Simulation-Sound NIZK Proofs for a Practical Language and
Constant Size Group Signatures

Jens Groth

UCLA, Computer Science Department
3531A Boelter Hall
Los Angeles, CA 90095, USA
jo@cs.ucla.edu

December 10, 2006

Abstract

Non-interactive zero-knowledge proofs play an essential role in many cryptographic protocols. We
suggest several NIZK proof systems based on prime order groups with a bilinear map. We obtain
linear size proofs for relations among group elements without going through an expensive reduction
to an NP-complete language such as Circuit Satisfiability. Security of all our constructions is based on
the decisional linear assumption.

The NIZK proof system is quite general and has many applications such as digital signatures,
verifiable encryption and group signatures. We focus on the latter and get the first group signature
scheme satisfying the strong security definition of Bellare, Shi and Zhang [BSZ05] in the standard
model without random oracles where each group signature consists only of a constant number of group
elements.

We also suggest a simulation-sound NIZK proof of knowledge, which is much more efficient than
previous constructions in the literature.

Caveat: The constants are large, and therefore our schemes are not practical. Nonetheless, we find
it very interesting for the first time to have NIZK proofs and group signatures that except for a constant
factor are optimal without using the random oracle model to argue security.

Keywords: Non-interactive zero-knowledge, simulation-sound extractability, group signatures, deci-
sional linear assumption.

*An extended abstract appears at Asiacrypt 2006. This is the full paper.
tSupported by NSF grant No. 0456717, and NSF Cybertrust grant.

0

1 Introduction

A non-interactive proof system allows a prover to convince a verifier about the truth of a statement. Zero-
knowledge captures the notion that the verifier learns no more from the proof than the truth of the state-
ment. We refer to Section 2 for formal definitions of non-interactive zero-knowledge (NIZK) proofs. NIZK
proofs play a central role in the field of cryptography. Our goal in this paper is to construct short efficient
prover NIZK proofs for languages that come up in practice when constructing cryptographic protocols.
As an example of the usefulness of these new techniques, we construct group signatures consisting of a
constant number of group elements.

1.1 Setup

We use two cyclic group&, G, of orderp, wherep is a prime. We make use of a bilinear mapG xG —
Gs. le., forallu,v € G anda, b € Z we havee(u®,v?) = e(u, v)®. We require that(g, g) is a generator
of G, if g is a generator ofz. We also require that group operations, group membership, and the bilinear
map be efficiently computable. Such groups have been widely used in cryptography in recent years.
Let G be an algorithm that takes a security parameter as input and o@tp@sG, e, g) such thap
is prime,G, G; are descriptions of groups of ordere : G x G — G is an admissible bilinear map as
described above angdis a random generator &f.
We use the decisional linear assumption introduced by Boneh, Boyen and Shacham [BBS04].

Definition 1 (Decisional Linear Assumption (DLIN)) We say the decisional linear assumption holds for
the bilinear group generatog if for all non-uniform polynomial time adversarie$ we have

br [(p, G,Gi,e,9) — G(1); 2y, 5 — Ly A(p,G,G1,e,9,9%, 9%, 9" g%, g™) = 1}
~ Pr [(paGalee7g) — g(lk);l‘,y,’l", S,d — Zp : A(p’G’Gl’e’g’gx’gy7gmrjgys7gd) = 1:|

Throughout the paper, we work over a bilinear grqppG, Gy, e, g) « G(1¥) generated such that the
DLIN assumption holds fog. We call this a DLIN group. Honest parties always check group membership
of G, G; when relevant and halt if an element does not belong to a group that it was supposed to according
to the protocol.

Given a DLIN group(p, G, G1, e, g) we can set up a semantically secure cryptosystem as in [BBS04].
We choose at random, y — Z;. The public key is(f, k), wheref = g*,h = g%, and the secret key
S (z,y). To encrypt a message € G we chooser,s «— Z, and let the ciphertext beu,v,w) =
(f7,h*,g"t*m). To decrypt a ciphertextu, v, w) € G* we computen = D(u, v, w) = u~ Y7o~ /y,

The cryptosysten{ K., E, D) has several nice properties. The DLIN assumptiondamplies
semantic security under chosen plaintext attack (CPA). All triples, w) € G are valid ciphertexts.
Also, the cryptosystem is homomorphic in the sense that

E(my;r1, s1)E(me,re, s2) = E(mima;ri + 12, 51 + S2).

Given a group(p,G,Gy,e,g) we define a pairing product equation of lengthover variables
ai,...,a, to be an equation of the following form.

l
H e(qj0,951) =1, wherequ_b]bHa“” with b, € G, ejp; € Zyp.
j=1 =1

Given a setS of pairing product equationsy,, . . ., eq,,, we can ask the natural questiols: there a
tuple(ay,...,a,) € G™ such that all equations il are simultaneously satisfied?

To illustrate the generality of the language of satisfiable pairing product equations we observe a re-
duction from the NP-complete language Circuit Satisfiability. &et. .., a, correspond to the wires
of the circuit, which without loss of generality contains only NAND-gates. Eetontain equations
e(ai, a;g~') = 1 forcing eacha; = g% to encode a bib; € {0,1}. For each NAND-gate with input
wiresig, ¢; and output, add toS the equatiore(a;,, a;,) = e(g,ga;;), which is satisfied if and only if
bi2 - _'(bio N bi1)'

Our main motivation for being interested in satisfiability of pairing product equations is not NP-
completeness though. Satisfiability of pairing product equations comes up in practice when constructing
cryptographic protocols and by making a direct NIZK proof instead of first reducing the problem to some
other language such as Circuit Satisfiability we keep proofs short.

For concreteness, let us use verifiable encryption as an example of a pairing product satisfiability
question that may come up in practice. Supp@se,w) is a ciphertext under the public key, i) of
the DLIN-based cryptosystem described earlier. We are interested in whether this ciphertext encrypts a
particular message:. This is the case, if and only if there existssuch thate(g,u) = e(a, f) and
e(h,wm=ta™1)) = e(v, g). If we knowr, s we can compute the satisfiability witness- ¢".

1.2 NIZK Proofs for Satisfiability of Pairing Product Equations

NIZK prROOFs The central technical contribution of this paper is an NIZK proof of §ie + ¢) group
elements for satisfiability of a set of pairing product equations of combined Idngihzg';l ¢;. The
proof system has perfect completeness and perfect soundness.

RELATED WORK ON NIZK PROOFS NIZK proofs were introduced by Blum, Feldman and Micali
[BFM88] and they suggested an NIZK proof for a single statement based on the hardness of deciding
gquadratic residousity. Blum et al. [BDMP91] extended this to multi-theorem NIZK proofs. Feige, Lapidot
and Shamir [FLS99] and Kilian and Petrank [KP98] give constructions based on trapdoor permutations.

Recently Groth, Ostrovsky and Sahai [GOS06b] have constructed NIZK proofs from composite order
bilinear groups introduced by Boneh, Goh and Nissim [BGNO5]. Even more recently Groth, Ostrovsky
and Sahai [GOS06a] have introduced the setting in this paper, a bilinear group of prime order and the DLIN
assumption. They construct non-interactive witness-indistinguishable proofs without any setup assump-
tions. In the common reference string (CRS) model both results give NIZK proofs for Circuit Satisfiability
of sizeO(|C||) group elements.

All the above-mentioned papers have in common that they focus on an NP-complete language, usually
Circuit Satisfiability, and suggest a bit-by-bit or gate-by-gate NIZK proof for this language. Our paper
differs by introducing new techniques that allows makdgct NIZK proofs for satisfiability of pairing
product equations. This allows us to construct constant/linear size cryptographic protocols for digital
signatures, RCCA-secure encryption[CKNO3], verifiable encryption and group signatures.

The only other way we know of to get linear size NIZK proofs/arguments for any practical language
is the Fiat-Shamir heuristic: Make a 3-move public coin (honest verifier) zero-knowledge protocol non-
interactive by computing the verifier's challenge as a hash of the statement and the initial protocol message.
To argue security, one models the hash-function as a random oracle [BR93]. It is well known that using
the random oracle model sometimes results in insecure real life protocols [CGH98, CGHO04, Nie02, GKO03,
BBPO4]. In comparison, our NIZK proofs hapeovable securityinder the DLIN assumption.

SIMULATION -SOUND EXTRACTABLE NIZK PROOFS Combining the definitions of simulation-
soundness introduced by Sahai [Sah01] and proofs of knowledge from De Santis and Persiano [DP92],
we get simulation-sound extractability. Here the simulator first creates a simulated CRS together with a
simulation trapdoor and an extraction trapdoor. We require that even after the adversary has seen simulated
proofs on arbitrary statements, if it constructs a new valid proof on any statement, then we can extract a

witness. Simulation-sound extractability is a very strong notion, in particular it implies non-malleability
as defined by De Santis et al. [DDO2].

We construct a simulation-sound extractable NIZK proof for satisfiability of pairing product equations.
Our NIZK proof has a CRS with a description of the group and a constant number of group elements, and
the proofs consist ab(n + ¢) group elements.

RELATED WORK ON SIMULATION-SOUND NIZK PROOFS As stated before, our interest in this paper

is satisfiability of pairing products equations. However, in order to compare our scheme with previous
work let us look at the case of Circuit Satisfiability. [Sah01] constructed a one-time simulation-sound
NIZK proof system using techniques from Dwork, Dolev and Naor [DDNOO]. Later a construction for
unbounded simulation-sound extractable NIZK arguments was given by {DRDwhere the adversary

can see many simulated arguments of arbitrary statements. The schemes from both these papers are based
on trapdoor permutations but are not practical. For the sake of fairness in evaluating the quality of our
contribution, we have also considered whether the techniques from [GOS06b] could be used to get good
efficiency for simulation-sound extractability. The answer to this question seems to be negative, the best
construction we can think of using GOS-techniques gives an additive polynomial size overhead.

Scheme NIZK proof bit size | Assumption
[DDO*02] O(|C|poly(k)) Trapdoor permutations
Potential use of [GOS06b] techniques)(|C|k + poly(k)) | Subgroup decision

| This paper \ O(|C|k) | DLIN |

Figure 1: Comparison of simulation-sound extractable proofs for Circuit Satisfiability

COMMON REFERENCE STRING VERSUS UNIFORM RANDOM STRINGWe will construct NIZK proofs

and simulation-sound extractable NIZK proofs in the common reference string model, where the prover
and the verifier both have access to a CRS chosen according to some distribution. If this distribution is
uniform at random we call it the uniform random string model. In some settings it is easier to work with a
URS, for instance a URS can easily be jointly generated using multi-party computation techniques.

Our NIZK proofs use a common reference string that contains a description of a bilinear group and a
number of group elements. Depending on the group elements, the CRS will give either perfect soundness
of perfect zero-knowledge. With overwhelming probability random group elements will lead to a perfect
soundness CRS. Assuming that we can use a uniform random string to get a description of a DLIN group
and a number of random group elements, we will therefore get NIZK proofs and simulation-sound NIZK
proofs in the URS-model. Since there is a negligible chance of picking a perfect zero-knowledge CRS,
this gives statistical soundness instead of perfect soundness, which is the best we can hope for in the URS-
model. We remark that natural candidates for bilinear DLIN groups based on elliptic curves are efficiently
samplable from a URS [GOS06a]. For the sake of simplicity we will just work with the CRS-model in the
paper, but invite the reader to note that all constructions work in the URS-model as well.

1.3 An Application: Constant Size Group Signatures

Group signatures, introduced by Chaum and van Heyst [CvH91], allow a member to sign messages anony-
mously on behalf of a group. A group manager controls the group and decides who can join. In case of
abuse, the group manager is able to open a signature to reveal who the signer is. It is hard to design group
signatures and most schemes [CS97, CM98, ACJT00, CL02, AdM03, CG04, KTY04, CL04, BBS04, FI05,
KYO05] use the random oracle model in the security proof.

Bellare, Micciancio and Warinschi [BMWO03] suggest rigorous security definitions for group signatures
in thestaticcase where the set of members is fixed from the start and never changes. Bellare, Shiand Zhang

[BSZ05] extend the security model to the partiallynamiccase where the group manager can enroll new
members in the group. Both [BMWO03] and [BSZ05] suggest constructions of group signatures based on
trapdoor permutations. These constructions are very inefficient and only indicate feasability.

Boyen and Waters [BWO06] use a combination of the Waters signature scheme [Wat05] and the
[GOS06b] NIZK proofs. They assume a static setting and as part of a group signature they encrypt the
identity of the signer bit by bit. This means that a group signature consigilog n) group elements,
wheren is the number of members in the group. The group signature scheme satisfies a relaxed version
of the [BMWAO03] security definition, where the anonymity is guaranteed only when no signatures have
been opened and traced to the signer. In comparison, the full-anonymity definition in [BMWO03] demands
that anonymity is preserved even when the adversary can get an opening of any other signature than the
challenge.

Ateniese et al. [ACHdMO5] use a bilinear group of prime order. The advantage of this scheme is that it
is very efficient, a group signature consists of 8 group elements. However, they use several strong security
assumptions and their security model is even weaker than that of [BWO06] since it does not protect against
key-exposures; knowledge of a signing key immediately allows one to tell which signatures this member
has made. In comparison, the BMW,BSZ-models do guard against key exposure.

The tools in this paper give a construction of group signatures where both keys and signatures consist
of a constant number of group elements. The construction involves carefully constructing and tailoring a
signature scheme and the simulation-sound extractable NIZK proof system such that they fit each other.
The constant is large; we do not claim this to be a practical scheme. Rather this should be seen as an
interesting feasibility result; under a simple and natural security assumption there exists an up to a constant
optimal dynamic group signature scheme satisfying the strong security definitions from [BMWO03, BSZ05].

Scheme Signature in bits Security model Assumption

[BMWO3] poly (k) [BMWO3] (fixed group) Trapdoor permutations

[BSZ05] poly (k) [BSZ05] (dynamic group) Trapdoor permutations

[BWO06] 3k + 2klogn | [BMWO3], CPA-anonymity Subgroup decision and CDH

[ACHdMO5] 8k UC-model, non-adaptive adversanstrong SXDH, g-EDH, strong LRSW
| This paper | O(k) | [BSZ05] | DLIN |

Figure 2: Comparison of group signature schemes

2 Definitions: Non-interactive Zero-Knowledge Proofs

Let R be an efficiently computable binary relation. For pdirsw) € R we callz the statement and
the witness. Lel. be the language consisting of statement&in

A proof system for a relatio® consists of a key generation algorithih, a proverP and a verifier
V. The key generation algorithm produces a CRSThe prover takes as inp(#, z, w) and produces
a proofr. The verifier takes as inpyt, z,) and outputs 1 if the proof is acceptable and 0 if rejecting
the proof. We call(K, P, V') a proof system forR if it has the completeness and soundness properties
described below.

In this paper, we will extend the usual definitions of NIZK proofs by allowing the relafion depend
on the CRS. In our constructions, the CRS will contain a description of a bilinear group as well as some
group elements, and we will make NIZK proofs for relations over this group and these group elements.
This all builds up to an NIZK proof for satisfiability of pairing product equations. The relation for satisfi-
ability of pairing product equations does not depend on the group elements in the CRS, but it still depends
on the group in question. One way of looking at this result is that given a DLIN group, we can formulate

4

the problem of satisfiability of pairing product equations, and we can on top of this group construct a CRS
so we can prove satisfiability of pairing product equations.

PERFECT COMPLETENESSFor all adversariegl we have
Pr [o — K(1%); (z,w) — A(o); 7 — P(o,z,w) : V(o,z,7) = 1if (z,w) € R] =1

PERFECT SOUNDNESSFor all adversariest we have

Pr [0 — K(1%);(z,7) — A(0) : V(o,z,m) =0if = ¢ L] = 1.

PERFECT KNOWLEDGE EXTRACTION We call (K, P, V) a proof of knowledge fo? if there exists a
knowledge extractoE! = (E;, E») with the properties described below.
For all adversariegl we have

Pr [a — K(1%): A(o) = 1} = Pr [(a,g) — E(1%) : A(o) = 1].
For all adversariest we have

Pr |:(U, £) — E1(1%); (z,7) — A(0);w — Ey(0,&,z,7) : V(o,z,7) =0 0r (x,w) € R} =1.

