
A Verifiable Secret Shuffle of Homomorphic
Encryptions

Jens Groth1?

Department of Computer Science, UCLA
3531A Boelter Hall

Los Angeles, CA 90095-1596
USA

jg@cs.ucla.edu

Abstract. A shuffle consists of a permutation and re-encryption of a set of in-
put ciphertexts. One application of shuffles is to build mix-nets. We suggest an
honest verifier zero-knowledge argument for the correctness of a shuffle of ho-
momorphic encryptions.
Our scheme is more efficient than previous schemes both in terms of communi-
cation and computation. The honest verifier zero-knowledge argument has a size
that is independent of the actual cryptosystem being used and will typically be
smaller than the size of the shuffle itself. Moreover, our scheme is well suited for
the use of multi-exponentiation and batch-verification techniques.
Additionally, we suggest a more efficient honest verifier zero-knowledge argu-
ment for a commitment containing a permutation of a set of publicly known
messages. We also suggest an honest verifier zero-knowledge argument for the
correctness of a combined shuffle-and-decrypt operation that can be used in con-
nection with decrypting mix-nets based on ElGamal encryption.
All our honest verifier zero-knowledge arguments can be turned into honest ver-
ifier zero-knowledge proofs. We use homomorphic commitments as an essen-
tial part of our schemes. When the commitment scheme is statistically hiding
we obtain statistical honest verifier zero-knowledge arguments; when the com-
mitment scheme is statistically binding we obtain computational honest verifier
zero-knowledge proofs.

Keywords: Shuffle, honest verifier zero-knowledge argument, homomorphic en-
cryption, mix-net.

1 Introduction

SHUFFLE. A shuffle of ciphertextse1, . . . , en is a new set of ciphertextsE1, . . . , En

with the same plaintexts in permuted order. We will consider homomorphic public-key
cryptosystems in this paper. Informally1, we have for public keypk, messagesm1,m2

and randomizersr1, r2 that the encryption function satisfies

Epk(m1m2; r1 + r2) = Epk(m1; r1)Epk(m2; r2).
? Part of the work done while at BRICS, University of Aarhus and Cryptomathic.
1 See Section 2.2 for a formal definition of homomorphic encryption as well as a description of

a few more required properties.

If the cryptosystem is homomorphic we may shufflee1, . . . , en by selecting a permuta-
tion π ∈ Σn and randomizersR1, . . . , Rn and setting

E1 = eπ(1)Epk(1;R1), . . . , En = eπ(n)Epk(1;Rn).

If the cryptosystem is semantically secure, publishingE1, . . . , En reveals nothing about
the permutation. On the other hand, this also means that nobody else can verify directly
whether the shuffle is correct or incorrect. It could for instance be the case that some ci-
phertexts had been substituted for other ciphertexts. Our goal is to construct efficient
honest verifier zero-knowledge (HVZK) arguments for the correctness of a shuffle.
These arguments will make it possible to verify that a shuffle is correct (soundness)
but will not reveal the permutation or the randomizers used in the re-encryption step
(honest verifier zero-knowledge).

APPLICATIONS. Shuffling is the key building block in most mix-nets. A mix-net [8] is
a multi-party protocol run by a group of mix-servers to shuffle elements so that nobody
knows the permutation linking the input and output. To mix ciphertexts we may let the
mix-servers one after another make a shuffle with a randomly chosen permutation. If
at least one mix-server is honest and chooses a random permutation, it is impossible to
link the input and output. In this role, shuffling constitutes an important building block
in anonymization protocols and voting schemes.

In a mix-net it is problematic if a mix-server does not shuffle correctly. In a voting
scheme it would for instance be disastrous if a mix-server could substitute some input
votes for other votes of its own choosing. HVZK arguments for correctness of a shuf-
fle are therefore useful to ensure that mix-servers follow the protocol. Each mix-server
can after making a shuffle prove to the other mix-servers or any independent verifiers
that the shuffle is correct. The soundness of the HVZK argument guarantees that the
shuffle is correct. The honest verifier zero-knowledge property ensures that the HVZK
argument does not leak the permutation, the randomizers or any other information per-
taining to the shuffle.

Shuffle arguments have also found use as sub-protocols in more complex protocols
or zero-knowledge arguments [32, 26, 7].

RELATED WORK. Chaum invented mix-nets in [8]. While his mix-net was based on
shuffling, he did not suggest any method to guarantee correctness of the shuffles. Subse-
quent papers on mix-nets [6, 49, 28, 22, 31, 15, 29, 43, 30, 47] have tried in many ways to
guarantee correctness of a shuffle, most of which have been partially or fully broken [3,
39, 54, 50]. Remaining are suggestions [15, 49, 28, 53], which have various drawbacks.
Desmedt and Kurosawa [15] require that at most a small fraction of the mix-servers is
corrupt. Peng et al. [49] require that a fraction of the senders producing the input to
the mix-net is honest and restrict the class of possible permutations. Jakobsson, Juels
and Rivest [28] allow mix-servers to compromise the privacy of a few senders and/or
modify a few messages although they risk being caught. The mix-net by Wikström [53]
is less efficient than what one can build using the shuffle arguments in the present paper.
Mix-nets based on shuffling and zero-knowledge arguments of correctness of a shuffle
do not have these drawbacks.

Several papers have suggested zero-knowledge arguments for correctness of a shuf-
fle, usually shuffling ElGamal ciphertexts [16]. Sako and Kilian [51] use cut-and-choose

methods and is thus not very efficient. Abe [1](corrected by Abe and Hoshino [2]) uses
permutation networks and obtains reasonable efficiency.

Currently there are two main paradigms that yield practical HVZK arguments for
correctness of a shuffle. Furukawa and Sako [20] suggest a paradigm based on permu-
tation matrices in the common reference string model. In this type of construction, we
make a commitment to a permutation matrix, argue that we have committed to a per-
mutation matrix and argue that the ciphertexts have been shuffled according to this per-
mutation. It turns out that their protocol is not honest verifier zero-knowledge [19], but
it does hide the permutation [41]. Furukawa [18] develops the permutation matrix idea
further and obtains a practical HVZK argument for correctness of a shuffle. A couple of
other works [41, 45] also use the permutation matrix idea to obtain HVZK arguments
for correctness of a shuffle of Paillier ciphertexts [46]. Following this paradigm we
also have Furukawa et al. [19, 18] suggesting arguments for correctness of a combined
shuffle-and-decrypt operation, an operation that is used in some decrypting mix-nets.

The other paradigm for verifying correctness of shuffles is due to Neff [36] and
is based on polynomials being identical under permutation of their roots. Subsequent
versions of that work [37, 38] correct some flaws and at the same time obtain higher ef-
ficiency. Unlike the Furukawa-Sako paradigm based arguments, Neff obtains an HVZK
proof, i.e., soundness is unconditional but the zero-knowledge property is computa-
tional. Further, Neff’s proof does not require a common reference string; although it
does rely on the cryptosystem being generated such that the decision Diffie-Hellman
(DDH) assumption holds.

OUR CONTRIBUTION. We suggest a 7-move public coin HVZK argument for the cor-
rectness of a shuffle of homomorphic encryptions. We follow the Neff paradigm, basing
the shuffle on invariance of polynomials under permutation of their roots. Our HVZK
argument has a common reference string, which contains a public key for a homomor-
phic commitment scheme. If instantiated with a statistically hiding commitment we
obtain a statistical HVZKargumentfor correctness of a shuffle, where soundness holds
computationally. On the other hand, if instantiated with a statistically binding commit-
ment scheme we obtain an HVZKproof of correctness of a shuffle with unconditional
soundness but computational honest verifier zero-knowledge.

The resulting HVZK argument is the most efficient HVZK argument for correct-
ness of a shuffle that we know of both in terms of computation and communication.
The scheme is well suited for multi-exponentiation techniques as well as randomized
batch-verification giving us even higher efficiency. Unlike the permutation-matrix based
approach, it is possible to work with a short public key for the commitment scheme,
whereas key generation can be a significant cost in the permutation matrix paradigm.
The only disadvantage of our scheme is the round-complexity. We use 7 rounds and the
Furukawa-Sako paradigm can be used to obtain 3 round HVZK arguments for correct-
ness of a shuffle.

Improving on the early version of the paper [23] we enable shuffling of most known
homomorphic cryptosystems. The size of the argument is almost independent of the
cryptosystem that is being shuffled. Furthermore, the commitment scheme we use does
not have to be based on a group of the same order as the cryptosystem.

In Section 7, we give a more detailed comparison of our scheme and the other
efficient HVZK arguments for correctness of a shuffle suggested in the literature.

As a building block, we use a shuffle of known contents and a corresponding
argument of correctness of a shuffle of known contents. That is, given public mes-
sagesm1, . . . ,mn, we can form a commitment to a permutation of these messages
c ← comck(mπ(1), . . . ,mπ(n)). We present an argument of knowledge forc contain-
ing a permutation of these messages. This has independent interest, for instance [26]
uses an argument of correctness of a shuffle of known contents; it is not necessary to
use a full-blown argument of correctness of a shuffle.

We also show how to modify our scheme into an HVZK argument of correctness
of a shuffle-and-decrypt operation. This operation can be useful in decrypting mix-nets,
it can save computational effort to combine the shuffle and decryption operations in-
stead of performing each one of them by itself. Furukawa et al. [19, 18] already suggest
arguments for the correctness of a shuffle-and-decrypt operation, however, while their
arguments hide the permutation they are not HVZK. We obtain a more efficient argu-
ment that at the same time is HVZK.

2 Preliminaries

In this section, we define the three key concepts of this paper. We define homomor-
phic cryptosystems, since we will be shuffling homomorphic ciphertexts. We define
homomorphic commitments, since they constitute an important building block in our
schemes. Finally, we define honest verifier zero-knowledge (HVZK) arguments, since
this paper is about HVZK arguments for the correctness of a shuffle.

2.1 Notation

All algorithms in protocols in this paper are envisioned as interactive probabilistic poly-
nomial time uniform Turing machines. Adversaries are modeled as interactive non-
uniform polynomial time or unbounded Turing machines. The different parties and al-
gorithms get a security parameterκ as input; sometimes we omit writing this security
parameter explicitly. For an algorithmA, we writey ← A(x) for the process of select-
ing randomnessr and making the assignmenty = A(x; r).

A function ν : N → [0; 1] is negligible if for all constantsδ > 0 we have for all
sufficiently largeκ thatν(κ) < κ−δ. For two functionsf1, f2 we writef1 ≈ f2 if |f1−
f2| is negligible. We define security in terms of probabilities that become negligible as
functions of a security parameterκ.

2.2 Homomorphic Encryption

We use a probabilistic polynomial time key generation algorithm to generate a public
key and a secret key. The public key belongs to a key spaceKenc and specifies a message
spaceMpk, a randomizer spaceRpk and a ciphertext spaceCpk. It also specifies an effi-
ciently computable encryption algorithmE :Mpk ×Rpk → Cpk. The secret key spec-
ifies an efficiently computable decryption algorithmD : Cpk →Mpk ∪ {invalid }.

We require that the cryptosystem has perfect decryption:

∀(pk, m, r) ∈ Kenc ×Mpk ×Rpk : Dsk(Epk(m; r)) = m.

We require the message, randomizer and ciphertext spaces to be finite abelian
groups(Mpk, ·, 1), (Rpk,+, 0) and(Cpk, ·, 1), where it is easy to compute group oper-
ations and decide membership. The encryption function must be homomorphic:

∀pk ∈ Kenc ∀(m0, r0), (m1, r2) ∈Mpk ×Rpk :
Epk(m0m1; r0 + r1) = Epk(m0; r0)Epk(m1; r1).

In this paper, we also demand that the order of the message space is divisible only
by large prime-factors. More precisely, it must be the case that|Mpk| has no prime
factors smaller than2`e , where`e is a security parameter specified in Section 2.6.

We need a root extraction property, which says that if a ciphertext raised to a non-
trivial exponent encrypts 1, then the ciphertext itself encrypts 1. More precisely, we as-
sume there is a root extraction algorithmRootExt that givenpk ∈ Kenc, R ∈ Rpk, E ∈
Cpk, e ∈ Z sogcd(e, |Mpk|) andEe = Epk(1;R) outputsr ∈ Rpk soE = Epk(1; r).
This property suffices for proving soundness, however, for proving witness-extended
emulation, we further require that the root extraction algorithm runs in polynomial time.

