments in
the same way as S without using the knowledge of the witness w for anything. It therefore makes no
difference that S only learns w upon corruption of a party P when it has to simulate the random tape
of said party.

Whenever an honest verifier has to verify a proof C,Π we are also very close to what happens in the
simulation. If C,Π has been produced by an honest prover it returns 1, as will the dummy verifier
in the ideal process. If C is a statement proved by an honest prover, but this prover has later been
corrupted, then in H8 the verifier will return 1 if Π is an acceptable UC NIZK argument. S in a similar
situation will have corrupted the dummy prover that made the UC NIZK argument, and therefore it
will know the witness. If Π is an acceptable UC NIZK argument, it can therefore give this witness to
FNIZK that will make the dummy verifier output an acceptance to the environment. Finally, in the
remaining case we have argued in H7 that we manage to extract a witness w if Π is acceptable and this
extraction procedure is carried out exactly as it is done by S. Therefore, S can submit this witness to
FNIZK.
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In conclusion, H7 is perfectly indistinguishable from the ideal process. Since there is a path of in-
distinguishable hybrid experiments from H0 to SIM this shows us that running φNIZK as in H0 is
indistinguishable from running the ideal process as in SIM. �

Theorem 15 The UC NIZK argument in Figure 5 has perfect zero-knowledge.

Proof. We start by describing the simulator SUC = (SUC
1 , SUC

2 ). SUC
1 runs hk ← Khiding(1k); (ck, tk) ←

Ktag−com(1k); (pk, sk)← Kpseudo(1k); (σ, τ)← S1(1k). Let Σ = (hk, ck, pk, σ). SUC
1 outputs (Σ, τ).

Consider next SUC
2 that is given a circuit C on which to simulate a UC NIZK argument Π for satisfiability.

It generates keys for the strong one-time signature scheme (vk, sk)← Ksign(1k). Then it generates a perfectly
hiding commitment c← comhk(0). It simulates an argument π ← S2(σ, τ, x) for the statement x that c has
been correctly formed and contains a witness w so C(w) = 1. Finally, S2 creates a one-time signature on
everything, s← signsk(C, vk, c, π). It outputs the simulated UC NIZK argument Π = (vk, c, π, s).

Perfect zero-knowledge of the NIZK argument system implies that for all adversaries A we have

Pr
[
Σ← KUC(1k) : AP (Σ,·,·)(Σ) = 1

]
= Pr

[
(Σ, τ)← SUC

1 (1k) : APS(Σ,τ,·,·)(Σ) = 1
]
,

where PS is an oracle that on input (Σ, τ, C, w) outputs failure if C(w) = 0 and otherwise creates a UC
NIZK argument Π = (vk, c, π, s) by following the provers algorithm for creating vk, c, s but simulating the
NIZK argument π.

Next, we argue that for all adversaries A we have

Pr
[
(Σ, τ)← SUC

1 (1k) : APS(Σ,τ,·,·)(Σ) = 1
]

= Pr
[
(Σ, τ)← KUC(1k) : AS

′(Σ,τ,·,·)(Σ) = 1
]
,

where S′(Σ, τ, C, w) checks that C(w) = 1 and in that case returns Π← SUC
2 (Σ, τ, C).

The only difference between the two oracles PS and S′ is the message inside the commitment c. However,
since the commitment scheme is perfectly hiding, this does not change the distributions. �

Corollary 16 Homomorphic proof commitment schemes with perfect extraction and public-key cryptosys-
tems with pseudorandom ciphertexts imply the existence of a non-interactive perfect zero-knowledge protocol
that securely realizes FNIZK.

Corollary 17 If the subgroup decision assumption holds for the example of bilinear groups based on elliptic
curves as described in Section 4 then there exists a non-interactive perfect zero-knowledge protocol that
securely realizes FNIZK.

Corollary 18 If the decisional linear assumption holds for the example of bilinear groups based on elliptic
curves as described in Section 5 then there exists a non-interactive perfect zero-knowledge protocol that
securely realizes FNIZK.

9 Non-Interactive Zaps for Circuit SAT

We now give a construction of non-interactive zaps for Circuit SAT. The main idea is to select two correlated
common reference strings in such a way that the verifier can check that at least one of them is a perfect
binding commitment key. The prover then forms two proofs, one for each common reference string. Since one
of them is perfect binding we get perfect soundness. At the same time, we also generate the two correlated
common reference strings in such a way that one of them can be used to simulate proofs and the adversary
cannot tell which one of them is a perfect hiding key. This is what will give us witness indistinguishability.