(UNBOUNDED) COMPUTATIONAL ZERO-KNOWLEDGE. We call(K, P, V') an NIZK proof for R if there
exists a polynomial time simulatsf = (.51, S2) with the following zero-knowledge property. For all
non-uniform polynomial time adversarigswe have

Pr o — K(1%): AP@)(0) = 1} ~ Pr [(a,) — Si(1F) : A5 () = 1,

whereS (o, 7, z,w) = Sa(o, 7,z) for (x,w) € R and both oracles outptdilure if (z,w) ¢ R. Here
f(k) = g(k) means that there exists a negligible functioso |f (k) — g(k)| < v(k).
(UNBOUNDED) SIMULATION SOUNDNESS Simulating a proof for a false statement might jeopardize the
soundness of the proof system. We say an NIZK proof is simulation sound if an adversary cannot prove
any false statement even after seeing simulated proofs of arbitrary statements.

More precisely, an NIZK proof is simulation sound if for all non-uniform polynomial time adversaries
we have

Pr ((0,7) — S1(1%); (2, 7) — A% (5) : (z,7) ¢ Qandz ¢ LandV (o, z,7) = 1| ~ 0,

where(is the list of simulation queries and responges ;).

(UNBOUNDED) SIMULATION SOUND EXTRACTABILITY. Combining simulation soundness and knowl-
edge extraction, we may require that even after seeing many simulated proofs, whenever the adversary
makes a new proof we are able to extract a withess. We call this property simulation sound extractability.
Simulation sound extractability implies simulation soundness, because if we can extract a witness from
the adversary’s proof, then obviously the statement must belong to the language in question.

Consider an NIZK proof of knowledgd¥, P, V, S1, Sa, E1, Es). Let SE; be an algorithm that outputs
(o, 7,€) such that it is identical t&; when restricted to the first two parts, 7). We say the NIZK proof
is simulation sound if for all non-uniform polynomial time adversaries we have

Pr|(o,7,§) «— SEl(lk); (x,m) «— AS2(U’T")(J,§);w — Es(0,&,x,7)

(z,7) ¢ Q and(z,w) ¢ RandV (o,z,) = 1] ~ 0,

5

whereQ is the list of simulation queries and responges ;).

Simulation sound extractability implies non-malleability as defined and proven in [BIR2D As we
shall see in Appendix 6.1 it also implies universally composable NIZK secure against adaptive adversaries
in a model where we allow parties to erase data from their tapes.

CoOMPOSABLE ZERGKNOWLEDGE. We will strengthen the definition of zero-knowledge in the following

way. First, we require that an adversary cannot distinguish a real CRS from a simulated CRS. Second, we
require that the adversarmgyen when it gets access to the secretkesannot distinguish real proofs on

a simulated CRS from simulated proofs. A hybrid argument shows that it is sufficient to requiré that
cannot distinguish one real proof from one simulated proof.

Reference string indistinguishability. For all non-uniform polynomial time adversarigdswe have

Pr [0 — K(1%): A(0) = 1] ~ Pr [(0,7’) — 51(1%): A(o) = 1}.

Simulation indistinguishability. For all non-uniform interactive polynomial time adversatiewe have
Pr [(J,T) — S1(1%); (z,w) — A(o,7); 7 — P(0,z,w) : A(w) = 1 and(z,w) € R}

~ Pr [(0, 7) — S1(1%); (z,w) — A(o,7); 7 «— Sa(o, 7, z) : A(m) = 1 and(z, w) € R}.

In [DDO"02] reference indistinguishability is also separated from simulation indistinguishability.
They require the simulated CRS to be statistically indistinguishable from a real CRS, whereas we are
satisfied with computational indistinguishability. This is necessary to obtain NIZK proofs, their schemes
are arguments that are only secure against a polynomial time prover.

On the other hand, our definition of simulation indistinguishability is stronger than the definition in
[DDO™02]. We allow the adversary to see the simulation trapdoavhereas they do not give the adver-
sary such power.

Theorem 2 If (K, P,V, Sy, S2) is a proof system with composable zero-knowledge, then it is unbounded
zero-knowledge.

Proof. Reference string indistinguishability implies
Pr|o — K(1%): AP©@)(g) = 1] ~ Pr {(O’, 7) — S1(1F) : AP (o) = 1],

by the indistinguishability of the reference strings, sincean simply run the prover itself.

Let¢(k) be an upper bound on the number of queresan ask the oracle, i.e., let for instangé) be
the run-time ofA4. Define PS[i](o, 7, -,) to be an oracle that on quejye 1,...,q(k) with a valid pair
(z,w) € Rresponds withby (o, 7, z) if 7 <iandP(o,z,w) if j > i. Notice P(o, -,) = PS[0](o,T,",-)
andS(o,7,-,-) = PS[q(k)](o,T,-,-). A hybrid argument shows that(#’, P, V, S1, S2) is not unbounded
zero-knowledge, then for sonte < i < ¢(k) the adversary must be able to distinguiBi¥[:] from
PS[i+1].

To conclude the proof, we observe that simulation indistinguishability implies that fonallhave

Pr |(o,7) « Sy (1%) : APSEem)(5) = 1} ~ Pr [(0,) — 81 (1F) : APSEHOT) (6) = 1],

LIt is optional for our purposes whether to give the adversary accéssrtnot, but since we can prove the stronger statement
we define simulation sound extractability as described above.

since the oracles can be efficiently implemented if one knewsand inserts the challenge as the
answer to query. (I

Our motivation for introducing this stronger notion of zero-knowledge is that it allows different zero-
knowledge proofs to use the same CRS. Suppose we have rel&tions , R,, and corresponding NIZK
proofs with composable zero-knowledge using the same key generator and CRS sifukatoA hybrid
argument shows that no polynomial time adversary can distinguish real proofs or simulated proofs for
relationR;, even if it sees arbitrary proofs or simulations for statements in; using the same CR$he
reason this is the case is that in the definition of simulation indistinguishability werdivéhe adversary,
so it can itself implement the simulatSt for any of the relations.

In our paper, all the NIZK proofs will indeed generate the CRS in the same way and also simulate the
CRS in the same way, so we get better performance by not having to deal with different common reference
strings for each proof system. At the same time, it simplifies our exposition.

3 A Homomorphic Commitment Scheme

We use the cryptosystem from Section 1.1 to create a homomorphic commitment scheme such that depend-
ing on how we generate the public key we get either a perfectly binding commitment scheme or a perfectly
hiding trapdoor commitment scheme. The idea is thdf ifs an encryption ofl, then K" E(1;r, s) is

also an encryption of 1 and we have a perfectly hiding commitment.t®n the other hand, ii{ is not

an encryption of 1, the& ™ FE(1; r, s) is perfectly binding.

Perfectly binding key generation: Let ck = (p, G, Gy, e, g, f, h,u,v,w) wheref, h is a public key for
the cryptosystem and:, v, w) = (f™, h®v, g*») with ¢, # 7, + s, iS an encryption of a non-trivial
element.

Perfectly hiding trapdoor key generation: Letck = (p, G, Gy, e, g, f, h,u,v,w) wheref, h is a public
key for the cryptosystem an@, v, w) = (f™, h%*, g"+ ") is an encryption of.

The corresponding trapdoor keytis = (ck, x, y, ry, sy).

Commitment: To commit to messagen € Z, pick r,s « Z, and let the commitment be =
(c1, 2, ¢3) = com(m;r,s) = (u™ f7, 0™ A%, w™g").

The commitment scheme&,;,qing, com) and(Khiqing, com) have several nice properties. The CPA-
security of the cryptosystem implies that one cannot distinguish perfect binding keys from perfect hiding
keys. This in turn implies computational hiding respectively computational binding for the two schemes.
The homomorphic property of the cryptosystem transfers to the commitment scheme.

com(my + mao; T + r2,S1 + s2) = com(mq;ry, s1)com(me;ra, $2).

For the perfectly binding commitment scheme, ary G? is a commitment to some messages Z,,.

4 Efficient Non-interactive Zero-Knowledge Proof Systems

4.1 Common Reference String

All our NIZK proof systems will use the same key generatoand reference string simulatSy described
below. A common reference string is a public key for the perfectly binding commitment scheme described

in the previous section. The soundness of the NIZK proofs will come from the perfect binding property

of the commitment scheme, which will make it impossible for any adversary to cheat. In simulations, we

will use a public key for a perfectly hiding commitment scheme as the simulated common reference string.
Here the perfect hiding property of the commitment scheme is what enables us to simulate proofs.

Common reference string: On input1* do

1. (p,G,Gy,e,g) < G(1¥)

2. (pk, sk) — Kepa(p, G,Gu, e, g)

3. ¢k «— Kyinding (Pk)

4. Returno = ck = (p,G,Gy,e,g, f, h,u,v,w)
Simulated reference string: On input1” do
(p,G,G1,e,9) — G(1F)

(Pk, sk) — Kepa(p, G, G, €, 9)

(ck,tk) «— Khiding (Pk, sk)

Leto = ck = (p,G, Gy, e,9, f, h,u,v,w)
Letr =tk = (0, z,y, 74, Sv)

o gk w DN RE

Return(c, 1)

Reference string indistinguishability follows from the semantic security of the cryptosystem, which
implies that no non-uniform polynomial time adversary can distinguish a perfectly birdirfigpm a
perfectly hidingck.

Lemma 3 If (p, G, Gy, e, g) is a DLIN group, ther(K, S1) has reference string indistinguishability.

A consequence of Lemma 3 is that in the rest of the paper we only need to prove simulation indistinguisha-
bility to prove composable zero-knowledge.

Both the common reference string generakbiand the common reference string simulagyrfirst
create a DLIN group honestly. This means that instead of generating the common reference strings from
scratch, it is also possible to build any of the NIZK proofs we construct in the following sections on
top of an already existing DLIN group. When doing so we weite— K (p,G,Gq,e,g) or (o,7) «—
S1(p, G,Gy,e,9).

4.2 NIZK Proof for Commitment to Zero

The common reference string contains a public key for a commitment scheme. As a first step we suggest an
NIZK proof for a commitment containing. Given the reference string = (p, G, Gy, e, g, f, h, u, v, w)

we defineR,.;, to be the relation consisting of commitments to 0, using the randomness as the witness. In
other words R,c;o = {(c, (r,s)) | ¢ = com(0; 7, s)}. We construct an NIZK proof foR ;. below.

Proof of commitment to 0: Given a commitmentc = (cj,c2,c3) and randomness,s SO ¢ =
com(0; 7, s) let the proof ber = ¢".

Verification: Given commitmentc;, ¢z, c3) and a proofr the verifier returns 1 if and only #(g,c1) =
e(m, f) ande(ca, g) = e(h, c3/m).

Simulation of proof: Given input(o, 7, (¢1, c2,¢3)) the simulatorS,.., generates the simulated proof
1/x

Theorem 4 (K, Pjeros Vaero, S1, Szero) 1S @n NIZK proof system faR,.., with perfect completeness, per-

fect soundness and composable zero-knowledge with perfect simulation indistinguishability under the
DLIN assumption foiG. The proof consists of 1 group element. Verification corresponds to evaluating
two pairing product equations.

Proof.

Perfect completeness:A commitment(cy, c2, c3) to 0 uniquely define,; s soc; = f",co = h®, ¢35 =
9. We havee(g,c1) = e(g, f") = e(g", f) = e(m, f) ande(cz, g) = e(h®,g) = e(h,g°) =
e(h,cs/m).

Perfect soundness:Given a commitmentc;, c2, c3) and an acceptable proaf, we havee(g,c1) =
e(m, f) showing us that there exists somsuch that; = ", 7 = ¢g". There also exists somesuch
thatco = h®. The second equation(cy, g) = e(h, c3/7) revealse(h®, g) = e(h, g°) = e(h, c3/m),
showing thats = ¢"+*. This meansg; = u’f", co = vOh°, c3 = w'g"+>.

Composable zero-knowledge:We already have reference string indistinguishability, so all we need to
prove is simulation indistinguishability. We have

Pr [(a, T) — Sl(lk) (e, (ry8)) — Ao, m);m=4g" : A(m) = 1}
= Pr [(a, T) S1(1k) (e, (ry8)) «— A(o,1);m = ci/gc cA(m) = 1},

since both computations yield the same uniquely defing¢kat will make the verifier accept the
proof. 0

4.3 NIZK Proof for Commitment to Exponent.

Suppose, we have two element$ and a commitment to the exponentn sob = a™. We wish to form
an NIZK proof for Rexpo = {((a, b, ¢), (m,r,s)) | b= a™, ¢ = com(m;r,s)}.

The idea in the proof is straightforward.df# 1 then one can use the bilinear map to verify that a pair
of commitmentsry, 7,,, have the same exponentsor,, = «{*. If 71 is a commitment to 1, then,, is a
commitment tan. What remains is to prove thatcom(—1;0,0) andc,,7,,,' are commitments to 0.

If a = b = 1, then the relation is trivially satisfied. However, later on we will be working on committed
elements and it will not be straightforward to check whether an element is non-trivial. We therefore treat
a = 1 as a special case and create an NIZK proof that works with the same verifier asdogthease.

Proof of commitment to exponent: Given common inputs, b, c and a witnes$m, r, s) the prover con-
structs the proofr as follows.
1. fa=1
2. m1 = com(1;0,0),m, =c
3 Ty — Pyero(o, mpcom(—1;0,0), (0,0))
4, T Prero(0, et (0,0))
5. Elseifa # 1
6

1,81 < Zp

7. w1 = com(1; 7y, 1)

Tm = 1"
9. Ty < Pyero(0, mpcom(1;0, 0)_1, (r1,51)))
10. Tr — Pero(o, et (r —mry, s —msy))

11. The proofist = (71, Tm, Try, T,)-
Verification: Givena, b, ¢ and the proofr do

1. Verify the NIZK proofsr, , 7, for mycom(1;0,0)~ L, exr;.t being commitments to 0
2. Checke(a, mm,1) = e(b,m1,1), e(a, mm 2) = e(b,m 2) ande(a, 7y, 3) = e(b, m13)
3. Return 1 if all checks pass, else return 0

Simulated proof: On statement, b, c we can simulate the proof in the following way

1. Ifa=1

2. m1 = com(1;0,0),m, =c

3. Elseifa #1

4, 1,81 < Zp

5. T =a"", Mo =a¥,mz =a"
6. Tm1 = b T 0 = bYSL Ty 3 = bI1TS1
7. Tr, < Szero(0, 7, mcom(—1;0,0))

8. Tr,, < Sgero(o, T, cmb)

9. The simulated proofis = (71, T, Try s T,)

Theorem 5 (K, Pexpo, Vexpo, 51, Sexpo) iS an NIZK proof forR..,,, with perfect completeness, perfect
soundness and composable zero-knowledge with perfect simulation indistinguishability if the DLIN as-
sumption holds foG. A proof consists of 8 group elements. Verification consists of evaluating a set of
pairing product equations.

Proof.
Perfect completeness:Follows from perfect completeness of the NIZK proof #®y..,.

Perfect soundness:If a # 1 we learn from the bilinear map thatn : b = o™, 7, = 7]". Perfect sound-
ness of the NIZK proof fofR,.,, implies thatr; is a commitment to 1 andr; ™ is a commitment
to 0. This implies that is a commitment ton.

If @ = 1 the bilinear map shows us that= e(a, my,,1) = e(b,7m1,1),1 = e(a, Ty 2) = e(b,m12)
andl = e(a, T, 3) = e(b,m1,3). Sincer; is a commitment to 1 at least one®of ;, 71 2, 71 3 must
be non-trivial and therefore= 1.

Composable zero-knowledgeLet us show that on a simulated common reference string, proofs and
simulated proofs are perfectly indistinguishable. Observe first that on a simulated common reference
string all valid commitments are on the forffit, ht, g™ 51, If a # 1, we pickry, s; at random
and use them to generate two random commitments,,, such thatr,, = n{*. So far, this gives
us the same distribution as if they were generated by the prover. We conclude by noting that the
NIZK proof for R, has perfect simulation of proofs on a simulated common reference string. If
a = 1 the perfect simulation indistinguishability of the NIZK proof &, also gives us a perfect
simulation. O

10

4.4 NIZK Proof for Pedersen Commitment

Consider a Pedersen commitmént o™ g’ to m. We wish to make commitments to the openingt
and make an NIZK proof that we have done so. In other words, we want an NIZK prodifar =
{((a7 b7 Cm, Ct)v (m7 t? T'm,y Sm, Tt, St)) | b= amgt’ Cm = com(m; T'm, Sm)? Ct = COm(t; Tt, St)}'

The idea in the NIZK proof is as follows. We write

b= amgt — aerrlr+7"2397"+s+t(arlg)fr(argg)fs7

for randomly chosem;, 2,7, s. We reveak', a"> and make commitments,, , 7, to 1, 2. Using the
NIZK proof for Re.., We can prove they have been correctly formed. We reigal)”, (a2 g)* and
create commitments, ., = «,, , 75 = 7,,. Using the bilinear map the verifier can check that the expo-
nentiation is correct, so they contain; andsr,. Using the homomorphic property, we havgn, ., 7s r,
is a commitment to the exponemt+r;r +r2s. We also make commitments ;, 7, 1 tor ands and prove
they have been correctly formed. By the homomorphic property, we have,thatr, ; is a commitment
tor + s + t. Revealingg"+*** indirectly also reveals"17+725 = p(a"1g)" (a"2g)%g~("+5+1). Using
NIZK proofs for Rexpo We can prove it has been correctly formed. This demonstrates that™ g as
required. Computational zero-knowledge will follow from the DLIN assumption, sjficélooks random
given(a™g)" and(a™g)® and therefore in the simulation we can pick it a random expodémstead of
usingr + s.

