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Linear Codes and Distance

Definition Linear Code
A linear code is a k-dimensional subspace of IF5.

Represent via:
@ Generator matrix G
C = {xG € F] | x € F§}, where G € F5*"
@ Parity check matrix H
C = {c € FJ | Hc = 0}, where H € F3~<x"
e Random Code: G cg FA*" respectively H € Fp—<*"
» Random codes are hard instances for decoding.

» Crypto motivation: Scramble structured C in “random" SCT.

» Good generic hardness criterion.

Alex May (HGI Bochum) We need more distance.
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Bounded and Full Distance Decoding
Definition Distance

d = ming ercc{A(c,¢’)}, where A is the Hamming distance.

Remark: Unique decoding of ¢ + e when A(e) < %51.

Definition Bounded Distance Decoding (BD)

Given :H,x=c+ewithce C,e< %!
Find :eandthusc=x+e

Syndrome Decoding

@ Syndrome s := Hx = H(c + e) = Hc + He = He.
@ Bounded Distance is the usual case in crypto.

Definition Full Distance Decoding (FD)
Given :H,xeFj
Find :cwith A(e,x) <d
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On Running Times

Running time of any decoding algorithm is a function of (n, k, d).
Look at map Fj — Fp~* with e — He with A(e) < d.
Map is injective if () < 2.
Write (1) ~ 2H(3)", which yields

H(2) <1- X (Giloert-Varshamov bound)
For random codes this bound is sharp.
Hence, we can directly link d to n, k.
Running time becomes a function of n, k only.
Since BD/FD decoding is NP-hard we expect running time

T(n, k) = 2/t

For simplifying, we are mainly interested in T(n) = max,{T(n, k)}.
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Running Time graphically
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The Way to go
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Figure: Bounded Distance decoding (BD)
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Let’s just start.

Goal: Solve He = s for small weight e.
Assumption: Wlog we know w := A(e).

Algorithm Exhaustive Search
INPUT: H, x, w

@ For all e € F] with A(e) = w: Check whether He = s = Hx.
OUTPUT: e

Running time: T(n) = () < 20-38n,
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Allowed Transformations

Linear algebra transformation for s = He.
© Column permutation:
s = He = HPP e
for some permutation matrix P € F7*".
© Elementary row operations:
GHe = Gs =: ¢’
for some invertible matrix G € F§~*>"k,

Easy special cases:
@ Quadratic case: H € FJ*". Compute e = H™'s.
@ Any weight A(e): Compute GHe = (H' | I,_x)e = Gs.

Remark: Hardness/unicity comes from under-defined + small weight.
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Prange’s algorithm (1962)
Idea: (H' | /I,_«)(e1 ]|/ e2)=Hei+e,=¢
Algorithm Prange
INPUT: H, x, w
REPEAT
@ Permute columns, construct systematic (H' | I,_x). Fix p < w.
@ For all e € F§ with A(eq) =p
Q If (A(H'eq +8') =w — p), success.
UNTIL success
OUTPUT: Undo permutation of e = (eq||H'e1 + §').

Running time:

n—k
@ Outer loop has success prob (F’)((n“)P

@ Inner loop has running time (¥). Total: () optimal for p = 0.

P (55)’
@ Yields running time T(n) = 277", with constant memory.
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Stern’s algorithm (1989)
Meet in the Middle:

(Hi | Hz | In—k)(e1]|ez]le3) = Hieq + Hoex +e3 =8
Algorithm Stern
INPUT: H, x, w
REPEAT
@ Permute columns, construct systematic (H; | Ha | I,_«). Fix p < w.
k
@ For all e; € F2 with A(e) = 5: Store H;e; in sorted L;.

k
© For all e, € F3 with A(ez) = 5: Store Hoe, + 8’ in sorted L.
© Search for elements in Ly, L, that differ by A(e3) = w — p.
UNTIL success

OUTPUT: Undo permutation of e = (e1]||ez||Hie1 + Hoeo + §7).

