On the Doubly Sparse Compressed Sensing Problem
Grigory Kabatiansky
Institute for Information Transmission Problems (IITP),
Moscow, Russia;
Cedric Tavernier, Assystem AEQS, France;
Serge Vladuts, IITP and Aix-Marseille Universite, Marseille,
France

IMACC-2015

On the Doubly Sparse Compressed Sensing Problem Grigory K



Compressed sensing -introduction

The Compressed Sensing (CS) subject was born in two papers:
Donoho,” Compressed sensing”, and Candes & Tao, " Near-Optimal
Signal Recovery From Random Projections: Universal Encoding
Strategies? ", both published in IEEE-IT, 2006.
The CS problem is to reconstruct an n-dimensional vector x € R”,
which is t-sparse, i.e. ||x||o = wtn(x) = [{i : x; # 0}| < t, by a
few linear measurements s; = (hj, x) even if measurements (h;, x)
are known with some errors g;.
Let us form the r x n matrix H, whose rows are hy,...,h,. Then
the goal of CS is to find a t-sparse solution x of the following
equation

s=Hx" +e, (1)

if Euclidean length of vector e, which we call the syndrome error
vector, is small enough.
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[ minimization

Finding solution of Eq. (1) with minimal ly is NP-hard. Theory of
CS employes the following popular “trick” (used, for instance, in
Lasso method) replacing this hard problem on finding solution with
minimal /; norm. Namely, to find arg min >_ |x;| such that

l|s — HxT|| <e.

This problem is LP problem! Moreover it was proved that if matrix
H is RIP-matrix (next slide) then the solution x* of LP problem is
a good approximation to the solution xp of the original problem
and the corresponding number of measurements r has the minimal
possible order of number of measurements, namely,

Fmin = O(HOg%) (2)
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Real Compressed Sensing

Restricted d-Isometry Property(RIP) matrix H if
(1= dp)lIxll2 < |IHxT[l2 < (1 + 6p)|Ix]l2, (3)

for any vector x € R" : ||x||lo < D, where 0 < p < 1.

Typical result looks like this

“for 03 + 3d4: < 2 the solution x* of linear programming problem
is unique and equal to x if e =0"

and, additionally “||x* — x||2 < Ce for any perturbation e with
lell2 <&

We can rewrite it as d4; < 1/2 or that for any z s.t. ||z||o < 4t

1 3
Z <||HzT|l, < =
QHZHz_H z H2_2HZH2

It was proved that such RIP-matrices exist if r = O(tlog(n/t))
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CS and codes

Let us consider r x n matrix H of Eq. 1 as a parity-check matrix of
a linear (n, n — r)-code Cy, where

Ch={xeK":Hx" =0} (4)

Then Eq. (1) is known as the syndrome equation and the only
difference from Coding Theory is that we know the syndrome
vector s = (si,...,S,) not exactly!

Indeed, if e = 0 then we have ordinary coding theory problem, and
it can be solved for R or C, for instance, by Reed-Solomon codes
and one gets exact solution with minimal possible r = 2t and
polynomial algorithm of x recovery. But if e # 0 we have a new
problem of coding theory:-)
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Double sparse compressed sensing

The CS problem is usually investigated under assumption that
syndrome error vector e = (ey, ..., &) has relatively small
Euclidean norm (length) ||e||2. Discrete case motivates us to
consider another assumption, namely, that the vector e is also
sparse, say ||e||o < L. Let us call these assumptions: ||x||o < t and
[lello < L, as double sparse. It means that Euclidean norm of e
can be arbitrary large and we will be able to find not an
approximation but exact solution of Eq.(1)!

Our main result is that for double sparse CS problem

Fonin = 2(£ + L) (5)

and we construct optimal measurement matrices which allow to
recover x exactly and with polynomial complexity.
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Double sparse - formal statement

Definition

An r x n matrix H over field K called a (t, L)-double sparse
compressed sensing (DSCS) matrix if

IHx" — HyT|lo > 2L +1 (6)

for any two distinct vectors x,y € K" such that ||x||o < t and
lIyllo < t.