Various cryptosystems [46, 13, 14, 44, 16, 10, 42] have the properties mentioned in
this section or can be tweaked into cryptosystems with these properties. In particular,
Paillier encryption [46] and ElGamal encryption [16] have the properties mentioned
above and have polynomial time root extraction.

2.3 Homomorphic Commitment

We use a probabilistic polynomial time key generation algorithm to generate a public
commitment keyck belonging to a key spaceKcomck

. The commitment key specifies a
message spaceMck, a randomizer spaceRck and a commitment spaceCck as well as
an efficiently computable commitment functioncomck :Mck ×Rck → Cck. There is
also a probability distribution onRck and we writec ← comck(m) for the operation
r ← Rck ; c = comck(m; r).

We say the commitment scheme is hiding if a commitment does not reveal which
message is inside. We define this by demanding that for all non-uniform polynomial
time adversariesA we have

Pr
[
ck ← Kcom(1κ); (m0,m1)← A(ck); c← comck(m0) : m0,m1 ∈Mck andA(c) = 1

]
≈ Pr

[
ck ← Kcom(1κ); (m0,m1)← A(ck); c← comck(m1) : m0,m1 ∈Mck andA(c) = 1

]
.

If this also holds for unboundedA, we call the commitment statistically hiding.
We say the commitment scheme is binding if a commitment can be opened in one

way only. For all non-uniform polynomial time adversariesA we have

Pr
[
ck ← Kcom(1κ); (m0, r0,m1, r1)← A(ck) :

(m0, r0), (m1, r1) ∈Mck ×Rck,m0 6= m1 andcomck(m0, r0) = comck(m1; r1)
]
≈ 0.

If this also holds for unboundedA, we call the commitment statistically binding.
We will use commitment schemes where the message, randomizer and commit-

ment spaces are abelian groups(Mck,+, 0), (Rck,+, 0), (Cck, ·, 1). We require that
we can efficiently compute group operations and decide membership. The choice of
additive or multiplicative notation is not important, what matters is just that they
are abelian groups. The commitment function must be homomorphic, i.e.,∀ck ∈
Kcom∀(m0, r0), (m1, r1) ∈Mck ×Rck we have

comck(m0 + m1; r0 + r1) = comck(m0; r0)comck(m1; r1).

For our purposes, we use a homomorphic commitment scheme with message space
Zn

q , whereq is a prime. Other choices are possible, for instance lettingq be a composite
or using homomorphic integer commitments [17, 12, 25] with message spaceZn. The
reason we chooseq to be prime is that it simplifies the presentation slightly and is the
most realistic choice in practice. In particular, withq being prime we know that any
non-trivial n-degree polynomialP (X) ∈ Zq[X] has at mostn roots, which will be
useful later on.

We need a root extraction property, which says it is infeasible to create an opening
of a commitment raised to a non-trivial exponent without being able to open the com-
mitment itself. More precisely, we assume there is a polynomial time root extraction
algorithmRootExt that givenck ∈ Kcom,M ∈ Mck, R ∈ Rck, c ∈ Cck, e ∈ Z∗

q so
ce = comck(M ;R) outputs a valid opening(m, r) of c.

Examples. As an example of a statistically hiding commitment scheme with these
properties, we offer the following variation of Pedersen’s commitment scheme [48].
We select primesq, p so p = kq + 1 and k, q are coprime. The commitment key
is (q, p, g1, . . . , gn, h), whereg1, . . . , gn, h are randomly chosen elements of orderq.
Let Gk be the multiplicative group of elementsu such that1 = uk mod p. We have
Mck = Zn

q ,Rck = Gk × Zq, Cck = Z∗
p. To commit to(m1, . . . ,mn) ∈ Zn

q using
randomness(u, r) ∈ Gk × Zq we computec = ugm1

1 · · · gmn
n hr mod p. For the statis-

tical hiding property to hold we can always chooseu = 1 and simply pickr ← Zq at
random. The binding property holds computationally assuming the discrete logarithm
problem is hard in the orderq subgroup ofZ∗

p. The commitment scheme is homomor-
phic and has the root extraction property. Our little twist of the Pedersen commitment
scheme, adding theu-factor fromGk, ensures we do not have to worry about what hap-
pens in the orderk subgroup ofZ∗

p and makes it extremely efficient to test membership
of Cck; we just have to verify0 < c < p.

As an example of a statistically binding commitment scheme, consider selecting the
commitment key(q, p, g1, . . . , gn, h) as described above. The message space isMck =
Zn

q , the randomizer space isGn+1
k ×Zq, and the commitment space isCck = (Z∗

p)
n+1.

We commit to(m1, . . . ,mn) ∈ Zn
q using randomizer(u1, . . . , un, u, r) ∈ Gn+1

k × Zq

asc = (u1g
r+m1
1 , . . . , ungr+mn

n , uhr). We can simply useu1 = · · · = un = u = 1
when making the commitments; the hiding property holds computationally if the DDH
problem is hard in the orderq subgroup ofZ∗

p.

2.4 Special Honest Verifier Zero-Knowledge Arguments of Knowledge

Consider a pair of probabilistic polynomial time interactive algorithms(P, V) called the
prover and the verifier. They may have access to a common reference stringσ generated
by a probabilistic polynomial time key generation algorithmK. We consider a polyno-
mial time decidable relationR, which may depend on the common reference stringσ.
For an elementx we call w a witness if(σ, x, w) ∈ R. We define a corresponding
languageLσ consisting of elements that have a witness. We writetr ← 〈P (x), V (y)〉
for the public transcript produced byP andV when interacting on inputsx andy. This
transcript ends withV either accepting or rejecting. We sometimes shorten the notation
by saying〈P (x), V (y)〉 = b if V ends by accepting,b = 1, or rejecting,b = 0.

Definition 1 (Argument). The triple(K, P, V) is called an argument for relationR if
for all non-uniform polynomial time interactive adversariesA we have

Completeness:

Pr
[
σ ← K(1κ); (x, w)← A(σ) : (σ, x, w) /∈ R or 〈P (σ, x, w), V (σ, x)〉 = 1

]
≈ 1.

Soundness:

Pr
[
σ ← K(1κ);x← A(σ) : x /∈ Lσ and〈A, V (σ, x)〉 = 1

]
≈ 0.

We call(K, P, V) a proof if soundness holds for unbounded adversaries.

In this paper it will sometimes be convenient to restrict the class of adversaries for
which we have soundness. In that case, we will say we have soundness for a class of
adversariesADV, if the definition above holds for allA ∈ ADV.

Definition 2 (Public coin). An argument(K, P, V) is said to be public coin, if the
verifier’s messages are chosen uniformly at random independently of the messages sent
by the prover.

We define special honest verifier zero-knowledge (SHVZK) [9] for a public coin
argument as the ability to simulate the transcript for any set of challenges without access
to the witness.

Definition 3 (Special honest verifier zero-knowledge).The public coin argument
(K, P, V) is called a special honest verifier zero-knowledge argument forR if there
exists a simulatorS such that for all non-uniform polynomial time adversariesA we
have

Pr
[
σ ← K(1κ); (x,w, ρ)← A(σ);

tr← 〈P (σ, x, w), V (σ, x; ρ)〉 : (σ, x, w) ∈ R andA(tr) = 1
]

≈ Pr
[
σ ← K(1κ); (x,w, ρ)← A(σ);

tr← S(σ, x, ρ) : (σ, x, w) ∈ R andA(tr) = 1
]
.

We say(K, P, V) has statistical SHVZK if the SHVZK property holds for unbounded
adversaries.

We remark that a weaker definition of SHVZK arguments, whereρ is chosen uni-
formly at random instead of chosen by the adversary is common in the literature. We
also remark that there are efficient techniques to convert SHVZK arguments into zero-
knowledge arguments for arbitrary verifiers in the common reference string model [11,
21, 24].

WITNESS-EXTENDED EMULATION. The standard definition of a system for proof of
knowledge by Bellare and Goldreich [4] does not work in our setting since the adversary
may have non-zero probability of computing some trapdoor pertaining to the common
reference string and use that information in the argument [12]. In this case, it is possible
that there exists a prover with 100% probability of making a convincing argument,
where we nonetheless cannot extract a witness.

We shall define an argument of knowledge through witness-extended emulation, the
name taken from Lindell [35]. Lindell’s definition pertains to proofs of knowledge in
the plain model, we will adapt his definition to the setting of public coin arguments in
the common reference string model. Informally, our definition says: given an adversary
that produces an acceptable argument with probabilityε, there exists an emulator that
produces a similar argument with probabilityε, but at the same time provides a witness.

Definition 4 (Witness-extended emulation). We say the public coin argument
(K, P, V) has witness-extended emulation if for all deterministic polynomial timeP ∗

there exists an expected polynomial time emulatorE such that for all non-uniform poly-
nomial time adversariesA we have

Pr
[
σ ← K(1κ); (x, s)← A(σ); tr← 〈P ∗(σ, x, s), V (σ, x)〉 : A(tr) = 1

]
≈ Pr

[
σ ← K(1κ); (x, s)← A(σ); (tr, w)← E〈P∗(σ,x,s),V (σ,x)〉(σ, x) :

A(tr) = 1 and if tr is accepting then(σ, x, w) ∈ R
]
,

whereE has access to a transcript oracle〈P ∗(σ, x, s), V (σ, x)〉 that can be rewound
to a particular round and run again with the verifier choosing fresh random coins.

We think ofs as being the state ofP ∗, including the randomness. Then we have an argu-
ment of knowledge in the sense that the emulator can extract a witness wheneverP ∗ is
able to make a convincing argument. This shows that the definition implies soundness.
We remark that the verifier’s coins are part of the transcript and the prover is determin-
istic. So combining the emulated transcript withσ, x, s gives us the view of both prover
and verifier and at the same time gives us the witness.

Our definition of witness-extended emulation treats both prover and verifier in a
black-box manner. The emulator therefore only has access to an oracle that gives it tran-
scripts with a deterministic prover and an honest probabilistic verifier. Treating not only
the prover but also the verifier in a black-box manner makes the Fiat-Shamir heuristic
described in the end of the section more convincing; we avoid the emulator querying
the prover on eschewed challenges or challenges with implanted trapdoors.

In the paper it will sometimes be necessary to restrict the class of adversaries for
which we have witness-extended emulation. In that case, we will say we have witness-
extended emulation for a class of adversariesADV, if the definition above holds for all
A ∈ ADV.

Damg̊ard and Fujisaki [12] have suggested an alternative definition of an argument
of knowledge in the presence of a common reference string. Witness-extended emula-
tion as defined above implies knowledge soundness as defined by them [24].

THE FIAT-SHAMIR HEURISTIC. The Fiat-Shamir heuristic can be used to make public
coin SHVZK arguments non-interactive. In the Fiat-Shamir heuristic the verifier’s chal-
lenges are computed by applying a cryptographic hash-function to the transcript of the
protocol.

Security can be argued heuristically in the random oracle model by Bellare and
Rogaway [5]. In the random oracle model, the hash-function is modeled as a random
oracle that returns a random string on each input it has not been queried before.

2.5 Setup

We will construct a 7-round public coin SHVZK argument for the relation

R =
{

σ, (pk, e1, . . . , en, E1, . . . , En), (π,R1, . . . , Rn)
∣∣∣

π ∈ Σn ∧R1, . . . , Rn ∈ Rpk ∧ ∀i : Ei = eπ(i)Epk(1;Ri)
}

.

The relation ignoresσ, so this is a standard NP-relation. For soundness and witness-
extended emulation, we restrict ourselves to the class of adversaries that produce valid
pk ∈ Kenc. For some cryptosystems, it is straightforward to check whetherpk ∈ Kenc.
For ElGamal encryption, validity of a key can be decided in polynomial time. For Pail-
lier encryption, all we need to verify is that there are no small prime factors in the
modulus, which can be checked in heuristic polynomial time using Lenstra’s [33] el-
liptic curve factorization method. For other homomorphic cryptosystems, it may not be
easy to decide whether the key is correct, however, we may be working in a scenario,
where it is correctly setup. For instance, in a mix-net it may be the case that the mix-
servers use a multi-party computation protocol to generate the encryption key and if a
majority is honest then we are guaranteed that the key is correct.