Verifiable correlated key generation. We say a homomorphic proof commitment scheme has verifi-
able correlated key generation, if there exists two efficient algorithms K2, V2 with the following characteristics.
K2(1k, b) generates a perfect binding key ck1−b and a perfect hiding key ckb together with the trapdoor key
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tkb. It outputs (ck0, ck1, tkb). V2 takes as input two commitment keys ck0, ck1 and outputs 1 only if at
least one of the commitment keys is a perfect binding commitment key. We require that the correlated key
generation and the verification is perfectly correct, i.e., V2 always accepts the output of K2. We also require
that it must be hard to tell, which one of ck0 and ck1 is perfectly hiding. Formally, for all non-uniform
polynomial time adversaries A we have

Pr
[
(ck0, ck1, tk)← K2(1k, 0) : A(ck0, ck1) = 1

]
≈ Pr

[
(ck0, ck1, tk)← K2(1k, 1) : A(ck0, ck1) = 1

]
.

If the decisional linear assumption holds for the elliptic curve example of bilinear groups
from [BF03] described in Section 5 then the corresponding homomorphic proof commitment
scheme has verifiable correlated key generation. To generate a pair of keys, K2 generates
(ckb, tkb) = ((p,G,GT , e, g, f, h, u, v, wb), (ck, ru, sv)) ← Khiding(1k, b). Then it sets ck1−b =
(p,G,GT , e, g, f, h, u, v, wg1−2b). The verification algorithm V2 first checks that (p,G,GT , e) describes an
elliptic curve with a bilinear map. This is straightforward because it simply corresponds to verifying that
p ≡ 2 mod 3 is a prime. Next, it checks that g, f, h, u, v, w0, w1 are points on the curve and elements of the
group and that g, f, h are non-trivial. Finally, it checks that ck0, ck1 are the same strings, except for the last
elements w0, w1 and that w1 = w0g. At least one of (u, v, w0) and (u, v, w0g) must be a non-linear tuple and
therefore at least one of the keys is perfectly binding.

Not all homomorphic proof commitments have correlated key generation. We do for instance not know
how to use the subgroup decision assumption to get a homomorphic proof commitment scheme with correlated
key generation. The stumbling block in the subgroup decision setting is that given h0 and h1 we do not
know how to guarantee that at least one of them has order q without revealing which one it is.

Proof: The prover given 1k, C and wires w such that C(w) = 1 proceeds as follows.

1. Generate a verifiable pair of commitment keys (ck0, ck1, tk0)← K2(1k, 0)

2. Use the NIZK prover to obtain a proof π0 of the statement with respect to the common
reference string ck0

3. Use the NIZK prover to obtain a proof π1 of the statement with respect to the common
reference string ck1

4. The resulting proof is π = (ck0, ck1, π0, π1)

Verification: On input C and a proof π as described above, accept if and only if the following
procedure succeeds

1. Verify that at least one of ck0, ck1 is a perfect binding key V2(ck0, ck1) = 1

2. Verify π0 with respect to the common reference string ck0

3. Verify π1 with respect to the common reference string ck1

Figure 9: Non-interactive zap for Circuit SAT.

Theorem 19 The protocol in Figure 9 is a non-interactive proof in the plain model for Circuit SAT with
perfect completeness, perfect soundness and computational witness indistinguishability if the homomorphic
proof commitment scheme has verifiable correlated key generation.

Proof. The protocol is perfectly complete because the NIZK proofs for Circuit SAT are perfectly complete
both on perfect binding keys and perfect hiding keys and the correlated key generation has perfect correctness.

Perfect soundness follows from the fact that given V2(ck0, ck1) = 1 at least one of ck0 and ck1 must be
a perfect binding key. The perfect soundness of the proof system over this common reference string then
implies that C must be satisfiable.
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We now argue that the zap is computationally witness indistinguishable assuming verifiable correlated key
generation for the homomorphic proof commitment scheme by means of a hybrid argument. The adversary
generates a circuit C and two witnesses w0 and w1.

1. In the first hybrid we run the real zap generating the keys using K2(1k, 0) and the proof using witness
w0.

2. The second hybrid proceeds as the first, except that π0 is generated using witness w1 instead of using
witness w0.

Hybrid 1 and Hybrid 2 are identically distributed. This follows from the fact that ck0 is a perfect
hiding key and therefore the proof π0 has perfect zero-knowledge.

