On the diffusion property of iterated functions

Jian Liu¹, Sihem Mesnager² and Lusheng Chen³

¹Tianjin University, China ²University of Paris VIII and University of Paris XIII Department of mathematics, LAGA (Laboratory Analysis, Geometry and Application), CNRS, Telecom Paristech, France ³School of Mathematical Sciences, Nankai University, China

Fifteenth International Conference on Cryptography and Coding, IMACC 2015 Oxford, United Kingdom 16th December 2015

Outline

Background

- Boolean functions
- Vectorial Boolean functions

A perfect diffusion property

- Study of the degree of completeness
- Some characterizations

Constructions of vectorial Boolean functions with perfect diffusion property

- Rotation symmetric (n, n)-functions with perfect diffusion property
- Almost balanced (*n*, *n*)-functions which have perfect diffusion property

- $$\begin{split} f: \mathbb{F}_2^n \to \mathbb{F}_2 \text{ an } n\text{-variable Boolean function.} \\ \mathcal{B}_n := \{\mathbb{F}_2^n \to \mathbb{F}_2\}. \end{split}$$
 - For $f \in \mathcal{B}_n$, the support of f is the set $\{x \in \mathbb{F}_2^n \mid f(x) = 1\}$ and the Hamming weight of f is wt $(f) = |\{x \in \mathbb{F}_2^n \mid f(x) = 1\}|$.
 - The (0, 1)-sequence defined by $(f(\mathbf{v}_0), f(\mathbf{v}_1), \dots, f(\mathbf{v}_{2^n-1}))$ is called the *truth table* of *f*, where $\mathbf{v}_0 = (0, \dots, 0, 0), \mathbf{v}_1 = (0, \dots, 0, 1), \dots, \mathbf{v}_{2^n-1} = (1, \dots, 1, 1)$ are ordered by lexicographical order.

DEFINITION (ALGEBRAIC NORMAL FORM (A.N.F))

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$ be a Boolean function. Then f can be expressed as :

$$f(x_1,\ldots,x_n) = \bigoplus_{I \subset \{1,\ldots,n\}} a_I\left(\prod_{i \in I} x_i\right) = \bigoplus_{u \in \mathbb{F}_2^n} a_u x^u, a_I \in \mathbb{F}_2$$

n

where
$$I = \operatorname{supp}(u) = \{i = 1, \dots, n \mid u_i = 1\}$$
 and $x^u = \prod x_i^{u_i}$

The A.N.F exists and is unique.

DEFINITION (THE ALGEBRAIC DEGREE)

The algebraic degree deg(f) is the degree of the A.N.F.

Affine functions $f (\deg(f) \le 1)$:

$$f(x) = a_0 \oplus a_1 x_1 \oplus a_2 x_2 \oplus \cdots \oplus a_n x_n, \ a_i \in \mathbb{F}_2$$

Notation and preliminaries

- The algebraic degree of an *n*-variable Boolean function *f* is affine invariant, i.e., for every affine permutation *L*, we have deg(*f L*) = deg(*f*).
- For *i* = 1,...,*n*, denote by *e_i* the vector in 𝔽ⁿ₂ whose *i*-th component equals 1, and 0 elsewhere. The *degree of completeness* of an *n*-variable Boolean function *f* is defined as :

$$D_c(f) = 1 - \frac{|\{i \mid a_i = 0, 1 \le i \le n\}|}{n},$$
(1)

where $a_i = |\{x \in \mathbb{F}_2^n | f(x) \oplus f(x \oplus e_i) = 1\}|, i = 1, \dots, n$. Equivalently, let

 $\mathcal{V}(f) = \{i \mid \exists x \in \mathbb{F}_2^n \text{ such that } f(x) \oplus f(x \oplus e_i) = 1, 1 \leq i \leq n\}, (2)$

be the set of indices of the variables appearing in the ANF of f, then

$$\mathsf{D}_c(f) = |\mathcal{V}(f)|/n.$$

The degree of completeness

Vectorial Boolean functions or (n, m)-functions : functions from \mathbb{F}_2^n to \mathbb{F}_2^m . *F* is given by $F = (f_1, \ldots, f_m)$, where the Boolean functions f_1, \ldots, f_m are called the *coordinate functions* of *F*.

