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Bent functions

In 1966 : the first paper written by Oscar Rothaus (published in 1976).

In 1972 and 1974 : two documents written by John Dillon.

In 1975 : a paper based on Dillon’s thesis.

In this preliminary period, several people were interested in bent
functions, in particular Lloyd Welch and Gerry Mitchell.

It seems that bent functions have been studied by V.A. Eliseev and O.P.
Stepchenkov in the Soviet Union already in 1962, under the name of
minimal functions. Some results were published as technical reports but
never declassified.
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Background on Boolean functions : representation

f : Fn
2 → F2 an n-variable Boolean function.

DEFINITION (ALGEBRAIC NORMAL FORM (A.N.F))

Let f : Fn
2 → F2 be a Boolean function. Then f can be expressed as :

f (x1, . . . , xn) =
⊕

I⊂{1,...,n}

aI

(∏
i∈I

xi

)
=
⊕
u∈Fn

2

auxu, aI ∈ F2

where I = supp(u) = {i = 1, . . . , n | ui = 1} and xu =

n∏
i=1

xui
i .

The A.N.F exists and is unique.

DEFINITION (THE ALGEBRAIC DEGREE)

The algebraic degree deg(f ) is the degree of the A.N.F.

Affine functions f (deg(f ) ≤ 1) :

f (x) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn, ai ∈ F2
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Background on Boolean functions : representation

DEFINITION

Let n be a positive integer. Every Boolean function f defined on F2n has a
(unique) trace expansion called its polynomial form :

∀x ∈ F2n , f (x) =
∑
j∈Γn

Tro(j)
1 (ajxj) + ε(1 + x2n−1), aj ∈ F2o(j)

DEFINITION (ABSOLUTE TRACE OVER F2 )

Let k be a positive integer. For x ∈ F2k , the (absolute) trace Trk
1(x) of x over F2

is defined by :

Trk
1(x) :=

k−1∑
i=0

x2i
= x + x2 + x22

+ · · ·+ x2k−1
∈ F2
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Background on Boolean functions : representation

DEFINITION

Let n be a positive integer. Every Boolean function f defined on F2n has a
(unique) trace expansion called its polynomial form :

∀x ∈ F2n , f (x) =
∑
j∈Γn

Tro(j)
1 (ajxj) + ε(1 + x2n−1), aj ∈ F2o(j)

Γn is the set obtained by choosing one element in each cyclotomic class
of 2 modulo 2n − 1,

o(j) is the size of the cyclotomic coset containing j ( that is o(j) is the
smallest positive integer such that j2o(j) ≡ j (mod 2n − 1))

ε = wt(f ) modulo 2

DEFINITION (THE HAMMING WEIGHT OF A BOOLEAN FUNCTION)

wt(f ) = #supp(f ) := #{x ∈ F2n | f (x) = 1}
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Background on Boolean functions : representation

DEFINITION

Let n be a positive integer. Every Boolean function f defined on F2n has a
(unique) trace expansion called its polynomial form :

∀x ∈ F2n , f (x) =
∑
j∈Γn

Tro(j)
1 (ajxj) + ε(1 + x2n−1), aj ∈ F2o(j)

+ The algebraic degree of f denoted by deg(f ), is the maximum Hamming
weight of the binary expansion of an exponent j for which aj 6= 0 if ε = 0
and to n if ε = 1.

Affine functions : Trn
1(ax) + λ, a ∈ F2n , λ ∈ F2.
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Background on Boolean functions : representation

DEFINITION (THE BIVARIATE REPRESENTATION (UNIQUE))

Let n = 2m, let Fn
2 ≈ F2m × F2m .

f (x, y) =
∑

0≤i,j≤2m−1

ai,jxiyj; ai,j ∈ F2m

.

Then the algebraic degree of f equals max(i,j) | ai,j 6=0(w2(i) + w2(j)).

And f being Boolean, its bivariate representation can be written in the
form f (x, y) = Trm

1 (P(x, y)) where P(x, y) is some polynomial over F2m .
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Boolean functions

+ In both Error correcting coding and Symmetric cryptography,
Boolean functions are important objects !

Boolean functions

Symmetric Cryptosystems
(secret key)

Reed-Muller codes

Coding Theory Cryptography
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Cryptographic framework for Boolean functions

+ To make the cryptanalysis very difficult to implement, we have to
pay attention when choosing the Boolean function, that has to
follow several recommendations : cryptographic criteria !
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The discrete Fourier (Walsh) Transform of Boolean functions

DEFINITION (THE DISCRETE FOURIER (WALSH) TRANSFORM)

χ̂f (a) =
∑
x∈Fn

2

(−1)f (x)+a·x, a ∈ Fn
2

where "·" is the canonical scalar product in Fn
2 defined by

x · y =
∑n

i=1 xiyi,∀x = (x1, . . . , xn) ∈ Fn
2, ∀y = (y1, . . . , yn) ∈ Fn

2.

DEFINITION (THE DISCRETE FOURIER (WALSH) TRANSFORM)

χ̂f (a) =
∑

x∈F2n

(−1)f (x)+Trn
1(ax), a ∈ F2n

where "Trn
1" is the absolute trace function on F2n .

DEFINITION (THE DISCRETE FOURIER (WALSH) TRANSFORM)

χ̂f (a, b) =
∑

x,y∈F2m

(−1)f (x,y)+Trm
1 (ax+by), a, b ∈ F2m .
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A main cryptographic criterion for (cryptographic) Boolean functions

DEFINITION (THE HAMMING DISTANCE)

f , g : F2n → F2 two Boolean functions. The Hamming distance between f and
g : dH(f , g) := #{x ∈ F2n | f (x) 6= g(x)}.

