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Abstract

Non-interactive zero-knowledge proofs play an essential role in many cryptographic protocols. We
suggest several NIZK proof systems based on prime order groups with a bilinear map. We obtain
linear size proofs for relations among group elements without going through an expensive reduction
to an NP-complete language such as Circuit Satisfiability. Security of all our constructions is based on
the decisional linear assumption.

The NIZK proof system is quite general and has many applications such as digital signatures,
verifiable encryption and group signatures. We focus on the latter and get the first group signature
scheme satisfying the strong security definition of Bellare, Shi and Zhang [BSZ05] in the standard
model without random oracles where each group signature consists only of a constant number of group
elements.

We also suggest a simulation-sound NIZK proof of knowledge, which is much more efficient than
previous constructions in the literature.

Caveat: The constants are large, and therefore our schemes are not practical. Nonetheless, we find
it very interesting for the first time to have NIZK proofs and group signatures that except for a constant
factor are optimal without using the random oracle model to argue security.

Keywords: Non-interactive zero-knowledge, simulation-sound extractability, group signatures, deci-
sional linear assumption.

∗An extended abstract appears at Asiacrypt 2006. This is the full paper.
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1 Introduction

A non-interactive proof system allows a prover to convince a verifier about the truth of a statement. Zero-
knowledge captures the notion that the verifier learns no more from the proof than the truth of the state-
ment. We refer to Section 2 for formal definitions of non-interactive zero-knowledge (NIZK) proofs. NIZK
proofs play a central role in the field of cryptography. Our goal in this paper is to construct short efficient
prover NIZK proofs for languages that come up in practice when constructing cryptographic protocols.
As an example of the usefulness of these new techniques, we construct group signatures consisting of a
constant number of group elements.

1.1 Setup

We use two cyclic groupsG,G1 of orderp, wherep is a prime. We make use of a bilinear mape : G×G→
G1. I.e., for allu, v ∈ G anda, b ∈ Z we havee(ua, vb) = e(u, v)ab. We require thate(g, g) is a generator
of G1 if g is a generator ofG. We also require that group operations, group membership, and the bilinear
map be efficiently computable. Such groups have been widely used in cryptography in recent years.

Let G be an algorithm that takes a security parameter as input and outputs(p,G,G1, e, g) such thatp
is prime,G,G1 are descriptions of groups of orderp, e : G × G → G1 is an admissible bilinear map as
described above andg is a random generator ofG.

We use the decisional linear assumption introduced by Boneh, Boyen and Shacham [BBS04].

Definition 1 (Decisional Linear Assumption (DLIN)) We say the decisional linear assumption holds for
the bilinear group generatorG if for all non-uniform polynomial time adversariesA we have

Pr
[
(p,G,G1, e, g)← G(1k);x, y, r, s← Zp : A(p,G,G1, e, g, g

x, gy, gxr, gys, gr+s) = 1
]

≈ Pr
[
(p,G,G1, e, g)← G(1k);x, y, r, s, d← Zp : A(p,G,G1, e, g, g

x, gy, gxr, gys, gd) = 1
]
.

Throughout the paper, we work over a bilinear group(p,G,G1, e, g) ← G(1k) generated such that the
DLIN assumption holds forG. We call this a DLIN group. Honest parties always check group membership
of G,G1 when relevant and halt if an element does not belong to a group that it was supposed to according
to the protocol.

Given a DLIN group(p,G,G1, e, g) we can set up a semantically secure cryptosystem as in [BBS04].
We choose at randomx, y ← Z∗

p. The public key is(f, h), wheref = gx, h = gy, and the secret key
is (x, y). To encrypt a messagem ∈ G we chooser, s ← Zp and let the ciphertext be(u, v, w) =
(f r, hs, gr+sm). To decrypt a ciphertext(u, v, w) ∈ G3 we computem = D(u, v, w) = u−1/xv−1/yw.

The cryptosystem(Kcpa, E,D) has several nice properties. The DLIN assumption forG implies
semantic security under chosen plaintext attack (CPA). All triples(u, v, w) ∈ G3 are valid ciphertexts.
Also, the cryptosystem is homomorphic in the sense that

E(m1; r1, s1)E(m2, r2, s2) = E(m1m2; r1 + r2, s1 + s2).

Given a group(p,G,G1, e, g) we define a pairing product equation of length` over variables
a1, . . . , an to be an equation of the following form.

∏̀
j=1

e(qj,0, qj,1) = 1, where qj,b = bj,b

n∏
i=1

a
ej,b,i

i with bj,b ∈ G , ej,b,i ∈ Zp.

Given a setS of pairing product equationseq1, . . . , eqm we can ask the natural question:Is there a
tuple(a1, . . . , an) ∈ Gn such that all equations inS are simultaneously satisfied?
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To illustrate the generality of the language of satisfiable pairing product equations we observe a re-
duction from the NP-complete language Circuit Satisfiability. Leta1, . . . , an correspond to the wires
of the circuit, which without loss of generality contains only NAND-gates. LetS contain equations
e(ai, aig

−1) = 1 forcing eachai = gbi to encode a bitbi ∈ {0, 1}. For each NAND-gate with input
wires i0, i1 and outputi2 add toS the equatione(ai0 , ai1) = e(g, ga−1

i2
), which is satisfied if and only if

bi2 = ¬(bi0 ∧ bi1).
Our main motivation for being interested in satisfiability of pairing product equations is not NP-

completeness though. Satisfiability of pairing product equations comes up in practice when constructing
cryptographic protocols and by making a direct NIZK proof instead of first reducing the problem to some
other language such as Circuit Satisfiability we keep proofs short.

For concreteness, let us use verifiable encryption as an example of a pairing product satisfiability
question that may come up in practice. Suppose(u, v, w) is a ciphertext under the public key(f, h) of
the DLIN-based cryptosystem described earlier. We are interested in whether this ciphertext encrypts a
particular messagem. This is the case, if and only if there existsa such thate(g, u) = e(a, f) and
e(h,wm−1a−1)) = e(v, g). If we knowr, s we can compute the satisfiability witnessa = gr.

1.2 NIZK Proofs for Satisfiability of Pairing Product Equations

NIZK PROOFS. The central technical contribution of this paper is an NIZK proof of sizeO(n+ `) group
elements for satisfiability of a set of pairing product equations of combined length` =

∑m
j=1 `j . The

proof system has perfect completeness and perfect soundness.

RELATED WORK ON NIZK PROOFS. NIZK proofs were introduced by Blum, Feldman and Micali
[BFM88] and they suggested an NIZK proof for a single statement based on the hardness of deciding
quadratic residousity. Blum et al. [BDMP91] extended this to multi-theorem NIZK proofs. Feige, Lapidot
and Shamir [FLS99] and Kilian and Petrank [KP98] give constructions based on trapdoor permutations.

Recently Groth, Ostrovsky and Sahai [GOS06b] have constructed NIZK proofs from composite order
bilinear groups introduced by Boneh, Goh and Nissim [BGN05]. Even more recently Groth, Ostrovsky
and Sahai [GOS06a] have introduced the setting in this paper, a bilinear group of prime order and the DLIN
assumption. They construct non-interactive witness-indistinguishable proofs without any setup assump-
tions. In the common reference string (CRS) model both results give NIZK proofs for Circuit Satisfiability
of sizeO(|C|) group elements.

All the above-mentioned papers have in common that they focus on an NP-complete language, usually
Circuit Satisfiability, and suggest a bit-by-bit or gate-by-gate NIZK proof for this language. Our paper
differs by introducing new techniques that allows makingdirect NIZK proofs for satisfiability of pairing
product equations. This allows us to construct constant/linear size cryptographic protocols for digital
signatures, RCCA-secure encryption[CKN03], verifiable encryption and group signatures.

The only other way we know of to get linear size NIZK proofs/arguments for any practical language
is the Fiat-Shamir heuristic: Make a 3-move public coin (honest verifier) zero-knowledge protocol non-
interactive by computing the verifier’s challenge as a hash of the statement and the initial protocol message.
To argue security, one models the hash-function as a random oracle [BR93]. It is well known that using
the random oracle model sometimes results in insecure real life protocols [CGH98, CGH04, Nie02, GK03,
BBP04]. In comparison, our NIZK proofs haveprovable securityunder the DLIN assumption.

SIMULATION -SOUND EXTRACTABLE NIZK PROOFS. Combining the definitions of simulation-
soundness introduced by Sahai [Sah01] and proofs of knowledge from De Santis and Persiano [DP92],
we get simulation-sound extractability. Here the simulator first creates a simulated CRS together with a
simulation trapdoor and an extraction trapdoor. We require that even after the adversary has seen simulated
proofs on arbitrary statements, if it constructs a new valid proof on any statement, then we can extract a
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witness. Simulation-sound extractability is a very strong notion, in particular it implies non-malleability
as defined by De Santis et al. [DDO+02].

We construct a simulation-sound extractable NIZK proof for satisfiability of pairing product equations.
Our NIZK proof has a CRS with a description of the group and a constant number of group elements, and
the proofs consist ofO(n+ `) group elements.

RELATED WORK ON SIMULATION-SOUND NIZK PROOFS. As stated before, our interest in this paper
is satisfiability of pairing products equations. However, in order to compare our scheme with previous
work let us look at the case of Circuit Satisfiability. [Sah01] constructed a one-time simulation-sound
NIZK proof system using techniques from Dwork, Dolev and Naor [DDN00]. Later a construction for
unbounded simulation-sound extractable NIZK arguments was given by [DDO+02], where the adversary
can see many simulated arguments of arbitrary statements. The schemes from both these papers are based
on trapdoor permutations but are not practical. For the sake of fairness in evaluating the quality of our
contribution, we have also considered whether the techniques from [GOS06b] could be used to get good
efficiency for simulation-sound extractability. The answer to this question seems to be negative, the best
construction we can think of using GOS-techniques gives an additive polynomial size overhead.

Scheme NIZK proof bit size Assumption
[DDO+02] O(|C|poly(k)) Trapdoor permutations
Potential use of [GOS06b] techniquesO(|C|k + poly(k)) Subgroup decision

This paper O(|C|k) DLIN

Figure 1: Comparison of simulation-sound extractable proofs for Circuit Satisfiability

COMMON REFERENCE STRING VERSUS UNIFORM RANDOM STRING. We will construct NIZK proofs
and simulation-sound extractable NIZK proofs in the common reference string model, where the prover
and the verifier both have access to a CRS chosen according to some distribution. If this distribution is
uniform at random we call it the uniform random string model. In some settings it is easier to work with a
URS, for instance a URS can easily be jointly generated using multi-party computation techniques.

Our NIZK proofs use a common reference string that contains a description of a bilinear group and a
number of group elements. Depending on the group elements, the CRS will give either perfect soundness
of perfect zero-knowledge. With overwhelming probability random group elements will lead to a perfect
soundness CRS. Assuming that we can use a uniform random string to get a description of a DLIN group
and a number of random group elements, we will therefore get NIZK proofs and simulation-sound NIZK
proofs in the URS-model. Since there is a negligible chance of picking a perfect zero-knowledge CRS,
this gives statistical soundness instead of perfect soundness, which is the best we can hope for in the URS-
model. We remark that natural candidates for bilinear DLIN groups based on elliptic curves are efficiently
samplable from a URS [GOS06a]. For the sake of simplicity we will just work with the CRS-model in the
paper, but invite the reader to note that all constructions work in the URS-model as well.

1.3 An Application: Constant Size Group Signatures

Group signatures, introduced by Chaum and van Heyst [CvH91], allow a member to sign messages anony-
mously on behalf of a group. A group manager controls the group and decides who can join. In case of
abuse, the group manager is able to open a signature to reveal who the signer is. It is hard to design group
signatures and most schemes [CS97, CM98, ACJT00, CL02, AdM03, CG04, KTY04, CL04, BBS04, FI05,
KY05] use the random oracle model in the security proof.

Bellare, Micciancio and Warinschi [BMW03] suggest rigorous security definitions for group signatures
in thestaticcase where the set of members is fixed from the start and never changes. Bellare, Shi and Zhang
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[BSZ05] extend the security model to the partiallydynamiccase where the group manager can enroll new
members in the group. Both [BMW03] and [BSZ05] suggest constructions of group signatures based on
trapdoor permutations. These constructions are very inefficient and only indicate feasability.

Boyen and Waters [BW06] use a combination of the Waters signature scheme [Wat05] and the
[GOS06b] NIZK proofs. They assume a static setting and as part of a group signature they encrypt the
identity of the signer bit by bit. This means that a group signature consists ofO(log n) group elements,
wheren is the number of members in the group. The group signature scheme satisfies a relaxed version
of the [BMW03] security definition, where the anonymity is guaranteed only when no signatures have
been opened and traced to the signer. In comparison, the full-anonymity definition in [BMW03] demands
that anonymity is preserved even when the adversary can get an opening of any other signature than the
challenge.

Ateniese et al. [ACHdM05] use a bilinear group of prime order. The advantage of this scheme is that it
is very efficient, a group signature consists of 8 group elements. However, they use several strong security
assumptions and their security model is even weaker than that of [BW06] since it does not protect against
key-exposures; knowledge of a signing key immediately allows one to tell which signatures this member
has made. In comparison, the BMW,BSZ-models do guard against key exposure.

The tools in this paper give a construction of group signatures where both keys and signatures consist
of a constant number of group elements. The construction involves carefully constructing and tailoring a
signature scheme and the simulation-sound extractable NIZK proof system such that they fit each other.
The constant is large; we do not claim this to be a practical scheme. Rather this should be seen as an
interesting feasibility result; under a simple and natural security assumption there exists an up to a constant
optimal dynamic group signature scheme satisfying the strong security definitions from [BMW03, BSZ05].

Scheme Signature in bits Security model Assumption
[BMW03] poly(k) [BMW03] (fixed group) Trapdoor permutations
[BSZ05] poly(k) [BSZ05] (dynamic group) Trapdoor permutations
[BW06] 3k + 2k log n [BMW03], CPA-anonymity Subgroup decision and CDH
[ACHdM05] 8k UC-model, non-adaptive adversaryStrong SXDH, q-EDH, strong LRSW

This paper O(k) [BSZ05] DLIN

Figure 2: Comparison of group signature schemes

2 Definitions: Non-interactive Zero-Knowledge Proofs

Let R be an efficiently computable binary relation. For pairs(x,w) ∈ R we callx the statement andw
the witness. LetL be the language consisting of statements inR.

A proof system for a relationR consists of a key generation algorithmK, a proverP and a verifier
V . The key generation algorithm produces a CRSσ. The prover takes as input(σ, x, w) and produces
a proofπ. The verifier takes as input(σ, x, π) and outputs 1 if the proof is acceptable and 0 if rejecting
the proof. We call(K,P, V ) a proof system forR if it has the completeness and soundness properties
described below.

In this paper, we will extend the usual definitions of NIZK proofs by allowing the relationR to depend
on the CRSσ. In our constructions, the CRS will contain a description of a bilinear group as well as some
group elements, and we will make NIZK proofs for relations over this group and these group elements.
This all builds up to an NIZK proof for satisfiability of pairing product equations. The relation for satisfi-
ability of pairing product equations does not depend on the group elements in the CRS, but it still depends
on the group in question. One way of looking at this result is that given a DLIN group, we can formulate
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the problem of satisfiability of pairing product equations, and we can on top of this group construct a CRS
so we can prove satisfiability of pairing product equations.

PERFECT COMPLETENESS. For all adversariesA we have

Pr
[
σ ← K(1k); (x,w)← A(σ);π ← P (σ, x, w) : V (σ, x, π) = 1 if (x,w) ∈ R

]
= 1.

PERFECT SOUNDNESS. For all adversariesA we have

Pr
[
σ ← K(1k); (x, π)← A(σ) : V (σ, x, π) = 0 if x /∈ L

]
= 1.

PERFECT KNOWLEDGE EXTRACTION. We call (K,P, V ) a proof of knowledge forR if there exists a
knowledge extractorE = (E1, E2) with the properties described below.

For all adversariesA we have

Pr
[
σ ← K(1k) : A(σ) = 1

]
= Pr

[
(σ, ξ)← E1(1k) : A(σ) = 1

]
.

For all adversariesA we have

Pr
[
(σ, ξ)← E1(1k); (x, π)← A(σ);w ← E2(σ, ξ, x, π) : V (σ, x, π) = 0 or (x,w) ∈ R

]
= 1.