In the SHVZK argument we will suggest, the common reference string will be gen-
erated as a public key for a homomorphic commitment scheme forn elements as de-
scribed in Section 2.3. Depending on the applications, there are many possible choices
for who generates the commitment key and how they do it. For use in a mix-net, we
could for instance imagine that there is a setup phase, where the mix-servers run a
multi-party computation protocol to generate the commitment key.

It is possible to let the generation of the common reference string happen in the
protocol itself. An unconditionally binding commitment scheme will give us statisti-
cal soundness. If we use a commitment scheme, where it is possible to verify that it is
unconditionally binding, we can let the prover generate the commitment key and ob-
tain a SHVZK proof. A statistically hiding commitment scheme, will give us statistical
SHVZK. If it is possible to verify whether a commitment key is statistically hiding,
we can let the verifier pick the common reference string. This will give us a statistical
SHVZK argument. The statistical SHVZK argument will be public coin, if a random
string can be used to specify a statistically hiding commitment key.

2.6 Parameters

The verifier will select public coin challenges from{0, 1}`e . `e will be a sufficiently
large security parameter so the risk of breaking soundness is negligible. In practice a
choice of`e = 80 suffices for interactive protocols. If we make the SHVZK argument
non-interactive using the Fiat-Shamir heuristic,`e = 160 may be sufficient. Another
security parameter is̀s. Here we require that for anya of length`a, we have thatd and
a + d are statistically indistinguishable, whend is chosen at random from{0, 1}`a+`s .
This only leaks information abouta in the unlikely situation thata + d < 2`a or
2`a+`d ≤ a + d. In practicè s = 80 will be sufficient.

We set up the commitment scheme with message spaceZn
q . We demand that

2`e+`s < q. The reason for this choice is to makeq large enough to avoid overflows that
require a modular reduction in Section 4 and 5. When the cryptosystem has a message
space wheremq = 1 for all messages, this requirement can be waived, see Section
6 for details. For notational convenience, we assume that the randomizer space of the
commitment scheme isZq, but other choices are possible.

3 SHVZK Argument for Shuffle of Known Contents

Before looking into the question of shuffling ciphertexts, we investigate a simpler prob-
lem that will be used as a building block. We have messagesm1, . . . ,mn and a com-
mitmentc. The problem is to prove knowledge of a permutationπ and a randomizerr
such thatc = comck(mπ(1), . . . ,mπ(n); r).

In this section, we present an SHVZK argument for a commitment containing a
permutation of a set of known messages. The main idea is from Neff [36], namely that
a polynomialp(X) =

∏n
i=1(mi −X) is stable under permutation of the roots, i.e., for

any permutationπ we havep(X) =
∏n

i=1(mπ(i) − X). We will prove knowledge of
µ1, . . . , µn, r soc = comck(µ1, . . . , µn; r) and prove that

n∏
i=1

(mi −X) =
n∏

i=1

(µi −X).

Since we are working over a fieldZq, this equality implies the existence of a permuta-
tion π soµi = mπ(i).

To prove that the two polynomials are identical, we will let the verifier choosex ∈
Zq at random and demonstrate that

∏n
i=1(mi − x) =

∏n
i=1(µi − x). A degreen

polynomial inZq[X] can have at mostn roots, so there is overwhelming probability of
failing the test unless indeed

∏n
i=1(mi −X) =

∏n
i=1(µi −X).

Using this idea, we formulate the following plan for arguing knowledge ofc con-
taining a permutation of the messagesm1, . . . ,mn.

1. Use a standard SHVZK argument with randomly chosen challengee to argue
knowledge of an openingµ1, . . . , µn, r of c. In this SHVZK argument of knowl-
edge we get valuesfi = eµi + di, wheredi is committed to by the prover before
receiving the randome from the verifier.

2. In the first round of the argument, the verifier will choose an evaluation pointx ∈
Zq at random. Once the prover sends out the valuesf1, . . . , fn, it is straightforward
to computefi − ex = e(µi − x) + di.

3. We have
∏n

i=1(fi − ex) = en
∏n

i=1(µi − x) + pn−1(e), wherepn−1(·) is a poly-
nomial of degreen− 1. We will argue that

∏n
i=1(fi − ex) = en

∏n
i=1(mi − x) +

pn−1(e). Sincee is chosen at random, this means
∏n

i=1(µi − x) =
∏n

i=1(mi − x)
as we wanted.

4. To argue that
∏n

i=1(fi − ex) = en
∏n

i=1(mi − x) + pn−1(e) the prover will
sendF1, . . . , Fn of the formFj = e

∏j
i=1(µi − x) + ∆j to the verifier, where

∆2, . . . ,∆n−1 are chosen by the prover before receiving the random challengee.
We use∆1 = d1 soF1 = f1− ex. We also use∆n = 0 soFn = e

∏n
i=1(mi− x),

which can be tested directly by the verifier. We will have equalitieseFi+1 =
Fi(fi+1 − ex) + f∆i

, where thef∆i
’s are linear ine. From the verifier’s point

of view these equalities imply that

en
n∏

i=1

(mi − x) = en−1Fn =
n∏

i=1

(fi − ex)− pn−1(e),

wherepn−1 is a degreen−1 polynomial ine. With overwhelming probability over
e this implies

∏n
i=1(mi − x) =

∏n
i=1(µi − x).

Theorem 1. The protocol in Figure 1 is a 4-move public coin special honest verifier
zero-knowledge argument with witness-extended emulation forc being a commitment
to a permutation of the messagesm1, . . . ,mn. If the commitment scheme is statistically
hiding then the argument is statistical honest verifier zero-knowledge. If the commitment
scheme is statistically binding, then we have unconditional soundness, i.e., the protocol
is an SHVZK proof.

Proof. It is obvious that we are dealing with a 4-move public coin protocol. Perfect
completeness is straightforward to verify. Remaining is to prove special honest verifier
zero-knowledge and witness-extended emulation.

SPECIAL HONEST VERIFIER ZERO-KNOWLEDGE. Figure 2 describes how the simu-
lator acts given challengesx, e. The simulator does not use any knowledge ofπ, r.
It first selectsf1, . . . , fn, z, F2, . . . , Fn−1, z∆ andca ← comck(0, . . . , 0) at random
and then adjusts all other parts of the argument to fit these values. In the same figure,
we describe a hybrid simulator that acts just as the simulator except when generating
ca. In the generation ofca, the hybrid simulator does use knowledge ofπ to compute
di, ai,∆i values. It then producesca in the same manner as a real prover would do
it using those values. Finally, for comparison we have the real prover’s protocol in an
unordered fashion.

The simulated argument and the hybrid argument differ only in the content ofca.
The hiding property of the commitment scheme therefore gives us indistinguishabil-
ity between hybrid arguments and simulated arguments. If the commitment scheme is
statistically hiding then the arguments are statistically indistinguishable.

A hybrid argument is statistically indistinguishable from a real argument. The
only difference is that a real prover starts out by pickingdi,∆i, rd, r∆ at random,

Shuffle of Known Content Argument

Prover Common input Verifier
ck

c, m1, . . . , mn

Prover’s input
π, r soc = comck(mπ(1), . . . , mπ(n); r)

x x← {0, 1}`e�

d1, . . . , dn ← Zq, rd, r∆ ← Zq

∆1 = d1, ∆2, . . . , ∆n−1 ← Zq, ∆n = 0

ai =
∏i

j=1(mπ(j) − x), ra ← Zq

cd = comck(d1, . . . , dn; rd)
c∆ = comck(−∆1d2, . . . ,−∆n−1dn; r∆)
ca = comck(∆2 − (mπ(2) − x)∆1 − a1d2, . . . ,

∆n − (mπ(n) − x)∆n−1 − an−1dn; ra) cd, c∆, ca -

e e← {0, 1}`e�

fi = emπ(i) + di, z = er + rd

f∆i = e(∆i+1 − (mπ(i+1) − x)∆i − aidi+1) f1, . . . , fn, z
−∆idi+1, z∆ = era + r∆ f∆1 , . . . , f∆n−1 , z∆ -

Checkcd, ca, c∆ ∈ Cck

Checkf1, . . . , fn, z, f∆1 , . . . , f∆n−1 , z∆ ∈ Zq

Checkcecd = comck(f1, . . . , fn; z)
Checkce

ac∆ = comck(f∆1 , . . . , f∆n−1 ; z∆)
DefineF1, . . . , Fn so
F1 = f1 − ex, eF2 = F1(f2 − ex) + f∆1 , . . . ,
eFn = Fn−1(fn − ex) + f∆n−1

CheckFn = e
∏n

i=1(mi − x)

Fig. 1.Argument of Knowledge of Shuffle of Known Content.

however, in both protocols this gives usfi, f∆i
, z, z∆ randomly distributed overZq.

Given these values, the commitmentca is computed in the same way by both pro-
tocols. Moreover, in both protocols we getcd = comck(d1, . . . , dn; rd) and c∆ =
comck(−∆1d2, . . . ,−∆n−1dn; r∆).

WITNESS-EXTENDED EMULATION. The emulatorE first runs〈P ∗, V 〉 to get a tran-
script tr. This is the transcriptE will output and by construction it is perfectly indis-
tinguishable from a real SHVZK argument. If the transcript is rejecting, thenE halts
with (tr,⊥). However, if the transcript is accepting thenE must try to find a witness
w = (π, r).

To extract a witness E rewinds and runs 〈P ∗, V 〉 again on the
same challenge x until it gets another acceptable argument. Call the
two arguments (x, cd, c∆, ca, e, f1, . . . , fn, z, f∆1 , . . . , f∆n−1 , z∆) and

Simulator Hybrid Prover
fi ← Zq, z ← Zq fi = emπ(i) + di, z = er + rd

Fi ← Zq, z∆ ← Zq Fi = eai + ∆i, z∆ = era + r∆

F1 = f1 − ex, Fn = e
∏n

i=1(mi − x)
f∆i = eFi+1 − Fi(fi+1 − ex)

di = fi − emπ(i) di ← Zq, rd ← Zq

ai =
∏i

j=1(mπ(j) − x),ra ← Zq

∆i = Fi − eai ∆i ← Zq, r∆ ← Zq

ca ← comck(0, . . . , 0) ca ← comck(∆2 − (mπ(2) − x)∆1 − a1d2,
. . . , ∆n − (mπ(n) − x)∆n−1 − an−1dn; ra)

cd = comck(f1, . . . , fn; z)c−e cd = comck(d1, . . . , dn; rd)
c∆ = comck(f∆1 , . . . , f∆n−1 ; z∆)c−e

a c∆ = comck(−∆1d2, . . . ; r∆)

Fig. 2.Simulation of Known Shuffle Argument.

(x, cd, c∆, ca, e′, f ′
1, . . . , f

′
n, z′, f ′

∆1
, . . . , f ′

∆n−1
, z′∆). We have cecd =

comck(f1, . . . , fn; z) and ce′cd = comck(f ′
1, . . . , f

′
n; z′). This gives us

ce−e′ = comck(f1 − f ′
1, . . . , fn − f ′

n; z − z′). If e 6= e′, E can run the root
extraction algorithm to get an openingµ1, . . . , µn, r of c.

Let us at this point argue thatE runs in expected polynomial time. IfP ∗ is in a
situation where it has probabilityε > 0 of making the verifier accept on challengex,
then the expected number of runs to get an acceptable transcript is1

ε . Of course ifP ∗

fails, then we do not need to sample a second run. We therefore get a total expectation
of 2 queries to〈P ∗, V 〉. A consequence ofE using an expected polynomial number
of queries toP ∗ is that there is only negligible probability of ending in a run where
e′ = e or any other event with negligible probability occurs, e.g., breaking the binding
property of the commitment scheme. Therefore, with overwhelming probability, either
we do not need a witness or we have found an openingµ1, . . . , µn, r of c.