DEFINITION (NONLINEARITY)

f : F2n → F2 a Boolean function. The nonlinearity denoted by nl(f ) of f is

nl(f ) := minl∈An dH(f , l)

where An := {l : F2n → F2, l(x) := a · x + b ; a ∈ F2n , b ∈ F2 ( where "·" is an
inner product in F2n )} is the set of affine functions on F2n .

Ô The nonlinearity of a function f is the minimum number of truth table
entries that must be changed in order to convert f to an affine function.
* Any cryptographic function must be of high nonlinearity, to prevent the
system from linear attacks and correlation attacks.
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General upper bound on the nonlinearity of Boolean functions

The Nonlinearity of f is equals :

nl(f ) = 2n−1 − 1
2

max
a∈Fn

2

|χ̂f (a)|

ÔThanks to Parseval’s relation :
∑

a∈Fn
2
χ̂f

2(a) = 22n

we have : maxa∈Fn
2
(χ̂f (a))

2 ≥ 2n

Hence : for every n-variable Boolean function f , the nonlinearity is always
upper bounded by 2n−1 − 2

n
2−1

ÔIt can reach this value if and only if n is even.

Ô The functions used as combining or filtering functions should have
nonlinearity close to this maximum.
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A main definition of a bent function

General upper bound on the nonlinearity of any n-variable Boolean
function : nl(f ) ≤ 2n−1 − 2

n
2−1

DEFINITION (BENT FUNCTION [ROTHAUS, 1975])

f : F2n → F2 (n even) is said to be a bent function if nl(f ) = 2n−1 − 2
n
2−1

Bent functions have been studied for more than 40 years (initiators : [Dillon,
1974], [Rothaus, 1975]).
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Characterization of bent functions

A main characterization of "bentness" :

(f is bent ) ⇐⇒ χ̂f (ω) = ±2
n
2 , ∀ω ∈ F2n

Thanks to Parseval’s identity, one can determine the number of occurrences
of each value of the Walsh transform of a bent function.

TABLE: Walsh spectrum of bent functions f with f (0) = 0

Value of χ̂f (ω), ω ∈ F2n Number of occurrences
2

n
2 2n−1 + 2

n−2
2

−2
n
2 2n−1 − 2

n−2
2
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Characterization of bent functions in terms of derivatives

Let f be a Boolean function over F2n and a ∈ F2n . The derivative of f with
respect to a is defined as :

Daf (x) = f (x) + f (x + a); x ∈ F2n .

+ A function f is bent if and only if all the derivatives Daf , a ∈ F?2n , are
balanced (Dillon reports that this has been first observed by D.
Lieberman).
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Bent functions : applications
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Bent Boolean functions in cryptography

Two main interests :

1 Their derivatives Daf : x 7→ f (x) + f (x + a) are balanced, this has an
important relationship with the differential attack on block ciphers.

2 The Hamming distance between f and the set of affine Boolean
functions takes optimal value ; this has a direct relationship with the fast
correlation attack [Meier-Staffelbach 1988] on stream ciphers and the
linear attack [Matsui 1993] on block ciphers.

Two main drawbacks :

1 Bent functions are not balanced and then can hardly be used for
instance in stream ciphers.

2 A pseudo-random generator using a bent function as combiner or filter is
weak against some attacks, like the fast algebraic attack [Courtois 2003],
even if the bent function has been modified to make it balanced.
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Bent functions in coding theory

Bent functions and covering radius of Reed-Muller codes

+ The covering radius plays an important role in error correcting codes :
measures the maximum errors to be corrected in the context of
maximum-likelihood decoding.

+ The Covering radius ρ(1, n) of the Reed-Muller code RM(1, n) coincides
with the maximum nonlinearity nl(f ).

+ General upper bound on the nonlinearity : nl(f ) ≤ 2n−1 − 2
n
2−1

When n is odd, ρ(1, n) < 2n−1 − 2
n
2−1

When n is even, ρ(1, n) = 2n−1 − 2
n
2−1 and the associated n-variable

Boolean functions are the bent functions.
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Bent functions in coding theory

1 It is well-known that Kerdock codes are constructed from bent functions.
Moreover, bent functions can also be used to construct linear codes
[Ding 2014] with few weights [Tang-Li-Qi-Zhou-Helleseth 2015,
Mesnager 2015]. Such codes have applications in secret sharing,
authentication codes, regular graphs.

2 Bent functions can be used to construct codebooks derived from codes
[Xiang-Ding-Mesnager 2015]. Codebooks achieving some bounds are
used in direct spread CDMA systems, quantum information processing,
packing and coding theory.

3 Bent functions play a role even in very practical issues through the
so-called robust error detecting codes.
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Bent Boolean functions in combinatorics

Bent functions are combinatorial objects :

DEFINITION

Let G be a finite (abelian) group of order µ. A subset D of G of cardinality
k is called (µ, k, λ)-difference set in G if every element g ∈ G, different
from the identity, can be written as d1 − d2, d1, d2 ∈ D, in exactly λ
different ways.

Hadamard difference set in elementary abelian 2-group :
(µ, k, λ) = (2n, 2n−1 ± 2

n
2−1, 2n−2 ± 2

n
2−1).

THEOREM

A Boolean function f over Fn
2 is bent if and only if

supp(f ) := {x ∈ Fn
2 | f (x) = 1} is a Hadamard difference set in Fn

2.
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Bent Boolean functions in combinatorics

We can define the square 2n × 2n matrix whose term at row indexed by x ∈ Fn
2

and column indexed by y ∈ Fn
2 equals (−1)f (x+y) ; then, f is bent if and only if

this matrix is a Hadamard matrix (i.e. has mutually orthogonal rows). So bent
functions play a role in designs (any difference set can be used to construct a
symmetric design), sequences for communications, etc.
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Bent functions : properties, classification, enumeration
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On Boolean bent functions

Main properties of bent functions :

if f is bent then wt(f ) = 2n−1 ± 2
n
2−1.

