On the Doubly Sparse Compressed Sensing Problem Grigory Kabatiansky Institute for Information Transmission Problems (IITP), Moscow, Russia; Cedric Tavernier, Assystem AEOS, France; Serge Vladuts, IITP and Aix-Marseille Universite, Marseille, France

IMACC-2015

On the Doubly Sparse Compressed Sensing Problem Grigory K

The Compressed Sensing (CS) subject was born in two papers: Donoho," Compressed sensing", and Candes & Tao, "Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? ", both published in IEEE-IT, 2006.

The CS problem is to reconstruct an *n*-dimensional vector $x \in \mathbb{R}^n$, which is *t*-sparse, i.e. $||x||_0 = wt_H(x) = |\{i : x_i \neq 0\}| \leq t$, by a few linear measurements $s_i = (h_i, x)$ even if measurements (h_i, x) are known with some errors e_i .

Let us form the $r \times n$ matrix H, whose rows are h_1, \ldots, h_r . Then the goal of CS is to find a *t*-sparse solution x of the following equation

$$s = Hx^T + e, \tag{1}$$

if Euclidean length of vector *e*, which we call the syndrome error vector, is small enough.

Finding solution of Eq. (1) with minimal l_0 is NP-hard. Theory of CS employes the following popular "trick" (used, for instance, in Lasso method) replacing this hard problem on finding solution with minimal l_1 norm. Namely, to find $\arg \min \sum |x_i|$ such that $||s - Hx^T|| \le \varepsilon$. This problem is LP problem! Moreover it was proved that if matrix H is *RIP-matrix* (next slide) then the solution x^* of LP problem is a good *approximation* to the solution x_0 of the original problem and the corresponding number of measurements r has the minimal possible *order* of number of measurements, namely.

$$r_{min} = O(t \log \frac{n}{t}) \tag{2}$$

Restricted δ -Isometry Property(RIP) matrix H if

$$(1 - \delta_D)||x||_2 \le ||Hx^T||_2 \le (1 + \delta_D)||x||_2, \tag{3}$$

for any vector $x \in \mathbb{R}^n$: $||x||_0 \le D$, where $0 < \delta_D < 1$.

Typical result looks like this

"for $\delta_{3t} + 3\delta_{4t} < 2$ the solution x^* of linear programming problem is unique and equal to x if e = 0"

and, additionally " $||x^* - x||_2 \le C\varepsilon$ for any perturbation e with $||e||_2 \le \varepsilon$ ".

We can rewrite it as $\delta_{4t} < 1/2$ or that for any z s.t. $||z||_0 \leq 4t$

$$\frac{1}{2}||z||_2 \le ||Hz^{\mathsf{T}}||_2 \le \frac{3}{2}||z||_2$$

It was proved that such RIP-matrices exist if r = O(tlog(n/t))

Let us consider $r \times n$ matrix H of Eq. 1 as a parity-check matrix of a linear (n, n - r)-code C_H , where

$$C_H = \{ x \in K^n : Hx^T = 0 \}$$

$$\tag{4}$$

Then Eq. (1) is known as the syndrome equation and the only difference from Coding Theory is that we know the syndrome vector $s = (s_1, \ldots, s_r)$ not exactly! Indeed, if e = 0 then we have ordinary coding theory problem, and it can be solved for \mathbb{R} or \mathbb{C} , for instance, by Reed-Solomon codes and one gets exact solution with minimal possible r = 2t and polynomial algorithm of x recovery. But if $e \neq 0$ we have a new problem of coding theory:-) The CS problem is usually investigated under assumption that syndrome error vector $e = (e_1, \ldots, e_r)$ has relatively small Euclidean norm (length) $||e||_2$. Discrete case motivates us to consider another assumption, namely, that the vector e is also sparse, say $||e||_0 \leq L$. Let us call these assumptions: $||x||_0 \leq t$ and $||e||_0 \leq L$, as **double sparse**. It means that Euclidean norm of e can be arbitrary large and we will be able to find not an approximation but exact solution of Eq.(1)! Our main result is that for double sparse CS problem

$$r_{min} = 2(t+L) \tag{5}$$

and we construct **optimal** measurement matrices which allow to recover *x* **exactly** and with polynomial complexity.

Definition

An $r \times n$ matrix H over field K called a (t, L)-double sparse compressed sensing (DSCS) matrix if

$$||Hx^{T} - Hy^{T}||_{0} \ge 2L + 1$$
 (6)

for any two distinct vectors $x, y \in K^n$ such that $||x||_0 \le t$ and $||y||_0 \le t$.

This definition immediately leads to the following **Proposition** A matrix H is a (t, L)-DSCS matrix iff

$$||Hz^{T}||_{0} \ge 2L + 1$$
 (7)

for any nonzero vector $z \in K^n$ such that $||z||_0 \le 2t$.