Proof for Pedersen commitment: The prover gets a statementa,b,c,,,c;) and a witness
(m, t,7m, Sm,Tt, S¢) @S input. The proof is constructed as follows

T1,72,73,83,.,76,56, 158 < Ly (fa=1letr; =0,---,5s=0)
Ta,1 = a"! 71,1 = com(1;73, 53) Ty, = com(71; 74, S4)

T = (Ta19)" 1 =774 Trry = Ty

Ta2 = a2 71,2 = com(1;75, s5) Try = com(T2; 76, S6)

Ts = (Ta29)® Ts1 =71, Tory = Ty

m = gttt w1 = com(1;0, 0)rts+t

Tryq < Pzero(o'a 771,100111(—1; 0, 0), (7”3, 83))

Tri,e < Pzero(ga 7T1,2COIH(—1; 0, 0), (?"5, 85))

Trg < Prero(0, Ct77r,17Ts,17T;11, (r3r + 158 4+ 14, S37 + 558 + S¢))

T < Pexpo(0, (a, g1, 0,), (11,74, 54))

My < PeXpO(U7 (a7 Ta,2, 7Tr2), (T27 T6, 36))

Tora = Pexpo(0, (@, 0,0, Y ConTy iy Ts), (117 4 728 + M, 747 + 765 + T, 847 + 865 + 5m))

The proofisr = (g 1,...,7r,).

Verification: On common input, b, ¢,,,, ¢; and proofr do

1. Verify the NIZK proofs 7y, ,, 7r 5, Tny fOr 71,712 being commitments to 1 and
ey 1s 1, being a commitment to 0

2. Verify the NIZK proof 7, for the existence of some; som,; = «™ andm,, being a
commitment tor;

11

3. Verify the NIZK proof Tr, for the existence of some, son,» = a™ andm,, being a
commitment ta,

4. Verify the NIZK proofr,, for the existence of someso bmwswt‘l = a® andc,, Ty, sy
being a commitment to.

Using the bilinear map cheék : m, = (gm4,1)", 71 = com(1;0,0)", 7, = 7).

T1

Using the bilinear map chedls : 73 = (g7m,,2)%, 75,1 = com(1;0,0)%, 75, = 75

T2

Using the bilinear map cheék : m; = ¢*, m ;1 = com(1;0, 0)?

© N o O

Return 1 if all checks pass, else return 0

Simulation: Given common inputa, b, ¢,,, ¢;) we simulate the proof as follows

o, 3,713,838, .. ,76,86,T, 8,2 < Ly fa=1lleta=6=1,r13=0,---,5=0)

Ta,l = g™t 71,1 = com(0; ars, as3) mr, = com(0; arg, asy)

T = (mg,19)" 71 = com(0; arrs, arsg) mpy, = com(0; arry, arsy)

Taz =971 w2 =com(0;Brs,Bs5) o, = com(0; Bre, Bse)
s = (Ma29)° 7s1 = com(0; Bsrs, Bss5) Ter, = com(0; Bsre, F556)

T = g i1 = com(1; 0, 0)? (If a = 1letm = b, myy = (b, byse, bratse))

Try ¢ Szero(0, T,m1,1c0m(—1;0,0))

s < Szero(0, T, m1 2com(—1;0,0))

o < Sgero(0, T, CeTr 1T 1771)

T,y < Sexpo(0, T, (@, Tq1,Tr,))

Ty < Sexpo(0, T, (@, Ta,2, Ty)

Ty < Sexpo(0, T, (a, bﬂrﬂsﬁfl,cmﬂr,rlﬂs,m))

The simulated proof is = (71, ..., 7x,)

Theorem 6 (K, Pped, Vpeds S1, Sped) is an NIZK proof system fak,.q with perfect completeness, perfect
soundness and composable zero-knowledge if the DLIN assumption ho{gls Aoproof consists of 59
group elements. Verification consists of evaluating a set of pairing product equations.

Proof.
Perfect completeness:Follows from the perfect completeness(&f, P,cro, Vzero) @aNA(K, Pexpos Vexpo)-

Perfect soundness:From the perfect soundness 0K, Pcro, Viero) We getmy i, 712 contain 1 and
ctm,lws,m;f contains 0. This means, ; is a commitment to- andr, ; iS a commitment tos,
and consequently; ; is a commitment te + s + ¢. This in turn means that; = g" 7.

From the perfect soundness @, Pexpo, Vexpo) We see that there exists, r; som,; = a”* and
a2 = a2, and at the same time,, is a commitment to-; andr,, is a commitment to. This
meansg,, T, », Ts.r, CONtAINSM + 771 + 5712,

Fromn,, we get

b(gﬂ'avl)T(gwa’g)sW;l = gMTTH2s g0 h = g™yl

12

Composable zero-knowledge:The polynomial time adversaryA(o,7) produces a statement
(a,b,cm,ce) and a witnesgm, t, 7y, Sm,7t,S¢). We now have to argue it cannot distinguish
a proof fromP,.q from a simulated proof fron$,.q.

By the composable zero-knowledge properties of the NIZK proofsHgr, and Rex,, we can
simulate the proofs, ,, ..., 7, without A being able to distinguish.

In casea = 1 straightforward verification shows that on a simulated reference string, proofs and
simulated proofs are perfectly indistinguishable. This leaves the case wheie

Let us start with the way a prover produces a proof. Since the commitments are perfectly hiding, we
can selectr; 1, 7 2, 7, andm,, as random commitments to 0. Sincés a generator fot, we get

the same distribution if we selegt, | = gt andr, o = ¢°~1 for randoma;, 3. With overwhelm-

ing probabilitya, 5 # 0 in which casers, s3 andars, ass have the same distribution when picking

rs, T4 random. In a similar fashion, we change the randomizers of the other commitments t® have
or factors.

We have now modified the proof, such that the only difference from the simulation is that we select
z = r+ s+t, while in the simulation we pick at random. We will show that il can distinguish a
simulated proof from a partially simulated proof, then we can use it to break the DLIN assumption
for G.

Let g%, g%, g°", g%, g% be a DLIN challenge, wheré = r + s or d is random. Since we know
the discrete logarithms of, h, u, v, w with respect tag, we can givery® but without knowingd

still computecom(1;0,0)¢ = ((g¢)*«, (¢%)¥sv, (¢%)"=+**). We can also givep® compute a ran-
dom commitment by selecting, s3 at random and letting the commitment&en (0; ars, ass) =
((g™)*rs, (g>)¥s3, g*)rsts3. Similar techniques explain how we compute the various commitments

listed below.

Let us setm,1 = g g% = g%, M2 = g ¢’ = ¢% andm = gl We
setm, = com(0;ars, asg), 7, = com(0;arrs,arss) and o = com(0; (s, s5), s =
com(0; Bsrs, Bsss). We setm,, = com(0;ary,ass), m, = com(0;arry,arsy) andm,, =

com(0; Bre, Bs6), s, = com(0; Bsrg, Bsse). Finally, computer, = gig'.

In cased = r + s then this gives us a partially simulated proof with= r» + s + t. In cased is
random, this gives us a simulated proof withandom. If.4 could distinguish between partially
simulated proofs and simulated proofs, then we would be able to break the DLIN assumpfion.

4.5 NIZK Proof for Multi-message Pedersen Commitment

Let us generalize the Pedersen commitment to a many mesdages ¢'[[" ,a;"". We
wish to make an NIZK proof for having committed t®,mq,...,m, SO b is a multi-
exponentiation to these messages. More precisely, we want an NIZK proof for the relation
Ri—ped = {((a1,. .., an,bycr,c1, .o cn), (6,70, $1,m1, 71, 814« o, M, Ty 80)) | b= ¢ [T al e =
com(t; 7y, 8¢), c; = com(m;, i, 8;)}.

The idea in this NIZK proof is to split into n Pedersen commitments and use NIZK proof from the
previous section. Write

b=[](a"g"),
=1

wheret = Y~ , t;, make commitments to thg’s and make an NIZK proof foRR,.q for each of these
components.

13

Proof for multi-message Pedersen commitmentThe prover gets a statement
(a1,...,an,b,cyc1,...,¢y) and a witness(t, r¢, S¢, M1, 71, 81, .., My, Tn, Sp) a@s input. The
proof is constructed as follows

n—1 n—1
1. tlvrtla Styye- 7tn—17’rtn7178tn71 — Zpatn =1— Ei:l ti77atn =Ty — Z’i:l Ttys St, = St —
n—1
D ie1 Sta
2. Fori=1tondo

_ mi t;
3. m=a;'g
4, m, = com(t; T, St;)
5. Ty < ped(Ua (a’iuﬂ-i)chﬂti)a(miutivri)sia’rtivsti))
The proof ism = (71, Ty, Trys -« s Tn—1s Tty 1 Ty s Trry)
Verification: On common inputiy, . .., an, b, ¢, cq, ..., ¢, and proofr do

1. Letwn:b]_[l LT andmn ct]_[Z] 7Tt1
2. Verify the NIZK proofsry,, ..., 7,
3. Return 1 if all checks pass, else return 0

Simulation: Given common inputay, . . ., an, b, ¢, c1, - . ., ¢,) we simulate the proof as follows

Lot1,re, 8000 b1 Tt Sty < Lp

2. Fori=1ton — 1letm; = gt andm;, = com(();rti, St;)
3. Letm; = b[['- =, * andmy, = ¢ [} . -t

4. Fori = 1ton simulater,, < Sped(o, 7, (a;, ™, ¢i, 71,))

The simulated proof is = (71, Ty, Tryy -« vy Tne1, Tty 1y T 1> Tr)

Theorem 7 (K, Pn—ped; Vin—ped, S1; Sm—ped) iS an NIZK proof system foR,, .4 With perfect com-
pleteness, perfect soundness and composable zero-knowledge if the DLIN assumption Ilghldehimr
proof consists 063n — 4 group elements. The verification consists of evaluating a set of pairing product
equations.

Proof.
Perfect completeness:Follows from the perfect completeness(éf, Pyed, Vped)-

Perfect soundness:From the perfect soundness(df, Pyeq, Vped) We know thai;, m;, are commitments
tom;, t; som; = a;"g'. Sincec, = [[I, m, we see that = Y. ; ¢;. We now have

n n n n

_ _ mi t; "ot m; _ t m

T | RVt |
=1 =1 =1 =1

as required.

Composable zero-knowledge:On a simulated reference string, the adversary cannot distinguish between
proofs and simulated proofs;,, ..., 7,,. Since the commitment scheme is perfectly hiding the
adversary also cannot dlstlngwsh between commitments- com(¢;) andm;, < com(0), where
we in both cases fit;, = ¢; [[;. 1 ™. ~1. The Pedersen commitment scheme is also perfectly hiding,
so we cannot distinguish between picking= a"'¢g' andm; = g' for randomt;, where we fit

nzbl_[?:_fﬂfl- .

14

4.6 NIZK Proof for Multiplicative Relationship

Consider three commitments,, ¢, c. such that the corresponding messages have the relationship
me = mgmy. We wish to construct an NIZK proof for such a multiplicative relationship. More
precisely, a composable NIZK proof f@®,ut = {((ca, ¢, Cc), (MasTas Sas Mb, by Sby Tes Sc)) | Ca =
com(Mmg; Ta, Sa), Cb = com(Mmpy; Tp, Sp), Ce = COM(MgMp; Tey Se) }

If cq, e, c. have a multiplicative relationship, then

ce = ¢y *com(0; e — MgTy, Se — MaSp)

and vice versa. To prove the latter relationship, it suffices to remgahnd prove that,com(—m,;0,0)
andc.c, ™ are commitments to 0. To get zero-knowledge, we want to somehow tweak this idea in a way
such thatm, is not revealed directly.

The main trick in the following is to pick exponentss at random, which will be used to hide,. We
want to prove

cqcom(1;0,0) "5+ ma)com(1;0,0) com(1;0,0)° and cccb_(HHm“)cgci

are commitments to 0. Hy 1,7 2, mo,3, To4 @re commitments to O we can obscure things by instead
proving that

cqcom(1;0,0)~F5+ma) (com(1;0, 0)mp,1)" (com(1; 0, 0)m,3)° and cccg(THer“) (cpmo,2)" (cpmo,4)*

are commitments to 0.

Revealing the componentsm(1;0,0)"+stma ¢ 5t the verifier can use the bilinear maps to
check that there exists some common exportent r + s + m,, even though it cannot compute the
exponent itself. Similarly, revealinfrom(1;0,0)7mg1)", (cpmo,2)" and (com(1;0,0)mg 3)*, (cpmo,4)*® al-
lows the verifier to check that there exist common exponenis So far, we are performing the same
exponentiations onom(1; 0,0) andc, to get respectively, andc.. This shows that

cocom(1;0,0) 7" and cqep T

are both commitments to 0. The only way this can be possible iswhen t — r — s.

Computational zero-knowledge will follow from the fact that while we use the same exponents, we
use different bases. Therefore, at no point is any element itself raised,tevhich the adversary could
potentially use to detect whether it was a correct proof or one created by a simulator, which does not know
Mg-

Proof of multiplicative relationship: Pyt (0, (Cas Cb, Cc), (Ma, Tay Say My Thy Sy e, Sc)) FUNS as follows

15

T1,81y...sT4,84,7,8 < L

mo,1 = com(0; 71, 51) 7,2 = com(0; 72, 52)
Ty = (Com(l;(),())wo,l)” 7r7~7b = (Cb7T072)T

mo,3 = com(0; 73, $3) 70,4 = com(0; 74, S4)
Tg = (com(l; 0, 0)7‘(’073)5 7Ts,b = (Cb7T074)s

7 = com(1;0,0)"T5tMa g, = cg+s+m“

Tmo1 < Pzero(o'a 70,1, (Tla 51))

T < Prero(0, 0,2, (12, 52))

Tro,3 < PZGI‘O(O-7 70,3, (T37 53))

Trou < Prero(0, 0.4, (T4, 54))

Tros < Pero(o, Ca7T7«7['57Tt_1, (rir +13s 4 rq, 17+ S35 + Sq))

Tro < Prero(0, ccwrvbw&bwgbl, (ror + 148 + ¢ — MaTp, SoT + S48 + Sc — Mg Sp))

The proof ism = (70,1, .., T g)-
Verification: Vi (o, (¢a, cp, ¢c),) runs as follows
1. Verify the NIZK proofsmy, , ..., Tre ¢ fOr mo1,. .., Mo 4 andcamwsﬂt_l, cc7rr7b7rs,b7rt_b1 being
commitments to 0
Using the bilinear map check3r : 7, = (com(1; 0,0)m,1)" andm, p, = (cpmo,2)"
Using the bilinear map, cheds : 7, = (com(1;0,0)m 3)® andm, = (cpmo.4)®
Using the bilinear map, cheék : m; = com(1;0,0)" andm,, = ¢}

o~ w DN

Return 1 if all checks pass, else return 0

Simulated proof: Syt (o, 7, (ca, cb, ¢c)) runs as follows

2Givenn pairs(as, b;) and the claim thaBrVi : b; = af it can be checked by picking somag # 1 and check that for all
j # iwe havee(a;, b;) = e(b;, a;). Inthis particular case, where we claiin : 7. = (com(1;0,0)mo,1)" andm,» = (cp7mo,2)"
there are 6 pairs, so we can verify the claim using 10 pairings. Note that since we see an NIZK prgaffbeing a commitment
to 0, we know thatom(1;0,0)mo,1 has at least one non-trivial group element, so if the checks work out there is one uniquely
defined exponent. Later on, we will do the same operation on committed elements, where it is not straightforward to check
whether some; is non-trivial. We solve that by checkinga;, b;) = e(b;,a;) forall 1 < i < j < n, which corresponds to
making 32 pairings.