If f is bent then χ̂f (ω) = 2
n
2 (−1)f̃ (ω), for all ω ∈ Fn

2, defines the dual
function f̃ of f .
-It has been also shown by [Carlet 1999] that, denoting by F(f ) the
character sum

∑
x∈Fn

2
(−1)f (x), and by `a the linear form `a(x) = a · x, we

have : F(Da f̃ + `b) = F(Dbf + `a).
-It is shown by [Hou 2000] that the algebraic degrees of any n-variable
bent function and of its dual satisfy :

m− deg f ≥ m− deg f̃

deg f̃ − 1
.

If f is bent then deg f ≤ n
2
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On Boolean bent Boolean functions

Recall that the algebraic degree of any bent function on F2n : deg(f ) ≤ n
2 .

Therefore, for any bent Boolean function f defined over F2n :

Polynomial form :

∀x ∈ F2n , f (x) =
∑
j∈Γn

Tro(j)
1 (ajxj) , aj ∈ F2o(j)

– Γn is the set obtained by choosing one element in each cyclotomic
class of 2 modulo 2n − 1,

– o(j) is the size of the cyclotomic coset containing j,
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Bent functions

Equivalence :

DEFINITION

Two Boolean functions f and f ′ defined on F2n are called extended affine
equivalent (EA-equivalent) if f ′ = f ◦ φ+ ` where the mapping φ is an affine
automorphism on F2n and ` is an affine Boolean function .

+ The bentness is an affine invariant.

+ All bent quadratic functions are EA-equivalent.

+ There exist other equivalence notions coming from design theory [Dillon
1974, Kantor 1975, Dillon-Schatz 1987].

+ There exists a related open question [Tokareva 2011] : are all Boolean
functions of algebraic degrees at most m the sums of two bent
functions ?
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Bent functions

Classification and enumeration :
There does not exist for n ≥ 10 a classification of bent functions under the
action of the general affine group.

+ The classification of bent functions for n ≥ 10 and even counting them
are still wide open problems.

The number of bent functions is known for n ≤ 8 (the number of
8-variable bent functions has been found recently
[Langevin-Leander-Rabizzoni-Veron-Zanotti 2008]).

n 2 4 6 8
# of bent functions 8 = 23 896 = 29.8 5, 425, 430, 528

≈ 232.3 2106.3

Only bounds on their number are known (cf. [Carlet-Klapper 2002]).

The problem of determining an efficient lower bound on the number of
n-variable bent functions is open.
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Bent functions : constructions
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Constructions of bent functions

Some of the known constructions of bent functions are direct, that is, do not
use as building blocks previously constructed bent functions. We will call
primary constructions these direct constructions. The others, sometimes
leading to recursive constructions, will be called secondary constructions.

29 / 68



General Primary constructions of bent functions

Maiorana-Mc Farland’s classM : the best known construction of bent
functions defined in bivariate form (explicit construction).
fπ,g(x, y) = x · π(y) + g(y), with π : Fm

2 → Fm
2 a permutation and

g : Fm
2 → F2 any mapping.

Dillon’s Partial Spreads class PS− : well known construction of bent
functions whose bentness is achieved under a condition based on a
decomposition of its supports (not explicit construction) :
supp(f ) =

⋃2m−1

i=1 E?i where {Ei, 1 ≤ i ≤ 2m−1} are m-dimensional
subspaces with Ei ∩ Ej = {0}.
Dillon’s Partial Spreads class PSap : a subclass of PS−’s class.
Functions in PSap are defined explicitly in bivariate form :
f (x, y) = g(xy2m−2) with g a balanced Boolean function on F2m which
vanishes at 0.

Dillon’s class H : a nice original construction of bent functions in
bivariate representation. The bentness is achieved under some
non-obvious conditions. It was extended by [Carlet-Mesnager 2011] :
class H.
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Partial spreads and spreads

Partial spreads and spreads play an important role in some constructions of
bent functions.

DEFINITION (PARTIAL SPREAD)

For a group G of order M2, a partial spread is a family S = {H1,H2, · · · ,HN} of
subgroups of order M which satisfy Hi ∩ Hj = {0} for all i 6= j.

DEFINITION (SPREAD)

With the previous notation, if N = M + 1 (which implies ∪M+1
i=1 Hi = G) then S is

called a spread.

We will call the subgroups of a spread also spread elements.
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Spread of F2n

DEFINITION ( n
2 -SPREAD)

Let n = 2m be an even integer. An m-spread of F2n is a set of pairwise
supplementary m-dimensional subspaces of F2n whose union equals F2n

Hence a collection {E1, · · · ,Es} of F2n is an m-spread of F2n (n = 2m) if

1 Ei ∩ Ej = {0} for i 6= j ;

2
⋃s

i=1 Ei = F2n ;

3 dimF2 Ei = m, ∀i ∈ {1, · · · , s}.
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The Desarguesian spread

EXAMPLE (THE DESARGUESIAN m-SPREAD (IN CHARACTERISTIC 2))

in F2n : {uF2m , u ∈ U} where U := {u ∈ F2n | u2m+1 = 1}

in F2n ≈ F2m × F2m : {Ea, a ∈ F2m} ∪ {E∞} where Ea := {(x, ax) ; x ∈ F2m}
and E∞ := {(0, y) ; y ∈ F2m} = {0} × F2m .

