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Compressed sensing -introduction

The Compressed Sensing (CS) subject was born in two papers:
Donoho,”Compressed sensing”, and Candes & Tao, ”Near-Optimal
Signal Recovery From Random Projections: Universal Encoding
Strategies? ”, both published in IEEE-IT, 2006.
The CS problem is to reconstruct an n-dimensional vector x ∈ Rn,
which is t-sparse, i.e. ||x ||0 = wtH(x) = |{i : xi 6= 0}| ≤ t, by a
few linear measurements si = (hi , x) even if measurements (hi , x)
are known with some errors ei .
Let us form the r × n matrix H, whose rows are h1, . . . , hr . Then
the goal of CS is to find a t-sparse solution x of the following
equation

s = HxT + e, (1)

if Euclidean length of vector e, which we call the syndrome error
vector, is small enough.
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l1 minimization

Finding solution of Eq. (1) with minimal l0 is NP-hard. Theory of
CS employes the following popular “trick” (used, for instance, in
Lasso method) replacing this hard problem on finding solution with
minimal l1 norm. Namely, to find arg min

∑
|xi | such that

||s − HxT || ≤ ε.
This problem is LP problem! Moreover it was proved that if matrix
H is RIP-matrix (next slide) then the solution x∗ of LP problem is
a good approximation to the solution x0 of the original problem
and the corresponding number of measurements r has the minimal
possible order of number of measurements, namely,

rmin = O(t log
n

t
) (2)
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Real Compressed Sensing

Restricted δ-Isometry Property(RIP) matrix H if

(1− δD)||x ||2 ≤ ||HxT ||2 ≤ (1 + δD)||x ||2, (3)

for any vector x ∈ Rn : ||x ||0 ≤ D, where 0 < δD < 1.
Typical result looks like this
“for δ3t + 3δ4t < 2 the solution x∗ of linear programming problem
is unique and equal to x if e = 0”
and, additionally “ ||x∗ − x ||2 ≤ Cε for any perturbation e with
||e||2 ≤ ε”.
We can rewrite it as δ4t < 1/2 or that for any z s.t. ||z ||0 ≤ 4t

1

2
||z ||2 ≤ ||HzT ||2 ≤

3

2
||z ||2

It was proved that such RIP-matrices exist if r = O(tlog(n/t))
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CS and codes

Let us consider r × n matrix H of Eq. 1 as a parity-check matrix of
a linear (n, n − r)-code CH , where

CH = {x ∈ Kn : HxT = 0} (4)

Then Eq. (1) is known as the syndrome equation and the only
difference from Coding Theory is that we know the syndrome
vector s = (s1, . . . , sr ) not exactly!
Indeed, if e = 0 then we have ordinary coding theory problem, and
it can be solved for R or C, for instance, by Reed-Solomon codes
and one gets exact solution with minimal possible r = 2t and
polynomial algorithm of x recovery. But if e 6= 0 we have a new
problem of coding theory:-)
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Double sparse compressed sensing

The CS problem is usually investigated under assumption that
syndrome error vector e = (e1, . . . , er ) has relatively small
Euclidean norm (length) ||e||2. Discrete case motivates us to
consider another assumption, namely, that the vector e is also
sparse, say ||e||0 ≤ L. Let us call these assumptions: ||x ||0 ≤ t and
||e||0 ≤ L, as double sparse. It means that Euclidean norm of e
can be arbitrary large and we will be able to find not an
approximation but exact solution of Eq.(1)!
Our main result is that for double sparse CS problem

rmin = 2(t + L) (5)

and we construct optimal measurement matrices which allow to
recover x exactly and with polynomial complexity.
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Double sparse - formal statement

Definition

An r × n matrix H over field K called a (t, L)-double sparse
compressed sensing (DSCS) matrix if

||HxT − HyT ||0 ≥ 2L + 1 (6)

for any two distinct vectors x , y ∈ Kn such that ||x ||0 ≤ t and
||y ||0 ≤ t.