@ Step 3: Look for vectors that completely match in ¢ coordinates.
1
@ T(n) = 278, but requires memory to store Ly, L,.
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Representation Technique (Howgrave-Graham, Joux)

Meet in the Middle

k
@ Splite = (eq||e2) as eq, e, € F3 with weight A(e;) = § each.
@ Combination of e4, e> is via concenation.
@ Unique representation of e in terms of e4, e».

Representation [May, Meurer, Thomae 2011]
@ Splite = ey + e, as ey, e, € F5 with weight A(e;) = 5 each.
@ Combination of ey, e is via addition in Fk.
@ e has many representations as e + eo.

Example for k = 8, p = 4:
(01101001)

Alex May (HGI Bochum)

(01100000) -+ (00001001)
(01001000) + (00100001)
(01000001) + (00101000)
(00101000) + (01000001)
(00100001) + (01001000)
(00001001) + (01100000)
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Pros and Cons of representations
Representation [MMT 2011, Asiacrypt 2011]
@ Splite = ey + e, as ey, e, € F5 with weight A(e;) = § each.
@ Disadvantages:
> List lengths of Ly, L, increases from (§/3) to (,).
» Addition of eq, e, usually yields Hamming weight smaller p.
@ Advantage:

» e has (p‘/’2) =: R representations as e; + 5.

@ Construct via Divide & Conquer only %—fraction of Ly, Lo.

@ Since many solutions exist, it is easier to construct a special one.
e Example: Look only for Hieq, Hoe, + s’ with last log(4) coord. 0.
@ Advantage (may) dominate whenever

<60

Result: Yields running time 215",
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More representations (Becker,Joux,May,Meurer 2012)

Idea:

@ Choose ey, e; € F% with weight A(e;) = & + ¢ each.

@ Choose ¢ such that e 1-positions cancel on expectation.

@ In MMT: (p’/’z) representations of 1’s as
1=14+0=0+1.

@ Now: Additionally (“~P) representations of 0's as
0=1+1=0+0.

@ Paper subtitle:

"How 1 + 1 = 0 Improves Information Set Decoding".

@ Yields T(n) = 2=0".
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How to construct special solutions

Layer 3 Disjoint base lists B;1 and Bj, fori =1,...,4 wegzght
2
weight
Layer 2 O NP2 P pe =5 +ez
> >
’ I ] I weight
Layer 1 c! )Efz c§ )5’2 p1 =5+ ¢
D
E weight
Layer O Ll n p
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A word about memory

Bounded Distance Full Distance
time space time space

Prange 0.05752 - 0.1208 -
Stern 0.05564 0.0135 0.1167 0.0318
Ball-collision 0.05559 0.0148 0.1164 0.0374
MMT 0.05364 0.0216 0.1116 0.0541
BJMM 0.04934 0.0286 0.1019 0.0769
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Could be worse.
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Stern’s algorithm (1989)
Meet in the Middle:

(Hi | Hz | In—k)(e1]|ez]le3) = Hieq + Hoex +e3 =8
Algorithm Stern
INPUT: H, x, w
REPEAT
@ Permute columns, construct systematic (H; | Ha | I,_«). Fix p < w.
k
@ For all e; € F2 with A(e) = 5: Store H;e; in sorted L;.

k
© For all e, € F3 with A(ez) = 5: Store Hoe, + 8’ in sorted L.
© Search for elements in Ly, L, that differ by A(e3) = w — p.
UNTIL success

OUTPUT: Undo permutation of e = (e1]||ez||Hie1 + Hoeo + §7).

@ Step 3: Look for vectors that completely match in ¢ coordinates.
@ T(n) = 21%, but requires memory to store Ly, L.

Alex May (HGI Bochum) Sometimes | have these flashbacks. 16/24




Nearest Neighbor Problem

Definition Nearest Neighbor Problem

Given : Ly, Ly Cg F) with |L;| = 22"
Find  :all (u,v) € Ly x Ly with A(u,v) =~n.