33 / 68



Partial Spread (PS) class

Let {E1, · · · ,Es} be a partial spread of F2n and f a Boolean function over F2n .
Assume that
1Ei are the the indicators of the Ei’s and δ0 is the Dirac symbol.
We have : f is then bent if and only if

1 s = 2m−1 (in which case f is said to be in the PS− class)

2 or s = 2m−1 + 1 (in which case f is said to be in the PS+ class).

The union of PS+ and PS− forms the partial spread class PS.
Dillon introduced this important class, which represents numerous functions
[Dembowski 1968, Johnson-Jha-Biliotti 2007, Kantor 2003]).
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Partial Spread (PS) class

Dillon has also introduced bent functions obtained using, more generally,
sets of subgroups of a group. This extension to subgroups has been
pushed further in [Hou 1988, Kantor 2012].

It has also been shown that the work of Dillon can be extended to odd
characteristic [Lisonek-Lu 2014, Mesnager 2015].

Recently, finite pre-quasifield spreads from finite geometry have been
revisited by Wu [Wu 2013]. In particular, Wu has considered the
Dempwolff-Muller pre-quasifields, the Knuth pre-semifields and the
Kantor pre-semifields to obtain the expressions of the PS corresponding
bent functions.

Very recently, [Carlet 2015] has similarly studied in the PS functions
related to the André spreads and given the trace representation of the
PS corresponding bent functions and of their duals.

35 / 68



Class H of Dillon

Dillon introduces in a family of bent functions that he denotes by H,
whose bentness is achieved under some non-obvious conditions. He
defines these functions in bivariate form (but they can also be seen in
univariate form). The functions of this family are defined as
f (x, y) = Trm

1 (y + xG(yx2m−2)) ; x, y ∈ F2m ; where G is a permutation of
F2m such that G(x) + x does not vanish and, for every β ∈ F?

2m , the
function G(x) + βx is two-to-one.
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Class H

Extension of the class H of Dillon :

DEFINITION (CLASS H-CARLET-MESNAGER 2011)
We call H the class of functions f defined on F2m × F2m by

f (x, y) = Trm
1 (µy + xG(yx2m−2))

with
1 G : F2m → F2m is a permutation ;
2 ∀β ∈ F?

2m , the function z 7→ G(z) + βz is 2-to-1 on F2m .

Functions f in the class H are whose restrictions to elements of
the m-spread {Ea,E∞} are linear
The class H of Dillon is a subclass of H. Indeed, if we take (in the
definition of functions in class H) µ = 1 and G such that G(z) + z
does not vanishes then, we get functions in H.
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Class H and Niho bent functions

A first contribution thanks to the introduction of the class H :

+ Functions of class H in univariate form are the known Niho bent
functions.

PROPOSITION

A Boolean function f (x) =
∑2n−2

d=0 adxd (f (0) = 0) has linear restrictions to the
uF2m ’s if and only if all exponents d such that ad 6= 0 are congruent with
powers of 2 modulo 2m − 1.

Functions in the previous proposition have already been investigated as Niho
bent functions.
Known bent functions of type Niho :

1 one monomial (that is, if the form x 7→ Trn
1(axs) where s is a Niho

exponent).
2 three binomials (that is, if the form x 7→ Trn

1(a1xs1 + a2xs2), where s1 and s2
are two Niho exponents).

3 one multinomial (that is, of the form x 7→
∑

i Trn
1(aixsi) where si are Niho

exponents).
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Class H and o-polynomials

A second contribution thanks to the introduction of the class H :

PROPOSITION ([CARLET-MESNAGER 2012])

Let G satisfies the condition :
∀β ∈ F?2m , the function z 7→ G(z) + βz is 2-to-1 on F2m . if and only if

for every γ ∈ F2m , the function Hγ : z ∈ F2m 7→
{ G(z+γ)+G(γ)

z if z 6= 0
0 if z = 0

is a

permutation on F2m .

Note that if Hγ is a permutation on F2m then G is a permutation on F2m .

39 / 68



o-polynomials

DEFINITION

Let m be any positive integer. A permutation polynomial G over F2m is called
an o-polynomial if, for every γ ∈ F2m , the function Hγ :

z ∈ F2m 7→
{ G(z+γ)+G(γ)

z if z 6= 0
0 if z = 0

is a permutation on F2m .

The notion of o-polynomial comes from Finite Projective Geometry :

+ There is a close connection between "o-polynomials" and "hyperovals" :

DEFINITION (A HYPEROVAL OF PG2(2n))

Denote by PG2(2n) the projective plane over F2n .
A hyperoval of PG2(2n) is a set of 2n + 2 points no three collinear.

A hyperoval of PG2(2n) can then be represented by
D(f ) = {(1, t, f (t)), t ∈ F2n} ∪ {(0, 1, 0), (0, 0, 1)} or
D(f ) = {(f (t), t, 1), t ∈ F2n} ∪ {(0, 1, 0), (1, 0, 0)} where f is an o-polynomial.

+ There exists a list of only 9 classes of o-polynomials found by the
geometers in 40 years
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Class H, Niho bent functions and o-polynomial

To summarize :
Class H (bent functions in bivariate forms ; contains a class H introduced by
Dillon in 1974).

Class H Niho bent functions

o-polynomials

(1)
(2)

1 The correspondence (1), offers a new framework to study the properties
of Niho bent functions. We have used a such framework to answer many
questions left open in the literature. Further open problems are still left
open.

2 Thanks to the connection (2) and thanks to the results of the geometers
(obtained in 40 years), we can construct several potentially new families
of bent functions in H and thus new bent functions of type Niho.
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Secondary constructions of Boolean bent functions

Main secondary constructions (1/5) :
The direct sum : if f and g are bent in n and r variables
respectively, then f (x) + g(y), x ∈ Fn

2, y ∈ Fr
2, is bent as well.