- An (n, m)-function is called *balanced* if for any $b \in \mathbb{F}_2^m$, $|F^{-1}(b)| = 2^{n-m}$.
- The *derivative* of *F* at direction *a* is defined as

 $\triangle_a F(x) = F(x) \oplus F(x \oplus a), \ a \in \mathbb{F}_2^n \setminus \{\mathbf{0}\}.$

• The algebraic degree of F, denoted by Deg(F), is defined as

$$\operatorname{Deg}(F) = \max_{1 \leq i \leq m} \operatorname{deg}(f_i).$$

• The degree of completeness of F is defined as

$$\mathbf{D}_c(F) = \frac{1}{m}(\mathbf{D}_c(f_1) + \dots + \mathbf{D}_c(f_m)).$$

We have

$$\mathbf{D}_{c}(F) = (|\mathcal{V}(f_{1})| + \dots + |\mathcal{V}(f_{m})|) / nm.$$

6/28

The degree of completeness

In this talk, we mainly discuss the measure D_c suggested by the NESSIE project [Prennel-Bosselaers-Rijmen 1999].

DEFINITION

For an (n, m)-function $F = (f_1, \ldots, f_m)$, the degree of completeness is defined as

$$D_{c}(F) = 1 - \frac{|\{(i,j) \mid a_{ij} = 0, 1 \le i \le n, 1 \le j \le m\}|}{mn}$$

where $a_{ij} = |\{x \in \mathbb{F}_2^n | f_j(x) \oplus f_j(x \oplus e_i) = 1\}|, i = 1, ..., n, j = 1, ..., m.$

For an (n, m)-function F, it is obvious that $0 \leq D_c(F) \leq 1$, and F is called *complete* if $D_c(F) = 1$, which provides the highest possible level of diffusion.

Note that $D_c(F)$ defined above takes the mean value of all the $D_c(f_i)$'s with i = 1, ..., m, while the following two meaningful measures are also intuitive,

$$\mathbf{D}_{c}^{max}(F) = \max_{1 \leq i \leq m} \{\mathbf{D}_{c}(f_{i})\}, \ \mathbf{D}_{c}^{min}(F) = \min_{1 \leq i \leq m} \{\mathbf{D}_{c}(f_{i})\}.$$

7/28

Clearly, $D_c^{min}(F) = 1$ if and only if $D_c(F) = 1$. Hence, D_c^{min} is the strongest measure of completeness for vectorial Boolean functions.

For an *n*-variable Boolean function f, since for any $b \in \mathbb{F}_2^n$,

 $a_i = |\{x \in \mathbb{F}_2^n \mid f(x) \oplus f(x \oplus e_i) = 1\}| = |\{x \in \mathbb{F}_2^n \mid f(x \oplus b) \oplus f(x \oplus b \oplus e_i) = 1\}|,$

where i = 1, ..., n, then, we have $D_c(f(x)) = D_c(f(x \oplus b))$. In general, the degree of completeness is not invariant under composition on the right by linear permutations. For example, let $f(x_1, ..., x_n) = x_1 \oplus \cdots \oplus x_n \in \mathcal{B}_n$, and $L(x_1, ..., x_n) = (x_1 \oplus \cdots \oplus x_n, x_2, ..., x_n)$ which is a linear permutation on \mathbb{F}_2^n , then $f \circ L(x_1, ..., x_n) = x_1$, and thus $D_c(f) = 1 > D_c(f \circ L) = 1/n$. For a positive integer *r*, let $F^{(r)} = \overbrace{F \circ \cdots \circ F}^{r}$ denote the *r*-th iterated function of *F*.

DEFINITION

An (n,m)-function F is called non-degenerate if for every linear permutation L on \mathbb{F}_2^n , $D_c(F \circ L) = 1$. Moreover, F is said to have perfect diffusion property if m = n and for any positive integer k, $F^{(k)}$ is non-degenerate.