(UNBOUNDED) COMPUTATIONAL ZERO-KNOWLEDGE. We call(K,P, V ) an NIZK proof forR if there
exists a polynomial time simulatorS = (S1, S2) with the following zero-knowledge property. For all
non-uniform polynomial time adversariesA we have

Pr
[
σ ← K(1k) : AP (σ,·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← S1(1k) : AS(σ,τ,·,·)(σ) = 1

]
,

whereS(σ, τ, x, w) = S2(σ, τ, x) for (x,w) ∈ R and both oracles outputfailure if (x,w) /∈ R. Here
f(k) ≈ g(k) means that there exists a negligible functionν so|f(k)− g(k)| < ν(k).
(UNBOUNDED) SIMULATION SOUNDNESS. Simulating a proof for a false statement might jeopardize the
soundness of the proof system. We say an NIZK proof is simulation sound if an adversary cannot prove
any false statement even after seeing simulated proofs of arbitrary statements.

More precisely, an NIZK proof is simulation sound if for all non-uniform polynomial time adversaries
we have

Pr
[
(σ, τ)← S1(1k); (x, π)← AS2(σ,τ,·)(σ) : (x, π) /∈ Q andx /∈ L andV (σ, x, π) = 1

]
≈ 0,

whereQ is the list of simulation queries and responses(xi, πi).
(UNBOUNDED) SIMULATION SOUND EXTRACTABILITY. Combining simulation soundness and knowl-
edge extraction, we may require that even after seeing many simulated proofs, whenever the adversary
makes a new proof we are able to extract a witness. We call this property simulation sound extractability.
Simulation sound extractability implies simulation soundness, because if we can extract a witness from
the adversary’s proof, then obviously the statement must belong to the language in question.

Consider an NIZK proof of knowledge(K,P, V, S1, S2, E1, E2). LetSE1 be an algorithm that outputs
(σ, τ, ξ) such that it is identical toS1 when restricted to the first two parts(σ, τ). We say the NIZK proof
is simulation sound if for all non-uniform polynomial time adversaries we have

Pr
[
(σ, τ, ξ)← SE1(1k); (x, π)← AS2(σ,τ,·)(σ, ξ);w ← E2(σ, ξ, x, π) :

(x, π) /∈ Q and(x,w) /∈ R andV (σ, x, π) = 1
]
≈ 0,
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whereQ is the list of simulation queries and responses(xi, πi).1

Simulation sound extractability implies non-malleability as defined and proven in [DDO+02]. As we
shall see in Appendix 6.1 it also implies universally composable NIZK secure against adaptive adversaries
in a model where we allow parties to erase data from their tapes.

COMPOSABLE ZERO-KNOWLEDGE. We will strengthen the definition of zero-knowledge in the following
way. First, we require that an adversary cannot distinguish a real CRS from a simulated CRS. Second, we
require that the adversary,even when it gets access to the secret keyτ , cannot distinguish real proofs on
a simulated CRS from simulated proofs. A hybrid argument shows that it is sufficient to require thatA
cannot distinguish one real proof from one simulated proof.

Reference string indistinguishability. For all non-uniform polynomial time adversariesA we have

Pr
[
σ ← K(1k) : A(σ) = 1

]
≈ Pr

[
(σ, τ)← S1(1k) : A(σ) = 1

]
.

Simulation indistinguishability. For all non-uniform interactive polynomial time adversariesAwe have

Pr
[
(σ, τ)← S1(1k); (x,w)← A(σ, τ);π ← P (σ, x, w) : A(π) = 1 and(x,w) ∈ R

]
≈ Pr

[
(σ, τ)← S1(1k); (x,w)← A(σ, τ);π ← S2(σ, τ, x) : A(π) = 1 and(x,w) ∈ R

]
.

In [DDO+02] reference indistinguishability is also separated from simulation indistinguishability.
They require the simulated CRS to be statistically indistinguishable from a real CRS, whereas we are
satisfied with computational indistinguishability. This is necessary to obtain NIZK proofs, their schemes
are arguments that are only secure against a polynomial time prover.

On the other hand, our definition of simulation indistinguishability is stronger than the definition in
[DDO+02]. We allow the adversary to see the simulation trapdoorτ , whereas they do not give the adver-
sary such power.

Theorem 2 If (K,P, V, S1, S2) is a proof system with composable zero-knowledge, then it is unbounded
zero-knowledge.

Proof. Reference string indistinguishability implies

Pr
[
σ ← K(1k) : AP (σ,·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← S1(1k) : AP (σ,·,·)(σ) = 1

]
,

by the indistinguishability of the reference strings, sinceA can simply run the prover itself.
Let q(k) be an upper bound on the number of queriesA can ask the oracle, i.e., let for instanceq(k) be

the run-time ofA. DefinePS[i](σ, τ, ·, ·) to be an oracle that on queryj ∈ 1, . . . , q(k) with a valid pair
(x,w) ∈ R responds withS2(σ, τ, x) if j ≤ i andP (σ, x, w) if j > i. NoticeP (σ, ·, ·) = PS[0](σ, τ, ·, ·)
andS(σ, τ, ·, ·) = PS[q(k)](σ, τ, ·, ·). A hybrid argument shows that if(K,P, V, S1, S2) is not unbounded
zero-knowledge, then for some0 ≤ i < q(k) the adversary must be able to distinguishPS[i] from
PS[i+ 1].

To conclude the proof, we observe that simulation indistinguishability implies that for alli we have

Pr
[
(σ, τ)← S1(1k) : APS[i](σ,τ,·,·)(σ) = 1

]
≈ Pr

[
(σ, τ)← S1(1k) : APS[i+1](σ,τ,·,·)(σ) = 1

]
,

1It is optional for our purposes whether to give the adversary access toξ or not, but since we can prove the stronger statement
we define simulation sound extractability as described above.
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since the oracles can be efficiently implemented if one knowsσ, τ and inserts the challengeπ as the
answer to queryi. �

Our motivation for introducing this stronger notion of zero-knowledge is that it allows different zero-
knowledge proofs to use the same CRS. Suppose we have relationsR1, . . . , Rn and corresponding NIZK
proofs with composable zero-knowledge using the same key generator and CRS simulatorK,S1. A hybrid
argument shows that no polynomial time adversary can distinguish real proofs or simulated proofs for
relationRi, even if it sees arbitrary proofs or simulations for statements inLj 6=i using the same CRS. The
reason this is the case is that in the definition of simulation indistinguishability we giveτ to the adversary,
so it can itself implement the simulatorS2 for any of the relations.

In our paper, all the NIZK proofs will indeed generate the CRS in the same way and also simulate the
CRS in the same way, so we get better performance by not having to deal with different common reference
strings for each proof system. At the same time, it simplifies our exposition.

3 A Homomorphic Commitment Scheme

We use the cryptosystem from Section 1.1 to create a homomorphic commitment scheme such that depend-
ing on how we generate the public key we get either a perfectly binding commitment scheme or a perfectly
hiding trapdoor commitment scheme. The idea is that ifK is an encryption of1, thenKmE(1; r, s) is
also an encryption of 1 and we have a perfectly hiding commitment tom. On the other hand, ifK is not
an encryption of 1, thenKmE(1; r, s) is perfectly binding.

Perfectly binding key generation: Let ck = (p,G,G1, e, g, f, h, u, v, w) wheref, h is a public key for
the cryptosystem and(u, v, w) = (f ru , hsv , gtw) with tw 6= ru + sv is an encryption of a non-trivial
element.

Perfectly hiding trapdoor key generation: Let ck = (p,G,G1, e, g, f, h, u, v, w) wheref, h is a public
key for the cryptosystem and(u, v, w) = (f ru , hsv , gru+sv) is an encryption of1.

The corresponding trapdoor key istk = (ck, x, y, ru, sv).

Commitment: To commit to messagem ∈ Zp pick r, s ← Zp and let the commitment bec =
(c1, c2, c3) = com(m; r, s) = (umf r, vmhs, wmgr+s).

The commitment schemes(Kbinding, com) and(Khiding, com) have several nice properties. The CPA-
security of the cryptosystem implies that one cannot distinguish perfect binding keys from perfect hiding
keys. This in turn implies computational hiding respectively computational binding for the two schemes.
The homomorphic property of the cryptosystem transfers to the commitment scheme.

com(m1 +m2; r1 + r2, s1 + s2) = com(m1; r1, s1)com(m2; r2, s2).

For the perfectly binding commitment scheme, anyc ∈ G3 is a commitment to some messagem ∈ Zp.

4 Efficient Non-interactive Zero-Knowledge Proof Systems

4.1 Common Reference String

All our NIZK proof systems will use the same key generatorK and reference string simulatorS1 described
below. A common reference string is a public key for the perfectly binding commitment scheme described
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in the previous section. The soundness of the NIZK proofs will come from the perfect binding property
of the commitment scheme, which will make it impossible for any adversary to cheat. In simulations, we
will use a public key for a perfectly hiding commitment scheme as the simulated common reference string.
Here the perfect hiding property of the commitment scheme is what enables us to simulate proofs.

Common reference string: On input1k do

1. (p,G,G1, e, g)← G(1k)

2. (pk, sk)← Kcpa(p,G,G1, e, g)

3. ck ← Kbinding(pk)

4. Returnσ = ck = (p,G,G1, e, g, f, h, u, v, w)

Simulated reference string: On input1k do

1. (p,G,G1, e, g)← G(1k)

2. (pk, sk)← Kcpa(p,G,G1, e, g)

3. (ck, tk)← Khiding(pk, sk)

4. Letσ = ck = (p,G,G1, e, g, f, h, u, v, w)

5. Letτ = tk = (σ, x, y, ru, sv)

6. Return(σ, τ)

Reference string indistinguishability follows from the semantic security of the cryptosystem, which
implies that no non-uniform polynomial time adversary can distinguish a perfectly bindingck from a
perfectly hidingck.

Lemma 3 If (p,G,G1, e, g) is a DLIN group, then(K,S1) has reference string indistinguishability.

A consequence of Lemma 3 is that in the rest of the paper we only need to prove simulation indistinguisha-
bility to prove composable zero-knowledge.

Both the common reference string generatorK and the common reference string simulatorS1 first
create a DLIN group honestly. This means that instead of generating the common reference strings from
scratch, it is also possible to build any of the NIZK proofs we construct in the following sections on
top of an already existing DLIN group. When doing so we writeσ ← K(p,G,G1, e, g) or (σ, τ) ←
S1(p,G,G1, e, g).

4.2 NIZK Proof for Commitment to Zero

The common reference string contains a public key for a commitment scheme. As a first step we suggest an
NIZK proof for a commitment containing0. Given the reference stringσ = (p,G,G1, e, g, f, h, u, v, w)
we defineRzero to be the relation consisting of commitments to 0, using the randomness as the witness. In
other words,Rzero = {(c, (r, s)) | c = com(0; r, s)}. We construct an NIZK proof forRzero below.

Proof of commitment to 0: Given a commitmentc = (c1, c2, c3) and randomnessr, s so c =
com(0; r, s) let the proof beπ = gr.

Verification: Given commitment(c1, c2, c3) and a proofπ the verifier returns 1 if and only ife(g, c1) =
e(π, f) ande(c2, g) = e(h, c3/π).
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Simulation of proof: Given input(σ, τ, (c1, c2, c3)) the simulatorSzero generates the simulated proof

π = c
1/x
1 .

Theorem 4 (K,Pzero, Vzero, S1, Szero) is an NIZK proof system forRzero with perfect completeness, per-
fect soundness and composable zero-knowledge with perfect simulation indistinguishability under the
DLIN assumption forG. The proof consists of 1 group element. Verification corresponds to evaluating
two pairing product equations.

Proof.

Perfect completeness:A commitment(c1, c2, c3) to 0 uniquely definer, s so c1 = f r, c2 = hs, c3 =
gr+s. We havee(g, c1) = e(g, f r) = e(gr, f) = e(π, f) ande(c2, g) = e(hs, g) = e(h, gs) =
e(h, c3/π).

Perfect soundness:Given a commitment(c1, c2, c3) and an acceptable proofπ, we havee(g, c1) =
e(π, f) showing us that there exists somer such thatc1 = f r, π = gr. There also exists somes such
thatc2 = hs. The second equation,e(c2, g) = e(h, c3/π) revealse(hs, g) = e(h, gs) = e(h, c3/π),
showing thatc3 = gr+s. This means,c1 = u0f r, c2 = v0hs, c3 = w0gr+s.

Composable zero-knowledge:We already have reference string indistinguishability, so all we need to
prove is simulation indistinguishability. We have

Pr
[
(σ, τ)← S1(1k) : (c, (r, s))← A(σ, τ);π = gr : A(π) = 1

]
= Pr

[
(σ, τ)← S1(1k) : (c, (r, s))← A(σ, τ);π = c

1/x
1 : A(π) = 1

]
,

since both computations yield the same uniquely definedπ that will make the verifier accept the
proof. �

4.3 NIZK Proof for Commitment to Exponent.

Suppose, we have two elementsa, b and a commitmentc to the exponentm sob = am. We wish to form
an NIZK proof forRexpo = {((a, b, c), (m, r, s)) | b = am, c = com(m; r, s)}.

The idea in the proof is straightforward. Ifa 6= 1 then one can use the bilinear map to verify that a pair
of commitmentsπ1, πm have the same exponentm soπm = πm

1 . If π1 is a commitment to 1, thenπm is a
commitment tom. What remains is to prove thatπ1com(−1; 0, 0) andcmπ−1

m are commitments to 0.
If a = b = 1, then the relation is trivially satisfied. However, later on we will be working on committed

elements and it will not be straightforward to check whether an element is non-trivial. We therefore treat
a = 1 as a special case and create an NIZK proof that works with the same verifier as for thea 6= 1 case.

Proof of commitment to exponent: Given common inputsa, b, c and a witness(m, r, s) the prover con-
structs the proofπ as follows.

1. If a = 1

2. π1 = com(1; 0, 0), πm = c

3. ππ1 ← Pzero(σ, π1com(−1; 0, 0), (0, 0))

4. ππm ← Pzero(σ, cπ−1
m , (0, 0))

5. Else ifa 6= 1

6. r1, s1 ← Zp
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7. π1 = com(1; r1, s1)

8. πm = πm
1

9. ππ1 ← Pzero(σ, π1com(1; 0, 0)−1, (r1, s1)))

10. ππm ← Pzero(σ, cπ−1
m , (r −mr1, s−ms1))

11. The proof isπ = (π1, πm, ππ1 , ππm).

Verification: Givena, b, c and the proofπ do

1. Verify the NIZK proofsππ1 , ππm for π1com(1; 0, 0)−1, cπ−1
m being commitments to 0

2. Checke(a, πm,1) = e(b, π1,1), e(a, πm,2) = e(b, π1,2) ande(a, πm,3) = e(b, π1,3)

3. Return 1 if all checks pass, else return 0

Simulated proof: On statementa, b, c we can simulate the proof in the following way

1. If a = 1

2. π1 = com(1; 0, 0), πm = c

3. Else ifa 6= 1

4. r1, s1 ← Zp

5. π1,1 = axr1 , π1,2 = ays1 , π1,3 = ar1+s1

6. πm,1 = bxr1 , πm,2 = bys1 , πm,3 = br1+s1

7. ππ1 ← Szero(σ, τ, π1com(−1; 0, 0))

8. ππm ← Szero(σ, τ, cπ−1
m )

9. The simulated proof isπ = (π1, πm, ππ1 , ππm)

Theorem 5 (K,Pexpo, Vexpo, S1, Sexpo) is an NIZK proof forRexpo with perfect completeness, perfect
soundness and composable zero-knowledge with perfect simulation indistinguishability if the DLIN as-
sumption holds forG. A proof consists of 8 group elements. Verification consists of evaluating a set of
pairing product equations.

Proof.

Perfect completeness:Follows from perfect completeness of the NIZK proof forRzero.

Perfect soundness:If a 6= 1 we learn from the bilinear map that∃m : b = am, πm = πm
1 . Perfect sound-

ness of the NIZK proof forRzero implies thatπ1 is a commitment to 1 andcπ−m
1 is a commitment

to 0. This implies thatc is a commitment tom.

If a = 1 the bilinear map shows us that1 = e(a, πm,1) = e(b, π1,1), 1 = e(a, πm,2) = e(b, π1,2)
and1 = e(a, πm,3) = e(b, π1,3). Sinceπ1 is a commitment to 1 at least one ofπ1,1, π1,2, π1,3 must
be non-trivial and thereforeb = 1.