This definition immediately leads to the following
Proposition A matrix H is a (t, L)-DSCS matrix iff

I|HzT|jo > 2L +1 (7)

for any nonzero vector z € K" such that ||z||p < 2t.
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Reed-Solomon codes

Consider the following measurement (or, parity-check) matrix
H = (hj;), where hj; = aJ’-_l and aq, ..., a, are distinct elements
of the field K. Note that the field K can be finite and can be
infinite, for instance, R or C. If e =0, i.e. one knows all sums

si = ij-aj"-_l (8)
j=1

exactly, then x can be recovered ( and efficiently by
Berlekamp-Massey algorithm) if ||x||o < r/2.

But what will happen if some s; are known with errors?!

In fact, it is very old question, which goes back to the time of
French Revolution, see R.Prony in J. de Ecole Polytechnique 1,
pp.24-76, 1795!
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Reed-Solomon codes for DSCS

The modern solution was given in M.T. Comer, E.L. Kaltofen,
C.Pernet "Sparse Polynomial Interpolation and Berlekamp-Massey
Algorithms That Correct Outlier Errors in Input Values” (2012).
Namely, it was shown that it is possible to solve equation (1) by
RS-code iff its redundancy r > 2t(2L + 1).

We shall show that it is too much expensive solution for double
sparse CS-problem.
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Concatenated matrices for DSCS

Consider matrix
H = G Ha, (9)

where an r’ x n matrix Hy is a parity-check matrix of an

(n,n — r')-code A over field K, correcting t errors, and Gg is a
generator matrix of an (r, r')-code B over K of length r, correcting
L errors.

Saying in words, we encode columns of parity-check matrix Hp,
which already capable to correct t errors, by a code, correcting L
errors, in order to restore correctly syndrom of Hp.

Matrix H = GZ Ha is a (t, L)-DSCS matrix.
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Why does it work?

Proof. According to Proposition it is enough to prove that
||[HzT|lo > 2L + 1 for any nonzero vector z € K" such that
[|z|]o < 2t. Note that

Hz" = GZ (Haz™) = (uGg)T

belongs to code B, where u” = Hgz". Then HgzT # 0 since any
2t columns of Hp are linear independent. Hence Hz" = (uGg) " is
a nonzero code vector from code B and its Hamming weight

wt(HzT) > 2L + 1, what concludes the proof. O

How to decode? First we decode vector § = s + e by a decoding
algorithm of the code with generator matrix Gg. Since ||e|lo < L
this algorithm outputs the correct syndrome s. Then we form a
syndrome 3 by selecting first ¥ coordinates of s (we assume w.l.0.g.
that G is a systematic encoding matrix) and apply syndrom
decoding algorithm for the corresponding syndrom equation

= T
5= Hax'. (10)
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Optimality

(Singleton bound)For any (t, L)-DSCS r x n-matrix

r>2(t + L). (11)

Proof. Let H be a (t,L)-DSCS matrix of size r X n, i.e.,

||[HzT|lo > 2L + 1 for any nonzero vector z € K" : ||z||o < 2t. And
let Hpt—1 be (2t — 1) x n matrix consisting of first 2t — 1 rows of
H. There exists a nonzero vector 2 = (21,...,2,0,0,...,0) € K"
such that Ho;_127 =0 (a system of linear homogenious equations
with the number of unknown variables larger than the number of
equations has a nontrivial solution). Then ||[H2T||o < r — (2t — 1)
and finally r > 2t + 2L since ||H2T||o > 2L + 1. O
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Double sparse real compressed sensing

Now let us construct concatenated matrix H = GgHA by taking
RS-codes over C (or R) as both constituent codes. Note, that the
usual restriction on the code length for RS-codes is void over these
fields. Therefore the resulting matrix H gives the optimal solution
for the doubly sparse compressed sensing problem with the number
of measurements just 2(t + L). Moreover, we can take as the
corresponding recovery (or decoding) algorithm Berlekamp-Massey
or Guruswami-Sudan algorithms.
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Conclusion

TO FIND SOMETHING IN BETWEEN RIP-MATRICES AND
PROPOSED CONCATENATED MATRICES.
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