THEOREM

For an (n, m)-function $F = (f_1, \ldots, f_m)$, if for all $i = 1, \ldots, m$, deg $(f_i) = n$, then F is non-degenerate.

Remark

Let $\{\alpha_1, \ldots, \alpha_n\}$ be a basis of \mathbb{F}_{2^n} over \mathbb{F}_2 , Hence, a Boolean function f is non-degenerate if for any $i = 1, \ldots, n$ and any additive automorphism L of \mathbb{F}_{2^n} , $\Delta_{\alpha_i} f \circ L(x)$ is not a zero function.

REMARK (1/2)

The trace function from \mathbb{F}_{2^n} to \mathbb{F}_2 is defined as

$$\operatorname{Tr}_{1}^{n}(x) = x + x^{2} + x^{2^{2}} + \dots + x^{2^{n-1}},$$

where $x \in \mathbb{F}_{2^n}$. Given a basis $\{\alpha_1, \ldots, \alpha_n\}$ of \mathbb{F}_{2^n} over \mathbb{F}_2 , a function F from \mathbb{F}_{2^n} to itself can be written as $F(x) = f_1(x)\alpha_1 + \cdots + f_n(x)\alpha_n$, where $f_i(x) = \operatorname{Tr}_1^n(\beta_i F(x)), i = 1, \ldots, n$, are the *n*-variable coordinate Boolean functions of F, and $\{\beta_1, \ldots, \beta_n\}$ is the dual basis of $\{\alpha_1, \ldots, \alpha_n\}$ satisfying

$$\operatorname{Tr}_{1}^{n}(\alpha_{i}\beta_{j}) = \begin{cases} 0 & \text{for } i \neq j, \\ 1 & \text{for } i = j. \end{cases}$$

An (n, n)-function F has perfect diffusion property if and only if for every k, every coordinate function of $F^{(k)}$ is non-degenerate, which is equivalent to saying that, for any $j \in \{1, ..., n\}$, $f_j^{(k)}(x) = \operatorname{Tr}_1^n(\beta_j F^{(k)}(x))$ is non-degenerate.

REMARK (2/2)

We have that $f_j^{(k)}(x)$ is non-degenerate if and only if for any $i \in \{1, ..., n\}$ and any additive automorphism L of \mathbb{F}_{2^n} ,

$$\begin{aligned} \Delta_{\alpha_i} f_j^{(k)} \circ L(x) &= f_j^{(k)} \circ L(x) + f_j^{(k)} \circ L(x + \alpha_i) \\ &= \operatorname{Tr}_1^n \left(\beta_j F^{(k)} \circ L(x) \right) + \operatorname{Tr}_1^n \left(\beta_j F^{(k)} \circ L(x + \alpha_i) \right) \\ &= \operatorname{Tr}_1^n \left(\beta_j \triangle_{\alpha_i} F^{(k)} \circ L(x) \right) \end{aligned}$$

is not a zero function. The (n, n)-function F have perfect diffusion property if for any positive integer k, any $i, j \in \{1, ..., n\}$, and any additive automorphism L of \mathbb{F}_{2^n} , $\operatorname{Tr}_1^n(\beta_j \triangle_{\alpha_i} F^{(k)} \circ L(x))$ is not a zero function. **Our aim :** construct classes of (n, n)-functions having perfect diffusion property.

- We provide two classes of (n, n)-functions which have perfect diffusion property. We shall enumerate the constructed functions are obtained.
- First class : rotation symmetric (n, n)-functions which have perfect diffusion property;
- Second class : almost balanced (n, n)-functions which have perfect diffusion property.

DEFINITION

A Boolean function f is rotation symmetric (RS) if it is invariant under the cyclic shift :

 $f(x_{n-1}, x_0, x_1, \dots, x_{n-2}) = f(x_0, x_1, \dots, x_{n-1}).$

- RS structure allowed obtaining Boolean functions, with n = 9, 11, 13, improving the best known nonlinearities [Kavut-Maitra-Yücel, 2007].
- RS functions also have the interest of :
 - needing less space to be stored
 - allowing faster computation of the Walsh transform.