We need to argue that the probability for extracting an opening ofc, such
that µ1, . . . , µn is not a permutation ofm1, . . . ,mn is negligible. Assume there
is a constantδ > 0 such thatP ∗ has more thanκ−δ chance of producing a
convincing argument. In that case we can run it with a random challengex and
rewind to get three random challengese, e′, e′′. With probability at leastκ−3δ

P ∗ manages to create accepting arguments on all three of these challenges.
Call the first two arguments(x, cd, c∆, ca, e, f1, . . . , fn, z, f∆1 , . . . , f∆n−1 , z∆)
and (x, cd, c∆, ca, e′, f ′

1, . . . , f
′
n, z′, f ′

∆1
, . . . , f ′

∆n−1
, z′∆). We have ce

ac∆ =
comck(f∆1 , . . . , f∆n−1 ; z∆) and ce′

a c∆ = comck(f ′
∆1

, . . . , f ′
∆n−1

; z′∆) so

ce−e′

a = comck(f∆1 − f ′
∆1

, . . . , f∆n−1 − f ′
∆n−1

; z∆ − z′∆). From this, we can extract
an openingα1, . . . , αn−1, ra of ca. This also gives us an openingδ1, . . . , δn−1, r∆ of
c∆, whereδi = f∆i − eαi, r∆ = z∆ − era. Since we know an opening ofc, we also
have an openingd1, . . . , dn, rd of cd with di = fi − eµi, rd = z − er.

Consider now the third challengee′′. Since we know openings ofc, cd we have
f ′′

i = e′′µi + di, and since we know openings ofca, c∆ we havef ′′
∆i

= e′′αi + δi.

From the way we build upF ′′
n and fromF ′′

n = e′′
∏n

i=1(mi − x) we deduce

(e′′)n
n∏

i=1

(mi − x) = (e′′)n−1F ′′
n = (e′′)n

n∏
i=1

(µi − x)− pn−1(e′′),

wherepn−1(·) is a polynomial of degreen−1. Sincee′′ is chosen at random this implies
with overwhelming probability that

∏n
i=1(µi − x) =

∏n
i=1(mi − x).

We now have two polynomials evaluating to the same value in a random point
x. With overwhelming probability, they must be identical. This in turn implies that
µ1, . . . , µn is a permutation ofm1, . . . ,mn as we wanted to show.

If the commitment scheme is statistically binding, then even an unbounded adver-
sary is stuck with the values that have been committed to, without any ability to change
them. Withx, e chosen at random by the verifier, even an unbounded adversary has
negligible chance of cheating. �

4 SHVZK Argument for Shuffle of Homomorphic Encryptions

A set of ciphertextse1, . . . , en can be shuffled by selecting a permutationπ, se-
lecting randomizersR1, . . . , Rn, and settingE1 = eπ(1)Epk(1;R1), . . . , En =
eπ(n)Epk(1;Rn). The task for the prover is to argue that some permutationπ exists
so that the plaintexts ofE1, . . . , En andeπ(1), . . . , eπ(n) are identical.

As a first step, we think of the following naı̈ve proof system. The prover informs
the verifier of the permutationπ. The verifier picks at randomt1, . . . , tn, computes∏n

i=1 eti
i and

∏n
i=1 E

tπ(1)
i . Finally, the prover proves that the two resulting ciphertexts

have the same plaintext. Unlessπ really corresponds to a pairing of ciphertexts with
identical plaintexts the prover will be caught with overwhelming probability.

An obvious problem with this idea is the lack of zero-knowledge. We remedy it in
the following way [20, 36]:

1. The prover commits to the permutationπ as c ← comck(π(1), . . . , π(n)). He
makes an SHVZK argument of knowledge ofc containing a permutation of the
numbers1, . . . , n. At this step, the prover is bound to some permutation he knows,
but the permutation remains hidden.

2. The prover creates a commitmentcd ← comck(−d1, . . . ,−dn) to randomdi’s.
The verifier selects at randomt1, . . . , tn and the prover permutes them according
to π. The prover will at some point reveal valuesfi = tπ(i) + di, but since thedi’s
are random this does not reveal the permutationπ. As part of the argument, we will
argue that thefi’s have been formed correctly, using the same permutationπ that
we used to formc.

3. Finally, the prover uses standard SHVZK arguments of knowledge of multiplica-
tive relationship and equivalence to show that the products

∏n
i=1 eti

i and
∏n

i=1 Efi

i

differ only by a factorEd =
∏n

i=1 Edi
i Epk(1;R) for some randomizerR with-

out revealing anything else. This last step corresponds to carrying out the naı̈ve
proof system in zero-knowledge using a secret permutationπ that was fixed before
receiving theti’s.

To carry out this process we need to convince the verifier thatc andf1, . . . , fn con-
tain respectively1, . . . , n andt1, . . . , tn permuted in the same order. It seems like we
have just traded one shuffle problem with another. The difference is that the supposed
contents of the commitments are known to both the prover and the verifier, whereas we
cannot expect either to know the contents of the ciphertexts being shuffled. The SHVZK
argument of knowledge for a shuffle of known content can therefore be used.

To see that the pairs(i, ti) match we let the verifier pickλ at random, and let the
prover demonstrate thatcλcdcomck(f1, . . . , fn; 0) contains a shuffle ofλ+t1, . . . , λn+
tn. If a pair(i, ti) does not appear in the same spot in respectivelyc andf1, . . . , fn, then
with high likelihood over the choice ofλ the shuffle argument will fail.

Shuffle of Homomorphic Ciphertexts

Prover Common input Verifier
ck

pk, e1, . . . , en, E1, . . . , En

Prover’s input
π, R1, . . . , Rn soEi = eπ(i)Epk(1; Ri)

r ← Zq, Rd ←Rpk

d1, . . . , dn ← {0, 1}`e+`s , rd ← Zq

c = comck(π(1), . . . , π(n); r)
cd = comck(−d1, . . . ,−dn; rd)

Ed =
∏n

i=1 E−di
i Epk(1; Rd) c, cd, Ed -

t1, . . . , tn ti ← {0, 1}`e�

fi = tπ(i) + di

Z =
∑n

i=1 tπ(i)Ri + Rd f1, . . . , fn, Z -

λ λ← {0, 1}`e�

Arg(π, ρ|cλcdcomck(f1, . . . , fn; 0) a

= comck(λπ(1) + tπ(1),
� -
� -

. . . , λπ(n) + tπ(n); ρ))

Checkc, cd ∈ Cck, Ed ∈ Cpk

and2`e ≤ f1, . . . , fn < 2`e+`s , Z ∈ Rpk

Verify Arg(π, ρ)

Check
∏n

i=1 e−ti
i

∏n
i=1 Efi

i Ed = Epk(1; Z)

a Given m1, . . . , mn, c we write Arg(π, ρ|c = comck(mπ(1), . . . , mπ(n); ρ)) as a short-
hand for carrying out the SHVZK argument in Figure 1 of knowledge ofπ, ρ such that
c = comck(mπ(1), . . . , mπ(n); ρ).

Fig. 3.Argument of Shuffle of Homomorphic Ciphertexts.

Theorem 2. The protocol in Figure 3 is a 7-move public coin special honest verifier
zero-knowledge argument for correctness of a shuffle of homomorphic ciphertexts. If
the cryptosystem has polynomial time root extraction, then the argument has witness-
extended emulation. If the commitment scheme is statistically hiding, then the argument
is statistical SHVZK. If the commitment scheme is statistically binding, then the scheme
is an SHVZK proof of a shuffle.

Proof. Using the 4-move argument of knowledge for shuffle of known contents from
this paper the protocol is a 7-move public coin protocol. With sufficiently large`s we
have with overwhelming probability that2`e ≤ tπ(i) + di < 2`e+`s < q when added
as integers. With this in mind, it is straightforward to verify completeness. It remains to
prove that we have special honest verifier zero-knowledge and witness-extended emu-
lation.

SPECIAL HONEST VERIFIER ZERO-KNOWLEDGE. Given challengest1, . . . , tn, λ as
well as challenges for the known shuffle we wish to simulate a transcript that is indis-
tinguishable from a real argument. We describe in Figure 4 a simulator that simulates the
argument without access to the permutationπ or the randomizersR1, . . . , Rn. It picks
c, cd, f1, . . . , fn, Z at random and fits the other parts of the protocol to these values. In
the same figure, we also include a hybrid argument that works like the simulator except
for generatingc, cd correctly using knowledge ofπ. Finally, we include for comparison
the real prover in a somewhat unordered description.

Simulator Hybrid Prover
c← comck(0, . . . , 0) c← comck(π(1), . . . , π(n))

di = fi − tπ(i) di ← Zq

cd ← comck(0, . . . , 0) cd ← comck(−d1, . . . ,−dn)

fi ← {0, 1}`e+`s fi = tπ(i) + di

Z ←Rpk Rd ←Rpk, Z =
∑n

i=1 tπ(i)Ri + Rd

Ed = Epk(1; Z)
∏n

i=1 eti
i

∏n
i=1 E−fi

i Ed =
∏n

i=1 E−di
i Epk(1; Rd)

SimulateArg(π, ρ| Arg(π, ρ|
cλcdcomck(f1, . . . , fn; 0) cλcdcomck(f1, . . . , fn; 0)
= comck(λπ(1) + tπ(1), = comck(λπ(1) + tπ(1),

. . . , λπ(n) + tπ(n); ρ) . . . , λπ(n) + tπ(n); ρ)

Fig. 4.Simulation of Shuffle Argument.

Simulated arguments and hybrid arguments only differ in the content ofc andcd.
The hiding property of the commitment scheme therefore implies indistinguishability
between simulated arguments and hybrid arguments. If the commitment scheme is sta-
tistically hiding, then the two types of arguments are statistically indistinguishable.

Since |q| > `e + `s there is overwhelming probability that we do not need to
make any modular reductions when computing thedi’s andfi’s and that thefi’s are
at least2`e . Under this condition, we have for the prover that

∏n
i=1 E−di

i Epk(1;Rd) =
Epk(1;Z)

∏n
i=1 eti

i

∏n
i=1 E−fi

i , so there is no difference in the wayEd is computed by

respectively the hybrid simulator and the prover. The only remaining difference is that
the hybrid argument contains a simulated argument of knowledge of shuffle of known
content, whereas the prover makes a real proof. The SHVZK property of this argu-
ment gives us indistinguishability between hybrid arguments and real arguments, and
statistical SHVZK gives us statistical indistinguishability.

SOUNDNESS AND WITNESS-EXTENDED EMULATION. The proof of soundness
will follow from the proof of witness-extended emulation, so let us start with
describing the emulator. We first run〈P ∗, V 〉 to give us a transcripttr =
(c, cd, Ed, t1, . . . , tn, f1, . . . , fn, Z, λ, trknown), wheretrknown is the transcript of the
4-move argument for a shuffle of known contents. IfP ∗ fails to produce an acceptable
argument, then we output(tr,⊥). On the other hand, if the argument is acceptable, then
we must extract witnessπ,R1, . . . , Rn for E1, . . . , En being a shuffle ofe1, . . . , en. In
the following we letε be the probability ofP ∗ outputting an acceptable argument.

In order to extract a witness, we rewind〈P ∗, V 〉 to get more transcripts with ran-
domly chosen challengest1, . . . , tn, λ and use the witness-extended emulator for the
argument of shuffle of known contents to get openings ofcλcdcomck(f1, . . . , fn, 0).
We do this until we have obtainedn + 3 acceptable arguments.

If we have probabilityε for getting an acceptable transcript on random challenges
t1, . . . , tn, λ then we expect to usen+2

ε attempts to samplen+2 extra transcripts. Since
we only need to extract a witness when the transcript is accepting, we have an expected
number ofn+3 runs. One has to be careful when combining expected polynomial time
algorithms, since the composed algorithm may not be expected polynomial time. In
our case, however, we will run the witness-extended emulator on transcripts that have
the same distribution as real arguments, in particular the inputs to the witness-extended
emulator will always have a size that is polynomial in the security parameter, so we do
really get expected polynomial time for the emulator.

Since the witness-extended emulator uses expected polynomial time there is over-
whelming probability that either we do not get an acceptable argument; or alternatively
we do get an acceptable argument but no event with negligible probability occurs. In
particular, with overwhelming probability we do not break the binding property of the
commitment scheme or have collisions among the randomly chosen challenges.