16

7’1,81,...,7”4784,7’,S,t<—Zp

mo,1 = com(0; 71, $1) 70,2 = com(0; 72, 52)
7 = (com(1;0,0)mp1)" 7rp = (cymo,2)"

70,3 = COIH(O; rs, 83) 70,4 = COIn(O; T4, 84)
s = (com(1;0,0)m03)® 7sp = (cpm04)°

7 = com(1;0,0)* Ty =

Tron < Szero(o', T, 7T0,1)

Tro,2 < SZGIO(U7 T, 7T0,2)

Tmo,3 < Szero(o" T, 7'['073)

Tro,a < Szero(av T, 7r0,4)

Tros < Syero(0, T, Caﬂ'rﬂ'sﬂ't_l)
T < Szero(o'y T, Ccﬂ-r,bﬂ-s,bﬂ-;bl)

The simulated proof i = (70,1, ..., Ty)

Theorem 8 (K, Puuit, Vinults S1, Smult) 1S @an NIZK proof forR,,,i¢ with perfect completeness, perfect
soundness and composable zero-knowledge if the DLIN assumption holgs Aoproof consists of 36
group elements. Verification corresponds to evaluating a set of pairing product equations.

Proof.
Perfect completeness:Follows from the perfect completeness of the NIZK proof f5¢...

Perfect soundness:SupposeA produces a statemeft,, ¢y, ¢.) and a valid NIZK proofr.
From the verification, we learn that there exist, ¢t so

ca(com(1;0,0)70,1)" (com(1;0,0)7g 3)*com(1;0,0)" and c.(epmo2) (cpmo,a)cy

are commitments to 0. Sinew) 1, ..., m 4 are commitments to O this shows that, =t —r — s
andc,. is a commitment ton,my.

Composable zero-knowledge:We wish to argue thatl(o, 7) who produces a statemefat,, ¢, c.) and
Witness(myg, r'q, Sa, My, T, Sb, T'e, Sc) CaNNOt distinguish between a praotreated byP,,,;; and a
simulated proof created b1t .

Let us first look at the way’,,,,;; operates. Becausé, Pero, Vzero, S1, Szero) IS COMposable zero-
knowledge, we can us§,.;, to simulater, ,, ..., 7, , instead of using’e;, to make them, with-
out .4 being able to distinguish.

This partially simulated proof runs exactly as the simulator, except wethave+ s +m,, whereas

in the simulationt is random. We will show that if4(o, 7) can distinguish these two cases, then
we can break the DLIN assumption 6t Let thereforeg®, ¢°, ¢®", ¢°, g be a DLIN challenge,
where we wish to decide whethér= r + s or d is random.

Let us incorporate, s from the challenge into the proof, such that distinguistting » + s + m,
from ¢t random corresponds to distinguishing betwdes r + s andd random. Since we know

17

7, we know the discrete logarithms ¢f i, u, v, w with respect tay. This means, givep? we can
compute
com(1;0,0)% = ((g%)"™, (g7)""*, (g%)"+*).

We also know the witnessn, 74, Sq, Mp, b, Sp, T'c, Sc) SO We can compute

Cg — ((gd)xrumb+zrb’ (gd)ysvmerysb, (gd)(ru+sv)mb+(rb+sb)).
Giveng® andry, s it is straightforward to compute the commitment

com(0; ary, ast) = ((9°)™, (9°), (g°)").

Similarly, we can compute the other elements in the following.

T1,81,...,T4,84 < L

mo,1 = com(—1;0,0)com(0; ary, as1) w2 = cglcom(O; ary, (sg)
7 = com(0; arry, arsy) mrp = com(0; arry, arss)

mo,3 = com(—1;0,0)com(0; Brs, Bs3) w4 = cb_lcom(O; Bra, Bsa)
ms = com(0; Bsrs, fss3) s p = com(0; Bsry, Bs54)
7 = com(1;0,0)%com(1;0,0)™e Ty = el
Tron < Szero(a T,T0,1

T, < Szero(

Tro,3 < Szero(a T, 7TO3
T, Szero(g T, T 4)

Tros < Srero(0, T, CaTrTsT; 1)
T, < Szero(o' Ty CcTyrpTs bﬂ-t bl)

The distribution of these values is statistically close to what a prover respectively simulator would
produce on a simulated common reference string. Wita r 4+ s, we have the case with =

r + s + myg, and withd random it corresponds torandom. If.A can distinguish real proofs from
simulated proofs, we can therefore distinguish betwées r + s andd random in the DLIN
challenge. O

4.7 NIZK Proof for Committed Bilinear Product

Consider elementsay,by,...,a,,b, € G such that [, e(a;,b;) = 1. Suppose we
have committed toa;,b; in the following way. We haved; = g"a;,B; = g%
and commitments tor;,s; and wish to make an NIZK proof for[[,e(a;,b;) = 1.
More precisely, we want to make an NIZK proof for the following relationRyy_proa =
{(A1,¢ry, B1,Csyy ooy AnyCrp s By €,)y (T1, Ty Spqy S15 sy Ssys e v s Trs T s Senys Sy Tsns Ssn) | Ai =
g"ai, B; = g°b;, cr, = com(r; 7y, Sp,), Cs; = com(si; T, sg;) and [1 e(a;, b;) = 1},

For arbitraryR;, S1, ..., Ry, S, € Z, we have

H e(4;,B;) = H e(g"a;, g°b;)
i=1 =1

7

18

= He Tl?.gSlb .g alag) (griagSi)_l)He(aivbi)

=1 =1
n
= et A, g)*ie(g,)"
=1
- e(g,g*mﬂ”‘”HAf"Bfi)
=1
n
— E(Q,Q_Z’ 1(T151+Rz I)HASZBTZ)H (gRi’gSi)’
=1 =1

ifand only if [T}" , e(ai, b;) = 1.
In the NIZK proof, we pickRy, S1,. .., Ry, S, at random, their role is to give us zero-knowledge.
We commit to R;,S; and we already have commitments t@ s;. We reveal the2n + 1 ele-

ments gf1, g%, ... gfin g% and g~ Lim (st RSO T A% B, We then use NIZK proofs for
Rexpo, Bmult, Bm—ped t0 prove that these elements have been formed correctly.
In the simulation, we observe that for arbitray, S1, ..., R,, S, we have
n n
[1e4i B) =e(g, 1) [] e(Ai, Bi)
i=1 =1
n n
— > i1 RiSs =Si p—R; i i
= elg,9 Lim RiSi H Ai B;)H e(gR Az‘795 By).
=1 =1
PickingR1, 51, ..., Ry, S, atrandom means that all elements have the same distribution as in a real proof.

We can then simulate the NIZK proofs &0, Rmult, Rm—ped-

Proof for committed bilinear product: Pyii_prod (0, (A1, ¢y BiyCsys -y Ans €y Bnscs,,),
(T1yTryy Srys S15Ts1s Ssyy -+ s Trs Trny » Sry s Sns T » Ss,,)) dO€S the following

1. For: =1tondo

2. Ri7 S’ia TR;»SR;»TS;558;5TR;S;s SR;S;» Trisy» Srysy < Zp
3. TR, = com(R;;TR,, SR,), s, = com(S;;7g,, Ss,)
4. TR,s; = com(R;Si;TR,s;, SR;S;)
_ R; _ 5

5. Tgr; =g, Tys; =g
6. Trys; = COM(T4Si; Trs;y Srys;)

— = (risi+RiS; n 5; QT
7. Tm—ped = 9 2l)Hizl Az Bz
8. Fori =1tondo
9. Trg, < Pexpo(av (9 ﬂ-gRi)ﬂ-Ri)7 (Ri, TR;» SRi))

10. Trg, < Pexpo(0, (g, Ty, 7s;), (SiTs;, Ss;))

11. Trp,s, < Proutt(0, (TR, s, TR,S,)5 (Biy TR, SRy Sis T8y 88,5 TR,S,» SR,S:))

12. T, < Prmtt (0 (Crys Coiy Ty)y (Tis Tris Sryy 8iy Tsys Ssis Trisgs Srisi)

13, Ty peq m—ped (0, (A1, B1, ..., An, By, Tt ped (IT, CrisiCR;1S;) s Csys Crys e vy Cspy Crn)y
14. (=20 (risi + RiSi), — >y (s, + TRiS,),

15. — > 1 (Srisi F SRiS:), S15Ts15 851+ s TnsTrns Srp))

19

The proofist = (TR, - -+, Trp_eq)-

Verification: Viii—prod(0, (A1, ¢ry, B, Csys - - .y An, Cr, s B, s,), ™) does the following
1. ChecK[[;L; e(A;, Bi) = e(g, Tm—ped) [[1=; e(m r;, Tys,)
2. Verify the proofsrr, ..., Tr, .

3. Return 1 if all checks pass, else return 0
Simulation: Syil—prod (o, 7, (A1, ¢ry, Bi,Csyy - - - Ansy Cry, Br, s,)) does the following

1. Fori=1tondo

2 Ri, Siy TRy SRy T'Si5 8855 TR;Sis SRiSi»> Trisi» Srisi < Lp
3 g, = com(0;7R,, SR,), s, = com(0;rg,, ss,)
4 TR;S; = COIH(O; TR;S;» SRiSi)

5. TR, = gRiAi,Trgsi = ¢ B;

6 Tris; = com(0; Trisis STiSz')

7. Tm—ped = g~ izt FaSi [T Ai_SiBz‘_Ri

8. Fori =1tondo

9 Mg, < SeXPO(J7 T, (g’ TR s 7TR7,'))

10. Mrg, < SexpO(U’ T, (gv TgSis ﬂ-Si))

11. Trg,s, < Pmult (O‘, T, (WRi » TS5 ﬂ-RiSi))

12 T, = Sumut(0, T, (Cry, Cspy Tris,)

13 7T7rm—ped — m_ped(07 7-7 (A17 Bl?] A”’ B"“ 7Tﬂ-m—ped’ (H?:l CrisicRiSi)_:L? CSI Y CTI’ MR CS’VL7 C'f'n))
The simulated proof is = (Tgr,, .-, Tr, o)
Theorem 9 (K, Pyil—prod, Vbil—prod, S1; Sbil—prod) iS an NIZK proof forRy;—pr0q With perfect complete-

ness, perfect soundness and composable zero-knowledge under the DLIN assumg@ti®ndofs consist
of 228n — 3 group elements and verification corresponds to evaluating a set of pairing product equations.

Proof.
Perfect completeness:Perfect completeness follows from the perfect completeness of
Pmulta Pexpm Pm—ped-
Perfect soundness:From 7., , -, we learn that there existB;, S; so TR = gRi,Wgsi = ¢% and
. () 1
TR, TS, are commitments to those;, S;.

From Trg,s, We learn thatrp, s, is a commitment taR;.S;. Likewise,wmisi is an NIZK proof that
s, CONtainsr;s;, the product of the messagescin, cs, .

The proofry . Shows thatry, peq = g~ =i (s RSO T | A% BT, Since

n n n

n
[Te(Ai, Bi) = (g, mm—pea) [[e(myrimys,) = e(g, g~ == st RSO T A7 B [e9™, ¢%),
i=1 i=1 =1 =1

we then havd ;" ; e(a;, b;) = 1.

20

Composable zero-knowledge Because, the NIZK proofs faR,,,i¢, Rexpo @Nd Req are all composable
zero-knowledge, we may modify the prover in such a way that we simulate all the NIZK proofs for
these relations. The adversa#yo, 7) cannot distinguish such a partially simulated proof from a
real one.

Since the commitment scheme is perfectly hiding, we can now make commitments to 0, whenever
we make a commitment. This is perfectly indistinguishable from the partially simulated proof de-
scribed above. The partially simulated proof contains random valjigs s; andmy,—peq is the

unique value sq ;" e(A4;, B;) = (g, Tm—ped) [11 e(WgR m,s;). In the simulation, we also

get completely random elementsr; , 7 s; and the unique element,,_p.q such that the equation

holds. Therefore, proofs and S|mulated proofs are computationally indistinguishable. O

4.8 NIZK Proof for Satisfiability of Pairing Product Equations

In this section, we consider sets of pairing product equations over variables , a,,. Let us first recall
the definition in the introduction of a pairing product equation. By a pairing product equation, we mean
an equation on the form

¢
eq(ai,...,a H e(qj0,951) =1 Whereq]b—bijae“”
j=1 =1
for knownb;, € G ande;;; € Z,. A setS of pairing product equationsgy, . .., eq,, is said to be
satisfiable if there existsiy, . .., a,) € G™ such that all equations are satisfied.

Let Rppsat = { S| 3(ar,...,an) € G" Veq, € S : eqy(ai,...,a,) = true }. Using the NIZK
proof foerﬂ_prod we can create an NIZK proof faR,,¢... The idea is straightforward, we first commit
to eachu; asg'ia;, com(t;). Using homomorphic properties, it is straightforward §@r; , in equatioregy,
to computegtsioby j, [, a;™"", com(ty ;) as

n n
) L n el €. i L
bigo | [(g7ai) o0t = gimitiorani(by i [[ai™*) Hcom) kibi = com E tiek,jb,i)-
i=1

i=1 i=1

For each equation we can now carry out an NIZK prooffgfi—prod thatHﬁ’;1 e(qr,j,0, Qrj1) = 1.

Proof for satisfiability of pairing product equations: On a set of pairing prod-
uct equations eqi,...,eq, and witness ai,...,a, Where eq. is the equation
[15, elarjolar,. . an), qrjalar,...,an)) = 1 with terms gejp(ar,...,an) =

ek b,t
bk7]bHZ 14 & do

1. For: =1tondo

2. iy Tiy 8i < Ly

3. To; = gha;

4. i, = com(t;; 14, i)

5. Fork=1tomdo

6. T < Pbil—prod(a7 (bk,l,O H? 1 ng O H?:l 7Tteik’1’0 by L1 Hz | Ek [k b 77

7. [T Wteik’ék’l’i)a (Ooimy tier,1,04, Z?:l Ti€k1,0iy D iy Si€h1,0,is - - - s
8. Yo i€l iy Dot Ti€hlp i @ it Si€h 1))

21

The proofism = (Tay s Ttys o s Taps Tty Ty -« - s Tim)
Verification: Given the statement and proofreturn 1 if and only if all proofsry, ..., m,, are valid.

Simulation: To simulate a proof do the following

1. For: =1tondo

2. ti,Ti,S,i(—Zp
3. o, = gh
4, m, = com(0; 7, S;)
5. Fork =1tomdo
6. T < Sbil—prod(ga T, (b]@l,o H?:l WZf’l’O’i, H?:l Wfik’l'o’i, Ceey bk,ék,l H?:l sz’ék’l’i,
7. [Ty m, ™)
The simulated proof is = (Ta,, Ty, -« s Taps Tty s Ty« - s Tm)-

Theorem 10 (K, Pypsat, Vppsat, S1, Sppsat) 1S @an NIZK proof forR,,¢.¢ With perfect completeness, per-
fect soundness and composable zero-knowledge if the DLIN assumption hofds RPooofs consist of
4n + 228¢ — 3m group elements, where=)" | ¢;.. Verification consists of evaluating a set of pairing
product equations.

Proof.

Perfect completeness:Perfect completeness follows from the perfect completeness of the NIZK proofs
for Rbil—prod-

Perfect soundness:Since the commitments are perfectly binding, contain a¢; that uniquely defines
ana; som,, = g'a;. Since the NIZK proofs forRy;_pr0q are perfectly soundgs, . .., a, is a
satisfying assignment to the equatians, . . ., egm,.

Composable zero-knowledge:On a simulated reference string, it is indistinguishable to the adversary
whether it sees proofs or simulated proais. . ., m,. Since the commitment scheme is perfectly
hiding on a simulated reference string, this implies simulation indistinguishability. O

NESTING NIZK PROOFS It is interesting to observe that verification of an NIZK proof .. itself
consists of verifying a set of pairing product equations. This means that we can nest NIZK proofs, i.e.,
prove that there exists a proof such that there exists a proof, etc. Each level of nesting will cause a blowup
by a constant factor. This is something that is much more expensive to do with other known NIZK proofs,
and impossible to do in the random oracle model.

REDUCING THE NUMBER OF VARIABLES We will argue that if» > 2¢ then we can combine or remove
some of the variables such that we get an equivalent set of equations over varjablesal, .