3. The third hybrid proceeds as the second, except that it uses (ck0, ck1, tk1)← K2(1k, 1) to generate the
common reference strings. Now ck0 is a perfectly binding key and ck1 is perfectly hiding.

Hybrid 2 and Hybrid 3 are computationally indistinguishable since no non-uniform polynomial time
adversary can distinguish between generating the keys using K2(1k, 0) or K2(1k, 1).

4. The fourth hybrid proceeds as the third, except that for π1, it uses witness w1 to obtain π1 instead of
using witness w0.

Hybrid 3 and Hybrid 4 are identically distributed. This follows from the fact that ck1 is a perfect
hiding key and therefore the proof π1 has perfect zero-knowledge.

5. Finally, the fifth hybrid proceeds as the fourth, except that it uses (ck0, ck1, tk0) ← K2(1k, 0) to
generate the common reference strings. This is precisely the zap using witness w1.

Hybrid 4 and Hybrid 5 are computationally indistinguishable since no non-uniform polynomial time
adversary can distinguish between generating the keys using K2(1k, 0) or K2(1k, 1). �

Corollary 20 If the decisional linear assumption holds for the elliptic curve based bilinear groups in [BF03]
then non-interactive zaps exist.
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A Perfect NIZK Argument with Adaptive Soundness

Adaptive soundness. (K,P, V ) is said to have adaptive soundness, if for all non-uniform polynomial time
adversaries A we have

Pr
[
σ ← K(1k); (x, π)← A(σ) : V (σ, x, π) = 1 and x /∈ L

]
≈ 0.

Consider the perfect NIZK argument (Sσ, P, V ) from Section 7. We will bound the probability of an
adversary breaking the adaptive soundness on circuits of size less than `(k).

Theorem 21 If perfect binding keys and perfect hiding keys can be distinguished with at most probability
νKeyDist(k) < `(k)−`(k)ν(k), where ν is a negligible function, then (Sσ, P, V ) has adaptive soundness for
circuits of size `(k).

Proof.

Pr
[
σ ← Sσ(1k); (C, π)← A(σ) : C /∈ L and |C| ≤ `(k) and V (σ,C, π) = 1

]
=

∑
C/∈L:|C|≤`(k)

Pr
[
σ ← Sσ(1k); (C ′, π)← A(σ) : C ′ = C and V (σ,C ′, π) = 1

]
≤

∑
C/∈L:|C|≤`(k)

Pr
[
σ ← Sσ(1k); (C ′, π)← A(σ) : V (σ,C, π) = 1

]
≤

∑
C/∈L:|C|≤`(k)

νKeyDist(1
k) <

∑
C/∈L:|C|≤`(k)

`(k)−`(k)ν(1k) ≤ ν(1k).

�
Let us make a back of the envelope estimate of how large circuits we can hope to have adaptive soundness

for if we are using the subgroup decision assumption, where νKeyDist = νSD, the upper bound on the advantage
in deciding the subgroup decision problem. If the subgroup decision assumption is broken, it is still not clear
whether it leads to an attack on adaptive soundness. However, let us be conservative and aim for circuits of
size `(k) such that `(k)`(k)νSD(k) is negligible.

The best attack on the subgroup decision assumption we can think of consists of factoring n. The number
field sieve algorithms factors n in heuristically

e(1.92+o(1))(lnn)1/3(ln lnn)2/3 = 2(log e)2/3(1.92+o(1))k1/3(ln( k
log e ))2/3

steps. From this we make a guess that there exists an algorithm that decides the subgroup decision problem

with advantage 2−(log e)2/3(1.92+o(1))k1/3(ln( k
log e ))2/3 . This implies that 2−(log e)2/3(1.92+o(1))k1/3(ln( k

log e ))2/3 <
νSD(k), so

`(k)`(k)2−(log e)2/3(1.92+o(1))k1/3(ln( k
log e ))2/3

must be negligible. Letting `(k) = kε gives us

2k
ε log(kε)−(log e)2/3(1.92+o(1))k1/3(ln( k

log e ))2/3

must be negligible, which is true for any constant ε < 1/3.
Picking for instance ε = 1/4 works. Requiring that the common reference string is at least of size `(k)4

bits is not unreasonable in comparison with earlier constructions of computational NIZK proofs. However,
security relies on the very strong assumption that any non-uniform polynomial time adversary has at most

νSD(k) = 2−(log k/4)k1/4 advantage in the subgroup decision problem.
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