From the sampling process we have two acceptable arguments
c, cd, Ed, t1, . . . , tn, f1, . . . , fn, Z, λ and c, cd, Ed, t

′
1, . . . , t

′
n, f ′

1, . . . , f
′
n, Z ′, λ′

as well as witnessesπ, r and π′, r′ for cλcdcomck(f1, . . . , fn; 0) and
cλ′cdcomck(f ′

1, . . . , f
′
n; 0) containing shuffles of respectivelyλi + ti andλ′i + t′i. This

gives us

cλ−λ′ = comck(f ′
1 − f1 + λπ(1) + tπ(1) − λ′π′(1)− t′π′(1),

. . . , f ′
n − fn + λπ(n) + tπ(n) − λ′π′(n)− t′π′(n); r − r′).

We run the root extractor to get an openings1, . . . , sn, r of c. Given this opening we
can compute an opening−d1, . . . ,−dn, rd of cd with −di = λπ(i) + tπ(i) − λsi − fi

and0 ≤ di < q.
We will now argue thats1, . . . , sn is a permutation of1, . . . , n. Suppose for some

constantδ > 0 thatP ∗ has more thanκ−δ chance of producing a valid argument for
an infinite number ofκ ∈ N and that we are looking at such a security parameterk.

In the third transcript, we have runP ∗ with randomly chosen challengest1, . . . , tn, λ
and from the witness-extended emulator we get a permutationπ so λsi − di + fi =
λπ(i)+tπ(i). Sincefi is sent by the prover before receivingλ this has negligible chance
of happening unlesssi = π(i). We conclude that indeeds1, . . . , sn is a permutation
of 1, . . . , n. This in turn tells us thatfi = tπ(i) + di mod q for the argument to go
through with more than negligible probability. Since2`e ≤ fi < 2`+`s < q the equality
fi = tπ(i) + di holds over the integers as well.

The lastn + 1 acceptable transcripts we enumeratej = 1, . . . , n + 1. Call the
t1, . . . , tn used in thej’th argument fort(j)1 , . . . , t

(j)
n . We have corresponding answers

f
(j)
i = t

(j)
π(i) + di, Z

(j). Consider the integer vectors(t(j)1 , . . . , t
(j)
n , 1) and the corre-

sponding matrixT containing these as row vectors. For any primep dividing |Mpk|,
there is overwhelming probability that the vectors are linearly independent modulop
since|Mpk| only has large prime divisors. This meansgcd(det(T), p) = 1 for all p
dividing the order ofMpk and thusgcd(det(T), |Mpk|) = 1. Let A be the transposed
cofactor matrix ofT , then we have

AT = det(T)I.

Calling the entries ofA for akj , we have

n+1∑
j=1

akj(t
(j)
1 , . . . , t(j)n , 1) = (0, . . . , 0,det(T), 0, . . . , 0),

wheredet(T) is placed in positionk. For allj the verification gives us

n∏
i=1

e
−t

(j)
i

i

n∏
i=1

E
t
(j)
π(i)

i (
n∏

i=1

Edi
i Ed)1 =

n∏
i=1

e
−t

(j)
i

i

n∏
i=1

E
f
(j)
i

i Ed = Epk(1;Z(j)).

For allk = 1, . . . , n we have

(e−1
k Eπ−1(k))det(T) =

n∏
i=1

(e−1
i Eπ−1(i))

∑n+1
j=1 akjt

(j)
i (

n∏
i=1

Edi
i Ed)

∑n+1
j=1 akj1

=
n∏

i=1

e
−

∑n+1
j=1 akjt

(j)
i

i

n∏
i=1

E

∑n+1
j=1 akjt

(j)
π(i)

i (
n∏

i=1

Edi
i Ed)

∑n+1
j=1 akj1

=
n+1∏
j=1

(n∏
i=1

e
−t

(j)
i

i

n∏
i=1

E
t
(j)
π(i)

i (
n∏

i=1

Edi
i Ed)1

)akj

=
n+1∏
j=1

Epk(1;Z(j))akj = Epk(1;
n+1∑
j=1

akjZ
(j)).

We now know from the root extraction property that there exists anRπ−1(k) so
e−1
k Eπ−1(k) = Epk(1;Rπ−1(k)), which shows that the argument is sound. If the com-

mitment scheme is statistically binding we get statistical soundness; where we recall
that the SHVZK argument for shuffle of known content has statistical soundness when

the commitment is statistically binding. If the cryptosystem has polynomial time root
extraction, we can run the root extractor to find the randomizersR1, . . . , Rn, so we
have witness-extended emulation. �

We remark that the proof of soundness shows that the SHVZK argument for
correctness of a shuffle is an argument of knowledge ofπ. However, we may not
have full witness-extended emulation where we also learn the rerandomization factors
R1, . . . , Rn, unless the cryptosystem has polynomial time root extraction.

5 Combining Shuffling and Decryption

For efficiency reasons it may be desirable to combine shuffling and decryption into
one operation. Consider for instance the case where we are using ElGamal encryption
and share the secret key additively between the mix-servers. Instead of first mixing
and then threshold decrypting, it makes sense to combine the shuffle operations and
the decryption operations. This saves computation and each mix-server only has to be
activated once instead of twice. While restricting the choice of parameters, namely we
must use an ElGamal like cryptosystem and we must share the secret key additively
between all the mix-servers, this is a realistic real-life scenario.

The public key is of the form(g, y1, . . . , yN), whereyj = gxj andxj is the se-
cret key of serverj. Inputs to the mix-net are ElGamal encryptions under the key
(g,

∏N
j=1 yj) of the form(gr, (

∏N
j=1 yj)rm). The first server shuffles and decrypts with

respect to its own key. This leaves us with encryptions under the key(g,
∏N

j=2 yj) that
the second server can shuffle and decrypt, etc. Once the last server shuffles and decrypts
we get the plaintexts out.

Servers gets input ciphertexts of the form(u1, v1), . . . , (un, vn) under the key
(g,

∏N
j=s yj). It selects a permutationπ at random, as well as randomizersR1, . . . , Rn.

The output is(U1, V1), . . . , (Un, Vn) under the key(g, Y =
∏N

j=s+1 yj), where

Ui = gRiuπ(i) andVi = Y Rivπ(i)u
−xs

π(i) .

What we need is an SHVZK argument of knowledge for correctness of such a shuffle-
and-decrypt operation.

A couple of papers have already investigated this problem [19, 18], but their ar-
guments are not SHVZK. Instead, they use a weaker security notion saying that an
adversary does not learn anything about the permutation. We will suggest an argument
that is SHVZK and at the same time is more efficient in terms of computation and com-
munication but has worse round-complexity. Neff [38] has independently of this work
also investigated the combination of shuffle and decryption operations.

The argument is essentially the same as the SHVZK argument for correctness of
a shuffle of ciphertexts; we have written out everything using the ElGamal notation in
this section. The only difference from the shuffle argument is that we add some extras
to also argue correctness of the partial decryption. We prove knowledge of the secret
key xs and argue that it has been used to make partial decryptions. For this purpose,
we the prover sends an initial messageD = gdx in the first round. Later, the prover
will receive a challengee and respond withf = exs + dx. We use the hiddenxs in f

to ensure thatuxs
i is removed as intended from the output ciphertexts. Thee-factor in

f and thedx-part that is used to hidexs forces us to add some extra elements to the
protocol.

The full argument can be seen in Figure 5. The cryptosystem is ElGamal encryption
over a group of prime orderQ. We include in the common reference string a public
keyCK for an additional homomorphic commitment schemeCOMCK , which hasZQ

as message space. For notational convenience, we assume the randomizers for these
commitments are chosen at random fromZQ. The commitment keyCK includes a
generatorg for the groupGQ of orderQ over which we do the ElGamal encryption.
The ElGamal encryption key containsys andY from GQ.

Theorem 3. The protocol in Figure 5 is a 7-move public coin special honest verifier
zero-knowledge argument for correctness of a shuffle and partial decryption of ElGa-
mal ciphertexts with witness-extended emulation. If the commitment schemes are statis-
tically hiding, then the entire argument is statistical SHVZK. If the commitment schemes
are statistically binding, then the entire argument is an SHVZK proof.

Sketch of proof.Obviously, we have a 7-move public coin protocol. Completeness is
straightforward to verify.

SPECIAL HONEST VERIFIER ZERO-KNOWLEDGE. To argue special honest ver-
ifier zero-knowledge we describe a simulator that runs without knowledge of
π,R1, . . . , Rn, xs and also a hybrid simulator that does use knowledge of these secret
values.

The simulator gets the challengest1, . . . , tn, λ, e as well as challenges for the
argument of knowledge of a shuffle of known contents as input. It selects at random
f1, . . . , fn ← {0, 1}`e+`s , Z, f, fV , zV ← ZQ, c, cd ← comck(0, . . . , 0), C1 ←
COMCK(0) and Vd ← GQ. It computesUd = gZ

∏n
i=1 uti

i

∏n
i=1 U−fi

i , U =
Y eZgfV (

∏n
i=1 u−ti

i)f (
∏n

i=1 v−ti
i

∏n
i=1 V fi

i Vd)−e, D = gfy−e
s and C2 =

COMCK(fV ; zV)C−e
1 . It also simulates the argument of knowledge of shuffle

of known contents.
The hybrid simulator also selectsf1, . . . , fn ← {0, 1}`e+`s , Z, f, fV , zV ←

ZQ. It computes c ← comck(π(1), . . . , π(n)), di ← fi −
tπ(i), cd ← comck(−d1, . . . ,−dn). It selects rV ← ZQ and C1 ←
COMCK(rV). It sets Vd = Y Z(

∏n
i=1 u−ti

i)xs
∏n

i=1 vti
i

∏n
i=1 V −fi

i grV .
As the simulator it computesUd = gZ

∏n
i=1 uti

i

∏n
i=1 U−fi

i , U =
Y eZgfV (

∏n
i=1 u−ti

i)f (
∏n

i=1 v−ti
i

∏n
i=1 V fi

i Vd)−e, D = gfy−e
s and C2 =

COMCK(fV ; zV)C−e
1 and simulates the argument of knowledge of shuffle of

known contents.
Let us argue that simulated arguments and hybrid arguments are indistinguishable.

In both distributions,Vd is random. In the simulation it is random becauseVd is selected
at random; in the hybrid argument it is random because of thegrV factor. The only dif-
ference between the two types of arguments is the way we compute the commitments
c, cd, C1. In the simulated argument we computec, cd, C1 as commitments to 0, while in
the hybrid argument we compute them as commitments to respectivelyπ(1), . . . , π(n),
−d1, . . . ,−dn andrV . The hiding properties of the two commitment schemes give us

Shuffle and Decryption of ElGamal Ciphertexts

Prover Common input Verifier
ck, CK

pk = (Q, GQ, g, ys, Y)
(u1, v1), . . . , (un, vn)
(U1, V1), . . . , (Un, Vn)

Prover’s input
π, xs, R1, . . . , Rn soys = gxs and
(Ui, Vi) = (gRiuπ(i), Y

Rivπ(i)u
−xs
π(i))

r ← Zq, Rd ←Rpk

d1, . . . , dn ← Zq, rd ← Zq

c = comck(π(1), . . . , π(n); r)
cd = comck(−d1, . . . ,−dn; rd)

Ud =
∏n

i=1 U−di
i gRd

Vd =
∏n

i=1 V −di
i Y RdgrV

dx, rV , dV , r1, r2 ← ZQ, D = gdx

C1 = COMCK(rV ; r1), C2 = COMCK(dV ; r2) c, cd, Ud, Vd, D, C1, C2-

t1, . . . , tn ti ← {0, 1}`e�

fi = tπ(i) + di, Z =
∑n

i=1 tπ(i)Ri + Rd

U = gdV (
∏n

i=1 u−ti
i)dx f1, . . . , fn, Z, U -

λ, e λ, e← {0, 1}`e�

Arg(π, ρ|cλcdcomck(f1, . . . , fn; 0)
= comck(λπ(1) + tπ(1),

� -�
-

. . . , λπ(n) + tπ(n); ρ)) a

f = exs + dx, fV = erV + dV , zV = er1 + r2 f, fV , zV -

Checkc, cd ∈ Cck, Ud, Vd, D, U ∈ GQ andC1, C2 ∈ CCK

and2`e ≤ f1, . . . , fn < 2`e+`s , Z, f, fV , zV ∈ ZQ

Verify Arg(π, ρ)

Check
∏n

i=1 u−ti
i

∏n
i=1 Ufi

i Ud = gZ

Check(
∏n

i=1 u−ti
i)−f (

∏n
i=1 v−ti

i

∏n
i=1 V fi

i Vd)eU = Y eZgfV

Checkye
sD = gf andCe

1C2 = COMCK(fV ; zV)

a Given m1, . . . , mn, c we write Arg(π, ρ|c = comck(mπ(1), . . . , mπ(n); ρ)) as a short-
hand for carrying out the SHVZK argument in Figure 1 of knowledge ofπ, ρ such that
c = comck(mπ(1), . . . , mπ(n); ρ).