We have a total of2¢ monomials g ;s/bi ;- We can represent each as a row-vector
(€kjb1s---»€kjbn) LELM be an2¢ x n matrix with these row-vectors. Leét = (logay,...,logay,)
andq = (log(qi,1,0/01,1,0),---,108(qm.¢,..1/bmen1)). We haveMa = ¢. Sincen > 2/, we can do
column-reduction onV/ to get a matrix with at most¢ non-zero columns. This means there exists an
invertiblen x n transformation matri’ such that only thé/ left columns ofA/T are non-zero. We have
(MT)(T~'a@) = . Leta correspond to a satisfying assignment for the set of equations.aThelT—la’
corresponds to a satisfying assignment for the set of pairing product equations gigéii’ biNote that

22

givenay,...,a, it is straightforward to compute’,...,a,,. On the other hand, sincE is invertible

if there is no(ay, . .., ay,) satisfying the equations, then there is(ag, . . ., a/,) satisfying the equations
given by representing thg ; ;'s with the rows inM/T". We now observe that since only the [2ftcolumns

of MT are non-zero, we can ignoes, ,, . . . , a,, When considering satisfiability of the equations. There-
fore, in practice we can always get by with variables and the NIZK proof will consist @(¢) group

elements.

PAIRING PRODUCT EQUATIONS FOR IDENTICAL PLAINTEXT Here is another motivational example for
being interested in satisfiability of pairing product equations that will be useful later orf.fLét;) and
(f2, ha) be two public keys for the cryptosystem described in Section 1.1(«seb;, wq) and(ug, v2, w2)

be two ciphertexts. We are interested in the question whether they encrypt the same mesSdge
ciphertexts uniquely define, r1, s; andmes, o, s3 such that

ro+S2

7 _ 18 . r1+s __ T _ S —
up = fi',v2 =hi'w =g my and up = fo?,va =h5*, wy =g mo.

Observem; = my if and only if wy /we = g™ 5172752 Thereforeqa; = ¢"', a3 = g%, a3 = ¢, a4 =
g%2 is a witness for the two ciphertexts encrypting the same message. It is straightforward to use the
bilinear map to check the pairing product equations

e(g,u1) = e(ar, f1), e(g,v1) = e(ag, h1), e(g,uz2) = e(as, f2),
e(g,v2) = e(as, ha) and e(g,arazazas) = e(g, wlwgl),

where the latter equation implies, /wy = g™ 5172752,

DISJUNCTION OF SETS OF PAIRING PRODUCT EQUATIONSSUppose that we havesetsS, ..., Sy, of
pairing product equations ovey, . . ., a,, and want to argue that at least one of the sets is satisfiable. One
can compile these sets of equations into onessethich is satisfiable if and only if one ¢fy,..., Sy is

satisfiable. The compilation, which we describe below is witness preserving in the sense that a satisfying
assignment for a se; allows one to compute a satisfying assignmentSaasily.

We introduce variables, ;. j, wherel < L,k < my,j < {3 and alsoAy, ..., A;. The role of
Aq,..., Ay is to point to some set that is satisfiabfwill contain the equatior(g—* Hle A g) = 1.
This equation guarantees at least ohe# 1, indicating the satisfiable set. The prover can choose this
A; = g, while the others can be 1. We addcthe set equations(A;, a; ; by k. jo [T, a;"" ") = 1.
These equations ensure thatdf # 1 thena;;; = g1 0 and if A; = 1, then we are free to choose
ayr,; = 1. Finally, add all the original equations from the séts. .., Sy, replacingq; x jo With a; ;.
This construction works because fowhere4; = ¢° we have that all the variables representing; ¢'s
are1 so the equations in this set are satisfied. On the other hand, for tise wbere A; # 1 we have
preserved the original equations. If the sets of pairing product equatigns. , .Sy, have combined length
= Zle St 41, then the seS has lengths = 1 + 2¢ and contains pairing product equations over
n + L + ¢ variables.

5 Cryptographic Tools

5.1 A One-time Signature Scheme

Suppose we want to make a one-time signature on an elemen. The verification key will consist of

a common reference stringas well as two commitments c¢; to respectively, z;. A signature onn is

m*g*! and an NIZK proof that it has been correctly formed. The intuition behind this signature scheme
is that even if an adversary sees one signature, there are still two unkapwnso he cannot determine

23

what a signature on another element should look like. We will extend this scheme in the natural way to
sign multiple elements.

Verification key: On inputn and(p, G, G4, e, g) do

1. 0 — K(p,G,G,e,g)
2. 2,215y 2n — Ly
3. 72,82,y T2y Sz, < Lip
4. ¢ =com(z;r,,8z),...,Cn =com(zn;7s,,Sz,)
The verification key isk = (o,¢,c1,. .., cn).
The signing key isk = (vk, 2,72, 82, .« .y Zn, T2, Sz,)
Signature: To sign(my,...,m,) € G™ do

1. For: =1tondo

2. $; = m; g~
3. i < Pped(0, (Mg, Si,¢,¢), (2,72, 82, 2,72, 52,))
The signature is = (81,71, .- ., Sn, Tn)
Verification: To verify the signature on messagém,, ..., m,) check the proofsy, ..., m,.

Theorem 11 Assumingp, G, G1, e, g) the scheméK s, Sign, Ver) described above is a one-time sig-
nature scheme with perfect correctness. To sigalements fronfz both the verification key and the
signatures hav®(n) group elements. We note that the verification procedure consists of evaluating a set
of pairing product equations.

Proof. Perfect correctness follows from the perfect completeness of the NIZK prodf fqr
To argue existential unforgeability under a one-time chosen message attack consider the probabil-

ity of an adversary creating a forged signatureren ..., m,, after seeing a signature on’,...,m/,.
By the perfect soundness of the NIZK proof, the adversary must produce a signature on the form
51 =m5g*, ..., s, = mLg*".

Let us change the key generation such that we simulate the common reference string and we simulate
the NIZK proofs on the adversary’s chosen message attack. A successful adversary must with overwhelm-
ing probability still produce a signature om, . .., m,, wheres; = m7g*. Otherwise, we could break the
unbounded zero-knowledge property of the NIZK proof with the knowledge of, . . . , z,.

We are now in the simulation case, where the NIZK proofs are simulated. There are

1 unknownsz, z1,..., 2, and in the chosen message attack the adversary may teaquations
(m})?g*, ..., (m})?*g*. This still leaves one unknown variable. The probability of the adversary pro-
ducing the correctnfg*, ..., m%g* is therefore negligible unless; = m/,...,m, = m),. O

5.2 RCCA-secure Public-Key Encryption

Canetti, Krawczyk and Nielsen [CKNO3] suggest a useful relaxation of chosen ciphertext attack security.
Informally, their notion captures the case where an adversary may be able to rerandomize a ciphertext such
that it still has thesameplaintext, however, in all other cases the cryptosystem is CCA-secure. They call
this security against replayable chosen ciphertext (RCCA) attack.

24

Definition 12 (RCCA-security) A cryptosystem K., £, D) is RCCA-secure if for any non-uniform
polynomial time adversaryl we have

Pl(pk, sk) < Kreea(1F); (mo, m1) « A% (pk); ¢ < Epp(mg) : A%%(c)

~ Pl(pk, sk) — Krcea(1¥); (mo, m1) « A9 (pk); ¢ « Epp(mq) : A2 (c)

I
= =

where
e O1() = Dgi(+).

e Oy(-) = Dgi(-) except when the plaintextis, or m;. On plaintextm, or m; the oracle outputs
test

It is clear that any CCA-secure cryptosystem is also RCCA-secure. [CKNO3] show a separation, if
CCA-secure cryptosystems exist then RCCA-secure cryptosystems that are not CCA-secure exist. On the
other hand, it is also the case that if RCCA-secure cryptosystems exist, then CCA-secure cryptosystems
exist.

We will suggest a public key cryptosystem, which is RCCA-secure. The construction resembles the
constructions of CCA-secure encryption by Lindell [Lin03], who builds on previous work by Naor and
Yung [NY90] and Sahai [Sah01]. Since we only aim for RCCA-security, we can obtain a few simplifica-
tions though. We first present the general construction and then plug in our tools afterwards.

Public key generation: To generate keys do

Generate two key$pk:, sk1), (pks, ska) <« Kepa(1¥), for a CPA-secure cryptosystem
Generate a keyk «— Kbinding(l’“), for a perfectly binding commitment scheme
Generate a kefpk’, sk') «+ Kos(1%) for a one-time signature scheme

Letc,, = comk(vk’;) be a commitment tok’ using randomness

Generate a common reference string;- K (1%), for an NIZK proof

o s~ w NPk

The public key ik = (pk1, pka, ck, ¢y, o) and the secret key isk = (pk, sk1).
Encryption: To encrypt a message.
Pick randomness, r and encrypin twice asc; = Epy, (m;71), c2 = Epp, (m;72)
Select a keyvk, sk) « Kqs(1%) for the one-time signature scheme

Signey, co @ss «— Signg,(c1, ¢2)

7« Pyor(0, (pk1, pke, ck, cyk, c1, c2,vk), (m,11,72)). Thisis an NIZK proof forey, co con-
taining the same plaintext ey, containinguk, i.e.,vk’ = vk.

P w DD

The ciphertext is: = (c1, c2, vk, s,)

Decryption: Verify the signatures and the proofr. If both are ok, returmn = Dy, (¢1).

Theorem 13 The cryptosystem described above is RCCA-secure.

3Zero-knowledge implies witness-indistinguishability, which is sufficient here.

25

Proof. In either experiment in the definition of RCCA-security if the adversary ever recycles the one-
time signature verification key of the challenge in a decryption query with a valid signatume a valid
proof 7, then with overwhelming probability it must also recyele co, since otherwise we would have

a one-time signature forgery. We can therefore with only negligible change in success-probability for the
adversary let the oracle answest on any query with a valid (by valid we mean correct signature and
correct proof) ciphertext reusing: from the challenge.

When making the challenge encryption we can pikkas our one-time signature verification key. The
hiding property of the commitment scheme ensures that the adversary’s success probability only changes
negligibly. In particular, the adversary does not uséin any valid query t@);, and in case it uses itin a
query toOs, then it recycleg;, co from the challenge and we answtest

We can now switch the witness we use in making the praofnstead of usindms, r1,72) as the
witness, we can uset’, r as the witness. The zero-knowledge property ensures that this does not change
the adversary’'s success probability significantly.

We now have a situation where the adversary does not ask valid decryption queriesiisamyg in
the challenge we encrypt the message under pbthpks and then make an NIZK proof using witness
vk’ r. We have to argue that in this setting the adversary cannot distinguish a challenge encryption of
from a challenge encryption of; .

Since the decryption keyks is never used, the semantic security under chosen plaintext attack gives
us that we can changg to be an encryption af; without the adversary noticing it.

Next, let us argue that we can switch from usitig to usingsks when decrypting oracle queries.
Remember, we already modified the oracle so thatifis recycled in a valid query, then we answer
test , and we don't need either decryption key. Consider any other decryption query,hetevk’.
Soundness of the NIZK proof implies that, ¢, in any valid query contain the same message. Using
or sky therefore gives the same answer, and therefore the adversary cannot distinguish whethetywe use
or sko for decryption.

We are now in a situation, where the decryption k&yis never used. Semantic security under chosen
plaintext attack therefore means that we can switch the plaintextfobm mg to m;. We now have that
in the challenge we encrypt; in bothc¢; andes,.

Since the soundness of the NIZK proof implies that in any valid qugrg contain the same plaintext,
we can switch back to usingk; for decryption. O

Let us suggest a concrete implementation of the above-mentioned scheme. We work over a DLIN
group(p, G, Gy, e, g) and wish to encrypt messages on the form= (mq,...,m,) € G™.

We pick z1,y1,x2,y2 < Z, at random and us¢; = ¢“',h; = ¢g¥* and fo = ¢*2,hy = g™
as two public keys for the CPA-secure cryptosystem described in Section 1.1. To encrypt a message
m = (m1,...,my,) € G™ under either key, we simply encrypt;, ..., m,, one by one.

To set up a perfectly binding commitment scheme, we pick yet another encryptiofy key Com-
mitment corresponds to encryption under this key.

We want to use the one-time signature scheme from the previous section. Let us consider how long the
ciphertexts:, co can be. Suppose we want to encrypt tuples of mesgagges . ., m,,) € G". The size of
two ciphertexts will be&sn elements iz, so we will set up the one-time signature scheme such that we can
sigh messages consisting®f group elements. Such a one-time verification key will specify a common
reference strin@,x = (fuk, hok, Yok, Uuk, W) @S Well as the committed signing keyey, . . ., cgn,. We
will therefore letc,,. be the encryption of thes&n + 9 elements.

Finally, we need an NIZK proof foRs,, = {((pk1, pki, ck, cyi, c1,c2,vk),w) | (w = (ri,ra,m) :
c1 = Epp,(msri),co = Epry(mira)) V (w = 1t ¢y = comeg(vk;r))}. We have in Appendix 4.8
argued that there exists a set of pairing product equations that are satisfiable if and only if two ciphertexts
encrypt the same message under their respective public keys. In the introduction, we described a set of

26

pairing product equations corresponding to encryption of a particular message. In our case, this ciphertext
is ¢yx, Which has the plaintextk’ = (fu, - - -, c,). Finally, we also argued in Appendix 4.8 that we can
compile two sets of pairing product equations into one set corresponding to the statement that at least one
of the original set of equations is satisfiable. We observe, given a witness in the form of plaintexts and
randomness fafy, ¢, or vk’ and randomness fay, one can actually finda;, as, . . .) to satisfy the set of

pairing product equations. This shows that we can use the NIZK proa?fg.: to implement an NIZK

proof for Rs.,. With the choices above, the size of the NIZK proof will©&¢n) group elements.

Corollary 14 If (p,G,Gy,e,g) is a DLIN-group, we can built an RCCA-secure cryptosystem
(Kicea, B, D). The cryptosystem permits encryption of messages on the(foym..,m,) € G". The
cryptosystem has perfect decryption and perfect decryption verification as defined in the next section. The
public key and the ciphertexts both consistifz) group elements. It is publicly verifiable whether the
ciphertext is valid, and such verification corresponds to evaluating a set of pairing product equations.

Kiltz [Kil06] has recently suggested a simple CCA2-secure cryptosystem based on the DLIN assump-
tion. However, in his scheme verifying correctness of the ciphertext does not correspond to evaluating a
set of pairing product equations. Since we will need this property later on, we use the more complicated
construction above.

5.3 Signature Scheme Secure against Chosen Message Attack

In this section, we construct a signature scheme that is secure against chosen message attack. We first
describe the signature scheme in general terms, then suggest a concrete implementation based on the
DLIN assumption.

The signature scheme based on the DLIN assumption is not practical due to the large constant.
Nonetheless, it does have independent interest since it is based on a simple cryptographic assumption
and can be used to sign group elementss G. Other signature schemes such as Boneh and Boyen's
[BB04] needs the message to be an exponer Z,, which makes it hard to make proofs of knowledge
for instance since we do not know how to compute discrete logarithms.

We will need three tools in the construction. One tool is an RCCA-secure cryptodysitmdecryp-
tion verification. By decryption verification, we mean that there should exist two algorikims Viec-

The role of Wy, is to convert the plaintext: and the randomnessfor a ciphertexc = E,;(m;r) into a
decryption witnessv for D, (c) = m. The role ofV,. is to verify a witnessv that indeed a ciphertext
will decrypt tom. Formally, we require that for all adversaridsve have

Pr [(pk, sk) «— Krcca(lk); (m,r) «— A(pk, sk);c = Ep(m;r);w «— Waec(pk, m, 1) : Vaec(pk, m, c,w) = 1}
and
Pr [(pk, k) — Kreea(1%); (m, ¢, w) — A(pk, sk) : Vaee(pk,m, ¢,w) = 1 and Dy (c) # m| = 0.

Decryption verification implies that the cryptosystem has perfect decryption. On the other hand, for a
cryptosystem with perfect decryption, we could simplydet r and let the verification algorithm check

whetherc = E,;,(m; w).

4Actually, we do not need full RCCA-security. It suffices that the cryptosystem is RPAO-secure [Gro03]. In an RPAO-attack
the adversary does not have acces81olt can only queryD, once, but in this one query is allowed to ask for decryption of many
ciphertexts. It can be shown with techniques from [BS99] that this kind of attack corresponds to a notion of non-malleability,
where the adversary may be able to modify a ciphertext into one that contains the same message, but cannot maul the ciphertext
in a non-trivial way.

27

The second tool is a gap problem. By this we mean that we have a gengatdhat generate§, b)
and a verification algorithriv,,;, such that it is easy to veriff, b) but hard to computé from a. For all
non-uniform polynomial time adversarigbwe have

Pr [(a, b) « Kgap(1¥) : Vgap(a,b) = 1| = 1 and Pr [(a, b) — Kaap(1%); 0 — A(a) : Vgap(a,b') = 1] ~ 0.

It is easy to come up with examples of gap-problems, one could for instantdéet one-way function,
choose at random and let = f(b), which is easily verifiable.