Consider the following measurement (or, *parity-check*) matrix $H = (h_{ij})$, where $h_{ij} = \alpha_j^{i-1}$ and $\alpha_1, \ldots, \alpha_n$ are distinct elements of the field K. Note that the field K can be finite and can be infinite, for instance, \mathbb{R} or \mathbb{C} . If e = 0, i.e. one knows all sums

$$s_i = \sum_{j=1}^n x_j \alpha_j^{i-1} \tag{8}$$

exactly, then x can be recovered (and efficiently by Berlekamp-Massey algorithm) if $||x||_0 \le r/2$. But what will happen if some s_i are known with errors?! In fact, it is very old question, which goes back to the time of French Revolution, see R.Prony in J. de Ecole Polytechnique 1, pp.24-76, 1795! The modern solution was given in M.T. Comer, E.L. Kaltofen, C.Pernet "Sparse Polynomial Interpolation and Berlekamp-Massey Algorithms That Correct Outlier Errors in Input Values" (2012). Namely, it was shown that it is possible to solve equation (1) by RS-code *iff* its redundancy $r \ge 2t(2L+1)$. We shall show that it is too much expensive solution for double sparse CS-problem. Consider matrix

$$H = G_B^T H_A, \tag{9}$$

where an $r' \times n$ matrix H_A is a parity-check matrix of an (n, n - r')-code A over field K, correcting t errors, and G_B is a generator matrix of an (r, r')-code B over K of length r, correcting L errors.

Saying in words, we encode columns of parity-check matrix H_A , which already capable to correct t errors, by a code, correcting L errors, in order to restore correctly syndrom of H_A .

Theorem

Matrix
$$H = G_B^T H_A$$
 is a (t, L) -DSCS matrix.

Why does it work?

Proof. According to Proposition it is enough to prove that $||Hz^{T}||_{0} \ge 2L + 1$ for any nonzero vector $z \in K^{n}$ such that $||z||_{0} \le 2t$. Note that

$$Hz^{T} = G_B^{T}(H_A z^{T}) = (uG_B)^{T}$$

belongs to code *B*, where $u^T = H_B z^T$. Then $H_B z^T \neq 0$ since any 2*t* columns of H_B are linear independent. Hence $Hz^T = (uG_B)^T$ is a nonzero code vector from code *B* and its Hamming weight $wt(Hz^T) \geq 2L + 1$, what concludes the proof.

How to decode? First we decode vector $\hat{s} = s + e$ by a decoding algorithm of the code with generator matrix G_B . Since $||e||_0 \leq L$ this algorithm outputs the correct syndrome s. Then we form a syndrome \tilde{s} by selecting first \tilde{r} coordinates of s (we assume w.l.o.g. that G is a systematic encoding matrix) and apply syndrom decoding algorithm for the corresponding syndrom equation

$$\tilde{s} = H_A x^T.$$
 (10)

Theorem

(Singleton bound)For any (t, L)-DSCS r \times n-matrix

$$r \geq 2(t+L). \tag{11}$$

Proof. Let *H* be a (t, L)-DSCS matrix of size $r \times n$, i.e., $||Hz^{T}||_{0} \ge 2L + 1$ for any nonzero vector $z \in K^{n} : ||z||_{0} \le 2t$. And let H_{2t-1} be $(2t-1) \times n$ matrix consisting of first 2t - 1 rows of *H*. There exists a nonzero vector $\hat{z} = (\hat{z}_{1}, \dots, \hat{z}_{2t}, 0, 0, \dots, 0) \in K^{n}$ such that $H_{2t-1}\hat{z}^{T} = 0$ (a system of linear homogenious equations with the number of unknown variables larger than the number of equations has a nontrivial solution). Then $||H\hat{z}^{T}||_{0} \le r - (2t - 1)$ and finally $r \ge 2t + 2L$ since $||H\hat{z}^{T}||_{0} \ge 2L + 1$. Now let us construct concatenated matrix $H = G_B^T H_A$ by taking RS-codes over \mathbb{C} (or \mathbb{R}) as both constituent codes. Note, that the usual restriction on the code length for RS-codes is void over these fields. Therefore the resulting matrix H gives the optimal solution for the doubly sparse compressed sensing problem with the number of measurements just 2(t + L). Moreover, we can take as the corresponding recovery (or decoding) algorithm Berlekamp-Massey or Guruswami-Sudan algorithms.

TO FIND SOMETHING IN BETWEEN RIP-MATRICES AND PROPOSED CONCATENATED MATRICES.

On the Doubly Sparse Compressed Sensing Problem Grigory K