Composable zero-knowledge:Let us show that on a simulated common reference string, proofs and
simulated proofs are perfectly indistinguishable. Observe first that on a simulated common reference
string all valid commitments are on the formf r1 , hs1 , gr1+s1 . If a 6= 1, we pickr1, s1 at random
and use them to generate two random commitmentsπ1, πm such thatπm = πm

1 . So far, this gives
us the same distribution as if they were generated by the prover. We conclude by noting that the
NIZK proof for Rzero has perfect simulation of proofs on a simulated common reference string. If
a = 1 the perfect simulation indistinguishability of the NIZK proof forRzero also gives us a perfect
simulation. �
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4.4 NIZK Proof for Pedersen Commitment

Consider a Pedersen commitmentb = amgt to m. We wish to make commitments to the openingm, t
and make an NIZK proof that we have done so. In other words, we want an NIZK proof forRped =
{((a, b, cm, ct), (m, t, rm, sm, rt, st)) | b = amgt, cm = com(m; rm, sm), ct = com(t; rt, st)}.

The idea in the NIZK proof is as follows. We write

b = amgt = am+r1r+r2sgr+s+t(ar1g)−r(ar2g)−s,

for randomly chosenr1, r2, r, s. We revealar1 , ar2 and make commitmentsπr1 , πr2 to r1, r2. Using the
NIZK proof for Rexpo, we can prove they have been correctly formed. We reveal(ar1g)r, (ar2g)s and
create commitmentsπr,r1 = πr

r1
, πs,r2 = πs

r2
. Using the bilinear map the verifier can check that the expo-

nentiation is correct, so they containrr1 andsr2. Using the homomorphic property, we havecmπr,r1πs,r2

is a commitment to the exponentm+r1r+r2s. We also make commitmentsπr,1, πs,1 to r ands and prove
they have been correctly formed. By the homomorphic property, we have thatctπr,1πs,1 is a commitment
to r + s + t. Revealinggr+s+t indirectly also revealsam+r1r+r2s = b(ar1g)r(ar2g)sg−(r+s+t). Using
NIZK proofs forRexpo we can prove it has been correctly formed. This demonstrates thatb = amgt as
required. Computational zero-knowledge will follow from the DLIN assumption, sincegr+s looks random
given (ar1g)r and(ar2g)s and therefore in the simulation we can pick it a random exponentd instead of
usingr + s.

Proof for Pedersen commitment: The prover gets a statement(a, b, cm, ct) and a witness
(m, t, rm, sm, rt, st) as input. The proof is constructed as follows

r1, r2, r3, s3, . . . , r6, s6, r, s← Zp (If a = 1 let r1 = 0, · · · , s = 0)

πa,1 = ar1 π1,1 = com(1; r3, s3) πr1 = com(r1; r4, s4)
πr = (πa,1g)r πr,1 = πr

1,1 πr,r1 = πr
r1

πa,2 = ar2 π1,2 = com(1; r5, s5) πr2 = com(r2; r6, s6)
πs = (πa,2g)s πs,1 = πs

1,2 πs,r2 = πs
r2

πt = gr+s+t πt,1 = com(1; 0, 0)r+s+t

ππ1,1 ← Pzero(σ, π1,1com(−1; 0, 0), (r3, s3))
ππ1,2 ← Pzero(σ, π1,2com(−1; 0, 0), (r5, s5))
ππ0 ← Pzero(σ, ctπr,1πs,1π

−1
t,1 , (r3r + r5s+ rt, s3r + s5s+ st))

ππr1
← Pexpo(σ, (a, πa,1, πr1), (r1, r4, s4))

ππr2
← Pexpo(σ, (a, πa,2, πr2), (r2, r6, s6))

ππa ← Pexpo(σ, (a, bπrπsπ
−1
t , cmπr,r1πs,r2), (r1r + r2s+m, r4r + r6s+ rm, s4r + s6s+ sm))

The proof isπ = (πa,1, . . . , ππa).

Verification: On common inputa, b, cm, ct and proofπ do

1. Verify the NIZK proofs ππ1,1 , ππ1,2 , ππ0 for π1,1, π1,2 being commitments to 1 and
ctπr,1πs,1π

−1
t,1 being a commitment to 0

2. Verify the NIZK proof ππr1
for the existence of somer1 so πa,1 = ar1 and πr1 being a

commitment tor1
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3. Verify the NIZK proof ππr2
for the existence of somer2 so πa,2 = ar2 and πr2 being a

commitment tor2

4. Verify the NIZK proofππa for the existence of somez so bπrπsπ
−1
t = az andcmπr,r1πs,r2

being a commitment toz.

5. Using the bilinear map check∃r : πr = (gπa,1)r, πr,1 = com(1; 0, 0)r, πr,r1 = πr
r1

6. Using the bilinear map check∃s : πs = (gπa,2)s, πs,1 = com(1; 0, 0)s, πs,r2 = πs
r2

7. Using the bilinear map check∃z : πt = gz, πt,1 = com(1; 0, 0)z

8. Return 1 if all checks pass, else return 0

Simulation: Given common input(a, b, cm, ct) we simulate the proof as follows

α, β, r3, s3, . . . , r6, s6, r, s, z ← Zp (If a = 1 let α = β = 1, r3 = 0, · · · , s = 0)

πa,1 = gα−1 π1,1 = com(0;αr3, αs3) πr1 = com(0;αr4, αs4)
πr = (πa,1g)r πr,1 = com(0;αrr3, αrs3) πr,r1 = com(0;αrr4, αrs4)

πa,2 = gβ−1 π1,2 = com(0;βr5, βs5) πr2 = com(0;βr6, βs6)
πs = (πa,2g)s πs,1 = com(0;βsr5, βss5) πs,r2 = com(0;βsr6, βss6)

πt = gz πt,1 = com(1; 0, 0)z (If a = 1 let πt = b, πt,1 = (bxru , bysv , bru+sv))

ππ1,1 ← Szero(σ, τ, π1,1com(−1; 0, 0))
ππ1,2 ← Szero(σ, τ, π1,2com(−1; 0, 0))
ππ0 ← Szero(σ, τ, ctπr,1πs,1π

−1
t,1 )

ππr1
← Sexpo(σ, τ, (a, πa,1, πr1))

ππr2
← Sexpo(σ, τ, (a, πa,2, πr2))

ππa ← Sexpo(σ, τ, (a, bπrπsπ
−1
t , cmπr,r1πs,r2))

The simulated proof isπ = (πa,1, . . . , ππa)

Theorem 6 (K,Pped, Vped, S1, Sped) is an NIZK proof system forRped with perfect completeness, perfect
soundness and composable zero-knowledge if the DLIN assumption holds forG. A proof consists of 59
group elements. Verification consists of evaluating a set of pairing product equations.

Proof.

Perfect completeness:Follows from the perfect completeness of(K,Pzero, Vzero) and(K,Pexpo, Vexpo).

Perfect soundness:From the perfect soundness of(K,Pzero, Vzero) we get π1,1, π1,2 contain 1 and
ctπr,1πs,1π

−1
t,1 contains 0. This meansπr,1 is a commitment tor andπs,1 is a commitment tos,

and consequentlyπt,1 is a commitment tor + s+ t. This in turn means thatπt = gr+s+t.

From the perfect soundness of(K,Pexpo, Vexpo) we see that there existsr1, r2 soπa,1 = ar1 and
πa,2 = ar2 , and at the same timeπr1 is a commitment tor1 andπr2 is a commitment tor2. This
means,cmπr,r1πs,r2 containsm+ rr1 + sr2.

Fromππa we get

b(gπa,1)r(gπa,2)sπ−1
t = am+r1r+r2s so b = amgt.
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Composable zero-knowledge:The polynomial time adversaryA(σ, τ) produces a statement
(a, b, cm, ct) and a witness(m, t, rm, sm, rt, st). We now have to argue it cannot distinguish
a proof fromPped from a simulated proof fromSped.

By the composable zero-knowledge properties of the NIZK proofs forRzero andRexpo we can
simulate the proofsππ1,1 , . . . , ππa withoutA being able to distinguish.

In casea = 1 straightforward verification shows that on a simulated reference string, proofs and
simulated proofs are perfectly indistinguishable. This leaves the case wherea 6= 1.

Let us start with the way a prover produces a proof. Since the commitments are perfectly hiding, we
can selectπ1,1, π1,2, πr1 andπr2 as random commitments to 0. Sincea is a generator forG, we get
the same distribution if we selectπa,1 = gα−1 andπa,2 = gβ−1 for randomα, β. With overwhelm-
ing probabilityα, β 6= 0 in which caser3, s3 andαr3, αs3 have the same distribution when picking
r3, r4 random. In a similar fashion, we change the randomizers of the other commitments to haveα
or β factors.

We have now modified the proof, such that the only difference from the simulation is that we select
z = r+ s+ t, while in the simulation we pickz at random. We will show that ifA can distinguish a
simulated proof from a partially simulated proof, then we can use it to break the DLIN assumption
for G.

Let gα, gβ , gαr, gβs, gd be a DLIN challenge, whered = r + s or d is random. Since we know
the discrete logarithms off, h, u, v, w with respect tog, we can givengd but without knowingd
still computecom(1; 0, 0)d = ((gd)xru , (gd)ysv , (gd)ru+sv). We can also givengα compute a ran-
dom commitment by selectingr3, s3 at random and letting the commitment becom(0;αr3, αs3) =
((gα)xr3 , (gα)ys3 , gα)r3+s3 . Similar techniques explain how we compute the various commitments
listed below.

Let us setπa,1 = g−1gα, πr = gαr, πa,2 = g−1gβ , πs = gβs and πt = gdgt. We
set π1,1 = com(0;αr3, αs3), πr = com(0;αrr3, αrs3) and π1,2 = com(0;βr5, s5), πs =
com(0;βsr5, βss5). We setπr1 = com(0;αr4, αs4), πr,r1 = com(0;αrr4, αrs4) and πr2 =
com(0;βr6, βs6), πs,r2 = com(0;βsr6, βss6). Finally, computeπt = gdgt.

In case,d = r + s then this gives us a partially simulated proof withz = r + s + t. In cased is
random, this gives us a simulated proof withz random. IfA could distinguish between partially
simulated proofs and simulated proofs, then we would be able to break the DLIN assumption.�

4.5 NIZK Proof for Multi-message Pedersen Commitment

Let us generalize the Pedersen commitment to a many messagesb = gt
∏n

i=1 a
mi
i . We

wish to make an NIZK proof for having committed tot,m1, . . . ,mn so b is a multi-
exponentiation to these messages. More precisely, we want an NIZK proof for the relation
Rm−ped = {((a1, . . . , an, b, ct, c1, . . . , cn), (t, rt, st,m1, r1, s1, . . . ,mn, rn, sn)) | b = gt

∏n
i=1 a

mi
i , ct =

com(t; rt, st), ci = com(mi, ri, si)}.
The idea in this NIZK proof is to splitb into n Pedersen commitments and use NIZK proof from the

previous section. Write

b =
n∏

i=1

(ami
i gti),

wheret =
∑n

i=1 ti, make commitments to theti’s and make an NIZK proof forRped for each of these
components.
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Proof for multi-message Pedersen commitment:The prover gets a statement
(a1, . . . , an, b, ct, c1, . . . , cn) and a witness(t, rt, st,m1, r1, s1, . . . ,mn, rn, sn) as input. The
proof is constructed as follows

1. t1, rt1 , st1 , . . . , tn−1, rtn−1 , stn−1 ← Zp, tn = t −
∑n−1

i=1 ti, rtn = rt −
∑n−1

i=1 rti , stn = st −∑n−1
i=1 stn

2. Fori = 1 to n do

3. πi = ami
i gti

4. πti = com(ti; rti , sti)
5. ππi ← Pped(σ, (ai, πi, ci, πti), (mi, ti, ri, si, rti , sti))

The proof isπ = (π1, πt1 , ππ1 , . . . , πn−1, πtn−1 , ππn−1 , ππn)

Verification: On common inputa1, . . . , an, b, ct, c1, . . . , cn and proofπ do

1. Letπn = b
∏n−1

i=1 π
−1
i andπtn = ct

∏n−1
i=1 π

−1
ti

2. Verify the NIZK proofsππ1 , . . . , ππn

3. Return 1 if all checks pass, else return 0

Simulation: Given common input(a1, . . . , an, b, ct, c1, . . . , cn) we simulate the proof as follows

1. t1, rt1 , st1 , . . . , tn−1, rtn−1 , stn−1 ← Zp

2. Fori = 1 to n− 1 let πi = gti andπti = com(0; rti , sti)
3. Letπi = b

∏n−1
i=1 π

−1
i andπtn = ct

∏n−1
i=1 π

−1
ti

4. Fori = 1 to n simulateππi ← Sped(σ, τ, (ai, πi, ci, πti))

The simulated proof isπ = (π1, πt1 , ππ1 , . . . , πn−1, πtn−1 , ππn−1 , ππn)

Theorem 7 (K,Pm−ped, Vm−ped, S1, Sm−ped) is an NIZK proof system forRm−ped with perfect com-
pleteness, perfect soundness and composable zero-knowledge if the DLIN assumption holds forG. The
proof consists of63n − 4 group elements. The verification consists of evaluating a set of pairing product
equations.

Proof.

Perfect completeness:Follows from the perfect completeness of(K,Pped, Vped).

Perfect soundness:From the perfect soundness of(K,Pped, Vped) we know thatci, πti are commitments
tomi, ti soπi = ami

i gti . Sincect =
∏n

i=1 πti we see thatt =
∑n

i=1 ti. We now have

b =
n∏

i=1

πi =
n∏

i=1

ami
i gti = g

∑n
i=1 ti

n∏
i=1

ami
i = gt

n∏
i=1

ami
i

as required.

Composable zero-knowledge:On a simulated reference string, the adversary cannot distinguish between
proofs and simulated proofsππ1 , . . . , ππn . Since the commitment scheme is perfectly hiding the
adversary also cannot distinguish between commitmentsπti ← com(ti) andπti ← com(0), where
we in both cases fitπtn = ct

∏n−1
i=1 π

−1
ti

. The Pedersen commitment scheme is also perfectly hiding,
so we cannot distinguish between pickingπi = ami

i gti andπi = gti for randomti, where we fit
πn = b

∏n−1
i=1 π

−1
i . �
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4.6 NIZK Proof for Multiplicative Relationship

Consider three commitmentsca, cb, cc such that the corresponding messages have the relationship
mc = mamb. We wish to construct an NIZK proof for such a multiplicative relationship. More
precisely, a composable NIZK proof forRmult = {((ca, cb, cc), (ma, ra, sa,mb, rb, sb, rc, sc)) | ca =
com(ma; ra, sa), cb = com(mb; rb, sb), cc = com(mamb; rc, sc)}.

If ca, cb, cc have a multiplicative relationship, then

cc = cma
b com(0; rc −marb, sc −masb)

and vice versa. To prove the latter relationship, it suffices to revealma, and prove thatcacom(−ma; 0, 0)
andccc

−ma
b are commitments to 0. To get zero-knowledge, we want to somehow tweak this idea in a way

such thatma is not revealed directly.
The main trick in the following is to pick exponentsr, s at random, which will be used to hidema. We

want to prove

cacom(1; 0, 0)−(r+s+ma)com(1; 0, 0)rcom(1; 0, 0)s and ccc
−(r+s+ma)
b crbc

s
b

are commitments to 0. Ifπ0,1, π0,2, π0,3, π0,4 are commitments to 0 we can obscure things by instead
proving that

cacom(1; 0, 0)−(r+s+ma)(com(1; 0, 0)π0,1)r(com(1; 0, 0)π0,3)s and ccc
−(r+s+ma)
b (cbπ0,2)r(cbπ0,4)s

are commitments to 0.
Revealing the componentscom(1; 0, 0)r+s+ma , cr+s+ma

b , the verifier can use the bilinear maps to
check that there exists some common exponentt = r + s + ma, even though it cannot compute the
exponent itself. Similarly, revealing(com(1; 0, 0)π0,1)r, (cbπ0,2)r and (com(1; 0, 0)π0,3)s, (cbπ0,4)s al-
lows the verifier to check that there exist common exponentsr, s. So far, we are performing the same
exponentiations oncom(1; 0, 0) andcb to get respectivelyca andcc. This shows that

cacom(1; 0, 0)r+s−t and ccc
r+s−t
b

are both commitments to 0. The only way this can be possible is whenma = t− r − s.
Computational zero-knowledge will follow from the fact that while we use the same exponents, we

use different bases. Therefore, at no point is any element itself raised toma, which the adversary could
potentially use to detect whether it was a correct proof or one created by a simulator, which does not know
ma.