The third tool is an NIZK proof system for a ciphertext decryptingrtph such thab is the hard part
of a gap-problem. More precisely, we nee®&cgap = {((pk,a,m,c), (b,w)) | Vaec(pk, (m,b), c,w) =
1, Vgap(a,b) = 1}.

Key generation: To generate keys do

1. Pick(a,b) « Kgap(1¥)
2. Generate keys for the RCCA-secure cryptosystem,skycea) < Kreea(1F)
3. Generate a common reference string for the NIZK proof system, K (1)

The verification key i3k = (pk,a, o).
The signing key isk = (vk, b).

Signing: To sign a message do

1. Encryptm,basc = Ep,(m, b;r)
2. Letw = Wyec(pk, (m,b), 1)

3. Make an NIZK proofr «— Pencgap (0, (pk, a,m, c), (b, w)) for ¢ decrypting tom andb such
thatVyap(a, b) = 1.

The signature is = (¢, 7).
Verification: To verify signatures check the proofr

Theorem 15 The signature scheme described above is existentially unforgeable under chosen message
attack.

Proof. Let A5e":() (vk) be an adversary with access to a signing oracle and a randomly generated verifi-
cation keyvk. We wish to argue that it has negligible probability of finding a valid signature on a message
m that it has not queried the oracle.

Observe first that by the soundness of the NIZK proof and the decryption verifiability property the
ciphertext inA'’s forgery must contaim:, b’ soV (a,b’) = 1. We can therefore modify the game such that
we decrypt the resulting ciphertext iis forgery and consider the adversary unsuccessful if sugdh is
not the plaintext.

Let us modify the game such that we creéter) « S;(1%) and simulate the NIZK proofs in the
signing oracle. By the unbounded zero-knowledge property of the NIZK proof, the adversary cannot
distinguish between this game and the previous one, so the success probability is changed negligibly. In
particular, it must still produce a forgery where the plaintextig’ to be successful.

Let us make another modification, instead of encryptimg when making signatures, we encrypt
m, 1. To argue that this does not change the success probability of the adversary we will make a hybrid
argument, so let Sidfjsx(-) be an oracle that on querids. .., ¢ responds with a signature where it

28

encryptsm;, 1 on a querym;, wherej < i and encryptsn;, b if j > i. Letq(k) be an upper bound on
the number of signing querie$ makes. Sinced is a polynomial time adversary(k) is polynomial. We
now have Sigg(-) =Sign0]sx(-), and we are switching to use the signing oracle &ign]..(-) where
we encrypt(-, 1).

What we need to observe is that for 8ll< i < ¢(k) the adversary’s success probability using
oracle Sigfi],x(-) is almost the same as when using the oracle [Bign]sx (). Let us see that RCCA-
security of the cryptosystem implies this property. Given a public jeyor the RCCA-security we
choose(a,b) «— Kgap(1%) and we chooséo, 7) « S1(1%) and give the adversary the verification key
vk = (pk,a,o). We answer queriek . .., 7 — 1 by encryptingm;, 1 and simulatingr. Now .4 produces
querym,; and we let our two challenge messagesiae = (m;, 1) andmy, = (m;,b). We receive a
challenge encryption of one of these messages, and our goal is to break RCCA-security by distinguishing
which one we received. We answer quélyy simulating the proof and returning the challenge ciphertext
together with the simulated proof. In all future signing queries, we endmyptb) and simulate the
proofs. Notice, if the challenge encryption has the plaintextl, then this corresponds exactly to the
adversary running with oracle Sigh, while if the challenge encryption has plaintext, b, then it
corresponds exactly to the adversary running with oracle[Sigr|s;. The adversary now produces a
forged signature:, on messagen. We givec to the decryption oracle and receive a respomnsg)’.

In casem’ = m, Vgap(a,b’) = 1 we output 1, else we output 0. In case the responsesis we also

output 0. By definition, to be successfdl had to produce a ciphertext where was inside (i.e., it is
never successful if the answertsst) and V., (a,b’) = 1. Therefore, if.A has more than negligible
difference in success probability with respectively or&iken[i,; andSign[i + 1], then we can break
the RCCA-security of the cryptosystem.

To conclude, observe that now we have a game where the adversary sees encryptionafquery
i, yet to be successful has to produce an encryption,d@f such that/,,,(a,b’) = 1. Since(a, b) is a gap
problem, the adversary has negligible success probability. O

We can instantiate the general signature scheme above using a DLIN group. The gap problem will be
the following: We pickd at random and lei = ¢%,b = gd2. It is straightforward to verify the correctness
of such a pair by checking whethefg, b)) = e¢(a, a). Lemma 16 states that givenit is hard to compute
b.

Lemma 16 If the DLIN assumption holds f@ then for all non-uniform polynomial time adversarids
we have

Pr [(p, G,Gi,e,9) « G(1¥);d — Zy;b — A(p,G,Gr,e,9,a=g%) : b= gﬂ ~ 0.

Proof. If we can solve the computational Diffie-Hellman problem with more than negligible probability
then we can break DLIN. In other words, givery®, ¢° for randoma, 8 < Z, it is hard to computg®®.

Assume that we have more than negligible chance of compyﬁn'gn the game above. This means,
given ¢%, ¢° we have more than negligible chance of computifgt?®)’, g(>=8)*, Rewriting ¢** =
g((atbeta)’~(a=B)")47" e see that this violates the hardness of the computational Diffie-Hellman problem.
O

To make a signature om = (mq,...,my,) € G™ we encryptmy, ..., m,, b with the RCCA-secure
cryptosystem constructed in the previous section. This encryption cons@(s:pfroup elements.

We need to make an NIZK proof that indeed the ciphertext contains the correct. ., m,
and b such thate(g,b) = e(a,a). Recall from the last section that the RCCA-secure en-
cryption contains as a part of it a CPA-secure ciphertextwhich encryptsmy,...,m,,b as

29

(fi5h Rt griatstamy o f T RTET grintitsiacip) - If the ciphertext is valid, which is pub-
licly verifiable, the decryption operation gives g, . .., m,,b. The RCCA-secure cryptosystem there-
fore has simple decryption verification where the witness is on the §trm. ., ¢"+1. All we have to do
now is to check whether indeeda, a) = e(g,b). All equations we have to evaluate are pairing product
equations. This means that we can build an NIZK proofRgy...,, of lengthO(n).

Corollary 17 Under the DLIN assumption there exists a CMA-secure digital signature scheme
(Ksign, Sign, Ver) for signingn group elements with perfect correctness. The verification key and the
signatures consist af(n) group elements and the verification process consists of evaluating a set of
pairing product equations.

5.4 Strong One-Time Signature

The idea for our strong one-time signature scheme is to set up a Pedersen trapdoor commitment to O.
When we receive a messagec Z, to be signed, we make a trapdoor opening of the commitmeint to

Only the signer knows the trapdoor, so only he can sign messages. Security of this scheme comes from
the hardness of computing discrete logarithms. Note, the hardness of the discrete logarithm problem is
implied by the DLIN assumption.

We want the sighature scheme to be secure against a one-time chosen message attack. Therefore, we
set up the Pedersen commitment with two trapdoors such that it is impossible for the adversary to see
which trapdoor we used. This way, if the adversary can forge a signature we can find a way to break one
of the trapdoors, i.e., compute a discrete logarithm.

Key generation: On the bilinear grougp, G, G1, e, g) we generate the verification key and the signing
key, as follows. We choose;, ys < Z, and setfs = g%, hy = g¥*. We pickrs,ss; — Z, and
setcs = fr<hZs. We pick a collision-free hash functiaHi : {0, 1}* — Z,. The verification key is
vk = (p,G,Gy,e, g9, fs, hs, cs, H) and the secret key isk = (vk, zs, ys).

Signature: To sign a message < {0, 1}* pickr «— Z, and reveal the signatute, (z,(rs —) + ysSs —
H(m))/ys)-

Verification: To verify a signaturér, s) onm we check that, = g™ fTps,

Theorem 18 Assuming hardness of computing discrete logarithms and collision-freeness of the hash-
function, the protocol K5, Sign, Ver) described above is a strong one-time signature scheme for signing
messages: € {0, 1}* with perfect correctness.

Proof. Let us say the adversary queries for a signature-, s) onm and then forges a signatufe, s’)
onm’, wheres # s’ with more than negligible probability. We will use it to compute a discrete logarithm
or break the collision-freeness of the hash-function. Aet= ¢g¥s be a challenge for the DL problem,
we wish to computeys so hs = g¥:. We chooser; « Z; (we can also easily check that # 0)

and letf, = ¢g®. We then forme, = fI*h® for r4,s < Z,. On querym we return the signature
(r,s) = (rs — H(m)/zs,s). This looks exactly like a real verification key and a standard signatdre.
therefore produces a forgery’, (1, s’) with s’ # s with more than negligible probability. We see now
thatc = g (m)frhs = g"0) ' hs" and thereforgh, = g(H(m)+asr'=H(m)=z:1)/(s=s") g0 we have
computed the discrete logarithm f. In a similar fashion, we can argue thatmust reuse’ = r. But if

r" = r, s’ = s the only possibility isH (m’) = H(m) and.A has found a collision ifn’ # m. O

Since hardness of computing discrete logarithms implies the existence of collision-free hash-functions
this is not really an extra assumption.

30

6 Simulation-Sound NIZK Proof of Knowledge for Satisfiability of Pairing
Product Equations

In this section, we combine the tools of the previous section with the NIZK proofs to construct an un-
bounded simulation-sound extractable NIZK proof for satisfiability of pairing product equations. We first
describe the idea in general terms of proving a stateméeiongs to some languade

The prover will pick random key&vksots, Sksots) fOr @ strong one-time signature scheme, ahg
will be part of the NIZK proof. Another part of the NIZK proof will be a strong one-time signature on
the statement to be proven and the NIZK proof. Since the adversary does not know the secret signing key
associated withrksots he must pick a different verification key in his forged NIZK proof.

The common reference string will contain a verification keyfor a digital signature scheme that
is secure against adaptive chosen message attack. The prover will proweahator that he knows a
signature onvkgs. IN simulations we can set it up such that we do know the secret signing key associated
with vk. This allows us to sign anyk.ts and therefore make a convincing NIZK proof even though we
do not know a witness far € L. On the other hand, the adversary even after seeing many such proofs
will not be able to forge a signature on a ne¥.;s and therefore he cannot make a valid NIZK proof for
a false statement.

Obviously, we need to hide the digital signaturewdn,s, otherwise it would be easy to see whether
an NIZK proof was real or simulated. To do this, we let the common reference string contain a public key
for a CPA-secure cryptosystem. In a real proof we encrypt some dummy message, while in the simulation
we encrypt a digital signature ark,.s. We then proceed with an NIZK proof thate L or the ciphertext
contains a signature Qrkggts.

One smallissue remains. A computationally unbounded adversary can of course forge signatures under
vk and therefore prove false statements. To have perfect soundness, we will include an enerygiftion
some non-trivial element in the common reference string. Furthermore, in the NIZK proofs we require an
NIZK proof for the prover having both encrypted a digital signature ks as well as:;; having plaintext
1. Sincec; does not have plaintext 1 even an unbounded prover cannot cheat. On the other hand, in the
simulation we will set ug:; so that it does contain

To make the NIZK proof a proof of knowledge, instead of proving directly thatZ, we will encrypt
a witness and prove that we have encrypted the witness, or we have encrypted a signatuye andc;
hasl as plaintext.

Let in the following (K, Pssor, Vssors S1, Sssor) b€ an NIZK proof for Ry, the relation for

the statement that, contains a satisfying(ai,...,a,) Or ¢, contains a signature Omkgos
and ¢; contains 1. More formally, Rssor = {((S,cw,cs),w) | (w = (a1,...,an, Ry)
c = E(fe,he)(al,...,an;Rw),S(al,...,an) = true) V (w = (s,Rs,7rc,8c) : ¢s =

E(fe,hg)(s; Rs)u Vervk(vksots, 5) =1, = E(fe,he)(l; Te, 50))}-
Common reference string generation and simulation:On group(p, G, G4, e, g) do

1. (Uk:,sk) — Ksign(p7 G) lee’g)
2. Te,Ye — ZZ

3. fe = gxe7h6 = gye

4. re,Sc — Ly

5. c1 = E(f, n)(9:7e, s¢) = (fee, hie, g7 72e9)
6. 0 — K(pv G7G17ev.g)

The common reference stringds= (vk, fe, he,c1,0)

31

The extraction algorithnk’; generates the common reference string as above and outputs the extrac-
tion key¢ = (e, ye)

The simulation-extractof £y generates the common reference string as described above except it
setse; = E(f, po) (157, 8c)- Itoutputs(y, 7, &) = ((vk, fe, he,c1,0), (sk, e, 8¢), (Tes Ye))-

Proof of satisfiability of pairing product equations: On a setS of pairing product equations over
variables and a witness, namely a satisfying assignttagnt. . , a,,), do

1. (vksots Sksots) « Ksots(p, G, G1, €, g)

2. cw = Egg, p (al, s an; Ry), whereR, = (Tw,1, Sw,1s -« > Twn, Swn)
3. ¢s = B (1, ...,1,R), whereRg = (r51,...)

4. Tssor < Pasor(0, (S, cw,¢s), (a1, ... an, Ry))

5. Ssots < Signsksots (S» kaOtSa Cw), Cs, 71'ssor)
The prOOf ism = (vksot57 Cw, Csy Tlssors Ssots)

Extraction: Given a valid proofr as above, the extraction algorithm uses: (z., y.) to decryptc,, to
get a witnessy, ..., a,.

Verification: To verify proof m checkVer,_... ((S, vksots, Cw, Cs, Tssor), Ssots) = 1 and that the cipher-
textse,, cs have the right lengths and that the pragf,, is valid.

Simulation: To simulate a proof fo5 do

1. (vksots Sksots) « Ksots(p, G, G1, €, g)

s «— Sign (vVksots)

cw = Ef, n) (1, 15 Ry), WhereRy, = (Tw,1, 5w,15 - -+ Tw,ns Swn)
cs = B, n.)(s; Rs), whereRg = (751,851, - -)

a s~ DN

Tssor < Pssor(ay (Sa Cw, Cs)v (57 R, re, SC))

6. Ssots — Signg,_ . (S, Vksots, Cuw, Csy)
The simulated proof is = (vksots, Cws Cs, Tssors Ssots)

Theorem 19 If (p, G, G, e, g) is a DLIN group ther{ Kgse, Psse; Vises S1.sses Ssses 1 sses Esser SE sse) @S
described above is an NIZK proof for satisfiability of pairing product equations. It has perfect complete-
ness, perfect soundness, perfect knowledge extraction and composable zero-knowledge and unbounded
simulation soundness extraction. The size of the common reference sttg)igroup elements, while

the NIZK proofs consist @(n + ¢) group elements.

Proof. Let us first compute the size of the common reference string and the NIZK prgqfg, consists
of O(1) group elements, no matter the size of the message to be signed. igkusk) when signing
vksots IN the simulation, but sincek,,is has constant size, we can make do with a constantgizand in
simulations the signaturewill also have constant size. Since the public k¢y, /.) has 2 group elements,
and sincer is of constant size as well, we see that the entire common referencesthiagO (1) group
elements. In a simulated proof, the ciphertexbnly need to encrypt the constant size signatur©n
the other hand in an NIZK prooé,, needs to encrypt a witness containinglements, so it will have size
O(n) group elements. Setting up product pairing equations for a plainiext. , a,, being inside uses
O(n) group elements. With the combined length of the pairing products equationsd@i@@roofrss.,
therefore consists @P(n + ¢) group elements. Sincg.s is of constant size, we conclude that the NIZK
proof has siz€)(n + ¢) group elements.

32

Perfect completeness:lt follows from the perfect completeness of the NIZK proof #8,,..: that we get
perfectly complete NIZK proof foR.,. This combined with the perfect decryption property of the
cryptosystem and the perfect correctness of the signature schemes gives us perfect completeness.

Perfect soundness and perfect knowledge extractionFrom the perfect soundness of the NIZK proof
for Reor We know that either,, encrypts a satisfyinga4, ..., a,) or thatc; is an encryption of
1. Sincec; is not an encryption of 1 this means thgt encrypts a satisfyingq, ..., a,. This
implies thatS is satisfiable. Moreover, given the decryption Key, y.) we can extract the witness

(al, e ,an) = D(‘T&ye) (Cw).

Composable zero-knowledge:We first have to argue common reference string indistinguishability. The
only difference between common reference strings and simulated common reference strings is
whetherc; is an encryption ofl or not. By the semantic security of the cryptosystem no non-
uniform polynomial time adversary can distinguish between such ciphertexts with more than negli-
gible probability, and therefore it cannot distinguish between real and simulated common reference
strings.