Rothaus’ construction which uses three initial n-variable bent
functions h1, h2, h3 to build an n + 2-variable bent function f : let
x ∈ Fn

2 and xn+1, xn+2 ∈ F2 ; let h1(x), h2(x), h3(x) be bent functions
on Fn

2 such that h1(x) + h2(x) + h3(x) is bent as well, then the
function defined at every element (x, xn+1, xn+2) of Fn+2

2 by :

f (x, xn+1, xn+2) = h1(x)h2(x) + h1(x)h3(x) + h2(x)h3(x)
+[h1(x) + h2(x)]xn+1 + [h1(x) + h3(x)]xn+2
+xn+1xn+2

is a bent function in n + 2 variables.
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Secondary constructions of Boolean bent functions

Main secondary constructions (1/5)
The indirect sum and its generalizations : use four bent functions :
let f1, f2 be bent on Fr

2 (r even) and g1, g2 be bent on Fs
2 (s even) ;

define

h(x, y) = f1(x) + g1(y) + (f1 + f2)(x) (g1 + g2)(y), x ∈ Fr
2, y ∈ Fs

2, (1)

then h is bent and

h̃(x, y) = f̃1(x) + g̃1(y) + (̃f1 + f̃2)(x) (g̃1 + g̃2)(y), x ∈ Fr
2, y ∈ Fs

2.

+ Two generalizations of the indirect sum needing initial
conditions are given and a modified indirect sum is also
introduced
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Secondary constructions of Boolean bent functions

Main secondary constructions (1/5)
A construction without extension of the number of
variables([Carlet 2006]) :
Let f1, f2 and f3 be three Boolean functions on Fn

2. Consider the
Boolean functions s1 = f1 + f2 + f3 and s2 = f1f2 + f1f3 + f2f3 (sums
performed in F2). Then

χ̂f1 + χ̂f2 + χ̂f3 = χ̂s1 + 2 χ̂s2 (2)

(sums performed in Z), and if f1, f2 and f3 are bent then :
1. if s1 is bent and if s̃1 = f̃1 + f̃2 + f̃3, then s2 is bent, and
s̃2 = f̃1 f̃2 + f̃1 f̃3 + f̃2 f̃3 ;
2. if χ̂s2(a) is divisible by 2m for every a (e.g. if s2 is bent), then s1 is
bent.
It has been observed in [Mesnager 2014] that the converse of 1. is
also true : if f1, f2, f3 and s1 are bent, then s2 is bent if and only if
f̃1 + f̃2 + f̃3 + s̃1 = 0.
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Secondary constructions of Boolean bent functions

Main secondary constructions (1/5)
Almost bent (AB) functions are those vectorial (n, n)-functions
having maximal nonlinearity 2n−1 − 2

n−1
2 (n odd). Given such

function F, the indicator γF of the set
{(a, b) ∈ (Fn

2 \ {0})× Fn
2; ∃x ∈ Fn

2, F(x) + F(x + a) = b} is a bent
function. The known AB power functions F(x) = xd, x ∈ F2m are
given in Table 2.

Functions Exponents d Conditions

Gold 2i + 1 gcd(i,m) = 1, 1 ≤ i < m/2

Kasami-Welch 22i − 2i + 1 gcd(i,m) = 1, 2 ≤ i < m/2

Welch 2k + 3 m = 2k + 1

Niho 2k + 2
k
2 − 1, k even m = 2k + 1

2k + 2
3k+1

2 − 1, k odd

TABLE: Known AB power functions xd on F2m .
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Known Infinite classes of bent functions in univariate trace form

Primary constructions in univariate trace form (1/2)
f (x) = Trn

1

(
ax2j+1

)
, where a ∈ F2n \ {x2j+1; x ∈ F2n}, n

gcd(j,n) even
This class has been generalized to functions of the form
Trn

1(
∑m−1

i=1 aix2i+1) + cmTrm
1 (amx2m+1), ai ∈ F2.

f (x) = Trn
1

(
ax22j−2j+1

)
, where a ∈ F2n \ {x3; x ∈ F2n}, gcd(j, n) = 1

f (x) = Trn
1

(
ax(2

n/4+1)2
)
, where n ≡ 4 [mod 8], a = a′b(2

n/4+1)2
,

a′ ∈ wF2n/4 , w ∈ F4 \ F2, b ∈ F2n ;
f (x) = Trn

1

(
ax2n/3+2n/6+1

)
, where 6 | n, a = a′b2n/3+2n/6+1, a′ ∈ F2m ,

Trm
m/3(a′) = 0, b ∈ F2n ;

f (x) = Trn
1

(
a[x2i+1 + (x2i

+ x + 1)Trn
1(x2i+1)]

)
, where n ≥ 6, m does

not divide i, n
gcd(i,n) even, a ∈ F2n \ F2i ,

{a, a + 1} ∩ {x2i+1; x ∈ F2n} = ∅ ;
f (x) = Trn

1

(
a
[(

x + Trn
3

(
x2(2i+1) + x4(2i+1)

)
+Trn

1(x)Trn
3

(
x2i+1 + x22i(2i+1)

))2i+1]) (under some conditions).
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Known Infinite classes of bent functions in univariate trace form

Primary constructions in univariate trace form (2/2)
The 5 known classes of Niho bent functions ;
3 classes of bent (in fact, hyper-bent) functions via Dillon-like
exponents and others coming from their generalizations : Dillon’s
and generalized Dillon’s functions, 2 classes by Mesnager and
their generalizations ;
Bent functions have been also obtained by Dillon and McGuire as
the restrictions of functions on F2n+1 , with n + 1 odd, to a
hyperplane of this field.
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Bent functions in bivariate representation

Known infinite classes of bent functions in bivariate trace form

Functions from the Maiorana McFarland classM ;

Functions from Dillon’s PSap ;

An isolated class : f (x, y) = Trm
1 (x2i+1 + y2i+1 + xy), x, y ∈ F2n where n is

co-prime with 3 and i is co-prime with m [Carlet 2008] ;

Bent functions in a bivariate representation related to Dillon’s H class
obtained from the known o-polynomials [Carlet-Mesnager 2011] ;

Bent functions associated to AB functions [Carlet-Charpin-Zinoviev
1998] ;

Several new infinite families of bent functions and their duals [Mesnager
IEEE 2014] ;

Several new infinite families of bent functions from new permutations
and their duals [Mesnager CCDS 2015] ;

Several new infinite families of bent functions from involutions and their
duals [Mesnager CCDS 2015].