Fig. 5.Argument of Shuffle and Decryption of ElGamal Ciphertexts.

indistinguishability between simulated arguments and hybrid arguments. Furthermore,
if both commitment schemes are statistically hiding, then we have statistical indistin-
guishability between simulated arguments and hybrid arguments.

Next, we argue that hybrid arguments and real arguments are indistinguishable.
First, we note thatf1, . . . , fn, Z, f, fV , zV have the same distribution in the two ar-
guments. Letr1 be the randomness used in formingC1. In the hybrid argument we can
computedi = fi−tπ(i), dV = fV −erV , r2 = zV −er1, Rd = Z−

∑n
i=1 tπ(i)Ri, dx =

f − exs. These values have the same distribution as they would have if chosen by a real
prover. Furthermore, it is straightforward to verify thatc, cd, Ud, Vd, D, U, C1, C2 at-
tain the same values as computed by a real prover. The only difference between hybrid
arguments and real arguments is therefore in the simulation of the argument of knowl-
edge of a shuffle of known contents. The SHVZK property of this argument of shuffle
of known contents implies indistinguishability between hybrid arguments and real ar-
guments. Moreover, if the argument of shuffle of known contents is statistical SHVZK
then hybrid arguments and real arguments are statistically indistinguishable.

WITNESS-EXTENDED EMULATION. As in the proof of Theorem 2 we use an emulator
that runs〈P ∗, V 〉 and outputs the transcript. In case the argument is acceptable the
emulator rewinds and runs〈P ∗, V 〉 until it hasn + 3 acceptable arguments. As in the
proof of Theorem 2 we can prove that this emulator runs in expected polynomial time.

As in the proof of Theorem 2, we can extract openings ofc andcd. As argued there
we can find a permutationπ soc containsπ(1), . . . , π(n). We call the opening ofcd for
−d1, . . . ,−dn. This gives usf1, . . . , fn of the formfi = tπ(i) + di.

From the equationsye
sD = gf andye′

s D = gf ′ we getye−e′

s = gf−f ′ . If e 6= e′ we
then haveys = gxs , wherexs = (f − f ′)(e − e′)−1. This also meansD = gfy−e

s =
gf−exs , soD = gdx , wheredx = f − exs. We now haveπ andxs, but still need to
extract the randomizersR1, . . . , Rn.

We also haveCe
1C2 = COMCK(fV ; zV) and Ce′

1 C2 = COMCK(f ′
V ; z′V) so

Ce−e′

1 = COMCK(fV − f ′
V ; zV − z′V). By raising both sides to(e− e′)−1 mod Q we

perform a root extraction and get an openingrV , r1 of C1. From the opening ofC1, we
can compute an openingdV , r2 of C2. With overwhelming probability the prover must
usefV = erV + dV when forming acceptable arguments.

As in the proof of Theorem 2 we form the matrixT containing challenge rows of
the form(t(j)1 , . . . , t

(j)
n , 1) for j = 1, . . . , n + 1. Calling the entries of the transposed

cofactor matrixakj , we have

n+1∑
j=1

akj(t
(j)
1 , . . . , t(j)n , 1) = (0, . . . , 0,det(T), 0, . . . , 0),

wheredet(T) is placed in positionk.
For all j, the verification gives us

n∏
i=1

u
−t

(j)
i

i

n∏
i=1

U
t
(j)
π(i)

i (
n∏

i=1

Udi
i Ud)1 =

n∏
i=1

u
−t

(j)
i

i

n∏
i=1

U
f
(j)
i

i Ud = gZ(j)
.

For allk = 1, . . . , n we have

(u−1
k Uπ−1(k))det(T) =

n∏
i=1

(u−1
i Uπ−1(i))

∑n+1
j=1 akjt

(j)
i (

n∏
i=1

Udi
i Ud)

∑n+1
j=1 akj1

=
n∏

i=1

u
−

∑n+1
j=1 akjt

(j)
i

i

n∏
i=1

U

∑n+1
j=1 akjt

(j)
π(i)

i (
n∏

i=1

Udi
i Ud)

∑n+1
j=1 akj1

=
n+1∏
j=1

(n∏
i=1

u
−t

(j)
i

i

n∏
i=1

U
t
(j)
π(i)

i (
n∏

i=1

Udi
i Ud)1

)akj

=
n+1∏
j=1

gZ(j)akj = g
∑n+1

j=1 akjZ(j)
.

DefineRk = (
∑n+1

j=1 akjZ
(j)) det(T)−1. Then we haveUπ−1(k) = gRπ−1(k)uk.

The final part of the proof is to show that for alli we haveVi = Y Rivπ(i)u
−xs

π(i) .
From the equations

(
n∏

i=1

u
−t

(j)
i

i)−f(j)
(

n∏
i=1

v
−t

(j)
i

i

n∏
i=1

V
f
(j)
i

i Vd)e(j)
U (j) = Y e(j)Z(j)

gf
(j)
V ,

we get(n∏
i=1

(viu
−xs
i)−t

(j)
i

n∏
i=1

V
f
(j)
i

i Vdg
−rV

)e(j) n∏
i=1

u
dxt

(j)
i

i U (j)g−dV = Y e(j)Z(j)
.

Given any challenget(j)1 , . . . , t
(j)
n there is negligible probability overe(j) of producing

an acceptable argument unless

n∏
i=1

(viu
−xs
i)−t

(j)
i

n∏
i=1

V
f
(j)
i

i Vdg
−rV = Y Z(j)

.

Using the same matrixT as before we get fork = 1, . . . , n

(v−1
k uxs

k Vπ−1(k))det(T) =
n∏

i=1

(v−1
i uxs

k Vπ−1(i))
∑n+1

j=1 akjt
(j)
i (

n∏
i=1

V di
i Vdg

−rV)
∑n+1

j=1 akj1

=
n∏

i=1

(viu
−xs
i)−

∑n+1
j=1 akjt

(j)
i

n∏
i=1

V

∑n+1
j=1 akjt

(j)
π(i)

i

(
n∏

i=1

V di
i Vdg

−rV)
∑n+1

j=1 akj1

=
n+1∏
j=1

(n∏
i=1

(viu
−xs
i)−t

(j)
i

n∏
i=1

V
t
(j)
π(i)

i (
n∏

i=1

V di
i Vdg

−rV)1
)akj

=
n+1∏
j=1

Y Z(j)akj = Y
∑n+1

j=1 akjZ(j)
.

We then haveVπ−1(k) = Y Rπ−1(k)vku−xs

k .
Finally, if the commitment schemes are statistically binding and then the shuffle of

known content is statistically sound with statistical witness-extended emulation and we
have an SHVZK proof of a shuffle with statistical witness-extended emulation.�

6 Speed, Space and Tricks

ADJUSTING THE KEY LENGTH OF THE COMMITMENT SCHEME. When carrying out
the shuffle argument we use a homomorphic commitment scheme. If for instance we
use the Pedersen commitment scheme, then the public key for the commitment scheme
containsn+1 elements and the cost of making a commitment is a multi-exponentiation
of thosen+1 elements. Depending on the group sizes, it may be costly to compute and
distribute such a long key.

It is possible to trade off key length and computational cost when making a com-
mitment. Assume for simplicity in the following thatn = kl. Assume furthermore that
we have a homomorphic commitment scheme that allows us to commit tok elements
at once. We can now commit ton elementsm1, . . . ,mn by setting

c =
(
c1, . . . , cl

)
←

(
comck(m1, . . . ,mk), . . . , comck(mk(l−1)+1, . . . ,mkl)

)
.

Using the Pedersen commitment scheme, this forces us to makel multi-exponentiations
of k + 1 elements when making a commitment, but permits a shorter public key.

BATCH VERIFICATION. In the verification phase, the argument of shuffle of known
contents has us checking

cecd = comck(f1, . . . , fn; z) andce
acd = comck(f∆1 , . . . , f∆n−1 , 0; z∆).

Here we have implemented the latter commitment, which is a commitment ton − 1
elements, by using then-element commitment and adding a dummy zero. We note that
the important thing here is not the fact thatz is the randomizer, but rather that we know
some randomizer such that the above equations hold.

If we use one of the commitment schemes suggested in Section 2.3 we can verify
both commitments at once using randomization techniques. Namely, pickα← {0, 1}`e

at random and verify

(cecd)αce
ac∆ = comck(αf1 + f∆1 , . . . , αfn + 0;αz + z∆).

Suppose, this equality holds for two differentα, α′, then

((cecd)−1comck(f1, . . . , fn; z))α−α′ = comck(0, . . . , 0; 0).

We can now run the root extractor to findu so

(ce
acd)−1comck(f1; . . . , fn; z) = comck(0, . . . , 0;u).

In other words, we have an openingf1, . . . , fn, z−u of ce
acd. We also have an opening

f∆1 , . . . , f∆n−1 , 0, αu + z∆ of ce
ac∆. This means that with overwhelming probability

we can find openings ofcecd andce
dc∆ to respectivelyf1, . . . , fn andf∆1 , . . . , f∆n−1 .

The randomization method generalizes to the case where we have multiple com-
mitment equations to verify. As the number of commitment equations to be verified in-
creases, the cost for each verification goes down. Moreover, if we use a key withk+1 el-
ements for the commitments, then we havel commitments that we can verify with these
techniques. We havec = (c1, . . . , cl), cd = (cd,1, . . . , cd,l), ca = (ca,1, . . . , ca,l), c∆ =
(c∆,1, . . . , c∆,l). We pickα1, . . . , αl, β1, . . . , βl ← {0, 1}` and verify

(
l∏

j=1

c
αj

j c
βj

a,j)
e

l∏
j=1

c
αj

d,jc
βj

∆,j = comck

(l∑
j=1

(αjfk(j−1)+1 + βjf∆,k(j−1)+1),

. . . ,
l∑

j=1

(αjfkj + βjf∆,kj);
l∑

j=1

(αjzj + βjz∆,j)
)
.

This costs4l+k+2 exponentiations, mostly tòe-bit exponents. If for instancek ≈
√

n,
then the price is approximately5

√
n exponentiations. Using the straightforward non-

randomized approach, we would end up making2n + 4l exponentiations.
Randomization can also bring down the cost of ciphertext exponentiation in the

verification process. Suppose for instance we are using the shuffle in a mix-net; then
the output ciphertexts from one shuffle will be the input ciphertexts of another shuffle.
Calling the output ciphertexts of shufflej for E1,j , . . . , En,j , we have to check for allj
that

n∏
i=1

E
−ti,j

i,j−1

n∏
i=1

E
fi,j

i,j Ed,j = Epk(1;Zj).

Assume the order of the ciphertext space has no prime divisors smaller than2`. Suppose
we perform a total ofN shuffles. Pickingα0 = 0, αN+1 = 0 andα1, . . . , αN ←
{0, 1}` at random we can check

N∏
j=1

(
n∏

i=1

E
−αjti,j

i,j−1

n∏
i=1

E
αjfi,j

i,j E
αj

d,j) =
N∏

j=0

(
n∏

i=1

E
−αj+1ti,j+1+αjfi,j

i,j E
αj

d,j) = Epk(1;
N∑

j=1

αjZj).

This test has at most probability2−` of passing if either of theN equations is false. The
straightforward approach calls forN multi-exponentiations of2n ciphertexts. With the
randomized method, we only make one multi-exponentiation ofN(n + 1) ciphertexts.
Even though the exponents are` bits longer, this is a significant gain.