This definition immediately leads to the following
Proposition A matrix H is a (t, L)-DSCS matrix iff

||HzT ||0 ≥ 2L + 1 (7)

for any nonzero vector z ∈ Kn such that ||z ||0 ≤ 2t.
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Reed-Solomon codes

Consider the following measurement (or, parity-check) matrix
H = (hij), where hij = αi−1

j and α1, . . . , αn are distinct elements
of the field K . Note that the field K can be finite and can be
infinite, for instance, R or C. If e = 0, i.e. one knows all sums

si =
n∑

j=1

xjα
i−1
j (8)

exactly, then x can be recovered ( and efficiently by
Berlekamp-Massey algorithm) if ||x ||0 ≤ r/2.
But what will happen if some si are known with errors?!
In fact, it is very old question, which goes back to the time of
French Revolution, see R.Prony in J. de Ecole Polytechnique 1,
pp.24-76, 1795!

On the Doubly Sparse Compressed Sensing Problem Grigory Kabatiansky Institute for Information Transmission Problems (IITP), Moscow, Russia; Cedric Tavernier, Assystem AEOS, France; Serge Vladuts, IITP and Aix-Marseille Universite, Marseille, France



Reed-Solomon codes for DSCS

The modern solution was given in M.T. Comer, E.L. Kaltofen,
C.Pernet ”Sparse Polynomial Interpolation and Berlekamp-Massey
Algorithms That Correct Outlier Errors in Input Values” (2012).
Namely, it was shown that it is possible to solve equation (1) by
RS-code iff its redundancy r ≥ 2t(2L + 1).
We shall show that it is too much expensive solution for double
sparse CS-problem.
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Concatenated matrices for DSCS

Consider matrix
H = GT

B HA, (9)

where an r ′ × n matrix HA is a parity-check matrix of an
(n, n − r ′)-code A over field K , correcting t errors, and GB is a
generator matrix of an (r , r ′)-code B over K of length r , correcting
L errors.
Saying in words, we encode columns of parity-check matrix HA,
which already capable to correct t errors, by a code, correcting L
errors, in order to restore correctly syndrom of HA.

Theorem

Matrix H = GT
B HA is a (t, L)-DSCS matrix.
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Why does it work?

Proof. According to Proposition it is enough to prove that
||HzT ||0 ≥ 2L + 1 for any nonzero vector z ∈ Kn such that
||z ||0 ≤ 2t. Note that

HzT = GT
B (HAzT ) = (uGB)T

belongs to code B, where uT = HBzT . Then HBzT 6= 0 since any
2t columns of HB are linear independent. Hence HzT = (uGB)T is
a nonzero code vector from code B and its Hamming weight
wt(HzT ) ≥ 2L + 1, what concludes the proof. �

How to decode? First we decode vector ŝ = s + e by a decoding
algorithm of the code with generator matrix GB . Since ||e||0 ≤ L
this algorithm outputs the correct syndrome s. Then we form a
syndrome s̃ by selecting first r̃ coordinates of s (we assume w.l.o.g.
that G is a systematic encoding matrix) and apply syndrom
decoding algorithm for the corresponding syndrom equation

s̃ = HAxT . (10)
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Optimality

Theorem

(Singleton bound)For any (t, L)-DSCS r × n-matrix

r ≥ 2(t + L). (11)

Proof. Let H be a (t, L)-DSCS matrix of size r × n, i.e.,
||HzT ||0 ≥ 2L + 1 for any nonzero vector z ∈ Kn : ||z ||0 ≤ 2t. And
let H2t−1 be (2t − 1)× n matrix consisting of first 2t − 1 rows of
H. There exists a nonzero vector ẑ = (ẑ1, . . . , ẑ2t , 0, 0, . . . , 0) ∈ Kn

such that H2t−1ẑT = 0 (a system of linear homogenious equations
with the number of unknown variables larger than the number of
equations has a nontrivial solution). Then ||HẑT ||0 ≤ r − (2t − 1)
and finally r ≥ 2t + 2L since ||HẑT ||0 ≥ 2L + 1. �
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Double sparse real compressed sensing

Now let us construct concatenated matrix H = GT
B HA by taking

RS-codes over C (or R) as both constituent codes. Note, that the
usual restriction on the code length for RS-codes is void over these
fields. Therefore the resulting matrix H gives the optimal solution
for the doubly sparse compressed sensing problem with the number
of measurements just 2(t + L). Moreover, we can take as the
corresponding recovery (or decoding) algorithm Berlekamp-Massey
or Guruswami-Sudan algorithms.
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Conclusion

TO FIND SOMETHING IN BETWEEN RIP-MATRICES AND
PROPOSED CONCATENATED MATRICES.
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