+ Other primary constructions of bent functions have been obtained as
restrictions and extensions. 48 / 68



Bent functions : subclasses, super-classes
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Hyper-bent Boolean functions

DEFINITION (HYPER-BENT BOOLEAN FUNCTION [YOUSSEF-GONG 2001])

f : F2n → F2 (n even) is said to be a hyper-bent if the function x 7→ f (xi) is
bent, for every integer i co-prime to 2n − 1.

Characterization : f is hyper-bent on F2n if and only if its extended Hadamard
transform takes only the values ±2

n
2 .

DEFINITION (THE EXTENDED DISCRETE FOURIER (WALSH) TRANSFORM)

∀ω ∈ F2n , χ̂f (ω, k) =
∑

x∈F2n

(−1)f (x)+Trn
1(ωxk),with gcd(k, 2n − 1) = 1.

Hyper-bent functions were initially proposed by Golomb and Gong
[Golomb-Gong 1999] as a component of S-boxes to ensure the security
of symmetric cryptosystems.

Hyper-bent functions have properties stronger than bent functions ; they
are rarer than bent functions.

+ Hyper-bent functions are used in S-boxes (DES).
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Hyper-bent Boolean functions

The most relevant results on hyper-bent functions are related to Dillon bent
functions from partial spreads.
Primary constructions and characterizations of hyper-bent functions in
univariate form have been made for (Dillon exponent : r(2m − 1))

1 Monomial hyper-bent functions via Dillon exponents ([Dillon 1975]) ;

2 Binomial hyper-bent functions via Dillon exponents ([Mesnager 2009])

3 Multimonomial hyper-bent functions via Dillon exponents
([Charpin-Gong 2008, Mesnager 2010, Mesnager-Flori 2012], etc.).

4 Very recently, [Tang-Qi 2014] have identified hyperbent functions by
considering a particular form of functions with Dillon exponents over F22m .
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Rotation symmetric bent functions and idempotent bent functions

Rotation symmetric (RS) Boolean functions [Pieprzyk-Qu 1999] are
those Boolean functions which are invariant under cyclic shifts of input
coordinates : f (xn−1, x0, x1, . . . , xn−2) = f (x0, x1, . . . , xn−1).

RS Boolean functions are linked to a notion of idempotent
[Filiol-Fontaine 1998-1999].

Two infinite classes of quadratic RS functions and two infinite classes of
cubic RS bent functions [Ma-Lee-Zhang 2005,Gao-Zhang-Liu-Carlet
2011,Carlet-Gao-Liu 2014] have been identified as well as their related
idempotent functions.
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Homogeneous bent functions

A bent function is called homogeneous if all the monomials of its algebraic
normal form have the same degree.

[Qu-Seberri-Pieprzyk 2000] had enumerated the 30 homogeneous bent
functions of degree 3 in 6 variables and posed the problem of classifying
the homogeneous bent functions in more variables.

In [Charnes-Rotteler-Beth 2002] showed how to use invariant theory to
construct homogeneous bent functions and proved that there exist
homogeneous cubic bent functions for n > 2

Using difference sets, [Xia et al. 2004] have proved that there exists no
homogeneous bent function of degree m in 2m variables for m > 3.

In [Meng et al. 2007], the authors have made this result precise by
obtaining a bound on the degree of homogenous bent functions and
proved that, for any non-negative integer k, there exists a positive integer
N such that, for n ≥ N, there exists no homogeneous bent function in 2n
variables having degree n− k or more, where N is the least integer
satisfying a condition involving k.
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Partially bent functions

For a given Boolean function f on Fn
2 :

N∆f × Nχ̂f ≥ 2n, (3)

where N∆f denotes the cardinality of
{

b ∈ Fn
2 | ∆f (b) :=

∑
x∈Fn

2
(−1)Df (b) 6= 0

}
and Nχ̂f denotes the cardinality of {b ∈ Fn

2 | χ̂f (b) 6= 0}.
It is known that N∆f × Nχ̂f = 2n if and only if, for every b ∈ Fn

2, the derivative
Dbf is either balanced or constant, and that this property is also equivalent to
the fact that there exist two linear subspaces E (of even dimension) and E′

of Fn
2, whose direct sum equals Fn

2, and Boolean functions g, bent on E, and h,
affine on E′, such that : ∀x ∈ E, ∀y ∈ E′, f (x + y) = g(x) + h(y). Such direct
sum of a bent function and an affine function is called a partially bent function
[Carlet 1993].
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Plateaued, near-bent and semi-bent functions

.

DEFINITION (ZHENG- ZHANG 1999)

An n-variable Boolean function is called plateaued if its Walsh-Hadamard
transform takes only one nonzero absolute value, and possibly the value 0.

Because of Parseval’s relation, this can happen only with r-plateaued
functions, for 0 ≤ r ≤ n, where n + r is even, whose Walsh-Hadamard
transform values belong to the set {0,±2

n+r
2 }.