A first construction :

Let $(x_1, x_2, \ldots, x_n) \in \mathbb{F}_2^n$. For $1 \leq k \leq n-1$, define

$$\rho_n^k(x_1,x_2,\ldots,x_n)=(x_{k+1},\ldots,x_n,x_1,\ldots,x_k),$$

and $\rho_n^0(x_1, x_2, ..., x_n) = (x_1, x_2, ..., x_n)$. We extend the notion of concept of rotation symmetric Boolean functions to (n, n)-functions :

DEFINITION

Let f be an n-variable Boolean function. An (n, n)-function F is called rotation symmetric (in brief, RS) if it has the form

$$F(x) = (f(x), f \circ \rho_n^1(x), f \circ \rho_n^2(x), \dots, f \circ \rho_n^{n-1}(x)).$$
(3)

Let
$$f \in \mathcal{B}_n$$
 and $F = (f, f \circ \rho_n^1, \dots, f \circ \rho_n^{n-1})$. For any $x \in \mathbb{F}_2^n$ and any integer $l \ge 1$,
 $F \circ \rho_n^l(x) = (f \circ \rho_n^l(x), f \circ \rho_n^{l+1}(x), \dots, f \circ \rho_n^{l-1}(x))$
 $= \rho_n^l(f(x), f \circ \rho_n^1(x), \dots, f \circ \rho_n^{n-1}(x)) = \rho_n^l \circ F(x).$ (4)

An (n, n)-function F satisfying Eq.(4) is called *shift-invariant* [Daemen 1995]. An n-variable RS Boolean function f is defined as $: f \circ \rho_n^1(x) = f(x)$ for any $x \in \mathbb{F}_2^n$ [Pieprzyk-Qu 1999].

PROPOSITION

An (n, n)-function F is RS if and only if for any $x \in \mathbb{F}_2^n$,

$$F \circ \rho_n^1(x) = \rho_n^1 \circ F(x).$$

By induction on k, we obtain :

PROPOSITION

If *F* is an RS (n, n)-function, then for any integer $k \ge 1$, $F^{(k)}$ is an RS (n, n)-function.

Note that from the previous propositions, one can see that rotation symmetric (n, n)-functions possess many desirable properties :

- the iterated functions are still rotation symmetric;
- the evaluation of the functions is efficient (since a circular shift of the input bits leads to the corresponding shift of the output bits);
- the algebraic representations are short.

Under the action of ρ_n^k , $0 \le k \le n-1$, the *orbit* generated by the vector $x = (x_1, x_2, \dots, x_n)$ is defined as

$$\mathcal{O}_n(x) = \left\{ \rho_n^k(x_1, x_2, \dots, x_n) \mid 0 \leqslant k \leqslant n - 1 \right\}.$$
(5)

- The cardinality of an orbit generated by $x = (x_1, ..., x_n)$ is a factor of *n*.
- All the orbits generate a partition of Fⁿ₂.
- The number of distinct orbits is $\Psi_n = \frac{1}{n} \sum_{k|n} \phi(k) 2^{n/k}$, where $\phi(k)$ is the Euler's *phi*-function.
- Every orbit can be represented by its lexicographically first element, called the *representative element*.

Let $\{\Lambda_1^{(n)}, \Lambda_2^{(n)}, \ldots, \Lambda_{\Psi_n}^{(n)}\}$ denote the set of all the representative elements in lexicographical order, where $\Lambda_1^{(n)} = \mathbf{0}$ and $\Lambda_{\Psi_n}^{(n)} = \mathbf{1}$, and (for short) we use the notation : $\{\Lambda_1, \Lambda_2, \ldots, \Lambda_{\Psi_n}\}$. For $f \in \mathcal{B}_n$ and $1 \leq i \leq \Psi_n$, let $f|_{\mathcal{O}_n(\Lambda_i)}$ denote the restriction of f to $\mathcal{O}_n(\Lambda_i)$, i.e., for $x \in \mathcal{O}_n(\Lambda_i), f|_{\mathcal{O}_n(\Lambda_i)}(x) = f(x)$.