Proof of multiplicative relationship: Pmult(σ, (ca, cb, cc), (ma, ra, sa,mb, rb, sb, rc, sc)) runs as follows
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r1, s1, . . . , r4, s4, r, s← Zp

π0,1 = com(0; r1, s1) π0,2 = com(0; r2, s2)
πr = (com(1; 0, 0)π0,1)r πr,b = (cbπ0,2)r

π0,3 = com(0; r3, s3) π0,4 = com(0; r4, s4)
πs = (com(1; 0, 0)π0,3)s πs,b = (cbπ0,4)s

πt = com(1; 0, 0)r+s+ma πt,b = cr+s+ma
b

ππ0,1 ← Pzero(σ, π0,1, (r1, s1))
ππ0,2 ← Pzero(σ, π0,2, (r2, s2))
ππ0,3 ← Pzero(σ, π0,3, (r3, s3))
ππ0,4 ← Pzero(σ, π0,4, (r4, s4))
ππ0,5 ← Pzero(σ, caπrπsπ

−1
t , (r1r + r3s+ ra, s1r + s3s+ sa))

ππ0,6 ← Pzero(σ, ccπr,bπs,bπ
−1
t,b , (r2r + r4s+ rc −marb, s2r + s4s+ sc −masb))

The proof isπ = (π0,1, . . . , ππ0,6).

Verification: Vmult(σ, (ca, cb, cc), π) runs as follows

1. Verify the NIZK proofsππ0,1 , . . . , ππ0,6 for π0,1, . . . , π0,4 andcaπrπsπ
−1
t , ccπr,bπs,bπ

−1
t,b being

commitments to 0

2. Using the bilinear map2, check∃r : πr = (com(1; 0, 0)π0,1)r andπr,b = (cbπ0,2)r

3. Using the bilinear map, check∃s : πs = (com(1; 0, 0)π0,3)s andπs,b = (cbπ0,4)s

4. Using the bilinear map, check∃t : πt = com(1; 0, 0)t andπt,b = ctb

5. Return 1 if all checks pass, else return 0

Simulated proof: Smult(σ, τ, (ca, cb, cc)) runs as follows

2Givenn pairs(ai, bi) and the claim that∃r∀i : bi = ar
i it can be checked by picking someai 6= 1 and check that for all

j 6= i we havee(ai, bj) = e(bi, aj). In this particular case, where we claim∃r : πr = (com(1; 0, 0)π0,1)
r andπr,b = (cbπ0,2)

r

there are 6 pairs, so we can verify the claim using 10 pairings. Note that since we see an NIZK proof forπ0,1 being a commitment
to 0, we know thatcom(1; 0, 0)π0,1 has at least one non-trivial group element, so if the checks work out there is one uniquely
defined exponentr. Later on, we will do the same operation on committed elements, where it is not straightforward to check
whether someai is non-trivial. We solve that by checkinge(ai, bj) = e(bi, aj) for all 1 ≤ i < j ≤ n, which corresponds to
making 32 pairings.
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r1, s1, . . . , r4, s4, r, s, t← Zp

π0,1 = com(0; r1, s1) π0,2 = com(0; r2, s2)
πr = (com(1; 0, 0)π0,1)r πr,b = (cbπ0,2)r

π0,3 = com(0; r3, s3) π0,4 = com(0; r4, s4)
πs = (com(1; 0, 0)π0,3)s πs,b = (cbπ0,4)s

πt = com(1; 0, 0)t πt,b = ctb

ππ0,1 ← Szero(σ, τ, π0,1)
ππ0,2 ← Szero(σ, τ, π0,2)
ππ0,3 ← Szero(σ, τ, π0,3)
ππ0,4 ← Szero(σ, τ, π0,4)
ππ0,5 ← Szero(σ, τ, caπrπsπ

−1
t )

ππ0,6 ← Szero(σ, τ, ccπr,bπs,bπ
−1
t,b )

The simulated proof isπ = (π0,1, . . . , ππ0,6).

Theorem 8 (K,Pmult, Vmult, S1, Smult) is an NIZK proof forRmult with perfect completeness, perfect
soundness and composable zero-knowledge if the DLIN assumption holds forG. A proof consists of 36
group elements. Verification corresponds to evaluating a set of pairing product equations.

Proof.

Perfect completeness:Follows from the perfect completeness of the NIZK proof forRzero.

Perfect soundness:SupposeA produces a statement(ca, cb, cc) and a valid NIZK proofπ.

From the verification, we learn that there existr, s, t so

ca(com(1; 0, 0)π0,1)r(com(1; 0, 0)π0,3)scom(1; 0, 0)−t and cc(cbπ0,2)r(cbπ0,4)sc−t
b

are commitments to 0. Sinceπ0,1, . . . , π0,4 are commitments to 0 this shows thatma = t − r − s
andcc is a commitment tomamb.

Composable zero-knowledge:We wish to argue thatA(σ, τ) who produces a statement(ca, cb, cc) and
witness(ma, ra, sa,mb, rb, sb, rc, sc) cannot distinguish between a proofπ created byPmult and a
simulated proof created bySmult.

Let us first look at the wayPmult operates. Because(K,Pzero, Vzero, S1, Szero) is composable zero-
knowledge, we can useSzero to simulateππ0,1 , . . . , ππ0,6 instead of usingPzero to make them, with-
outA being able to distinguish.

This partially simulated proof runs exactly as the simulator, except we havet = r+s+ma, whereas
in the simulationt is random. We will show that ifA(σ, τ) can distinguish these two cases, then
we can break the DLIN assumption forG. Let thereforegα, gβ, gαr, gβs, gd be a DLIN challenge,
where we wish to decide whetherd = r + s or d is random.

Let us incorporater, s from the challenge into the proof, such that distinguishingt = r + s + ma

from t random corresponds to distinguishing betweend = r + s andd random. Since we know
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τ , we know the discrete logarithms off, h, u, v, w with respect tog. This means, givengd we can
compute

com(1; 0, 0)d = ((gd)xru , (gd)yrv , (gd)ru+sv).

We also know the witness(ma, ra, sa,mb, rb, sb, rc, sc) so we can compute

cdb = ((gd)xrumb+xrb , (gd)ysvmb+ysb , (gd)(ru+sv)mb+(rb+sb)).

Givengα andr1, s1 it is straightforward to compute the commitment

com(0;αr1, αs1) = ((gα)xr1 , (gα)ys1 , (gα)r1+s1).

Similarly, we can compute the other elements in the following.

r1, s1, . . . , r4, s4 ← Zp

π0,1 = com(−1; 0, 0)com(0;αr1, αs1) π0,2 = c−1
b com(0;αr2, αs2)

πr = com(0;αrr1, αrs1) πr,b = com(0;αrr2, αrs2)

π0,3 = com(−1; 0, 0)com(0;βr3, βs3) π0,4 = c−1
b com(0;βr4, βs4)

πs = com(0;βsr3, βss3) πs,b = com(0;βsr4, βss4)

πt = com(1; 0, 0)dcom(1; 0, 0)ma πt,b = cdbc
ma
b

ππ0,1 ← Szero(σ, τ, π0,1)
ππ0,2 ← Szero(σ, τ, π0,2)
ππ0,3 ← Szero(σ, τ, π0,3)
ππ0,4 ← Szero(σ, τ, π0,4)
ππ0,5 ← Szero(σ, τ, caπrπsπ

−1
t )

ππ0,6 ← Szero(σ, τ, ccπr,bπs,bπ
−1
t,b )

The distribution of these values is statistically close to what a prover respectively simulator would
produce on a simulated common reference string. Withd = r + s, we have the case witht =
r + s + ma, and withd random it corresponds tot random. IfA can distinguish real proofs from
simulated proofs, we can therefore distinguish betweend = r + s and d random in the DLIN
challenge. �

4.7 NIZK Proof for Committed Bilinear Product

Consider elementsa1, b1, . . . , an, bn ∈ G such that
∏n

i=1 e(ai, bi) = 1. Suppose we
have committed toai, bi in the following way. We haveAi = griai, Bi = gsibi
and commitments tori, si and wish to make an NIZK proof for

∏n
i=1 e(ai, bi) = 1.

More precisely, we want to make an NIZK proof for the following relation:Rbil−prod =
{(A1, cr1 , B1, cs1 , . . . , An, crn , Bn, csn), (r1, rr1 , sr1 , s1, rs1 , ss1 , . . . , rn, rrn , srn , sn, rsn , ssn) | Ai =
griai, Bi = gsibi, cri = com(ri; rri , sri), csi = com(si; rsi , ssi) and

∏n
i=1 e(ai, bi) = 1}.

For arbitraryR1, S1, . . . , Rn, Sn ∈ Zp we have

n∏
i=1

e(Ai, Bi) =
n∏

i=1

e(griai, g
sibi)
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= (
n∏

i=1

e(gri , gsibi)e(griai, g
si)e(gri , gsi)−1)

n∏
i=1

e(ai, bi)

=
n∏

i=1

e(g,Bi)rie(Ai, g)sie(g, g)−risi

= e(g, g−
∑n

i=1 risi

n∏
i=1

Asi
i B

ri
i )

= e(g, g−
∑n

i=1(risi+RiSi)
n∏

i=1

Asi
i B

ri
i )

n∏
i=1

e(gRi , gSi),

if and only if
∏n

i=1 e(ai, bi) = 1.
In the NIZK proof, we pickR1, S1, . . . , Rn, Sn at random, their role is to give us zero-knowledge.

We commit toRi, Si and we already have commitments tori, si. We reveal the2n + 1 ele-
ments gR1 , gS1 , . . . , gRn , gSn and g−

∑n
i=1(risi+RiSi)

∏n
i=1A

si
i B

ri
i . We then use NIZK proofs for

Rexpo, Rmult, Rm−ped to prove that these elements have been formed correctly.
In the simulation, we observe that for arbitraryR1, S1, . . . , Rn, Sn we have

n∏
i=1

e(Ai, Bi) = e(g, 1)
n∏

i=1

e(Ai, Bi)

= e(g, g−
∑n

i=1 RiSi

n∏
i=1

A−Si
i B−Ri

i )
n∏

i=1

e(gRiAi, g
SiBi).

PickingR1, S1, . . . , Rn, Sn at random means that all elements have the same distribution as in a real proof.
We can then simulate the NIZK proofs forRexpo, Rmult, Rm−ped.

Proof for committed bilinear product: Pbil−prod(σ, (A1, cr1 , B1, cs1 , . . . , An, crn , Bn, csn),
(r1, rr1 , sr1 , s1, rs1 , ss1 , . . . , rn, rrn , srn , sn, rsn , ssn)) does the following

1. Fori = 1 to n do

2. Ri, Si, rRi , sRi , rSi , sSi , rRiSi , sRiSi , rrisi , srisi ← Zp

3. πRi = com(Ri; rRi , sRi), πSi = com(Si; rSi , sSi)

4. πRiSi = com(RiSi; rRiSi , sRiSi)

5. πgRi = gRi , πgSi = gSi

6. πrisi = com(risi; rrisi , srisi)

7. πm−ped = g−
∑n

i=1(risi+RiSi)
∏n

i=1A
si
i B

ri
i

8. Fori = 1 to n do

9. ππRi
← Pexpo(σ, (g, πgRi , πRi), (Ri, rRi , sRi))

10. ππSi
← Pexpo(σ, (g, πgSi , πSi), (Si, rSi , sSi))

11. ππRiSi
← Pmult(σ, (πRi , πSi , πRiSi), (Ri, rRi , sRi , Si, rSi , sSi , rRiSi , sRiSi))

12. ππrisi
← Pmult(σ, (cri , csi , πrisi), (ri, rri , sri , si, rsi , ssi , rrisi , srisi))

13. ππm−ped
← Pm−ped(σ, (A1, B1, . . . , An, Bn, ππm−ped

, (
∏n

i=1 crisicRiSi)
−1, cs1 , cr1 , . . . , csn , crn),

14. (−
∑n

i=1(risi +RiSi),−
∑n

i=1(rrisi + rRiSi),

15. −
∑n

i=1(srisi + sRiSi), s1, rs1 , ss1 , . . . , rn, rrn , srn))
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The proof isπ = (πR1 , . . . , ππm−ped
).

Verification: Vbil−prod(σ, (A1, cr1 , B1, cs1 , . . . , An, crn , Bn, csn), π) does the following

1. Check
∏n

i=1 e(Ai, Bi) = e(g, πm−ped)
∏n

i=1 e(πgRi , πgSi )

2. Verify the proofsππR1
, . . . , ππm−ped

3. Return 1 if all checks pass, else return 0

Simulation: Sbil−prod(σ, τ, (A1, cr1 , B1, cs1 , . . . , An, crn , Bn, csn)) does the following

1. Fori = 1 to n do

2. Ri, Si, rRi , sRi , rSi , sSi , rRiSi , sRiSi , rrisi , srisi ← Zp

3. πRi = com(0; rRi , sRi), πSi = com(0; rSi , sSi)

4. πRiSi = com(0; rRiSi , sRiSi)

5. πgRi = gRiAi, πgSi = gSiBi

6. πrisi = com(0; rrisi , srisi)

7. πm−ped = g−
∑n

i=1 RiSi
∏n

i=1A
−Si
i B−Ri

i

8. Fori = 1 to n do

9. ππRi
← Sexpo(σ, τ, (g, πgRi , πRi))

10. ππSi
← Sexpo(σ, τ, (g, πgSi , πSi))

11. ππRiSi
← Smult(σ, τ, (πRi , πSi , πRiSi))

12. ππrisi
← Smult(σ, τ, (cri , csi , πrisi))

13. ππm−ped
← Sm−ped(σ, τ, (A1, B1, . . . , An, Bn, ππm−ped

, (
∏n

i=1 crisicRiSi)
−1, cs1 , cr1 , . . . , csn , crn))

The simulated proof isπ = (πR1 , . . . , ππm−ped
).

Theorem 9 (K,Pbil−prod, Vbil−prod, S1, Sbil−prod) is an NIZK proof forRbil−prod with perfect complete-
ness, perfect soundness and composable zero-knowledge under the DLIN assumption forG. Proofs consist
of 228n− 3 group elements and verification corresponds to evaluating a set of pairing product equations.

Proof.

Perfect completeness:Perfect completeness follows from the perfect completeness of
Pmult, Pexpo, Pm−ped.

Perfect soundness:From ππRi
, ππSi

we learn that there existsRi, Si so πgRi = gRi , πgSi = gSi and
πRi , πSi are commitments to thoseRi, Si.

FromππRiSi
we learn thatπRiSi is a commitment toRiSi. Likewise,ππrisi

is an NIZK proof that
πrisi containsrisi, the product of the messages incri , csi .

The proofππm−ped
shows thatπm−ped = g−

∑n
i=1(risi+RiSi)

∏n
i=1A

si
i B

ri
i . Since

n∏
i=1

e(Ai, Bi) = e(g, πm−ped)
n∏

i=1

e(πgRiπgSi ) = e(g, g−
∑n

i=1(risi+RiSi)
n∏

i=1

Asi
i B

ri
i )

n∏
i=1

e(gRi , gSi),

we then have
∏n

i=1 e(ai, bi) = 1.
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Composable zero-knowledge:Because, the NIZK proofs forRmult, Rexpo andRped are all composable
zero-knowledge, we may modify the prover in such a way that we simulate all the NIZK proofs for
these relations. The adversaryA(σ, τ) cannot distinguish such a partially simulated proof from a
real one.

Since the commitment scheme is perfectly hiding, we can now make commitments to 0, whenever
we make a commitment. This is perfectly indistinguishable from the partially simulated proof de-
scribed above. The partially simulated proof contains random valuesπgRi , πgSi andπm−ped is the
unique value so

∏n
i=1 e(Ai, Bi) = e(g, πm−ped)

∏n
i=1 e(πgRi , πgSi ). In the simulation, we also

get completely random elementsπgRi , πgSi and the unique elementπm−ped such that the equation
holds. Therefore, proofs and simulated proofs are computationally indistinguishable. �

4.8 NIZK Proof for Satisfiability of Pairing Product Equations

In this section, we consider sets of pairing product equations over variablesa1, . . . , an. Let us first recall
the definition in the introduction of a pairing product equation. By a pairing product equation, we mean
an equation on the form

eq(a1, . . . , an) :
∏̀
j=1

e(qj,0, qj,1) = 1 , where qj,b = bj,b

n∏
i=1

a
ej,b,i

i ,

for known bj,b ∈ G andej,b,i ∈ Zp. A setS of pairing product equationseq1, . . . , eqm is said to be
satisfiable if there exists(a1, . . . , an) ∈ Gn such that all equations are satisfied.

Let Rppsat = { S | ∃(a1, . . . , an) ∈ Gn ∀eqk ∈ S : eqk(a1, . . . , an) = true }. Using the NIZK
proof forRbil−prod we can create an NIZK proof forRppsat. The idea is straightforward, we first commit
to eachai asgtiai, com(ti). Using homomorphic properties, it is straightforward forqk,j,b in equationeqk
to computegtk,j,bbk,j,b

∏n
i=1 a

ek,j,b,i

i , com(tk,j,b) as

bk,j,b

n∏
i=1

(gtiai)ek,j,b,i = g
∑n

i=1 tiek,j,b,i(bk,j,b

n∏
i=1

a
ek,j,b,i

i ) ,
n∏

i=1

com(ti)ek,j,b,i = com(
n∑

i=1

tiek,j,b,i).