Let now X be a simulated common reference string and consider a non-uniform polynomial time
adversary4 (X, 7) that tries to distinguish between proofs and simulated proofs. It produces$a set
of pairing product equations as well as a satisfiability witness. . . ,a,). Given a proofr it has

to distinguish whether was simulated or not.

Let us start with the way the prover creates a pradBy the semantic security of the cryptosystem,
we can create a signatuse— Sign, (vksots) and letes = Ey, 1, (s; Rs) instead of encrypting’s
without changingA'’s success probability more than negligibly.

The proofrgsoy proves that,, contains a satisfyingai, . .., a,), or c; encrypts 1 and, contains a
signature orvks.ts. Now both parts of this or-statement is true and we know a witness for both of
them. Sincergs iS a zero-knowledge proof it is also witness-indistinguishable. We can therefore
switch to using the witness, R;, r., s¢) in the proofrg., without A detecting the switch.

By the semantic security of the cryptosystefndoes not notice it if we switch to creating, as
an encryption of 1,...,1). We are now creating the proof as the simulator does,Asisuccess
probability has changed only negligibly.

Simulation-sound extractability: We will argue that it is infeasible for a non-uniform polynomial time
adversaryd°2(>7) (%, €) to create a statement and valid pr¢of =) such that we cannot extract a
witness from it, unless is one of the query-responses.

We first observe that the strong one-time signature scheme’s existential unforgeability implies that
it is infeasible for.A to produce a valid proof where it recyclesk..ts from one of the queries.

If ¢,, does not contain a satisfyirigs, . . . , a,,) then by the soundness of the NIZK proof féy;,, the
ciphertextc; must contain a signatureon vkgos. Using the decryption keyz., y.) we therefore
obtain a forged signature undek. By the CMA-security of the signature scheme this event has
negligible probability of happening.

]

6.1 Universally Composable Non-interactive Zero-Knowledge

The goal of this section is to demonstrate how powerful NIZK proofs with simulation-sound extractability
are. We will securely realize the NIZK-functionalitfnizk from [GOS06b] in Canetti's UC framework

33

[Can01]. In [GOSO06b] there is a construction of a UC NIZK protocol that can be used to r&alize

for Circuit Satisfiability in a model where the adversary is adaptive and the parties cannot erase data from
their tapes. We consider a weaker model, where the padiesrase data from their tapes. On the other
hand, whereas the UC NIZK protocol in [GOS06b] is inefficient, our protocol produces proofs of linear
size in the circuit size. We note that [CLOS02] have already observed without proof that simulation-sound
extractability gives you UC NIZK for non-adaptive adversaries, which in the case of UC NIZK is almost
the same as adaptive adversaries where we allow erasures.

MODELING NON-INTERACTIVE ZERO-KNOWLEDGE PROOFSWe refer to [Can01, GOS06b] for a de-
scription of the UC-framework and the modeling of NIZK proofs/arguments in the UC framework. Here
we simply describe the ideal functionalities for Circuit Satisfiability and prove that we can realize it with
linear size proofs under the DLIN assumption ¢br

Parametrized by relatioR and running with partie®”, .. ., P, and adversang.

Proof: On input prove,sid, ssid, z,w) from party P ignore if (x, w) ¢ R. Send prove,z) to S and
wait for answer jroof, 7). Upon receiving the answer stofe,) and send
(proof, sid, ssid,) to P.

Verification: On input {erify, sid, ssid, z,) from V' check whethefz,) is stored. If not send
(verify,z,) to S and wait for an answem{tnessw). Upon receiving the answer, check
whether(x, w) € R and in that case, stofe, 7). If (z,) has been stored return
(verification,sid, ssid,1) toV, else return\erification,sid, ssid,0).

Figure 3: NIZK proof functionalityFnizk .

Common reference string: On input Gtart,sid) run® «— K (1%).
Send €rs,sid, X)) to all parties and halt.

Figure 4: Protocol for UC NIZK common reference string generation.

Proof: Party P waits until receiving €rs,sid, X) from Fcgs.

On input prove,sid, ssid, x,w) runm <« P(X, z,w). Erase intermediate data used in the
computation ofr. Output proof,sid, ssid,).

Verification: PartyV waits until receiving €rs,sid, >) from Fcgs.

On input (erify ,sid, ssid, z,) runb «— V (X, z,). Output gerification,sid, ssid, b).

Figure 5: Protocol for UC NIZK proof using simulation-sound extractable NIZK proof
(K,P,V,S1,S2, E1, Ey, SEy) for relation R.

Theorem 20 The protocol in Figure 5 securely realiz€317k in the Fcrs-model.

Proof. Let A be a non-uniform polynomial time adversary. We will describe an ideal advefsary
no non-uniform polynomial time environment can distinguish whether it is running ifFthg-hybrid
model with parties™, . .., P, and adversary or in the ideal process withnizk, S and dummy parties
Py,...,P,.

34

S starts by invoking a copy afl. It will run a simulated interaction o, the parties and the envi-
ronment. In particular, whenever the simulatédtommunicates with the environmet,just passes this
information along. And whenevet corrupts a party?;, S corrupts the corresponding dummy pafty

SIMULATING Fcrs. S chooses the common reference string®8sr,) < SE;(1F). S simulatesFcrs
sending ¢€rs,sid, X) to all parties. Wheneved decides to deliver such a message to a paytys will
simulateP; receiving this string.

SIMULATING UNCORRUPTED PROVERS SupposeS receives [froof,sid, ssid,) from Fnizk. This
means that some dummy pary received input frove,sid, ssid, =, w), where(z,w) € R. We must
simulate the output a real parfywould make, however, we may not knaw

We creater <« S3(X,7,x2) and return groof,m) to Fnizx. Fnizx Subsequently sends
(proof,sid, ssid,) to P and we deliver this message so it gets output to the environment.

SIMULATING UNCORRUPTED VERIFIERS SupposeS receives Yerify .z,) from Fyizk. This means an
honest dummy party” has receivedverify ,sid, ssid, z, =) from the environment.

S checks the prooth — V (X, z,). If invalid, it sends withessno witness) to Fnizx and deliv-
ers the consequent messager(fication,sid, ssid, 0) to V that outputs this rejection to the environment.

On the other hand, if the UC NIZK argument is valid we must try to extract a witme$sz has ever
been proved by an honest prover that was later corrupted, we will know the witness and do not need to
run the following extraction procedure. If the witness is not known alrégatbtsw — Eo(3, &, z, 7). If
(r,w) ¢ Ritsetsw = no witness . It sends {itnessw) to Fnizk. It delivers the resulting output
message t® that outputs it to the environment.

We will later argue that the probability of the proof being valid, yet us not being able to supply a good
witness toFnzk is negligible. That means with overwhelming probability we input a valid witness
Fnizg Whenr is an acceptable UC NIZK argument for

SIMULATING CORRUPTION. Suppose a simulated parfy is corrupted byA. Then we have to simulate
the transcript of?;,. We start by corrupting®; thereby learning all UC NIZK arguments it has verified. It
is straightforward to simulat®;’s internal tapes when running these verification processes.

We also learn all statementsthat it has proved together with the corresponding witnegsdgecall,
the UC NIZK argumentsr have been provided b§. Since we erased all other data, we can therefore
simulate the tape aP;.
HYBRIDS. We wish to argue that no environment can distinguish between the advetsanning with
parties executing the UC NIZK protocol in tif&-gs-hybrid model and the ideal adversa$yrunning in
the Fnizk-hybrid model with dummy parties. In order to do so we define several hybrid experiments and
show that the environment cannot distinguish between any of them.

HO: This is theFcrg-hybrid model running with adversary and partiesd”,,, P,.

H1: We modify HO by running ¥, 7, &) «— SFE;(1*) and creating the proofs of uncorrupted provers as
T — Sa(3, T, x).
By the unbounded zero-knowledge property the adversary this experiment is indistinguishable from
HO.

H2: Consider the case where an honest p&ftyeceives Yerify ,sid, ssid, , 7). Supposer is indeed an
acceptable UC NIZK proof and is not one of the proofs we simulated. We mun— E»(3, &, z, 7).
If (z,w) ¢ R give up in the simulation.

By the simulation-sound extractability property there is negligible probability that we will ever give
up, so H2 is indistinguishable from H1.

35

H3: This is the ideal process running wiff\izx ands.

Inspection shows that in process H2 and H3 we are computing the different parts of the protocol in
the same way. H2 and H3 are therefore perfectly indistinguishable to the environment.

O

Corollary 21 If the DLIN assumption fog is true then there exists a UC NIZK proof for Circuit Satisfia-
bility secure against adaptive adversaries where we allow erasures. The common reference string contains
a constant number of group elements, while the proofs consf3|df|) group elements.

7 Constant Size Group Signatures without Random Oracles

7.1 Group Signature Functionality

In a group signature scheme there is a group manager that controls the group. This group manager controls
who can join the group. Once in the group members can sign messages on behalf of the group. Members’
signatures are anonymous except to the group manager who can open a signature and see who signed the
message. In some scenarios it is of interest to separate the group manager into two entities, an issuer who
enrolls members and an opener who traces signers.

We will describe the algorithms the group signature scheme will support. We imagine that there is a
PKI in place so that public keys can be trusted. We model this by having a public key regigtshere
only user: has a one-time write accessrtey[i], we do not attempt to keep this information secret. User
i's stores his secret key pk|i], unless compromised only the user has access to this key. [BSZ05] model
the PKI in a slightly more complicated way, but the difference between their definition and the present one
is non-essential.

Key generation: GKg generateggpk, ik, ok). Heregpk is a group public key, whilék and ok are
respectively the issuer’s and the opener’s secret key.

Join/Issue: This is an interactive protocol between a user and the issuer. The neggsters a public key
vk; in reg[i] and stores some corresponding private informatian The issuer on detecting a new
entryreg[i] uses the issuer key: to generate a respongert;. The user verifies the correctness of
the response, and in case it accepts it stgsé§i| = (sk;, vk, cert;).
The [BSZ05] definition allows for many rounds of secret communication. Our protocol is secure in

this more restricted model where we have a simple 2-move interaction, which does not need to be
secret.

Sign: A group membei can sign a message by running picking randomnessand letting the signature
bes = Gsig(gpk, gskli], m;r).

Verify: To verify a signature on message: we runGVf(gpk, m, s). The signature is valid if and only
if this verification algorithm outputs 1.

Open: The opener has read-access to the registration talale We have (i,7))
Open(gpk, ok, reg, m, s) gives an opening of a valid signatuseon messagen pointing to:. In
case the signature points to no member, the opener will assume the issuer forged the signature and
seti = issuer

Judge: This algorithm is used to verify that openings are correct. We say the opening is correct if
Judge(gpk, i, regli],m, s,¢) = 1.

36

7.2 Group Signature Security Definitions

[BSZ05] define four security properties that the group signature must satisfy: correctness, anonymity,
traceability and non-frameability. We refer to [BSZ05] for a discussion how this security definition covers
and strengthens other security issues that have appeared in the literature.

PERFECT CORRECTNESSOn any adversarially chosen message, the verification should accept a group
signature created with a correctly generated group signing k] for memberi. Running the opening
algorithm on this should identifyand make the Judge algorithm accept the opening. For all (unbounded)
adversariesA we have

Pr [(gpkr, ik, ok) — GKg(1¥); (i,m) «— AT/ (gple ik, ok); s — GSig(gpk, gskl[i], m);
(j, %) < Open(gpk, ok, reg[],m, s) :
ifie@QthenF =0 A i=j A Judge(gpk,i,regli],m,s,) =1| =1,
where the oracle works as follows

Join/Issue: On inputi that has not been queried before run the Join/Issue protocol. This updatés
andgsk[i]. In case the user does not accept,Bet 1 and return 1, else sét = 0 and return
regli], gskli]. Addi to the list of queries)).

ANONYMITY. It should be infeasible for an adversary to identify the signer of a message if he does not
know the opener’s keyk. We require a strong sense of anonymity, which holds even when the adversary
controls the issuer and that all the members’ secret signing keys are exposed. We require for all non-
uniform polynomial timeA that

Pr [(gpk ik Ok) P GKg(lk) : ACho,Open,Issue,ReadGsk,JoinCorrupt,JoinExposedHonest (gpk lk) — 1}

~ Pr [(gpk ik Ok‘) - GKg(lk) . ACh1,Open,Issue,ReadGsk,JoinCorrupt,JoinExposedHonest(gpk ’Lk‘) — 1:|
9 9 *)

where the oracles work as follows:

JoinExposedHonest: On inputi wherereg[i] is empty first generatévk;, sk;) as specified by the Join-
algorithm. Then storeeg[i| < vk; and sendsk;, vk;) to the adversary. Addto Q join-

Issue: On input(i, cert;) wherei € Qjqin and yet not been answered check whether the answer is ac-
ceptable. In that case, stajek|[i] = (sk;, vk;, cert;).

JoinCorrupt: On input(i, vk;) wherereg|i] is emptyreg[i] = vk;. This allows the adversary to enroll a
corrupt member and register any public key of its own choosing.

Chy: On input (i, i1, m) Whereip,i; are honest members with non-emptyk[io] and gsk[i1] return
s «— GSig(gpk, gsk[ip], m).

Open: On input(m, s) that has not been produced 6%, returnOpen(gpk, ok, reg, m, s).

ReadGsk: On inputi returngskl[i]. Add i to the query liSQRreadGsk-

TRACEABILITY. We want to avoid forged group signatures. The issuer can always make a dummy regis-
tration and create group signatures, so we cannot rule out the creation of group signatures. What we want

37

to capture here is that if the issuer is honest, then it is infeasible to create a signature that does not belong
to some membet. For all non-uniform polynomial time adversaries we have

Pr |(gpk, ik, ok) «— GKg(1*); (m, s) < A (gpk, ok); (i,) — Open(gpk, ok, reg,m,s) :
GVf(gpk,m,s) = 1 andJudge(gpk, i, reg[i], m, s,1) = 1 andi = issuer } ~ 0,

where the oracle is
Join: On input(gpk, i, vk;) registerreg(i] = vk;. Run the issuer’s protocol di, vk;) and returrcert;.

NON-FRAMEABILITY. We want to a void that an honest member is not falsely attributed a signature that
it did not sign, even if both the issuer and opener are controlled by the adversary. We require that for all
non-uniform polynomial time adversarigswe have

Pr (gpk‘, ik‘, 0]{:) - GKg(lk); (m7 Saia¢) - AJoinHonest,Issue,ReadGsk,GSig(gpk:’Z-k:’ O/{?) .
GVf(gpk,m,s) =1 A iis an honest member withg[i] # ¢,
Judge(gpk, i, reglil, m, 5,0) = 1 A i ¢ Qreaacise A (my5) & Qasig| =0,

where the oracles not described before are as follows

JoinHonest: On inputi, wherereg|i] is empty first generatek;, sk;) as specified in the Join-algorithm.
Then storereg[i] < vk; and sendi, vk;) to the issuer. Add to Q join-

ReadGsk: On inputi returngsk[i]. Add i t0 QreadGsk-

GSig: Oninput(i, m) check whetheysk[i] is non-empty. In that case retusn— GSig(gpk, gsk[i], m).
Add (m, s) to the query lisQ¢s;g.

The above definition addresses a partially dynamic setting where members can be enrolled along the
way. It also separates the roles of granting membership from opening signatures. In [BMWO03] a simpler
situation is considered. Only a single group manager that acts both as issuer and opener is considered.
All members’ keys are set up from the start, there is no enrollment. This relaxation permits the defini-
tions of traceability and non-frameability to be combined into one requirement called full-traceability. In
the following we concentrate on the stronger [BSZ05] model as described above and provide a secure
implementation based on the DLIN assumption.

7.3 Construction of a Group Signature Scheme

Our construction is related to the constructions in [BMWO03, BSZ05]. We use four tools that we have
constructed earlier in the paper: CPA-secure encryption, CMA-secure signatures, NIZK proofs with
simulation-sound extractability and a strong one-time signature scheme.

The public key will be on the fornfvk, pk, X)), wherevk is a verification key for the CMA-secure
signature schemefk is a public key for the CPA-secure cryptosystem a@nd a common reference string.
The issuer’s keyk is the signing key corresponding to the signature scheme, while the openevk iy
the decryption key for the cryptosystem.

To join the useri creates a signature key pdirk;, sk;). He sendk; to the issuer who returns a
signaturecert; on vk;. The user checks thatrt; is a valid signature omk;. His group signing key is
(Ski, Uki, C@Tti).