THEOREM (MAIN RESULT 1)

For any n-variable Boolean function f satisfying the following conditions :

(i) For
$$i = 1, 2, ..., \Psi_n - 1$$
, wt $(f|_{\mathcal{O}_n(\Lambda_i)}) = t_i \cdot wt(\Lambda_i)/n$, where $t_i = |\mathcal{O}_n(\Lambda_i)|$;
(ii) $f(1) = 0$,

the RS (n, n)-function $F(x) = (f(x), f \circ \rho_n^1(x), \dots, f \circ \rho_n^{n-1}(x))$ has perfect diffusion property, and for every $k \ge 1$, $\text{Deg}(F^{(k)}) = n$.

Using the following result :

LEMMA (MAXIMOV 2004)

The number of orbits with t elements in \mathbb{F}_2^n of weight w is

$$\eta_{n,t,w} = \begin{cases} \frac{1}{t} \sum_{k|t,q_k|w} \mu(t/k) \cdot \binom{n/q_k}{w/q_k}, & \text{for } t, w = 1, \dots, n, \text{ where } q_k = \frac{n}{\gcd(n,k)}, \\ 1, & \text{for } t = 1, w = 0, \\ 0, & \text{otherwise}, \end{cases}$$

where $\mu(\cdot)$ is the Möbius function, i.e., for integer $t \ge 1$, $\mu(t) = 1$, if t = 1; $\mu(t) = (-1)^m$, if $t = p_1 p_2 \cdots p_m$, where p_1, \ldots, p_m are distinct primes; $\mu(t) = 0$, for all other cases.

(6)

We prove

THEOREM

The number of distinct RS(n, n)-functions constructed in the first construction is

$$\mathcal{N}_n = \prod_{w=1}^{n-1} \prod_{t=1}^n \binom{t}{\frac{t\cdot w}{n}}^{\eta_{n,t,w}},\tag{7}$$

where $\eta_{n,t,w} = \frac{1}{t} \sum_{k|t,q_k|w} \mu(t/k) \cdot {\binom{n/q_k}{w/q_k}}$, $q_k = \frac{n}{\gcd(n,k)}$, and $\mu(\cdot)$ is the Möbius function.

(ロ) (型) (主) (主) (三) (20/28)

Example (1/3) :

For \mathbb{F}_2^6 , all the orbits are listed in the table below, where *t* and *w* are respectively the number and the weight of elements in an orbit.

TABLE:	All the	orbits	of \mathbb{F}_2^6
--------	---------	--------	---------------------

	t	w		t	w
$O_6(00000)$	1	0	$O_6(010011)$	6	3
$O_6(000001)$	6	1	$O_6(010101)$	2	3
$O_6(000011)$	6	2	$\mathcal{O}_6(001111)$	6	4
$O_6(000101)$	6	2	$\mathcal{O}_6(010111)$	6	4
$O_6(001001)$	3	2	$\mathcal{O}_6(011011)$	3	4
$O_6(000111)$	6	3	$\mathcal{O}_6(011111)$	6	5
$O_6(001011)$	6	3	$\mathcal{O}_6(111111)$	1	6

Example (2/3) : The values of $\eta_{6,t,w}$ are listed in the table below, where *t* and *w* are respectively the number and the weight of elements in an orbit.

$\eta_{6,t,w}$	t	1	2	3	4	5	6
W							
0		1	0	0	0	0	0
1		0	0	0	0	0	1
2		0	0	1	0	0	2
3		0	1	0	0	0	3
4		0	0	1	0	0	2
5		0	0	0	0	0	1
6		1	0	0	0	0	0

TABLE: All the values of $\eta_{6,t,w}$

Example (3/3) : Then, from the previous theorem we have

$$\mathcal{N}_{6} = \prod_{w=1}^{5} \prod_{t=1}^{6} {t \choose \frac{t}{\frac{t \cdot w}{6}}}^{\eta_{6,t,w}} = 2.6244 \times 10^{11} \approx 2^{37.9},$$

while the number of all the (6, 6)-functions is $2^{2^{6} \cdot 6} = 2^{384}$.

Construction 2 :

DEFINITION

An (n,m)-function F is almost balanced, if for every $b \in \mathbb{F}_{2^m}$, $||F^{-1}(b)| - 2^{n-m}|$ takes a small value.