For each equation we can now carry out an NIZK proof forRbil−prod that
∏`k

j=1 e(qk,j,0, qk,j,1) = 1.

Proof for satisfiability of pairing product equations: On a set of pairing prod-
uct equations eq1, . . . , eqm and witness a1, . . . , an where eqk is the equation∏`k

j=1 e(qk,j,0(a1, . . . , an), qk,j,1(a1, . . . , an)) = 1 with terms qk,j,b(a1, . . . , an) =
bk,j,b

∏n
i=1 a

ek,j,b,i

i do

1. Fori = 1 to n do

2. ti, ri, si ← Zp

3. πai = gtiai

4. πti = com(ti; ri, si)

5. Fork = 1 tom do

6. πk ← Pbil−prod(σ, (bk,1,0
∏n

i=1 π
ek,1,0,i
ai ,

∏n
i=1 π

ek,1,0,i

ti
, . . . , bk,`k,1

∏n
i=1 π

ek,`k,1,i
ai ,

7.
∏n

i=1 π
ek,`k,1,i

ti
), (

∑n
i=1 tiek,1,0,i,

∑n
i=1 riek,1,0,i,

∑n
i=1 siek,1,0,i, . . . ,

8.
∑n

i=1 tiek,`k,1,i,
∑n

i=1 riek,`k,1,i,
∑n

i=1 siek,`k,1,i))
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The proof isπ = (πa1 , πt1 , . . . , πan , πtn , π1, . . . , πm)

Verification: Given the statement and proofπ return 1 if and only if all proofsπ1, . . . , πm are valid.

Simulation: To simulate a proof do the following

1. Fori = 1 to n do

2. ti, ri, si ← Zp

3. πai = gti

4. πti = com(0; ri, si)

5. Fork = 1 tom do

6. πk ← Sbil−prod(σ, τ, (bk,1,0
∏n

i=1 π
ek,1,0,i
ai ,

∏n
i=1 π

ek,1,0,i

ti
, . . . , bk,`k,1

∏n
i=1 π

ek,`k,1,i
ai ,

7.
∏n

i=1 π
ek,`k,1,i

ti
))

The simulated proof isπ = (πa1 , πt1 , . . . , πan , πtn , π1, . . . , πm).

Theorem 10 (K,Pppsat, Vppsat, S1, Sppsat) is an NIZK proof forRppsat with perfect completeness, per-
fect soundness and composable zero-knowledge if the DLIN assumption holds forG. Proofs consist of
4n+ 228`− 3m group elements, wherè=

∑m
k=1 `k. Verification consists of evaluating a set of pairing

product equations.

Proof.

Perfect completeness:Perfect completeness follows from the perfect completeness of the NIZK proofs
for Rbil−prod.

Perfect soundness:Since the commitments are perfectly binding,πti contain ati that uniquely defines
an ai so πai = gtiai. Since the NIZK proofs forRbil−prod are perfectly sound,a1, . . . , an is a
satisfying assignment to the equationseq1, . . . , eqm.

Composable zero-knowledge:On a simulated reference string, it is indistinguishable to the adversary
whether it sees proofs or simulated proofsπ1, . . . , πm. Since the commitment scheme is perfectly
hiding on a simulated reference string, this implies simulation indistinguishability. �

NESTING NIZK PROOFS. It is interesting to observe that verification of an NIZK proof forRppsat itself
consists of verifying a set of pairing product equations. This means that we can nest NIZK proofs, i.e.,
prove that there exists a proof such that there exists a proof, etc. Each level of nesting will cause a blowup
by a constant factor. This is something that is much more expensive to do with other known NIZK proofs,
and impossible to do in the random oracle model.

REDUCING THE NUMBER OF VARIABLES. We will argue that ifn > 2` then we can combine or remove
some of the variables such that we get an equivalent set of equations over variablesa′1, . . . , a

′
2`.

We have a total of2` monomials qk,j,b/bk,j,b. We can represent each as a row-vector
(ek,j,b,1, . . . , ek,j,b,n). LetM be an2` × n matrix with these row-vectors. Let~a = (log a1, . . . , log an)
and~q = (log(q1,1,0/b1,1,0), . . . , log(qm,`m,1/bm,`m,1)). We haveM~a = ~q. Sincen > 2`, we can do
column-reduction onM to get a matrix with at most2` non-zero columns. This means there exists an
invertiblen×n transformation matrixT such that only the2` left columns ofMT are non-zero. We have
(MT )(T−1~a) = ~q. Let~a correspond to a satisfying assignment for the set of equations. Then~a′ = T−1~a
corresponds to a satisfying assignment for the set of pairing product equations given byMT . Note that
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given a1, . . . , an it is straightforward to computea′1, . . . , a
′
n. On the other hand, sinceT is invertible

if there is no(a1, . . . , an) satisfying the equations, then there is no(a′1, . . . , a
′
n) satisfying the equations

given by representing theqk,j,b’s with the rows inMT . We now observe that since only the left2` columns
of MT are non-zero, we can ignorea′2`+1, . . . , a

′
n when considering satisfiability of the equations. There-

fore, in practice we can always get by with2` variables and the NIZK proof will consist ofO(`) group
elements.

PAIRING PRODUCT EQUATIONS FOR IDENTICAL PLAINTEXT. Here is another motivational example for
being interested in satisfiability of pairing product equations that will be useful later on. Let(f1, h1) and
(f2, h2) be two public keys for the cryptosystem described in Section 1.1. Let(u1, v1, w1) and(u2, v2, w2)
be two ciphertexts. We are interested in the question whether they encrypt the same messagem. The
ciphertexts uniquely definem1, r1, s1 andm2, r2, s2 such that

u1 = f r1
1 , v2 = hs1

1 , w1 = gr1+s1m1 and u2 = f r2
2 , v2 = hs2

2 , w2 = gr2+s2m2.

Observe,m1 = m2 if and only ifw1/w2 = gr1+s1−r2−s2 . Therefore,a1 = gr1 , a2 = gs1 , a3 = gr2 , a4 =
gs2 is a witness for the two ciphertexts encrypting the same message. It is straightforward to use the
bilinear map to check the pairing product equations

e(g, u1) = e(a1, f1), e(g, v1) = e(a2, h1), e(g, u2) = e(a3, f2),
e(g, v2) = e(a4, h2) and e(g, a1a2a3a4) = e(g, w1w

−1
2 ),

where the latter equation impliesw1/w2 = gr1+s1−r2−s2 .

DISJUNCTION OF SETS OF PAIRING PRODUCT EQUATIONS. Suppose that we haveL setsS1, . . . , SL of
pairing product equations overa1, . . . , an and want to argue that at least one of the sets is satisfiable. One
can compile these sets of equations into one setS, which is satisfiable if and only if one ofS1, . . . , SL is
satisfiable. The compilation, which we describe below is witness preserving in the sense that a satisfying
assignment for a setSl allows one to compute a satisfying assignment forS easily.

We introduce variablesal,k,j , wherel ≤ L, k ≤ ml, j ≤ `l,k and alsoA1, . . . , AL. The role of
A1, . . . , AL is to point to some set that is satisfiable.S will contain the equatione(g−1

∏L
l=1Al, g) = 1.

This equation guarantees at least oneAl 6= 1, indicating the satisfiable set. The prover can choose this
Al = g, while the others can be 1. We add toS the set equationse(Al, a

−1
l,k,jbl,k,j,0

∏n
i=1 a

el,k,j,0

i ) = 1.
These equations ensure that ifAl 6= 1 thenal,k,j = ql,k,j,0 and if Al = 1, then we are free to choose
al,k,j = 1. Finally, add all the original equations from the setsS1, . . . , SL replacingql,k,j,0 with al,k,j .
This construction works because forl, whereAl = g0 we have that all the variables representingqk,l,j,0’s
are1 so the equations in this set are satisfied. On the other hand, for the setSl whereAl 6= 1 we have
preserved the original equations. If the sets of pairing product equationsS1, . . . , SL have combined length
` =

∑L
l=1

∑ml
k=1 `l,k, then the setS has length̀ S = 1 + 2` and contains pairing product equations over

n+ L+ ` variables.

5 Cryptographic Tools

5.1 A One-time Signature Scheme

Suppose we want to make a one-time signature on an elementm ∈ G. The verification key will consist of
a common reference stringσ as well as two commitmentsc, c1 to respectivelyz, z1. A signature onm is
mzgz1 and an NIZK proof that it has been correctly formed. The intuition behind this signature scheme
is that even if an adversary sees one signature, there are still two unknownsz, z1 so he cannot determine
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what a signature on another element should look like. We will extend this scheme in the natural way to
sign multiple elements.

Verification key: On inputn and(p,G,G1, e, g) do

1. σ ← K(p,G,G, e, g)
2. z, z1, . . . , zn ← Zp

3. rz, sz, . . . , rzn , szn ← Zp

4. c = com(z; rz, sz), . . . , cn = com(zn; rzn , szn)

The verification key isvk = (σ, c, c1, . . . , cn).

The signing key issk = (vk, z, rz, sz, . . . , zn, rzn , szn)

Signature: To sign(m1, . . . ,mn) ∈ Gn do

1. Fori = 1 to n do

2. si = mz
i g

zi

3. πi ← Pped(σ, (mi, si, c, ci), (z, rz, sz, zi, rzi , szi))

The signature iss = (s1, π1, . . . , sn, πn)

Verification: To verify the signatures on message(m1, . . . ,mn) check the proofsπ1, . . . , πn.

Theorem 11 Assuming(p,G,G1, e, g) the scheme(Kots,Sign,Ver) described above is a one-time sig-
nature scheme with perfect correctness. To signn elements fromG both the verification key and the
signatures haveO(n) group elements. We note that the verification procedure consists of evaluating a set
of pairing product equations.

Proof. Perfect correctness follows from the perfect completeness of the NIZK proof forRped.
To argue existential unforgeability under a one-time chosen message attack consider the probabil-

ity of an adversary creating a forged signature onm1, . . . ,mn after seeing a signature onm′
1, . . . ,m

′
n.

By the perfect soundness of the NIZK proof, the adversary must produce a signature on the form
s1 = mz

1g
z1 , . . . , sn = mz

ng
zn .

Let us change the key generation such that we simulate the common reference string and we simulate
the NIZK proofs on the adversary’s chosen message attack. A successful adversary must with overwhelm-
ing probability still produce a signature onm1, . . . ,mn wheresi = mz

i g
zi . Otherwise, we could break the

unbounded zero-knowledge property of the NIZK proof with the knowledge ofz, z1, . . . , zn.
We are now in the simulation case, where the NIZK proofs are simulated. There aren +

1 unknownsz, z1, . . . , zn and in the chosen message attack the adversary may learnn equations
(m′

1)
zgz1 , . . . , (m′

n)zgzn . This still leaves one unknown variable. The probability of the adversary pro-
ducing the correctmz

1g
z1 , . . . ,mz

ng
zn is therefore negligible unlessm1 = m′

1, . . . ,mn = m′
n. �

5.2 RCCA-secure Public-Key Encryption

Canetti, Krawczyk and Nielsen [CKN03] suggest a useful relaxation of chosen ciphertext attack security.
Informally, their notion captures the case where an adversary may be able to rerandomize a ciphertext such
that it still has thesameplaintext, however, in all other cases the cryptosystem is CCA-secure. They call
this security against replayable chosen ciphertext (RCCA) attack.
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Definition 12 (RCCA-security) A cryptosystem(Krcca, E,D) is RCCA-secure if for any non-uniform
polynomial time adversaryA we have

P [(pk, sk)← Krcca(1k); (m0,m1)← AO1(pk); c← Epk(m0) : AO2(c) = 1]
≈ P [(pk, sk)← Krcca(1k); (m0,m1)← AO1(pk); c← Epk(m1) : AO2(c) = 1],

where

• O1(·) = Dsk(·).

• O2(·) = Dsk(·) except when the plaintext ism0 or m1. On plaintextm0 or m1 the oracle outputs
test .

It is clear that any CCA-secure cryptosystem is also RCCA-secure. [CKN03] show a separation, if
CCA-secure cryptosystems exist then RCCA-secure cryptosystems that are not CCA-secure exist. On the
other hand, it is also the case that if RCCA-secure cryptosystems exist, then CCA-secure cryptosystems
exist.

We will suggest a public key cryptosystem, which is RCCA-secure. The construction resembles the
constructions of CCA-secure encryption by Lindell [Lin03], who builds on previous work by Naor and
Yung [NY90] and Sahai [Sah01]. Since we only aim for RCCA-security, we can obtain a few simplifica-
tions though. We first present the general construction and then plug in our tools afterwards.

Public key generation: To generate keys do

1. Generate two keys,(pk1, sk1), (pk2, sk2)← Kcpa(1k), for a CPA-secure cryptosystem

2. Generate a key,ck ← Kbinding(1k), for a perfectly binding commitment scheme

3. Generate a key(vk′, sk′)← Kots(1k) for a one-time signature scheme

4. Letcvk = comck(vk′; r) be a commitment tovk′ using randomnessr

5. Generate a common reference string,σ ← K(1k), for an NIZK proof3

The public key ispk = (pk1, pk2, ck, cvk, σ) and the secret key issk = (pk, sk1).

Encryption: To encrypt a messagem.

1. Pick randomnessr1, r2 and encryptm twice asc1 = Epk1(m; r1), c2 = Epk2(m; r2)

2. Select a key(vk, sk)← Kots(1k) for the one-time signature scheme

3. Signc1, c2 ass← Signsk(c1, c2)

4. π ← Psor(σ, (pk1, pk2, ck, cvk, c1, c2, vk), (m, r1, r2)). This is an NIZK proof forc1, c2 con-
taining the same plaintext orcvk containingvk, i.e.,vk′ = vk.

The ciphertext isc = (c1, c2, vk, s, π)

Decryption: Verify the signatures and the proofπ. If both are ok, returnm = Dsk1(c1).

Theorem 13 The cryptosystem described above is RCCA-secure.

3Zero-knowledge implies witness-indistinguishability, which is sufficient here.
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Proof. In either experiment in the definition of RCCA-security if the adversary ever recycles the one-
time signature verification key of the challenge in a decryption query with a valid signatures and a valid
proof π, then with overwhelming probability it must also recyclec1, c2, since otherwise we would have
a one-time signature forgery. We can therefore with only negligible change in success-probability for the
adversary let the oracle answertest on any query with a valid (by valid we mean correct signature and
correct proof) ciphertext reusingvk from the challenge.

When making the challenge encryption we can pickvk′ as our one-time signature verification key. The
hiding property of the commitment scheme ensures that the adversary’s success probability only changes
negligibly. In particular, the adversary does not usevk′ in any valid query toO1, and in case it uses it in a
query toO2, then it recyclesc1, c2 from the challenge and we answertest .

We can now switch the witness we use in making the proofπ. Instead of using(mb, r1, r2) as the
witness, we can usevk′, r as the witness. The zero-knowledge property ensures that this does not change
the adversary’s success probability significantly.

We now have a situation where the adversary does not ask valid decryption queries usingvk′, and in
the challenge we encrypt the message under bothpk1, pk2 and then make an NIZK proof using witness
vk′, r. We have to argue that in this setting the adversary cannot distinguish a challenge encryption ofm0

from a challenge encryption ofm1.
Since the decryption keysk2 is never used, the semantic security under chosen plaintext attack gives

us that we can changec2 to be an encryption ofm1 without the adversary noticing it.
Next, let us argue that we can switch from usingsk1 to usingsk2 when decrypting oracle queries.

Remember, we already modified the oracle so that ifvk′ is recycled in a valid query, then we answer
test , and we don’t need either decryption key. Consider any other decryption query, herevk 6= vk′.
Soundness of the NIZK proof implies thatc1, c2 in any valid query contain the same message. Usingsk1

or sk2 therefore gives the same answer, and therefore the adversary cannot distinguish whether we usesk1

or sk2 for decryption.
We are now in a situation, where the decryption keysk1 is never used. Semantic security under chosen

plaintext attack therefore means that we can switch the plaintext ofc1 fromm0 tom1. We now have that
in the challenge we encryptm1 in bothc1 andc2.

Since the soundness of the NIZK proof implies that in any valid queryc1, c2 contain the same plaintext,
we can switch back to usingsk1 for decryption. �

Let us suggest a concrete implementation of the above-mentioned scheme. We work over a DLIN
group(p,G,G1, e, g) and wish to encrypt messages on the formm = (m1, . . . ,mn) ∈ Gn.