Applications in cryptography :

Some plateaued functions have large nonlinearity, which provides
protection against fast correlation attacks [Meier-Staffelbach 1988] when
they are used as combiners or filters in stream ciphers, and contributes,
when they are the component functions of the substitution boxes in block
ciphers, to protection against linear cryptanalysis [Matsui 1994].

They can also possess other desirable cryptographic characteristics.
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Plateaued, near-bent and semi-bent functions

The term semi-bent function has been introduced by [Chee-Lee -Kim 1994],
but these functions had been previously called three-valued almost optimal
Boolean functions.

DEFINITION

Semi-bent functions (or 2-plateaued functions) over F2n satisfy
χ̂f (a) ∈ {0,±2

n+2
2 } for all a ∈ F2n and exist only when n is even.

DEFINITION

Near-bent functions (or 1-plateaued functions) over F2n satisfy
χ̂f (a) ∈ {0,±2

n+1
2 } for all a ∈ F2n and exist only when n is odd.

+ Survey in ["On semi-bent functions and related plateaued functions over
the Galois field F2n". S. Mesnager. Proceedings "Open Problems in
Mathematics and Computational Science", LNCS, Springer, pages
243-273, 2014.]
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Vectorial bent functions

An (n, r)-function F : Fn
2 7→ Fr

2 being given, the component functions of F
are the Boolean functions l ◦ F, where l ranges over the set of all the
nonzero linear forms over Fr

2. Equivalently, they are the functions of the
form v · F, v ∈ Fr

2 \ {0}, where "·" denotes an inner product in Fr
2.

The vector spaces Fn
2 and Fr

2 can be identified, if necessary, with the
Galois fields F2n and F2r of orders 2n and 2r respectively.

Hence, (n, r)-functions can be viewed as functions from Fn
2 to Fr

2 or as
functions from F2n to F2r . In the latter case, the component functions are
the functions Trr

1(vF(x)).
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Vectorial bent functions

Because of the linear cryptanalysis and of the fast correlation attack on
stream ciphers, the notion of nonlinearity has been generalized to
(n, r)-functions and studied by [Nyberg 1991-1993] and further studied by
[Chabaud-Vaudenay 1995].

F is bent if and only if all of its component functions are bent ;
equivalently, χ̂v·F (a) = ±2m for all a ∈ Fn

2 and all v ∈ Fr
2 \ {0}.

Hence, F is bent if and only if, for every v ∈ Fr
2 \ {0} and every

a ∈ Fn
2 \ {0}, the function v · (F(x) + F(x + a)) is balanced. An

(n, r)-function F is balanced (i.e. takes every value of Fr
2 the same

number 2n−r of times) if and only if all its components are balanced.

F is then bent if and only if, for every a ∈ Fn
2, the derivative

F(x) + F(x + a) of F is balanced.
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p-ary functions

In characteristic p (p prime), the trace function Trpn

pk from the finite field Fpn of
order pn to the subfield Fpk is defined as

Trpn

pk =

n
k−1∑
i=0

xpki
.

For k = 1 we have the absolute trace and use the notation trn(·) for Trpn

p (·).
A p-ary function is a function from Fn

p to Fp.

Fn
p ≈ Fpn , a p-ary functions can be described in the so-called univariate

form, which is a unique polynomial over Fpn of degree at most pn − 1 or in
trace form trn(F(x)) for some function F from Fpn to Fpn (non unique).

A p-ary function has a representation as a unique multinomial in
x1, · · · , xn, where the variables xi occur with exponent at most p− 1. This
is called the multivariate representation or ANF.
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Bent functions in characteristic p

The Walsh-Hadamard transform can be defined for p-ary functions
f : Fpn → Fp :

Sf (b) =
∑

x∈Fpn

ζ f (x)−trn(bx)
p ,

where ζp = e
2πi

p is the complex primitive pth root of unity and elements of Fp

are considered as integers modulo p.

DEFINITION

A p-ary function f is called bent if all its Walsh-Hadamard coefficients satisfy
|Sf (b)|2 = pn. A bent function f is called regular bent if for every b ∈ Fpn ,
p−

n
2 Sf (b) = ζ

f?(b)
p for some p-ary function f ? : Fpn → Fp.

DEFINITION

The bent function f is called weakly regular bent if there exists a complex
number u with |u| = 1 and a p-ary function f ? such that up−

n
2 Sf (b) = ζ

f?(b)
p for

all b ∈ Fpn . Weakly regular bent functions allow constructing strongly regular
graphs and association schemes.
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Bent functions in characteristic p

Walsh-Hadamard transform coefficients of a p-ary bent function f with odd p
satisfy

p−
n
2 Sf (b) =

{
±ζ f?(b)

p , if n is even or n is odd and p ≡ 1 (mod 4),

±iζ f?(b)
p , if n is odd and p ≡ 3 (mod 4),

(4)

where i is a complex primitive 4-th root of unity. Therefore, regular bent
functions can only be found for even n and for odd n with p ≡ 1 (mod 4).
Moreover, for a weakly regular bent function, the constant u (defined above)
can only be equal to ±1 or ±i.
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Constructions of bent functions in arbitrary characteristic

Let p be a prime integer. A mapping F from Fpn to itself is called planar if for
any nonzero b ∈ Fpn , the mapping F(x + b)− F(x) is bijective on Fpn .

+ Every planar function gives a family of p-ary bent functions.

We know only one example of a nonquadratic planar function known as
Coulter-Matthews function which is defined over F3n by F(x) = x

3k+1
2 , with

gcd(k, n) = 1 and k odd.

All the other known planar functions are quadratic and can be
represented as so-called Dembowski-Ostrom polynomials
[Coulter-Matthews 1997].