ONLINE /OFFLINE. Many of the prover’s computations can be pre-computed.
We can selectR1, . . . , Rn in advance and compute the rerandomization factors
Epk(1;R1), . . . , Epk(1;Rn). This way the shuffle itself can be done very quickly.

In the argument of shuffle of known contents we can computecd, c∆ in advance,
and in the argument of shuffle of homomorphic ciphertexts we can computec andcd in
advance. This leaves us with the task of computingca in the argument of correctness
of known contents, and in the shuffle of homomorphic ciphertexts we need to compute
Ed.

MULTI -EXPONENTIATION TECHNIQUES. While pre-computation and randomization
lessens the burden for respectively the prover and the verifier, there is still something

that remains. The prover has to computeEd =
∏n

i=1 E−di
i Epk(1;Rd), containing a

multi-exponentiation ofn ciphertexts. Likewise, the verifier will also have to compute
a multi-exponentiation of many ciphertexts. These are typically the most expensive op-
erations the prover, respectively the verifier, will run into.

While most multi-exponentiation techniques focus on relatively few elements, our
situation is different. First, all the ciphertexts are different and cannot be guessed be-
forehand so pre-computation is not that useful. Second, we have a huge number of
ciphertexts. Lim [34] has suggested a method for precisely this situation that uses rel-
atively few multiplications. Using his methods, the cost of the multi-exponentiation
corresponds toO(n/ log n) single exponentiations of ciphertexts.

Multi-exponentiation techniques can of course also be applied when computing the
commitments and in any pre-computation phase.

REDUCING THE LENGTH OF THE EXPONENTS. The easiest case is when both the com-
mitment scheme and the cryptosystem have a message space of the same order. Suppose
for instance that we are shuffling ElGamal ciphertexts where the message space has
prime orderq. As a commitment scheme, we can then pick the Pedersen commitment
scheme with message spaceZq. This allows us to reduce all exponents moduloq.

In some cases, voting for instance, it may be important that the messages be pro-
tected for a long time into the future. For this reason, we may for instance select ElGa-
mal encryption with a large modulus as the cryptosystem. However, the verification of
the argument may be something that takes place right away so soundness only has to
hold a short time into the future. Since the Pedersen commitment scheme is statistically
hiding, we get a statistically hiding argument for the correctness of a shuffle and do not
need to worry about the argument itself revealing the messages or the permutation. We
can therefore use a Pedersen commitment scheme with a relatively short modulus. The
only important thing here is that the orders of the message spaces match.

Of course, there may be situations where we have a huge message space for the
cryptosystem. In this case, the cost of a correspondingly large message space for the
commitment scheme may be prohibitive. If we are using the Fiat-Shamir heuristic to
compute the challenges, another trick may bring down the length of the exponents.
Recall, we choosès to be large enough sod anda+d are statistically indistinguishable
when d is chosen as a random|a| + `s-bit number. A reasonable choice would be
`s = 80. However, in the Fiat-Shamir heuristic we may get by with a much smaller
`s, for instancè s = 20. The idea is to check that we do not create an underflow or
overflow that reveals the number we are trying to hide. Therefore, if we are trying to
hide messagea ∈ {0, 1}`a , then we choosed as a random̀a + `s-bit number and
computea + d. However, ifa + d /∈ [2`a ; 2`a+`s) we start over again. This distribution
hidesa perfectly, but does of course increase the risk of having to start over again if at
some point we do not end up within the interval. However, with a suitable choice of`s

the gain we get from having shorter exponents outweigh the small risk of having to start
over again.

PICKING THE CHALLENGES. The important part when we pickt1, . . . , tn is thatn + 1
random vectors of the form(t(j)1 , . . . , t

(j)
n , 1) should have overwhelming chance of be-

ing linearly independent. This is the property that makes the proof of witness-extended
emulation go through.

Instead of the verifier picking all oft1, . . . , tn at random, he may instead pick a
seedt for a pseudorandom number generator at random. Thent1, . . . , tn are gener-
ated from this number generator. There is overwhelming probability thatn + 1 vectors
(t(j)1 , . . . , t

(j)
n , 1) generated from seedst(j) are linearly independent. Furthermore, now

we only have to pick a random seed and transmit this instead of pickingn elements
t1, . . . , tn as the challenge. In cases where the verifier is implemented as a multi-party
computation, this may be a significant simplification of the protocol.

In case the cryptosystem has message space of orderq and the commitment scheme
uses message spaceZq we just need linear independence overZq. One way to obtain
this is by pickingt at random and settingt1 = t1, . . . , tn = tn. Vectors of the form
(1, (t(j))1, . . . , (t(j))n) correspond to rows in a Vandermonde matrix. The vectors are
independent, since the determinant is non-zero, as long as the seedst(0), . . . , t(n) are
distinct. If we are using multiparty computation, then we can let each server pick a
random input to a collision-free hash function. As long as one of them is honest, the
collision-freeness of the hash function ensures that many such runs would give different
seedst(0), . . . , t(n), and thus we would obtain the needed linear independence.

We can also use a hash-function to pickx, λ ande, all we need is collision-freeness.
This way we get witness-extended emulation, as long as at least one of the verifiers
is honest. However, we may not have a uniform distribution on the outputs of the
hash-function, so we may need to apply standard techniques [24] to retain the zero-
knowledge property.

PARALLEL SHUFFLING. As observed by Neff [36], if we have many sets of ciphertext
that we want to shuffle using the same permutation we can recycle many parts of the
protocol. We only need one set of challengest1, . . . , tn, λ, x, e, the argument for shuffle
of known contents can be reused and so canc, cd, f1, . . . , fn. The only extra work the
prover needs to do is to compute a separateEd for each of the sets and correspondingly
send aZ to the verifier for each of the sets. The verifier will then for each of the sets
verify

∏n
i=1 e−ti

i

∏n
i=1 Efi

i Ed = Epk(1;Z). The extra cost for the prover, for each
additional set, is a multi-exponentiation ofn ciphertexts when computingEd. For the
verifier, each additional set costs a multi-exponentiation of2n ciphertexts.

SELECTING THE CRYPTOSYSTEM FOR A MIX-NET. Throughout the paper we have
assumed that the input and output ciphertexts were valid ciphertexts. When designing a
mix-net, for instance using the shuffle arguments presented here, it is of course relevant
to verify that indeed the input and output ciphertexts are valid. Attacks exist [54] that
will compromise the privacy of the mix-net if this check is not performed. We will
comment on how an ElGamal cryptosystem can be set up such that this check of the
ciphertexts can be done efficiently and be integrated with the argument of correctness
of a shuffle.

Let p = 2qp1 . . . pk + 1, whereq, p1, . . . , pk are distinct primes larger than some
bound2`. We letg be a randomly chosen generator of the unique subgroupGq of order
q. We choose the secret keyx← Zq and sety = gx. To encrypt a messagem ∈ Gq we
choose(b1, b2, r)← {−1, 1} × {−1, 1} × Zq and return the ciphertext(b1g

r, b2y
rm).

This cryptosystem allows for an efficient batch-verification of membership inCpk =
±Gq ×±Gq. Assume we have ElGamal ciphertexts(u1, v1), . . . , (un, vn). We choose

αi ← [0; 2`) and check whether(
∏n

i=1 uαi
i)q = ±1 and(

∏n
i=1 vαi

i)q = ±1. The tests
have probability2−` of passing if any of the ciphertexts does not belong toCpk.

If we use` = `e we may uset1, . . . , tn as ourα1, . . . , αn. We check in the shuffle
argument that

n∏
i=1

u−ti
i

n∏
i=1

Ufi

i Ud = ±gZ and
n∏

i=1

v−ti
i

n∏
i=1

V fi

i Vd = ±yZ .

As a side effect of these computations we may get out
∏n

i=1 uti
i and

∏n
i=1 vti

i . It only
costs a couple of exponentiations more to test(

∏n
i=1 uti

i)q = ±1 and(
∏n

i=1 vti
i)q =

±1. The test of validity of the ciphertexts therefore comes at a very low cost. Of course
the output ciphertexts can be incorporated into the verification in a similar manner.

7 Comparison of Shuffle Arguments

The literature contains several arguments and proofs for correctness of a shuffle. The
most efficient arguments and proofs generally follow one of two paradigms. In the
paradigm of Furukawa and Sako [20] we commit to a permutation matrix and sub-
sequently argue that indeed we committed to a permutation matrix and furthermore that
we have shuffled the ciphertext using the same permutation. This idea was improved by
Furukawa [18]. The second paradigm, used in this paper, was suggested by Neff [36].
In this paradigm one uses the fact that polynomials are stable under permutation of the
roots. Both paradigms have their merits, here we will compare them and give a rough
guide to which one to use.

7.1 SHVZK Proof

The schemes based on permutation matrices are arguments, and we see no way to
turn them into SHVZK proofs. If the situation calls for an SHVZK proof we there-
fore recommend following the Neff paradigm. An unfortunate consequence is that this
paradigm leads to 7-move SHVZK proofs, so if both unconditional soundness and low
round complexity is desirable then we are in trouble. It is an interesting open problem
to come up with a highly efficient 3-move SHVZK proof for correctness of a shuffle.

Our shuffle argument can be used for many different cryptosystems. Neff [36, 37]
investigated the case of ElGamal encryption, which we will look a little closer at now.
For SHVZK proofs it is reasonable to use groups of the same size both for the cryp-
tosystem and for the commitment scheme, since typically they will both be governed
by the same security parameter that is chosen so both the cryptosystem and the SHVZK
proof will keep the permutation secret. Therefore, we do not need to distinguish be-
tween exponentiations for the cryptosystem and exponentiations for the commitments;
their cost is comparable. Neff [37] suggests an SHVZK proof where the prover uses
8n exponentiations and the verifier uses12n exponentiations, wheren is the number
of ciphertexts in the shuffle. This has been improved to using8n exponentiations for
the prover and10n exponentiations for the verifier [38]. In comparison, in our scheme
using the statistically binding commitment scheme from Section 2.3 the prover uses7n

exponentiations and the verifier9n exponentiations. However, whereas Neff’s scheme
only relies on a DDH group wherein his cryptosystem is set, our scheme needs a com-
mon reference string with a commitment key to get this kind of efficiency. To make the
setting completely comparable, we could let the prover select the unconditionally bind-
ing commitment key and send it to the verifier in the first round. By making adjusting
the commitment key length to giving a commitment key for committing to

√
n elements

at a time, we still get slightly better performance.

7.2 SHVZK Argument

ELGAMAL ENCRYPTION. For ease of comparison with other arguments for correctness
of a shuffle in the literature, we will evaluate our scheme using ElGamal encryption and
Pedersen commitments with primesq, p whereq|p−1, |q| = 160, |p| = 1024. Whether
this choice is reasonable depends on the application of the shuffle. As argued earlier
when we use statistically hiding commitments and the verification takes place shortly
after the shuffle, we only need from the argument that the soundness holds a short
time into the future. In this case the binding property of the commitment scheme only
needs to be temporarily so it is reasonable to choose a small security parameter. For
the commitment scheme|p| = 1024 may therefore be reasonable enough. For higher
efficiency we might also decide to use elliptic curve groups for the commitment scheme.
On the other hand, in some cases we need strong guarantees that the cryptosystem does
not reveal anything about the messages many years into the future. In such a case it
would be reasonable to choose a larger security parameter for the cryptosystem.

The permutation matrix based approach was suggested by Furukawa and Sako [20].
Their scheme is not SHVZK [19], but it does satisfy a weaker security notion called
indistinguishability under chosen permutation attack, IND-CPA, as defined by Nguyen,
Safavi-Naini and Kurosawa [41].2 In Furukawa and Sako’s argument the prover uses8n
exponentiations and the verifier10n exponentiations. Furukawa [18] suggests a 3-move
SHVZK argument where both the prover and the verifier uses9n exponentiations. He
observes that lettingq = 2 mod 3 allows a simplification of the protocol. Groth and Lu
[27] uses this simplification to get an SHVZK argument that for ElGamal encryption it
is very similar to Furukawa’s scheme. In that scheme the prover uses7n exponentiations
and the verifier8n exponentiations.