We pick x1, y1, x2, y2 ← Zp at random and usef1 = gx1 , h1 = gy1 and f2 = gx2 , h2 = gx2

as two public keys for the CPA-secure cryptosystem described in Section 1.1. To encrypt a message
m = (m1, . . . ,mn) ∈ Gn under either key, we simply encryptm1, . . . ,mn one by one.

To set up a perfectly binding commitment scheme, we pick yet another encryption keyfc, hc. Com-
mitment corresponds to encryption under this key.

We want to use the one-time signature scheme from the previous section. Let us consider how long the
ciphertextsc1, c2 can be. Suppose we want to encrypt tuples of messages(m1, . . . ,mn) ∈ Gn. The size of
two ciphertexts will be6n elements inG, so we will set up the one-time signature scheme such that we can
sign messages consisting of6n group elements. Such a one-time verification key will specify a common
reference stringσvk = (fvk, hvk, uvk, vvk, wvk) as well as the committed signing keyc, c1, . . . , c6n. We
will therefore letcvk be the encryption of these18n+ 9 elements.

Finally, we need an NIZK proof forRsor = {((pk1, pk1, ck, cvk, c1, c2, vk), w) | (w = (r1, r2,m) :
c1 = Epk1(m; r1), c2 = Epk2(m; r2)) ∨ (w = r : cvk = comck(vk; r))}. We have in Appendix 4.8
argued that there exists a set of pairing product equations that are satisfiable if and only if two ciphertexts
encrypt the same message under their respective public keys. In the introduction, we described a set of
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pairing product equations corresponding to encryption of a particular message. In our case, this ciphertext
is cvk, which has the plaintextvk′ = (fvk′ , . . . , c

′
n). Finally, we also argued in Appendix 4.8 that we can

compile two sets of pairing product equations into one set corresponding to the statement that at least one
of the original set of equations is satisfiable. We observe, given a witness in the form of plaintexts and
randomness forc1, c2 or vk′ and randomness forcvk one can actually find(a1, a2, . . .) to satisfy the set of
pairing product equations. This shows that we can use the NIZK proof forRppsat to implement an NIZK
proof forRsor. With the choices above, the size of the NIZK proof will beO(n) group elements.

Corollary 14 If (p,G,G1, e, g) is a DLIN-group, we can built an RCCA-secure cryptosystem
(Krcca, E,D). The cryptosystem permits encryption of messages on the form(m1, . . . ,mn) ∈ Gn. The
cryptosystem has perfect decryption and perfect decryption verification as defined in the next section. The
public key and the ciphertexts both consist ofO(n) group elements. It is publicly verifiable whether the
ciphertext is valid, and such verification corresponds to evaluating a set of pairing product equations.

Kiltz [Kil06] has recently suggested a simple CCA2-secure cryptosystem based on the DLIN assump-
tion. However, in his scheme verifying correctness of the ciphertext does not correspond to evaluating a
set of pairing product equations. Since we will need this property later on, we use the more complicated
construction above.

5.3 Signature Scheme Secure against Chosen Message Attack

In this section, we construct a signature scheme that is secure against chosen message attack. We first
describe the signature scheme in general terms, then suggest a concrete implementation based on the
DLIN assumption.

The signature scheme based on the DLIN assumption is not practical due to the large constant.
Nonetheless, it does have independent interest since it is based on a simple cryptographic assumption
and can be used to sign group elementsm ∈ G. Other signature schemes such as Boneh and Boyen’s
[BB04] needs the message to be an exponentm ∈ Zp, which makes it hard to make proofs of knowledge
for instance since we do not know how to compute discrete logarithms.

We will need three tools in the construction. One tool is an RCCA-secure cryptosystem4 with decryp-
tion verification. By decryption verification, we mean that there should exist two algorithmsWdec, Vdec.
The role ofWdec is to convert the plaintextm and the randomnessr for a ciphertextc = Epk(m; r) into a
decryption witnessw for Dsk(c) = m. The role ofVdec is to verify a witnessw that indeed a ciphertext
will decrypt tom. Formally, we require that for all adversariesA we have

Pr
[
(pk, sk)← Krcca(1k); (m, r)← A(pk, sk); c = Epk(m; r);w ←Wdec(pk,m, r) : Vdec(pk,m, c, w) = 1

]
and

Pr
[
(pk, sk)← Krcca(1k); (m, c, w)← A(pk, sk) : Vdec(pk,m, c, w) = 1 andDsk(c) 6= m

]
= 0.

Decryption verification implies that the cryptosystem has perfect decryption. On the other hand, for a
cryptosystem with perfect decryption, we could simply letw = r and let the verification algorithm check
whetherc = Epk(m;w).

4Actually, we do not need full RCCA-security. It suffices that the cryptosystem is RPA0-secure [Gro03]. In an RPA0-attack
the adversary does not have access toO1. It can only queryO2 once, but in this one query is allowed to ask for decryption of many
ciphertexts. It can be shown with techniques from [BS99] that this kind of attack corresponds to a notion of non-malleability,
where the adversary may be able to modify a ciphertext into one that contains the same message, but cannot maul the ciphertext
in a non-trivial way.
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The second tool is a gap problem. By this we mean that we have a generatorKgap that generates(a, b)
and a verification algorithmVgap such that it is easy to verify(a, b) but hard to computeb from a. For all
non-uniform polynomial time adversariesA we have

Pr
[
(a, b)← Kgap(1k) : Vgap(a, b) = 1

]
= 1 and Pr

[
(a, b)← Kgap(1k); b′ ← A(a) : Vgap(a, b′) = 1

]
≈ 0.

It is easy to come up with examples of gap-problems, one could for instance letf be a one-way function,
chooseb at random and leta = f(b), which is easily verifiable.

The third tool is an NIZK proof system for a ciphertext decrypting tom, b such thatb is the hard part
of a gap-problem. More precisely, we need aRencgap = {((pk, a,m, c), (b, w)) | Vdec(pk, (m, b), c, w) =
1, Vgap(a, b) = 1}.

Key generation: To generate keys do

1. Pick(a, b)← Kgap(1k)

2. Generate keys for the RCCA-secure cryptosystem,(pk, skrcca)← Krcca(1k)

3. Generate a common reference string for the NIZK proof system,σ ← K(1k)

The verification key isvk = (pk, a, σ).

The signing key issk = (vk, b).

Signing: To sign a messagem do

1. Encryptm, b asc = Epk(m, b; r)

2. Letw = Wdec(pk, (m, b), r)

3. Make an NIZK proofπ ← Pencgap(σ, (pk, a,m, c), (b, w)) for c decrypting tom andb such
thatVgap(a, b) = 1.

The signature iss = (c, π).

Verification: To verify signatures check the proofπ

Theorem 15 The signature scheme described above is existentially unforgeable under chosen message
attack.

Proof. LetASignsk(·)(vk) be an adversary with access to a signing oracle and a randomly generated verifi-
cation keyvk. We wish to argue that it has negligible probability of finding a valid signature on a message
m that it has not queried the oracle.

Observe first that by the soundness of the NIZK proof and the decryption verifiability property the
ciphertext inA’s forgery must containm, b′ soV (a, b′) = 1. We can therefore modify the game such that
we decrypt the resulting ciphertext inA’s forgery and consider the adversary unsuccessful if suchm, b′ is
not the plaintext.

Let us modify the game such that we create(σ, τ) ← S1(1k) and simulate the NIZK proofs in the
signing oracle. By the unbounded zero-knowledge property of the NIZK proof, the adversary cannot
distinguish between this game and the previous one, so the success probability is changed negligibly. In
particular, it must still produce a forgery where the plaintext ism, b′ to be successful.

Let us make another modification, instead of encryptingm, b when making signatures, we encrypt
m, 1. To argue that this does not change the success probability of the adversary we will make a hybrid
argument, so let Sign[i]sk(·) be an oracle that on queries1, . . . , q responds with a signature where it
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encryptsmj , 1 on a querymj , wherej < i and encryptsmj , b if j ≥ i. Let q(k) be an upper bound on
the number of signing queriesA makes. SinceA is a polynomial time adversary,q(k) is polynomial. We
now have Signsk(·) =Sign[0]sk(·), and we are switching to use the signing oracle Sign[q(k)]sk(·) where
we encrypt(·, 1).

What we need to observe is that for all0 ≤ i < q(k) the adversary’s success probability using
oracle Sign[i]sk(·) is almost the same as when using the oracle Sign[i + 1]sk(·). Let us see that RCCA-
security of the cryptosystem implies this property. Given a public keypk for the RCCA-security we
choose(a, b) ← Kgap(1k) and we choose(σ, τ) ← S1(1k) and give the adversary the verification key
vk = (pk, a, σ). We answer queries1, . . . , i− 1 by encryptingmj , 1 and simulatingπ. NowA produces
querymi and we let our two challenge messages bem0 = (mi, 1) andm1 = (mi, b). We receive a
challenge encryption of one of these messages, and our goal is to break RCCA-security by distinguishing
which one we received. We answer queryi by simulating the proof and returning the challenge ciphertext
together with the simulated proof. In all future signing queries, we encrypt(mj , b) and simulate the
proofs. Notice, if the challenge encryption has the plaintextmi, 1, then this corresponds exactly to the
adversary running with oracle Sign[i]sk, while if the challenge encryption has plaintextmi, b, then it
corresponds exactly to the adversary running with oracle Sign[i + 1]sk. The adversary now produces a
forged signaturec, π on messagem. We givec to the decryption oracle and receive a responsem′, b′.
In casem′ = m,Vgap(a, b′) = 1 we output 1, else we output 0. In case the response istest we also
output 0. By definition, to be successfulA had to produce a ciphertext wherem was inside (i.e., it is
never successful if the answer istest ) andVgap(a, b′) = 1. Therefore, ifA has more than negligible
difference in success probability with respectively oracleSign[i]sk andSign[i + 1]sk, then we can break
the RCCA-security of the cryptosystem.

To conclude, observe that now we have a game where the adversary sees encryptions ofmi, 1 on query
i, yet to be successful has to produce an encryption ofm, b′ such thatVgap(a, b′) = 1. Since(a, b) is a gap
problem, the adversary has negligible success probability. �

We can instantiate the general signature scheme above using a DLIN group. The gap problem will be
the following: We pickd at random and leta = gd, b = gd2

. It is straightforward to verify the correctness
of such a pair by checking whethere(g, b) = e(a, a). Lemma 16 states that givena it is hard to compute
b.

Lemma 16 If the DLIN assumption holds forG then for all non-uniform polynomial time adversariesA
we have

Pr
[
(p,G,G1, e, g)← G(1k); d← Zp; b← A(p,G,G1, e, g, a = gd) : b = gd2

]
≈ 0.

Proof. If we can solve the computational Diffie-Hellman problem with more than negligible probability
then we can break DLIN. In other words, giveng, gα, gβ for randomα, β ← Zp it is hard to computegαβ .

Assume that we have more than negligible chance of computinggd2
in the game above. This means,

given gα, gβ we have more than negligible chance of computingg(α+β)2 , g(α−β)2 . Rewriting gαβ =
g((α+beta)2−(α−β)2)4−1

we see that this violates the hardness of the computational Diffie-Hellman problem.
�

To make a signature onm = (m1, . . . ,mn) ∈ Gn we encryptm1, . . . ,mn, b with the RCCA-secure
cryptosystem constructed in the previous section. This encryption consists ofO(n) group elements.

We need to make an NIZK proof that indeed the ciphertext contains the correctm1, . . . ,mn

and b such that e(g, b) = e(a, a). Recall from the last section that the RCCA-secure en-
cryption contains as a part of it a CPA-secure ciphertextc1 which encryptsm1, . . . ,mn, b as
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(f r1,1

1 , h
s1,1

1 , gr1,1+s1,1m1, . . . , f
r1,n+1

1 , h
s1,n+1

1 , gr1,n+1+s1,n+1b). If the ciphertext is valid, which is pub-
licly verifiable, the decryption operation gives usm1, . . . ,mn, b. The RCCA-secure cryptosystem there-
fore has simple decryption verification where the witness is on the formgr1 , . . . , grn+1 . All we have to do
now is to check whether indeede(a, a) = e(g, b). All equations we have to evaluate are pairing product
equations. This means that we can build an NIZK proof forRencgap of lengthO(n).

Corollary 17 Under the DLIN assumption there exists a CMA-secure digital signature scheme
(Ksign,Sign,Ver) for signingn group elements with perfect correctness. The verification key and the
signatures consist ofO(n) group elements and the verification process consists of evaluating a set of
pairing product equations.

5.4 Strong One-Time Signature

The idea for our strong one-time signature scheme is to set up a Pedersen trapdoor commitment to 0.
When we receive a messagem ∈ Zp to be signed, we make a trapdoor opening of the commitment tom.
Only the signer knows the trapdoor, so only he can sign messages. Security of this scheme comes from
the hardness of computing discrete logarithms. Note, the hardness of the discrete logarithm problem is
implied by the DLIN assumption.

We want the signature scheme to be secure against a one-time chosen message attack. Therefore, we
set up the Pedersen commitment with two trapdoors such that it is impossible for the adversary to see
which trapdoor we used. This way, if the adversary can forge a signature we can find a way to break one
of the trapdoors, i.e., compute a discrete logarithm.

Key generation: On the bilinear group(p,G,G1, e, g) we generate the verification key and the signing
key, as follows. We choosexs, ys ← Z∗

p and setfs = gxs , hs = gys . We pickrs, ss ← Zp and
setcs = f rs

s h
ss
s . We pick a collision-free hash functionH : {0, 1}∗ → Zp. The verification key is

vk = (p,G,G1, e, g, fs, hs, cs,H) and the secret key issk = (vk, xs, ys).

Signature: To sign a messagem ∈ {0, 1}∗ pick r ← Zp and reveal the signature(r, (xs(rs− r)+ ysss−
H(m))/ys).

Verification: To verify a signature(r, s) onm we check thatcs = gH(m)f r
sh

s
s.

Theorem 18 Assuming hardness of computing discrete logarithms and collision-freeness of the hash-
function, the protocol(Ksots,Sign,Ver) described above is a strong one-time signature scheme for signing
messagesm ∈ {0, 1}∗ with perfect correctness.

Proof. Let us say the adversaryA queries for a signature(r, s) onm and then forges a signature(r′, s′)
onm′, wheres 6= s′ with more than negligible probability. We will use it to compute a discrete logarithm
or break the collision-freeness of the hash-function. Leths = gys be a challenge for the DL problem,
we wish to computeys so hs = gys . We choosexs ← Z∗

p (we can also easily check thatys 6= 0)
and letfs = gxs . We then formcs = f rs

s h
s for rs, s ← Zp. On querym we return the signature

(r, s) = (rs − H(m)/xs, s). This looks exactly like a real verification key and a standard signature.A
therefore produces a forgerym′, (r′, s′) with s′ 6= s with more than negligible probability. We see now
that c = gH(m)f r

sh
s
s = gH(m′)f r′

s h
s′
s and thereforehs = g(H(m′)+xsr′−H(m)−xsr)/(s−s′), so we have

computed the discrete logarithm ofhs. In a similar fashion, we can argue thatAmust reuser′ = r. But if
r′ = r, s′ = s the only possibility isH(m′) = H(m) andA has found a collision ifm′ 6= m. �

Since hardness of computing discrete logarithms implies the existence of collision-free hash-functions
this is not really an extra assumption.
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6 Simulation-Sound NIZK Proof of Knowledge for Satisfiability of Pairing
Product Equations

In this section, we combine the tools of the previous section with the NIZK proofs to construct an un-
bounded simulation-sound extractable NIZK proof for satisfiability of pairing product equations. We first
describe the idea in general terms of proving a statementx belongs to some languageL.

The prover will pick random keys(vksots, sksots) for a strong one-time signature scheme, andvksots

will be part of the NIZK proof. Another part of the NIZK proof will be a strong one-time signature on
the statement to be proven and the NIZK proof. Since the adversary does not know the secret signing key
associated withvksots he must pick a different verification key in his forged NIZK proof.

The common reference string will contain a verification keyvk for a digital signature scheme that
is secure against adaptive chosen message attack. The prover will prove thatx ∈ L or that he knows a
signature onvksots. In simulations we can set it up such that we do know the secret signing key associated
with vk. This allows us to sign anyvksots and therefore make a convincing NIZK proof even though we
do not know a witness forx ∈ L. On the other hand, the adversary even after seeing many such proofs
will not be able to forge a signature on a newvksots and therefore he cannot make a valid NIZK proof for
a false statement.