The bent functions coming from the Coulter-Matthews planar functions
and from the (quadratic) p-ary bent functions trn(aF) obtained from
Dembowski-Ostrom polynomials are weakly regular bent.
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Constructions of bent functions in arbitrary characteristic

[Helleseth-Kholosha 2006] have exhibited a p-ary family of bent functions
defined as follows : let f be the function from Fpn to Fp, n = 2m, defined
as f (x) = trn(axr(pm−1)), where p is an odd prime such that pm > 3, r is an
arbitrary positive integer such that gcd(r, pm + 1) = 1 and a ∈ Fpn \ {0},

A ternary weakly regular bent function has been isolated and studied by
several authors it is defined from F3n to F3 (where n = 2m with m odd) by
f (x) = trn(ax

3n−1
4 +3m+1). The corresponding Walsh-Hadamard transform

coefficient has been given.

[Helleseth-Kholosha 2010] discovered a class of bent binomial
functions : f (x) = trn(xp3k+p2k−pk+1 + x2) for n = 4k. Such a class is the
only infinite class of nonquadratic p-ary functions, in a univariate
representation over fields of arbitrary odd characteristic, that has been
proven to be bent.

In 2013, several new classes of binary and p-ary regular bent functions
(including binomials, trinomials, and functions with multiple trace terms)
have been given by Li, Helleseth, Tang and Kholosha.
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Constructions of bent functions in arbitrary characteristic

All bent functions in Table 3, possibly except for those of Dillon type, do not
belong to the completed Maiorana-McFarland class.

n d or F(x) a deg Comments
3k+1

2 , gcd(k, n) = 1, k odd a 6= 0 k + 1 tern, R, WR
2m r(3m − 1), gcd(r, 3m + 1) = 1 K(p)

n (a3m+1) = 0 n tren, R
2m 3n−1

4 + 3m + 1, m odd ζ
3m+1

4 n tern, WR
4k xp3k+p2k−pk+1 + x2 (p− 1)k + 2 WR

TABLE: Nonquadratic p-ary Bent Functions
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Tools for bent functions and related problems

Tools for the study of the bentness :

Tools from Galois fields

Exponentials sums (Kloosterman sums, cubic sums, partial cubic sums,
etc) ;

Special polynomials (Dickson polynomials, Linearized polynomials, etc).

Permutations mappings ;

Hyperelliptic cuves ;

etc.

Problems in this area amount to solve :

an algebraic problem (linear algebra, etc) ;

an arithmetical problem ;

a problem related to exponential sums, Gauss sums, character sums,
etc ;

a problem from finite geometry ;

a problem from algebraic geometry ;

a combinatorial problem. 65 / 68



An example of construction a family of bent functions

Example : a new construction of bent functions

THEOREM (MESNAGER-COHEN-MADORE 2015)

Let n be an integer. Let d be a positive integer such that d2 ≡ 1 (mod 2n − 1).
Let Φ1, Φ2 and Φ3 be three mappings from F2n to F2n defined by Φi(x) = λixd

for all i ∈ {1, 2, 3} , where the λi ∈ F?2n are pairwise distinct such that λd+1
i = 1

and λ0
d+1 = 1, where λ0 := λ1 + λ2 + λ3. Let g be the Boolean function

defined over F2n × F2n by

g(x, y) = Trn
1(Φ1(y)x)Trn

1(Φ2(y)x)

+ Trn
1(Φ2(y)x)Trn

1(Φ3(y)x) + Trn
1(Φ1(y)x)Trn

1(Φ3(y)x).

Then the function g is bent and its dual is given by g̃(x, y) = g(y, x).

The existence of bent functions given in the above theorem is a non-trivial
arithmetical problem.
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An example of construction a family of bent functions

The arithmetical related problem
Given an odd positive integer e, we ask upon what conditions we can find n, d
such that d2 ≡ 1 (mod 2n − 1) with N/gcd(d + 1,N) = e for N := 2n − 1.
The algebraic related problem
We now turn to the "algebraic problem” : given e a positive odd integer and n
such that e divides N := 2n − 1, we wish to find Z0, . . . ,Z3 nonzero such that
Ze

0 + Ze
1 + Ze

2 + Ze
3 = 0.

+ The latter equation defines (in 3-dimensional projective space P3
F2n ) a

smooth algebraic surface of a class known as Fermat hypersurfaces,
which have been studied from the arithmetic and geometric points of
view

+ One we can apply the Lang-Weil estimates and conclude that the
number of solutions to Ze

0 + Ze
1 + Ze

2 + Ze
3 = 0 (in projective 3-space, i.e.,

up to multiplication by a common constant) over F2n is q2 + O(q3/2) where
q := 2n and the constant implied by O(q3/2) is absolute.
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Bent functions

Some references on bent functions :

J. F. Dillon, " Elementary Hadamard difference sets". PhD dissertation.
Univ. of Maryland, 1974.

C. Carlet, " Boolean Functions for Cryptography and Error Correcting
Codes". Chapter of the monography Boolean Models and Methods in
Mathematics, Computer Science, and Engineering, Y. Crama and
P. Hammer eds, Cambridge University Press, pp. 257-397, 2010.

A. Kholosha and A. Pott, "Bent functions and related functions", Section
9.3 in the Handbook Finite fields, 2013.

C. Carlet, "Open problems on binary bent functions", LNCS, Springer,
pp. 203-241, 2014.

C. Carlet and S. Mesnager, "Four decades of research on bent
functions". Journal Designs, Codes and Cryptography (DCC), Springer
(special issue, jubilee). To appear.

S. Mesnager, Book "Bent functions : fundamentals and results",
Springer, New York. (approx. 450 pages). To appear.
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