Easy cases:
1
(] )

» Test every combination in Ly x Ls.
» Run time 22An(1+0(1))

Q@+1=0

» Sort lists and find matching pairs.
» Run time 2*7(1+o(1)),

Theorem May, Ozerov 2015

Nearest Neighbor can be solved in o= An(140(1)).
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Main Idea of Nearest Neighbor

Observation: Nearest Neighbors are also locally near.

uclL, )
vel, |Li|le| « size: 227

create exponentiallv manv sublists
by choosing random partitions P
g , N -,

e u

T VAR VA ] A I

For at least one sublist pair we have (u,\i) e L) x L, w.o.p.
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Nearest Neighbor algorithm

Algorithm Nearest Neighbor
INPUT: Ly, L, Cr F}
REPEAT sufficiently often:

@ Randomly compute a partition P of [n].
@ Foreachsetpe P

@ Compute weight in a random half of the p-coordinates of Ly, L.
@ Keep only those vectors with a certain weight (depending on ~).

© Search the remaining filtered lists naively.
OUTPUT: all (u,v) € Ly x Ly with A(u,v) =~n

@ Filters out until Lq, L, reach polynomial size.

@ Algorithm has quite large polynomial overheads.

@ Yields T(n) < 221" for Bounded Distance Decoding.
Alex May (HGI Bochum)
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Improvements graphically

Complexity exponent

Stern (FDD)
Theorem 2 (FDD)

BJMM (FDD)

Theorem 3 (FDD)

Stern (HDD)

Theorem 3 (HDD)

Alex May (HGI Bochum)
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Asymptotical or Real?

Yann Hamdaoui and Nicolas Sendrier,
“A Non Asymptotic Analysis of Information Set Decoding", 2013

(n,k,d) | Stern | MMT | BJMM
(1024, 524, 50) || 55.60 | 54.75 | 52.90
(2048, 1696, 32) || 81.60 | 79.50 | 76.82
(4096, 3844, 21) || 81.23 | 78.88 | 78.46
Conclusion
MMT, BJMM relevant for cryptographic keysizes! Breakpoint for MO? }

But: The improvements asymptotically vanish for McEliece.

Alex May (HGI Bochum) Asymptotics become reality. 21/24



On the Shape of Cryptanalysis

Usefulness of Cryptanalysis:

@ Provable security never solves problems, but transfers them.

@ Eventually one has to use Cryptanalysis for finding keys!
@ Cryptanalysis is useful, and will be in the future.
@ Only 5-10% of papers is Cryptanalysis.

How to do Cryptanalysis:
@ Do real experiments on small to medium scale!
@ Extrapolate to large scale by asymptotical analysis.
@ Asymptotical improvements are relevant improvements.
@ Changing the constant in the exponent is significant!

Alex May (HGI Bochum) Do not let Cryptanalysis die out.
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On the Shape of Cryptanalysis

What you should avoid in Cryptanalysis:
@ Pseudo-concrete estimates using strange counting of steps.

@ Your algorithm requires only 27999 operations for 80-bit security.
@ As areviewer:

» “After 30 pages of proofs, | need convincing experiments”.
» “You did better, but do not cite my work. Reject."

@ Do not outsource cryptanalysis to other fields.

Why you should work in Cryptanalysis:
@ You really solve problems, and not relate them to others.
@ You can implement your algorithm, let it run and output solutions.
@ ltis fun to destroy things!

If you absolutely hate Cryptanalysis, still encourage it.
@ If you invent a scheme, instantiate it with parameters.

Alex May (HGI Bochum) Do not let Cryptanalysis die out. 23/24



Conclusions

@ Improvement for BD

217" — 27" 5 278" — 20" — 227",
@ Extensions to codes over F possible, but less effective.
@ More applications of representations, nearest neighbors.
@ Still some lack of good implementations and extrapolations.
@ Even worse for other cryptographic settings: LPN, LWE, etc.
@ Cryptanalysis: Real implementations + extrapolation.

Alex May (HGI Bochum) Thanks a lot. 24 /24