Obviously, we need to hide the digital signature onvksots, otherwise it would be easy to see whether
an NIZK proof was real or simulated. To do this, we let the common reference string contain a public key
for a CPA-secure cryptosystem. In a real proof we encrypt some dummy message, while in the simulation
we encrypt a digital signature onvksots. We then proceed with an NIZK proof thatx ∈ L or the ciphertext
contains a signature onvksots.

One small issue remains. A computationally unbounded adversary can of course forge signatures under
vk and therefore prove false statements. To have perfect soundness, we will include an encryptionc1 of
some non-trivial element in the common reference string. Furthermore, in the NIZK proofs we require an
NIZK proof for the prover having both encrypted a digital signature onvksots as well asc1 having plaintext
1. Sincec1 does not have plaintext 1 even an unbounded prover cannot cheat. On the other hand, in the
simulation we will set upc1 so that it does contain1.

To make the NIZK proof a proof of knowledge, instead of proving directly thatx ∈ L, we will encrypt
a witness and prove that we have encrypted the witness, or we have encrypted a signature onvksots andc1
has1 as plaintext.

Let in the following (K,Pssor, Vssor, S1, Sssor) be an NIZK proof for Rssor, the relation for
the statement thatcw contains a satisfying(a1, . . . , an) or cs contains a signature onvksots

and c1 contains 1. More formally,Rssor = {((S, cw, cs), w) | (w = (a1, . . . , an, Rw) :
c = E(fe,he)(a1, . . . , an;Rw), S(a1, . . . , an) = true ) ∨ (w = (s,Rs, rc, sc) : cs =
E(fe,he)(s;Rs),Vervk(vksots, s) = 1, c1 = E(fe,he)(1; rc, sc))}.

Common reference string generation and simulation:On group(p,G,G1, e, g) do

1. (vk, sk)← Ksign(p,G,G1, e, g)

2. xe, ye ← Z∗
p

3. fe = gxe , he = gye

4. rc, sc ← Zp

5. c1 = E(fe,he)(g; rc, sc) = (f rc
e , h

sc
e , g

rc+scg)

6. σ ← K(p,G,G1, e, g)

The common reference string isΣ = (vk, fe, he, c1, σ)
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The extraction algorithmE1 generates the common reference string as above and outputs the extrac-
tion keyξ = (xe, ye)

The simulation-extractorSE1 generates the common reference string as described above except it
setsc1 = E(fe,he)(1; rc, sc). It outputs(Σ, τ, ξ) = ((vk, fe, he, c1, σ), (sk, rc, sc), (xe, ye)).

Proof of satisfiability of pairing product equations: On a setS of pairing product equations overn
variables and a witness, namely a satisfying assignment(a1, . . . , an), do

1. (vksots, sksots)← Ksots(p,G,G1, e, g)
2. cw = E(fe,he)(a1, . . . , an;Rw), whereRw = (rw,1, sw,1, . . . , rw,n, sw,n)
3. cs = E(fe,he)(1, . . . , 1;Rs), whereRs = (rs,1, . . .)
4. πssor ← Pssor(σ, (S, cw, cs), (a1, . . . , an, Rw))
5. ssots ← Signsksots

(S, vksots, cw, cs, πssor)

The proof isπ = (vksots, cw, cs, πssor, ssots)

Extraction: Given a valid proofπ as above, the extraction algorithm usesξ = (xe, ye) to decryptcw to
get a witnessa1, . . . , an.

Verification: To verify proofπ checkVervksots((S, vksots, cw, cs, πssor), ssots) = 1 and that the cipher-
textscw, cs have the right lengths and that the proofπssor is valid.

Simulation: To simulate a proof forS do

1. (vksots, sksots)← Ksots(p,G,G1, e, g)
2. s← Signsk(vksots)
3. cw = E(fe,he)(1, . . . , 1;Rw), whereRw = (rw,1, sw,1, . . . , rw,n, sw,n)
4. cs = E(fe,he)(s;Rs), whereRs = (rs,1, ss,1, . . .)
5. πssor ← Pssor(σ, (S, cw, cs), (s,Rs, rc, sc))
6. ssots ← Signsksots

(S, vksots, cw, cs, π)

The simulated proof isπ = (vksots, cw, cs, πssor, ssots)

Theorem 19 If (p,G,G1, e, g) is a DLIN group then(Ksse, Psse, Vsse, S1,sse, Ssse, E1,sse, Esse, SE1,sse) as
described above is an NIZK proof for satisfiability of pairing product equations. It has perfect complete-
ness, perfect soundness, perfect knowledge extraction and composable zero-knowledge and unbounded
simulation soundness extraction. The size of the common reference string isO(1) group elements, while
the NIZK proofs consist ofO(n+ `) group elements.

Proof. Let us first compute the size of the common reference string and the NIZK proofs.vksots consists
of O(1) group elements, no matter the size of the message to be signed. We use(vk, sk) when signing
vksots in the simulation, but sincevksots has constant size, we can make do with a constant sizevk, and in
simulations the signatureswill also have constant size. Since the public key(fe, he) has 2 group elements,
and sinceσ is of constant size as well, we see that the entire common reference stringΣ hasO(1) group
elements. In a simulated proof, the ciphertextcs only need to encrypt the constant size signatures. On
the other hand in an NIZK proof,cw needs to encrypt a witness containingn elements, so it will have size
O(n) group elements. Setting up product pairing equations for a plaintexta1, . . . , an being inside uses
O(n) group elements. With the combined length of the pairing products equations being` the proofπssor

therefore consists ofO(n+ `) group elements. Sincessots is of constant size, we conclude that the NIZK
proof has sizeO(n+ `) group elements.
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Perfect completeness:It follows from the perfect completeness of the NIZK proof forRppsat that we get
perfectly complete NIZK proof forRssor. This combined with the perfect decryption property of the
cryptosystem and the perfect correctness of the signature schemes gives us perfect completeness.

Perfect soundness and perfect knowledge extraction:From the perfect soundness of the NIZK proof
for Rssor we know that eithercw encrypts a satisfying(a1, . . . , an) or thatc1 is an encryption of
1. Sincec1 is not an encryption of 1 this means thatcw encrypts a satisfyinga1, . . . , an. This
implies thatS is satisfiable. Moreover, given the decryption key(xe, ye) we can extract the witness
(a1, . . . , an) = D(xe,ye)(cw).

Composable zero-knowledge:We first have to argue common reference string indistinguishability. The
only difference between common reference strings and simulated common reference strings is
whetherc1 is an encryption of1 or not. By the semantic security of the cryptosystem no non-
uniform polynomial time adversary can distinguish between such ciphertexts with more than negli-
gible probability, and therefore it cannot distinguish between real and simulated common reference
strings.

Let now Σ be a simulated common reference string and consider a non-uniform polynomial time
adversaryA(Σ, τ) that tries to distinguish between proofs and simulated proofs. It produces a setS
of pairing product equations as well as a satisfiability witness(a1, . . . , an). Given a proofπ it has
to distinguish whetherπ was simulated or not.

Let us start with the way the prover creates a proofπ. By the semantic security of the cryptosystem,
we can create a signatures← Signsk(vksots) and letcs = E(fe,he)(s;Rs) instead of encrypting1’s
without changingA’s success probability more than negligibly.

The proofπssor proves thatcw contains a satisfying(a1, . . . , an), or c1 encrypts 1 andcs contains a
signature onvksots. Now both parts of this or-statement is true and we know a witness for both of
them. Sinceπssor is a zero-knowledge proof it is also witness-indistinguishable. We can therefore
switch to using the witness(s,Rs, rc, sc) in the proofπssor withoutA detecting the switch.

By the semantic security of the cryptosystemA does not notice it if we switch to creatingcw as
an encryption of(1, . . . , 1). We are now creating the proof as the simulator does, butA’s success
probability has changed only negligibly.

Simulation-sound extractability: We will argue that it is infeasible for a non-uniform polynomial time
adversaryAS2(Σ,τ,·)(Σ, ξ) to create a statement and valid proof(x, π) such that we cannot extract a
witness from it, unlessπ is one of the query-responses.

We first observe that the strong one-time signature scheme’s existential unforgeability implies that
it is infeasible forA to produce a valid proofπ where it recyclesvksots from one of the queries.

If cw does not contain a satisfying(a1, . . . , an) then by the soundness of the NIZK proof forRssor the
ciphertextcs must contain a signatures on vksots. Using the decryption key(xe, ye) we therefore
obtain a forged signature undervk. By the CMA-security of the signature scheme this event has
negligible probability of happening.

�

6.1 Universally Composable Non-interactive Zero-Knowledge

The goal of this section is to demonstrate how powerful NIZK proofs with simulation-sound extractability
are. We will securely realize the NIZK-functionalityFNIZK from [GOS06b] in Canetti’s UC framework
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[Can01]. In [GOS06b] there is a construction of a UC NIZK protocol that can be used to realizeFNIZK

for Circuit Satisfiability in a model where the adversary is adaptive and the parties cannot erase data from
their tapes. We consider a weaker model, where the partiescanerase data from their tapes. On the other
hand, whereas the UC NIZK protocol in [GOS06b] is inefficient, our protocol produces proofs of linear
size in the circuit size. We note that [CLOS02] have already observed without proof that simulation-sound
extractability gives you UC NIZK for non-adaptive adversaries, which in the case of UC NIZK is almost
the same as adaptive adversaries where we allow erasures.

MODELING NON-INTERACTIVE ZERO-KNOWLEDGE PROOFSWe refer to [Can01, GOS06b] for a de-
scription of the UC-framework and the modeling of NIZK proofs/arguments in the UC framework. Here
we simply describe the ideal functionalities for Circuit Satisfiability and prove that we can realize it with
linear size proofs under the DLIN assumption forG.

Parametrized by relationR and running with partiesP1, . . . , Pn and adversaryS.

Proof: On input (prove,sid, ssid, x, w) from partyP ignore if (x,w) /∈ R. Send (prove,x) to S and
wait for answer (proof, π). Upon receiving the answer store(x, π) and send
(proof, sid, ssid, π) to P .

Verification: On input (verify , sid, ssid, x, π) from V check whether(x, π) is stored. If not send
(verify ,x, π) to S and wait for an answer (witness,w). Upon receiving the answer, check
whether(x,w) ∈ R and in that case, store(x, π). If (x, π) has been stored return
(verification,sid, ssid,1) toV , else return (verification,sid, ssid,0).

Figure 3: NIZK proof functionalityFNIZK.

Common reference string: On input (start,sid) runΣ← K(1k).

Send (crs,sid,Σ) to all parties and halt.

Figure 4: Protocol for UC NIZK common reference string generation.

Proof: PartyP waits until receiving (crs,sid,Σ) fromFCRS.

On input (prove,sid, ssid, x, w) runπ ← P (Σ, x, w). Erase intermediate data used in the
computation ofπ. Output (proof,sid, ssid, π).

Verification: PartyV waits until receiving (crs,sid,Σ) fromFCRS.

On input (verify ,sid, ssid, x, π) run b← V (Σ, x, π). Output (verification,sid, ssid, b).

Figure 5: Protocol for UC NIZK proof using simulation-sound extractable NIZK proof
(K,P, V, S1, S2, E1, E2, SE1) for relationR.

Theorem 20 The protocol in Figure 5 securely realizesFNIZK in theFCRS-model.

Proof. Let A be a non-uniform polynomial time adversary. We will describe an ideal adversaryS so
no non-uniform polynomial time environment can distinguish whether it is running in theFCRS-hybrid
model with partiesP1, . . . , Pn and adversaryA or in the ideal process withFNIZK, S and dummy parties
P̃1, . . . , P̃n.
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S starts by invoking a copy ofA. It will run a simulated interaction ofA, the parties and the envi-
ronment. In particular, whenever the simulatedA communicates with the environment,S just passes this
information along. And wheneverA corrupts a partyPi, S corrupts the corresponding dummy partyP̃i.

SIMULATING FCRS. S chooses the common reference string as(Σ, τ, ξ)← SE1(1k). S simulatesFCRS

sending (crs,sid,Σ) to all parties. WheneverA decides to deliver such a message to a partyPi, S will
simulatePi receiving this string.

SIMULATING UNCORRUPTED PROVERS. SupposeS receives (proof,sid, ssid, x) from FNIZK. This
means that some dummy partỹP received input (prove,sid, ssid, x, w), where(x,w) ∈ R. We must
simulate the output a real partyP would make, however, we may not knoww.

We createπ ← S2(Σ, τ, x) and return (proof,π) to FNIZK. FNIZK subsequently sends
(proof,sid, ssid, π) to P̃ and we deliver this message so it gets output to the environment.

SIMULATING UNCORRUPTED VERIFIERS. SupposeS receives (verify ,x, π) fromFNIZK. This means an
honest dummy partỹV has received (verify ,sid, ssid, x, π) from the environment.
S checks the proof,b← V (Σ, x, π). If invalid, it sends (witness,no witness ) toFNIZK and deliv-

ers the consequent message (verification,sid, ssid, 0) to Ṽ that outputs this rejection to the environment.
On the other hand, if the UC NIZK argument is valid we must try to extract a witnessw. If x has ever

been proved by an honest prover that was later corrupted, we will know the witness and do not need to
run the following extraction procedure. If the witness is not known alreadyS letsw ← E2(Σ, ξ, x, π). If
(x,w) /∈ R it setsw = no witness . It sends (witness,w) to FNIZK. It delivers the resulting output
message tõV that outputs it to the environment.

We will later argue that the probability of the proof being valid, yet us not being able to supply a good
witness toFNIZK is negligible. That means with overwhelming probability we input a valid witnessw to
FNIZK whenπ is an acceptable UC NIZK argument forx.

SIMULATING CORRUPTION. Suppose a simulated partyPi is corrupted byA. Then we have to simulate
the transcript ofPi. We start by corrupting̃Pi thereby learning all UC NIZK arguments it has verified. It
is straightforward to simulatePi’s internal tapes when running these verification processes.

We also learn all statementsx that it has proved together with the corresponding witnessesw. Recall,
the UC NIZK argumentsπ have been provided byS. Since we erased all other data, we can therefore
simulate the tape ofPi.

HYBRIDS. We wish to argue that no environment can distinguish between the adversaryA running with
parties executing the UC NIZK protocol in theFCRS-hybrid model and the ideal adversaryS running in
theFNIZK-hybrid model with dummy parties. In order to do so we define several hybrid experiments and
show that the environment cannot distinguish between any of them.

H0: This is theFCRS-hybrid model running with adversaryA and partiesP1, . . . , Pn.

H1: We modify H0 by running(Σ, τ, ξ) ← SE1(1k) and creating the proofs of uncorrupted provers as
π ← S2(Σ, τ, x).

By the unbounded zero-knowledge property the adversary this experiment is indistinguishable from
H0.

H2: Consider the case where an honest partyV receives (verify ,sid, ssid, x, π). Supposeπ is indeed an
acceptable UC NIZK proof andπ is not one of the proofs we simulated. We runw ← E2(Σ, ξ, x, π).
If (x,w) /∈ R give up in the simulation.

By the simulation-sound extractability property there is negligible probability that we will ever give
up, so H2 is indistinguishable from H1.
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H3: This is the ideal process running withFNIZK andS.

Inspection shows that in process H2 and H3 we are computing the different parts of the protocol in
the same way. H2 and H3 are therefore perfectly indistinguishable to the environment.

�

Corollary 21 If the DLIN assumption forG is true then there exists a UC NIZK proof for Circuit Satisfia-
bility secure against adaptive adversaries where we allow erasures. The common reference string contains
a constant number of group elements, while the proofs consist ofO(|C|) group elements.

7 Constant Size Group Signatures without Random Oracles

7.1 Group Signature Functionality

In a group signature scheme there is a group manager that controls the group. This group manager controls
who can join the group. Once in the group members can sign messages on behalf of the group. Members’
signatures are anonymous except to the group manager who can open a signature and see who signed the
message. In some scenarios it is of interest to separate the group manager into two entities, an issuer who
enrolls members and an opener who traces signers.

We will describe the algorithms the group signature scheme will support. We imagine that there is a
PKI in place so that public keys can be trusted. We model this by having a public key registryreg where
only useri has a one-time write access toreg[i], we do not attempt to keep this information secret. User
i’s stores his secret key ingsk[i], unless compromised only the user has access to this key. [BSZ05] model
the PKI in a slightly more complicated way, but the difference between their definition and the present one
is non-essential.

Key generation: GKg generates(gpk, ik, ok). Heregpk is a group public key, whileik and ok are
respectively the issuer’s and the opener’s secret key.