38

To sign a message the member creates a strong one-time signature k@ykpair sksots). Using
sk; he forms a signature; on vks.s. He then creates an encryptiorof (vk;, cert;, s;) and makes an
NIZK proof 7 that the plaintext is correctly formed. Finally, he makes a strong one-time signature
onm, vksets, ¢, 7. The group signature om is s = (vksots, ¢, T, Ssots). Verification of a group signature
is straightforward, simply check the strong one-time signature and the NIZK proof.

To open a valid group signature we decrgptWe get somek,, cert,, s, and look up the member
who registered k.. In case no such member exists, weiset issuer . We return an openingi, v),
wherey = (vk,,certs, s.). Anybody can check whethewrt, is a signature onwk, undervk, and
whethers, is a signature omkg.is undervk,. If vk, has been registered for useor no vk, has been
registered and = issuer we accept the opening.

The security intuition behind the group signature scheme is as follows. We get anonymity, because
the information(vk;, cert;, s;) that could identify the signer is encrypted. Since the NIZK proof is zero-
knowledge it does not reveal anything either. Even seeing openings of other group signatures does not
help, because when a CPA-secure cryptosystem is combined with a simulation-sound proof of knowledge
of the plaintext, then it becomes CCA2-secure, see also [DP92].

We get traceability because by the soundness of the NIZK proof system we must have a correct
vky, cert, s, inside the ciphertext. Since only the issuer knows the signingikeyobody else can
forge a certificateert,. This means, the group signature must point to some meinbet the issuer.

We have non-frameability because a valid signature and a valid opening pointirgtéains a sig-
natures, undervk; on vkgets, SO vksots MUSt have been signed by the member. Furthermore, since it is
a strong one-time signature scheme and the publicvkey is used only once by, it must also be this
member that made the signatutg.s on (m, vksets, ¢, 7).

Let us consider how to make the NIZK proof. L& = Sg(vk,pk,vksots,c) be a set
of pairing equations that are satisfiable only on a witness = (vk,,cert,,s.,d) such that
Ver, i (vks, certy) = 1, Very, (vksots, S«) = 1 andc has plaintext(vk,, cert,, s.). Correspondingly,
let w = Wes(vk, pk, vksots, ¢, vk, certy, s, R) be such a witness. Observe, since verification of the
signatures consist of verifying a set of pairing equations, and since we know how to prove that something
is a plaintext ofc it is straightforward to compute the s€tand the corresponding satisfiability witness.

The witness will bav = (vky, certy, s«, 9™, ¢"2,...), whereR = (ry, s1,72, 2, . . .). We can now invoke
the simulation-sound extractable NIZK proof from Appendix 6.

Key generation: On input1” do

1. (p,G,Gy,e,9) < G(1")
2. (vk,ik) — Kggn(p, G, G1,e,g)
3. (pk,ok) — Kepa(p,G,G1,e,9)
4. ¥ — Kse(p, G, G1,¢,9)

Return(gpk, ik, ok) where the group public key ik = (p, G, Gy, e, g, vk, pk, X).

Join/Issue: On input(gpk, i) to Join generatévk;, sk;) <« Kgign(p, G, G1, e, g). Storevk; in reg[i] and
send(i, vk;) to the issuer.

The issuer on inputi, vk;) checks thatk; has been stored ineg[i]. In that it sendseert; «—
Sign,; (vk;) to .

Useri on inputcert; to Join verifies thaVer, (vk;, cert;) = 1. It accepts if this is the case and
storesyskli] = (sk;, vk;, cert;). The user has now become a member.

Group signature: On input(gpk, gsk[i], m) with non-emptygsk[i] do

39

Hpw DR

5.

(VEsots Sksots) — Ksots(p, G, G1, €, g)

s; «— Signgy, (Vksots)

¢ = Epi(vk;, cert;, s;; R), with randomnes® = (rq, s1,...)

T Puse(E, Sgs(vk, pk, vksots, €), Wes(VE, pk, Vksors, v, certy, si, R))

Ssots < Signsksots (m7 Vksots; C, 77)

Return the group signatuse= (vksots, ¢, T, Ssots)-

Verify signature: On input(gpk,m, s) do

1.
2.

Check thaVerx_,. (M, Vksots, ¢, T), Ssots)
Check thaW g (2, Sgs(vk, pk, vksots,), m) =1

Return 1 if both checks pass, else return 0.

Opening: On input(gpk, ok, reg, m, s) do

1.
2.
3.
4.

Return0 if Vise (3, Sgs(vk, pk, vksots, ¢), m) = 0

(vky, certy, i) = Dog(c)

Look upvk, in reg and find the corresponding If no such: exists set = issuer
Lety = (vks, certy, s4)

Return(i,).

Judge: On input(gpk, m, s, regli],i,1) do

1.
2.
3.
4.
5.

Verify GV(gpk,m,s) =1

Check thategli] = vk,

Verify Ver, i (vky, cert,) =1
Verify Ver i, (vksots, $x) = 1
Verify Ver,y_,. (m, vksots, ¢,) = 1

Returnl if all these checks pass, else return 0.

Theorem 22 The group signature scheme described above has perfect correctness, and anonymity, trace-
ability and non-frameability if the DLIN assumption holds for All keys containO(1) group elements,
openings contair¥(1) group elements, and signatures contéhil) group elements and elements from

Zyp.

Proof.

Perfect correctness: This follows from the perfect correctness of the signature scheme and the perfect
completeness of the NIZK proof.

Anonymity: By a hybrid argument it suffices to prove anonymity in the case where the challenge oracle
Chy, is only queried once. In other words, the adversary queriesiyith, m and receives a chal-
lenge signature < GSig(gpk, gskl[ip], m). It has access to arbitrary openings excegtofs) and
knowsik as well as all the members’ group signature keys and must now try to fuess

40

We start with theChg oracle and modify it such that we ruff¥; in the key generation algorithm to
getX. In the challenge, we simulate the NIZK prooffor ¢ encrypting(vk;,, cert;,, si,). By the
unbounded zero-knowledge of the NIZK proof the adversary’s success probability changes negligi-
bly.

Next, let us observe that the probability of reusing.:s as the verification key for the one-time
signature in any valid query to the opening oracle is negligible since it is a strong one-time signature
scheme. We can therefore from now on assume that does not happen.

This implies that the statemeftk, pk, vksots, ¢) that is proved in the group signature in any query

to the opening oracle is different from the statement in the challenge signature. Therefore, instead
of using the opener’s keyk to extract the plaintextvk;, cert;, s;) we may as well use the knowl-

edge extractor for the NIZK proof. By the simulation-sound extraction property this gives the right
opening with overwhelming probability.

Since we are not decrypting any ciphertexts any more, we can use the semantic security to argue
that the adversary’s success probability is the same when we change the ciphertext in the challenge

to encrypt(1, ..., 1) instead of(vk;,, cert;,, si,)-

By a similar argument, we can argue that the game where the adversary has a€tgsgives him
similar success probability when seeing a challenge consisting-of,; (1, . . ., 1) and a simulated
proof .

Traceability: We want a guarantee that if the issuer is honest, then every signature can be traced back to
a member. Consider a valid group signatsire (vkgots, ¢, T, Ssots) ONm. By the perfect soundness
of the proofr we know thatc contains a plaintextvk., cert., s.), whereVer, (vk,, cert,) = 1.
The opening points tothat has registeredk,, unless no such registration took place. However, if
no such registration took place, then the issuer never sighedThis implies that we have created
a forged signature ook, and therefore broken the CMA-security of the signature scheme.

Non-frameability: In this definition, both the issuer and the opener are corrupt. We want to guaran-
tee that no uncorrupt member is framed. Consider an adversary that creates a valid signature
(vksots, ¢, T, Ssots) ON'm and a valid openindi, (vk;, cert., s.) pointing to:. In all group signa-
turess’ this member made, it generated a signatjre, using a random key paivkl ., Sklois)-

By the strong unforgeability the adversary cannot recytlg, .. Therefore, the adversary must have

chosen a newk;.s that has never been signed by membdrhis means, is a forged signature on

vksots @and we have broken the CMA-security of the signature scheme.

O

KEY GENERATION. The security definitions in [BMWO03, BSZ05] rely on a trusted key generation. Their
security guarantees guard against key exposures, but not against a malicious key generator. Let us consider
which parts need to be trusted.

Security for all parties rely ofp, G, G1, ¢, g) being a DLIN group. Assuming that it is a DLIN group
we get non-frameability even if the issuer and opener cooperate to generate the rest of the group public
key gpk.

The opener is in control of the anonymity, if it is corrupt there is no anonymity. We can therefore as-
sume that the opener will try to help members get anonymity. One of the components in giving anonymity
is the CPA-security of the cryptosystem. It is therefore reasonable to let the opener gehenadan the
process learn the corresponding decryption &eyAnother part is the zero-knowledge property and the
simulation-sound extractability of the NIZK proof. We can let the opener generate the common reference
stringX.

41

The issuer can create arbitrary group signatures on its own. If it is dishonest we cannot protect our-
selves against forgeries. Therefore, it is reasonable to let it aid us in guaranteeing traceability. One part
of this is to let it generat¢vk, ik) such that certificates cannot be forged. Another part of this is to let
it verify that the opener knows the secret key correspondingktand has generated so it is indeed
perfectly sound. The issuer can for instance request an interactive zero-knowledge proof of knowledge
from the opener to get these guarantees.

We conclude that the trust in the key generation algorithm boils down to trust in the DLIN problem
being hard in the groufp, G, G4, ¢, g).

References

[ACHAMO5] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros. Practical
group signatures without random oracles. Cryptology ePrint Archive, Report 2005/385,
2005. http://eprint.iacr.org/2005/385

[ACJTO0] Guiseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and provably
secure group signature schemeptaceedings of CRYPTO '00, LNCS series, volume ;1880
pages 255-270, 2000.

[AdMO3] Giuseppe Ateniese and Breno de Medeiros. Efficient group signatures without trapdoors. In
proceedings of ASIACRYPT '03, LNCS series, volume,288yks 246—-268, 2003. Revised
paper available dittp://eprint.iacr.org/2002/173

[BBO4] Dan Boneh and Xavier Boyen. Short signatures without random oraclgsodeedings of
EUROCRYPT '04, LNCS series, volume 3(02ages 56—73, 2004.

[BBPO4] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An uninstantiable random-
oracle-model scheme for a hybrid encryption problem. phoceedings of EURO-
CRYPT '04, LNCS series, volume 302aAges 171-188, 2004. Full paper available at
http://eprint.iacr.org/2003/077

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signaturgectedings of
CRYPTO '04, LNCS series, volume 31pages 41-55, 2004.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive
zero-knowledgeSIAM Jornal of Computatigr20(6):1084-1118, 1991.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications. Improceedings of STOC '8®ages 103—-112, 1988.

[BGNO5] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In
proceedings of TCC '05, LNCS series, volume 3®#&es 325-341, 2005.

[BMWO03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signa-
tures: Formal definitions, simplified requirements, and a construction based on general as-
sumptions. Irproceedings of EUROCRYPT '03, LNCS series, volume,3&igfes 614—629,
2003.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. IACM CCS '93 pages 62—-73, 1993.

42

[BS99]

[BSZ05]

[BWOB]

[Can01]

[CGO4]

[CGH98]

[CGHO4]

[CKNO3]

[CLO2]

[CLO4]

[CLOS02]

[CM98]

[CS97]

[CS98]

Mihir Bellare and Amit Sahai. Non-malleable encryption: Equivalence between two notions,
and an indistinguishability-based characterization pioceedings of CRYPTO '99, LNCS
series, volume 166pages 519-536, 1999.

Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of
dynamic groups. Iproceedings of CT-RSA '05, LNCS series, volume 333@es 136—153,
2005.

Xavier Boyen and Brent Waters. Compact group signatures without random oracles. In
proceedings of EUROCRYPT '06, LNCS series, volume 4idlges 427-444, 2006.

Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In proceedings of FOCS 'Qlpages 136-145, 2001. Full paper available at
http://eprint.iacr.org/2000/067

Jan Camenisch and Jens Groth. Group signatures: Better efficiency and new theoretical
aspects. Iproceedings of SCN '04, LNCS series, volume 3pages 120-133, 2004. Full
paper available dtttp://www.brics.dk/ ~jg/GroupSignFull.pdf

Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited.
In proceedings of STOC '9®ages 209-218, 1998.

Ran Canetti, Oded Goldreich, and Shai Halevi. On the random-oracle methodology as ap-
plied to length-restricted signature schemes, 2004.

Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext secu-
rity. In proceedings of CRYPTO '03, LNCS series, volume Zﬁages 565-582, 2003. Full
paper available dittp://eprint.iacr.org/2003/174

Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient
revocation of anonymous credentials.pimceedings of CRYPTO '02, LNCS series, volume
2442 pages 61-76, 2002.

Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. Improceedings of CRYPTO '04, LNCS series, volume 3p&ges 56—72,
2004.

Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. groceedings of STOC '02ages 494—
503, 2002. Full paper available lattp://eprint.iacr.org/2002/140

Jan Camenisch and Markus Michels. A group signature scheme with improved efficiency.
In proceedings of ASIACRYPT '98, LNCS series, volume,lisges 160-174, 1998.

Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups. In
proceedings of CRYPTO '97, LNCS series, volume 128des 410-424, 1997.

Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attackrockedings of
CRYPTO '98, LNCS series, volume 14@ages 13-25, 1998. Full paper available at
http://eprint.iacr.org/2001/108

43

[CvH91]

[DDNOO]

[DDO"02]

[DP92]

[FI05]

[FLS99]

[GKO3]

[GOS064]

[GOS06D]

[Gro03]

[KilO6]

[KP98]

[KTYO04]

[KYO05]

[Lin01]

[Lin03]

David Chaum and Eumge van Heyst. Group signatures. groceedings of EUROCRYPT
'91, LNCS series, volume 54Fages 257-265, 1991.

Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptogra@Mm Journal
of Computing 30(2):391-437, 2000.

Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit
Sahai. Robust non-interactive zero knowledgerbteedings of CRYPTO '01, LNCS series,
volume 2139pages 566-598, 2002.

Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge without
interaction. Inproceedings of FOCS '9ages 427-436, 1992.

Jun Furukawa and Hideki Imai. An efficient group signature scheme from bilinear maps. In
proceedings of ACISP '05, LNCS series, volume 3pades 455-467, 2005.

Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
under general assumptiorSLAM Journal of Computing?9(1):1-28, 1999.

Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir
paradigm. Inproceedings of FOCS ’'Q3pages 102—, 2003. Full paper available at
http://eprint.iacr.org/2003/034

Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for
nizk. In proceedings of CRYPTO 06, LNCS series, volume 4ddges 97-111, 2006.

Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero-knowledge for
np. Inproceedings of EUROCRYPT '06, LNCS series, volume 4844yes 339-358, 2006.

Jens Groth. Rerandomizable and replayable chosen ciphertext attack secure public key en-
cryption. Inproceedings of TCC '04, LNCS series, volume 2%&bhes 152-170, 2003.

Eike Kiltz. Chosen-ciphertext security from tag-based encryptionprbteedings of TCC
'06, LNCS series, volume 387tages 581-600, 2006.

Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof system for
np with general assumptiondournal of Cryptology11(1):1-27, 1998.

Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable signatureprdoeedings of
EUROCRYPT '04, LNCS series, volume 3Q2xges 571-589, 2004. Full paper available at
http://eprint.iacr.org/2004/007

Aggelos Kiayias and Moti Yung. Group signatures with efficient concurrent joinprén
ceedings of EUROCRYPT '05, LNCS series, volume Jg8ges 198-214, 2005. Full paper
available athttp://eprint.iacr.org/345

Yehuda Lindell. Parallel coin-tossing and constant round secure two-party computation. In
proceedings of CRYPTO '01, LNCS series, volume 2p88es 408-432, 2001. Full paper
available atttp://eprint.iacr.org/2001/107

Yehuda Lindell. A simpler construction of cca2-secure public-key encryption under general
assumptions. Iproceedings of EUROCRYPT '03, LNCS series, volume,3tdfes 241—
254, 2003.

44

[Nie02]

[NY90]

[Sah01]

[Wat05]

Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. proceedings of CRYPTO '02, LNCS series, volume
2442 pages 111-126, 2002.

Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ci-
phertext attacks. Iproceedings of STOC '9pages 427-437, 1990.

Amit Sahai. Non-malleable non-interactive zero-knowledge and adaptive chosen-ciphertext
security. Inproceedings of FOCS 'Qpages 543-553, 2001.

Brent Waters. Efficient identity-based encryption without random oraclegrobeedings
of EUROCRYPT '05, LNCS series, volume 348ges 114-127, 2005.

45