For a finite set *E* with cardinality |E| = N, the set of all the permutations on *E* forms a symmetric group S_N whose group operation is the function composition.

Note that for $n \ge 2$, there is no balanced (n, n)-function (i.e., permutation on \mathbb{F}_2^n) with perfect diffusion property. In fact, if *F* is a permutation on \mathbb{F}_2^n , then *F* cannot have perfect diffusion property. Therefore, finding almost balanced (n, n)-functions with perfect diffusion property is attractive.

THEOREM (MAIN RESULT 2)

For any σ that belongs to the symmetric group on the set $\mathbb{F}_2^n \setminus \{0, 1\}$, the almost balanced (n, n)-function

$$F(x) = \begin{cases} \mathbf{0}, & x = \mathbf{0} \text{ or } \mathbf{1}, \\ \sigma(x), & otherwise, \end{cases}$$

(8)

has perfect diffusion property, and for every $k \ge 1$, $\text{Deg}(F^{(k)}) = n$.

Moreover, we have the following enumeration result :

THEOREM

The number of distinct almost balanced (n, n)-functions constructed above is $\mathcal{P}_n = (2^n - 2)!$.

EXAMPLE

The number of almost balanced (6,6)-functions with perfect diffusion property constructed in the second construction is $\mathcal{P}_6 = (2^6 - 2)! \approx 2^{284}$.

As an application in product cryptosystems, we consider the following model. **Model**. Let *G* be an (n, n)-function, K_i , i = 0, 1, ..., be vectors in \mathbb{F}_2^n . Then, in a product cryptosystem, the *i*-th round function F_i is

$$F_{i}(x) = \begin{cases} G(x \oplus K_{0}), & \text{if } i = 1, \\ G(F_{i-1}(x) \oplus K_{i-1}), & \text{if } i \ge 2. \end{cases}$$
(9)

26/28

Suppose that $K_0 = K_1 = \cdots = K$, and we define $F(x) = G(x \oplus K)$. Then, by (9), we have for $i \ge 1$, $F_i(x) = F^{(i)}(x)$. The function F is preferable to have perfect diffusion property, which leads to $D_c(F_i) = 1$ for each $i \ge 1$. If the K_i 's are not identical, then the case is more complicated.

An application

Here we use a simple example to illustrate that by using (n, n)-functions, one can get $D_c(F_i) = 1$ for *i* odd.

EXAMPLE

In the above model, let

$$G(x) = \begin{cases} \mathbf{0}, & x = \mathbf{0} \text{ or } \mathbf{1}, \\ \sigma(x), & otherwise, \end{cases}$$

be an almost balanced function in (8), where σ is a permutation on $E = \mathbb{F}_2^n \setminus \{0, 1\}$ satisfying $\{0, 1\} \bigcup U(\sigma)$ is a \mathbb{F}_2 -subspace of \mathbb{F}_2^n , where $U(\sigma) = \{x \in E \mid \sigma(x) = x\}$ is the set of fixed points of σ . Let K_{i-1} , F_i , $i \ge 1$, be defined in (9). We can prove that if $U(\sigma) \neq \emptyset$ and for $i \ge 1$, $K_i \in U(\sigma) \setminus A_i$, where $A_1 = \emptyset$ and

$$A_i = \left\{ \bigoplus_{j=1}^k K_{i-j}, \bigoplus_{j=1}^k K_{i-j} \oplus \mathbf{1} \middle| k = 1, \dots, i-1 \right\}, \ i \ge 2.$$

then $\text{Deg}(F_i) = n$ and $D_c(F_i) = 1$ for all odd *i*.

For vectorial Boolean functions, the behavior of iteration has consequence in the diffusion property of the system.

- We have presented a study on the diffusion property of iterated vectorial Boolean functions. The measure of the diffusion property here is related to the notion of the degree of completeness.
- We have provided the first two constructions of (n, n)-functions having perfect diffusion property and optimal algebraic degree.
- We also obtained the complete enumeration results for the constructed functions.

The functions constructed represent a theoretical interest, which may have weak resistance to different cryptanalysis.