Join/Issue: This is an interactive protocol between a user and the issuer. The useri registers a public key
vki in reg[i] and stores some corresponding private informationski. The issuer on detecting a new
entryreg[i] uses the issuer keyik to generate a responsecerti. The user verifies the correctness of
the response, and in case it accepts it storesgsk[i] = (ski, vki, certi).

The [BSZ05] definition allows for many rounds of secret communication. Our protocol is secure in
this more restricted model where we have a simple 2-move interaction, which does not need to be
secret.

Sign: A group memberi can sign a messagem by running picking randomnessr and letting the signature
bes = Gsig(gpk, gsk[i],m; r).

Verify: To verify a signatures on messagem we runGVf(gpk,m, s). The signature is valid if and only
if this verification algorithm outputs 1.

Open: The opener has read-access to the registration tablereg. We have (i, ψ) ←
Open(gpk, ok, reg,m, s) gives an opening of a valid signatures on messagem pointing toi. In
case the signature points to no member, the opener will assume the issuer forged the signature and
seti = issuer .

Judge: This algorithm is used to verify that openings are correct. We say the opening is correct if
Judge(gpk, i, reg[i],m, s, ψ) = 1.
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7.2 Group Signature Security Definitions

[BSZ05] define four security properties that the group signature must satisfy: correctness, anonymity,
traceability and non-frameability. We refer to [BSZ05] for a discussion how this security definition covers
and strengthens other security issues that have appeared in the literature.

PERFECT CORRECTNESS. On any adversarially chosen message, the verification should accept a group
signature created with a correctly generated group signing keygsk[i] for memberi. Running the opening
algorithm on this should identifyi and make the Judge algorithm accept the opening. For all (unbounded)
adversariesA we have

Pr
[
(gpk, ik, ok)← GKg(1k); (i,m)← AJoin/Issue(gpk, ik, ok); s← GSig(gpk, gsk[i],m);

(j, ψ)← Open(gpk, ok, reg[],m, s) :

if i ∈ Q thenF = 0 ∧ i = j ∧ Judge(gpk, i, reg[i],m, s, ψ) = 1
]

= 1,

where the oracle works as follows

Join/Issue: On inputi that has not been queried before run the Join/Issue protocol. This updatesreg[i]
andgsk[i]. In case the user does not accept, setF = 1 and return 1, else setF = 0 and return
reg[i], gsk[i]. Add i to the list of queriesQ.

ANONYMITY. It should be infeasible for an adversary to identify the signer of a message if he does not
know the opener’s keyok. We require a strong sense of anonymity, which holds even when the adversary
controls the issuer and that all the members’ secret signing keys are exposed. We require for all non-
uniform polynomial timeA that

Pr
[
(gpk, ik, ok)← GKg(1k) : ACh0,Open,Issue,ReadGsk,JoinCorrupt,JoinExposedHonest(gpk, ik) = 1

]
≈ Pr

[
(gpk, ik, ok)← GKg(1k) : ACh1,Open,Issue,ReadGsk,JoinCorrupt,JoinExposedHonest(gpk, ik) = 1

]
where the oracles work as follows:

JoinExposedHonest:On inputi wherereg[i] is empty first generate(vki, ski) as specified by the Join-
algorithm. Then storereg[i]← vki and send(ski, vki) to the adversary. Addi toQJoin.

Issue: On input(i, certi) wherei ∈ QJoin and yet not been answered check whether the answer is ac-
ceptable. In that case, storegsk[i] = (ski, vki, certi).

JoinCorrupt: On input(i, vki) wherereg[i] is emptyreg[i] = vki. This allows the adversary to enroll a
corrupt member and register any public key of its own choosing.

Chb: On input (i0, i1,m) wherei0, i1 are honest members with non-emptygsk[i0] andgsk[i1] return
s← GSig(gpk, gsk[ib],m).

Open: On input(m, s) that has not been produced byChb returnOpen(gpk, ok, reg,m, s).

ReadGsk: On inputi returngsk[i]. Add i to the query listQReadGsk.

TRACEABILITY. We want to avoid forged group signatures. The issuer can always make a dummy regis-
tration and create group signatures, so we cannot rule out the creation of group signatures. What we want
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to capture here is that if the issuer is honest, then it is infeasible to create a signature that does not belong
to some memberi. For all non-uniform polynomial time adversaries we have

Pr
[
(gpk, ik, ok)← GKg(1k); (m, s)← AJoin(gpk, ok); (i, ψ)← Open(gpk, ok, reg,m, s) :

GVf(gpk,m, s) = 1 andJudge(gpk, i, reg[i],m, s, ψ) = 1 andi = issuer
]
≈ 0,

where the oracle is

Join: On input(gpk, i, vki) registerreg[i] = vki. Run the issuer’s protocol on(i, vki) and returncerti.

NON-FRAMEABILITY . We want to a void that an honest member is not falsely attributed a signature that
it did not sign, even if both the issuer and opener are controlled by the adversary. We require that for all
non-uniform polynomial time adversariesA we have

Pr
[
(gpk, ik, ok)← GKg(1k); (m, s, i, ψ)← AJoinHonest,Issue,ReadGsk,GSig(gpk, ik, ok) :

GVf(gpk,m, s) = 1 ∧ i is an honest member withreg[i] 6= ε,

Judge(gpk, i, reg[i],m, s, ψ) = 1 ∧ i /∈ QReadGsk ∧ (m, s) /∈ QGSig

]
≈ 0,

where the oracles not described before are as follows

JoinHonest: On inputi, wherereg[i] is empty first generate(vki, ski) as specified in the Join-algorithm.
Then storereg[i]← vki and send(i, vki) to the issuer. Addi toQJoin.

ReadGsk: On inputi returngsk[i]. Add i to QReadGsk.

GSig: On input(i,m) check whethergsk[i] is non-empty. In that case returns← GSig(gpk, gsk[i],m).
Add (m, s) to the query listQGSig.

The above definition addresses a partially dynamic setting where members can be enrolled along the
way. It also separates the roles of granting membership from opening signatures. In [BMW03] a simpler
situation is considered. Only a single group manager that acts both as issuer and opener is considered.
All members’ keys are set up from the start, there is no enrollment. This relaxation permits the defini-
tions of traceability and non-frameability to be combined into one requirement called full-traceability. In
the following we concentrate on the stronger [BSZ05] model as described above and provide a secure
implementation based on the DLIN assumption.

7.3 Construction of a Group Signature Scheme

Our construction is related to the constructions in [BMW03, BSZ05]. We use four tools that we have
constructed earlier in the paper: CPA-secure encryption, CMA-secure signatures, NIZK proofs with
simulation-sound extractability and a strong one-time signature scheme.

The public key will be on the form(vk, pk,Σ), wherevk is a verification key for the CMA-secure
signature scheme,pk is a public key for the CPA-secure cryptosystem andΣ is a common reference string.
The issuer’s keyik is the signing key corresponding to the signature scheme, while the opener’s keyok is
the decryption key for the cryptosystem.

To join the useri creates a signature key pair(vki, ski). He sendsvki to the issuer who returns a
signaturecerti on vki. The user checks thatcerti is a valid signature onvki. His group signing key is
(ski, vki, certi).
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To sign a message the member creates a strong one-time signature key pair(vksots, sksots). Using
ski he forms a signaturesi on vksots. He then creates an encryptionc of (vki, certi, si) and makes an
NIZK proof π that the plaintext is correctly formed. Finally, he makes a strong one-time signaturessots
onm, vksots, c, π. The group signature onm is s = (vksots, c, π, ssots). Verification of a group signature
is straightforward, simply check the strong one-time signature and the NIZK proof.

To open a valid group signature we decryptc. We get somevk∗, cert∗, s∗ and look up the memberi
who registeredvk∗. In case no such member exists, we seti = issuer . We return an opening(i, ψ),
whereψ = (vk∗, cert∗, s∗). Anybody can check whethercert∗ is a signature onvk∗ undervk, and
whethers∗ is a signature onvksots undervk∗. If vk∗ has been registered for useri or no vk∗ has been
registered andi = issuer we accept the opening.

The security intuition behind the group signature scheme is as follows. We get anonymity, because
the information(vki, certi, si) that could identify the signer is encrypted. Since the NIZK proof is zero-
knowledge it does not reveal anything either. Even seeing openings of other group signatures does not
help, because when a CPA-secure cryptosystem is combined with a simulation-sound proof of knowledge
of the plaintext, then it becomes CCA2-secure, see also [DP92].

We get traceability because by the soundness of the NIZK proof system we must have a correct
vk∗, cert∗, s∗ inside the ciphertext. Since only the issuer knows the signing keyik, nobody else can
forge a certificatecert∗. This means, the group signature must point to some memberi, not the issuer.

We have non-frameability because a valid signature and a valid opening pointing toi contains a sig-
natures∗ undervki on vksots, sovksots must have been signed by the member. Furthermore, since it is
a strong one-time signature scheme and the public keyvksots is used only once byi, it must also be this
member that made the signaturessots on (m, vksots, c, π).

Let us consider how to make the NIZK proof. LetS = Sgs(vk, pk, vksots, c) be a set
of pairing equations that are satisfiable only on a witnessw = (vk∗, cert∗, s∗,~a) such that
Vervk(vk∗, cert∗) = 1,Vervk∗(vksots, s∗) = 1 and c has plaintext(vk∗, cert∗, s∗). Correspondingly,
let w = Wgs(vk, pk, vksots, c, vk∗, cert∗, s∗, R) be such a witnessw. Observe, since verification of the
signatures consist of verifying a set of pairing equations, and since we know how to prove that something
is a plaintext ofc it is straightforward to compute the setS and the corresponding satisfiability witness.
The witness will bew = (vk∗, cert∗, s∗, gr1 , gr2 , . . .), whereR = (r1, s1, r2, s2, . . .). We can now invoke
the simulation-sound extractable NIZK proof from Appendix 6.

Key generation: On input1k do

1. (p,G,G1, e, g)← G(1k)

2. (vk, ik)← Ksign(p,G,G1, e, g)

3. (pk, ok)← Kcpa(p,G,G1, e, g)

4. Σ← Ksse(p,G,G1, e, g)

Return(gpk, ik, ok) where the group public key isgpk = (p,G,G1, e, g, vk, pk,Σ).

Join/Issue: On input(gpk, i) to Join generate(vki, ski)← Ksign(p,G,G1, e, g). Storevki in reg[i] and
send(i, vki) to the issuer.

The issuer on input(i, vki) checks thatvki has been stored inreg[i]. In that it sendscerti ←
Signik(vki) to i.

Useri on inputcerti to Join verifies thatVervk(vki, certi) = 1. It accepts if this is the case and
storesgsk[i] = (ski, vki, certi). The user has now become a member.

Group signature: On input(gpk, gsk[i],m) with non-emptygsk[i] do
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1. (vksots, sksots)← Ksots(p,G,G1, e, g)

2. si ← Signski
(vksots)

3. c = Epk(vki, certi, si;R), with randomnessR = (r1, s1, . . .)

4. π ← Psse(Σ, Sgs(vk, pk, vksots, c),Wgs(vk, pk, vksots, vki, certi, si, R))

5. ssots ← Signsksots
(m, vksots, c, π)

Return the group signatures = (vksots, c, π, ssots).

Verify signature: On input(gpk,m, s) do

1. Check thatVervksots((m, vksots, c, π), ssots)

2. Check thatVsse(Σ, Sgs(vk, pk, vksots, c), π) = 1

Return 1 if both checks pass, else return 0.

Opening: On input(gpk, ok, reg,m, s) do

1. Return0 if Vsse(Σ, Sgs(vk, pk, vksots, c), π) = 0

2. (vk∗, cert∗, s∗) = Dok(c)

3. Look upvk∗ in reg and find the correspondingi. If no suchi exists seti = issuer

4. Letψ = (vk∗, cert∗, s∗)

Return(i, ψ).

Judge: On input(gpk,m, s, reg[i], i, ψ) do

1. Verify GVf(gpk,m, s) = 1

2. Check thatreg[i] = vk∗

3. Verify Vervk(vk∗, cert∗) = 1

4. Verify Vervk∗(vksots, s∗) = 1

5. Verify Vervksots(m, vksots, c, π) = 1

Return1 if all these checks pass, else return 0.

Theorem 22 The group signature scheme described above has perfect correctness, and anonymity, trace-
ability and non-frameability if the DLIN assumption holds forG. All keys containO(1) group elements,
openings containO(1) group elements, and signatures containO(1) group elements and elements from
Zp.

Proof.

Perfect correctness:This follows from the perfect correctness of the signature scheme and the perfect
completeness of the NIZK proof.

Anonymity: By a hybrid argument it suffices to prove anonymity in the case where the challenge oracle
Chb is only queried once. In other words, the adversary queries withi0, i1,m and receives a chal-
lenge signatures← GSig(gpk, gsk[ib],m). It has access to arbitrary openings except of(m, s) and
knowsik as well as all the members’ group signature keys and must now try to guessb.
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We start with theCh0 oracle and modify it such that we runSE1 in the key generation algorithm to
getΣ. In the challenge, we simulate the NIZK proofπ for c encrypting(vki0 , certi0 , si0). By the
unbounded zero-knowledge of the NIZK proof the adversary’s success probability changes negligi-
bly.

Next, let us observe that the probability of reusingvksots as the verification key for the one-time
signature in any valid query to the opening oracle is negligible since it is a strong one-time signature
scheme. We can therefore from now on assume that does not happen.

This implies that the statement(vk, pk, vksots, c) that is proved in the group signature in any query
to the opening oracle is different from the statement in the challenge signature. Therefore, instead
of using the opener’s keyok to extract the plaintext(vki, certi, si) we may as well use the knowl-
edge extractor for the NIZK proof. By the simulation-sound extraction property this gives the right
opening with overwhelming probability.

Since we are not decrypting any ciphertexts any more, we can use the semantic security to argue
that the adversary’s success probability is the same when we change the ciphertext in the challenge
to encrypt(1, . . . , 1) instead of(vki0 , certi0 , si0).

By a similar argument, we can argue that the game where the adversary has access toCh1 gives him
similar success probability when seeing a challenge consisting ofc = Epk(1, . . . , 1) and a simulated
proofπ.

Traceability: We want a guarantee that if the issuer is honest, then every signature can be traced back to
a member. Consider a valid group signatures = (vksots, c, π, ssots) onm. By the perfect soundness
of the proofπ we know thatc contains a plaintext(vk∗, cert∗, s∗), whereVervk(vk∗, cert∗) = 1.
The opening points toi that has registeredvk∗, unless no such registration took place. However, if
no such registration took place, then the issuer never signedvk∗. This implies that we have created
a forged signature onvk∗ and therefore broken the CMA-security of the signature scheme.

Non-frameability: In this definition, both the issuer and the opener are corrupt. We want to guaran-
tee that no uncorrupt member is framed. Consider an adversary that creates a valid signature
(vksots, c, π, ssots) onm and a valid opening(i, (vki, cert∗, s∗) pointing to i. In all group signa-
turess′ this member made, it generated a signatures′sots using a random key pair(vk′sots, sk

′
sots).

By the strong unforgeability the adversary cannot recyclevk′sots. Therefore, the adversary must have
chosen a newvksots that has never been signed by memberi. This meanss∗ is a forged signature on
vksots and we have broken the CMA-security of the signature scheme.

�

KEY GENERATION. The security definitions in [BMW03, BSZ05] rely on a trusted key generation. Their
security guarantees guard against key exposures, but not against a malicious key generator. Let us consider
which parts need to be trusted.

Security for all parties rely on(p,G,G1, e, g) being a DLIN group. Assuming that it is a DLIN group
we get non-frameability even if the issuer and opener cooperate to generate the rest of the group public
keygpk.

The opener is in control of the anonymity, if it is corrupt there is no anonymity. We can therefore as-
sume that the opener will try to help members get anonymity. One of the components in giving anonymity
is the CPA-security of the cryptosystem. It is therefore reasonable to let the opener generatepk and in the
process learn the corresponding decryption keyok. Another part is the zero-knowledge property and the
simulation-sound extractability of the NIZK proof. We can let the opener generate the common reference
stringΣ.
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The issuer can create arbitrary group signatures on its own. If it is dishonest we cannot protect our-
selves against forgeries. Therefore, it is reasonable to let it aid us in guaranteeing traceability. One part
of this is to let it generate(vk, ik) such that certificates cannot be forged. Another part of this is to let
it verify that the opener knows the secret key corresponding topk and has generatedΣ so it is indeed
perfectly sound. The issuer can for instance request an interactive zero-knowledge proof of knowledge
from the opener to get these guarantees.

We conclude that the trust in the key generation algorithm boils down to trust in the DLIN problem
being hard in the group(p,G,G1, e, g).
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