In comparison, our scheme uses6n exponentiations for both the prover and verifier.
In the earlier version [23] the communication complexity was higher and the scheme

2 IND-CPA security considers an adversary that does not know the secret key for the cryptosys-
tem. The adversary chooses two permutations and sees a shuffle under one of the permutations
and an argument for correctness of the shuffle. The argument is IND-CPA secure if the adver-
sary cannot distinguish, which permutation was used.

was less fit for multi-exponentiations so we list both results separately. Table 1345 sum-
marizes the complexities of the various arguments for correctness of shuffling ElGamal
ciphertexts without using randomization or batching in the verification.

Furukawa-SakoGroth Furukawaproposed
[20] [23] [18, 27]

Prover (single expo.) 8n 6n 7n 6n
Verifier (single expo.) 10n 6n 8n 6n
Prover’s communication (bits)5120n 1184n 1344n 480n
Rounds 3 7 3 7
Common reference string (bits)1024n adjustable1024n adjustable
Privacy IND-CPA SHVZK SHVZK SHVZK

Table 1.Comparison of shuffle arguments for ElGamal encryption.

Table 1 should of course be read with care. More important than the number of sin-
gle exponentiations is what happens when we use randomization, batching and multi-
exponentiation techniques. As described in Section 6 our scheme is well suited to
take advantage of such techniques. We therefore obtain better efficiency than the other
schemes and more flexibility in terms of trading off key length and computational effi-
ciency.

PAILLIER ENCRYPTION. Several arguments for correctness of a shuffle of Paillier ci-
phertexts have also been suggested. Most of these arguments for correctness of a shuf-
fle follow the Furukawa-Sako paradigm and yield 3-round arguments. Nguyen, Safavi-
Naini and Kurosawa [41] were the first to suggest a 3-round argument for correctness of
a shuffle for Paillier encryption. They were followed by Onodera and Tanaka [45] that
achieved much better efficiency. Recently Groth and Lu [27] have suggested a shuffle
argument based on homomorphic integer commitments as well as one that uses ideas
from Furukawa [18]; we include the latter scheme in the table.

In Table 2 we compare the arguments for correctness of a shuffle of Paillier ci-
phertexts. The parameters we have chosen are a 1024-bit Paillier modulus, which gives
2048-bit ciphertexts, 160-bit challenges and for statistical hiding we use`s = 80. We
base our scheme on Pedersen commitment with primes|p| = 1024, |q| = 240. To
measure the prover’s and the verifier’s computational loads we count the number of ex-
ponentiations with 1024-bit exponents using a 2048-bit modulus. We assume that the

3 Table 1 does not include the cost of shuffling itself; it only tabulates the cost of the SHVZK
argument.

4 At first glance it might look like the verifier should use7n exponentiations to verify the shuffle.
However, the commitment tof1, . . . , fn in the full SHVZK argument for a shuffle and the
commitment to thef ′1, . . . , f

′
n in the SHVZK shuffle of known content can be combined such

that only one commitment needs to be computed by the verifier. This saves us from makingn
exponentiations and makes the verifier’s computational complexity6n exponentiations.

5 It is possible to reduce the communication complexity of our scheme further to 320n bits [24]
by combining parts of the argument of shuffle of known contents and the full shuffle argument.

computational load grows linearly in the length of the exponent and quadratically in the
length of the modulus. As for ElGamal encryption the table should be read with care
since multi-exponentiation and batch-verification techniques can improve the perfor-
mance of the schemes.

Nguyen et al.Onodera-TanakoGroth-Lu proposed
[41] [45] [27]

Prover (single expo.) 9n 1.3n 0.7n 0.4n
Verifier (single expo.) 8n 0.7n 0.7n 0.5n
Prover’s communication (bits)9216n 2413n 1664n 720n
Rounds 3 3 3 7
Common reference string (bits)2048n 1024n 1024n adjustable
Privacy IND-CPA SHVZK SHVZK SHVZK

Table 2.Comparison of shuffle arguments for Paillier encryption.

CONCLUSION. For situations where round complexity matters, the permutation matrix
based approach gives us 3-move schemes and seems like the best choice. In cases where
round complexity is of less importance the scheme we have suggested here is the best
choice. As described in Section 6 we can adjust the length of the common reference
string, so the cost of commitment key generation is not too large. Moreover, our scheme
offers the best computational and communicational complexities. In particular, if we are
using the Fiat-Shamir heuristic to make the shuffle argument non-interactive, then round
complexity does not matter much and the present scheme is the superior choice.

7.3 SHVZK Argument for Shuffle of Known Contents

We have suggested a 4-move SHVZK argument for shuffle of known contents. When
implemented with Pedersen commitments this argument requires the prover to make
3n exponentiations and the verifier to make 2n exponentiations. The communication
complexity is 320n bits sent from the prover.

If we implement the argument with the statistically binding commitment from Sec-
tion 2.3 the prover makes 3n exponentiations and the verifier makes 4n exponentiations.

We do not know of other SHVZK arguments for shuffle of known contents in the
literature. In cases where we only need an SHVZK argument for shuffle of known
contents [26] our scheme offers a significant saving in comparison with a full shuffle
argument.

7.4 Combined SHVZK Argument for Shuffle and Decryption

The 7-move SHVZK argument for a shuffle-and-decrypt operation for ElGamal en-
cryption costs 6n exponentiations for the prover and 7n exponentiations for the verifier.
The prover sends 480n bits to the verifier when making the argument, if we use the
parameters suggested earlier.

In comparison, Furukawa [18] suggests a 5-move argument, which is not SHVZK
but instead has a witness hiding property. In his argument the prover uses 6n exponen-
tiations and 1344n bits of communication and the verifier uses 8n exponentiations.

If we implement our scheme as an SHVZK proof, then the prover uses 8n exponen-
tiations and the verifier uses 10n exponentiations.

8 Acknowledgments

We greatly appreciate discussions we have had with Heiko Stamer and would like to
thank him for sharing the insights gained from his implementation of the protocols in
the paper [52]. We would also like to thank C. Andrew Neff for sharing drafts of related
work [38] with us.

References

1. Masayuki Abe. Universally verifiable mix-net with verification work indendent of the num-
ber of mix-servers. Inproceedings of EUROCRYPT ’98, LNCS series, volume 1403, pages
437–447, 1998.

2. Masayuki Abe and Fumitaka Hoshino. Remarks on mix-network based on permutation net-
works. Inproceedings of PKC ’01, LNCS series, volume 1992, pages 317–324, 2001.

3. Masayuki Abe and Hideki Imai. Flaws in some robust optimistic mix-nets. Inproceedings
of ACISP ’03, LNCS series, volume 2727, pages 39–50, 2003.

4. Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. Inproocedings of
CRYPTO ’92, LNCS series, volume 740, pages 390–420, 1992.

5. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. InACM CCS ’93, pages 62–73, 1993.

6. Dan Boneh and Philippe Golle. Almost entirely correct mixing with applications to voting.
In ACM CCS ’02, pages 68–77, 2002.

7. Felix Brandt. Efficient cryptographic protocol design based on distributed El Gamal encryp-
tion. In proceedings of ICISC ’05, LNCS series, volume 3935, pages 32–47, 2006.

8. David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.Com-
munications of the ACM, 24(2):84–88, 1981.

9. Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. Inproceedings of CRYPTO ’94, LNCS series,
volume 893, pages 174–187, 1994.

10. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. Inproceedings of
CRYPTO ’98, LNCS series, volume 1462, pages 13–25, 1998. Full paper available at
http://eprint.iacr.org/2001/108 .

11. Ivan Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. Inpro-
ceedings of EUROCRYPT ’00, LNCS series, volume 1807, pages 418–430, 2000.

12. Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme
based on groups with hidden order. Inproceedings of ASIACRYPT ’02, LNCS series, volume
2501, pages 125–142, 2002.

13. Ivan Damg̊ard and Mads J. Jurik. A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. Inproceedings of PKC ’01, LNCS series, volume
1992, 2001.

14. Ivan Damg̊ard and Mads J. Jurik. A length-flexible threshold cryptosystem with applications.
In proceedings of ACISP ’03, LNCS series, volume 2727, pages 350–364, 2003.

15. Yvo Desmedt and Kaoru Kurosawa. How to break a practical MIX and design a new one. In
in proceedings of EUROCRYPT ’00, LNCS series, volume 1807, pages 557–572, 2000.

16. Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

17. Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove mod-
ular polynomial relations. Inproceedings of CRYPTO ’97, LNCS series, volume 1294, pages
16–30, 1997.

18. Jun Furukawa. Efficient and verifiable shuffling and shuffle-decryption.IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci., 88-A(1):172–188, 2005.

19. Jun Furukawa, Hiroshi Miyauchi, Kengo Mori, Satoshi Obana, and Kazue Sako. An im-
plementation of a universally verifiable electronic voting scheme based on shuffling. In
proceedings of Financial Cryptography ’02, LNCS series, volume 2357, pages 16–30, 2002.

20. Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle. Inproceedings of
CRYPTO ’01, LNCS series, volume 2139, pages 368–387, 2001.

21. Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge protocols
using signatures.Journal of Cryptology, 19(2):169–209, 2006.

22. Philippe Golle and Ari Juels. Parallel mixing. Inproceedings of ACM CCS ’04, pages
220–226, 2004.

23. Jens Groth. A verifiable secret shuffle of homomorphic encryptions. Inproceedings of PKC
’03, LNCS series, volume 2567, pages 145–160, 2003.

24. Jens Groth. Honest verifier zero-knowledge arguments applied. Dissertation Series DS-04-3,
BRICS, 2004. PhD thesis. xii+119 pp.

25. Jens Groth. Cryptography in subgroups ofZ∗
n. In proceedings of TCC ’05, LNCS series,

volume 3378, pages 50–65, 2005.
26. Jens Groth. Non-interactive zero-knowledge arguments for voting. Inproceedings of ACNS

’05, LNCS series, volume 3531, 2005.
27. Jens Groth and Steve Lu. Verifiable shuffle of large size ciphertexts. Inproceedings of

Practice and Theory in Public Key Cryptography - PKC ’07, LNCS 4450, pages 377–392,
2007.

28. Markus Jakobson, Ari Juels, and Ronald L. Rivest. Making mix nets robust for electronic
voting by randomized partial checking. InUSENIX Security ’02, pages 339–353, 2002.

29. Markus Jakobsson. A practical mix. Inproceedings of EUROCRYPT ’98, LNCS series,
volume 1403, pages 448–461, 1998.

30. Markus Jakobsson. Flash mixing. Inproceedings of PODC ’99, pages 83–89, 1999.
31. Markus Jakobsson and Ari Juels. Millimix: Mixing in

small batches, 1999. DIMACS technical report 99-33,
http://www.informatics.indiana.edu/markus/papers/millimix.pdf .

32. Aggelos Kiayias and Moti Yung. The vector-ballot e-voting approach. Inproceedings of
Financial Cryptography ’04, LNCS series, volume 3110, pages 74–89, 2004.

33. Hendrik W. Lenstra. Factoring integers with elliptic curves.Ann. of Math., 126:649–673,
1987.

34. Chae Hoon Lim. Efficient multi-exponentiation and ap-
plication to batch verification of digital signatures, 2000.
http://dasan.sejong.ac.kr/ ∼chlim/pub/multi exp.ps .

35. Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computation.
Journal of Cryptology, 16(3):143–184, 2003.

36. C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. Inproceedings of
ACM CCS ’01, pages 116–125, 2001.

37. C. Andrew Neff. Verifiable mixing (shuffling) of ElGamal pairs, 2003.
http://www.votehere.net/vhti/documentation/egshuf.pdf .

38. C. Andrew Neff. Personal communication, 2005.
39. Lan Nguyen and Reihaneh Safavi-Naini. Breaking and mending resilient mix-nets. Inpro-

ceedings of PET ’03, LNCS series, volume 2760, pages 66–80, 2003.
40. Lan Nguyen, Reihaneh Safavi-Naini, and Kaoru Kurosawa. A provably secure and effcient

verifiable shuffle based on a variant of the paillier cryptosystem.Journal of Universal Com-
puter Science, 11(6):986–1010, 2005.

41. Lan Nguyen, Reihaneh Safavi-Naini, and Kaoru Kurosawa. Verifiable shuffles: a formal
model and a paillier-based three-round construction with provable security.International
Journal of Informations Security, 5(4):241–255, 2006.

42. Juan Manuel González Nieto, Colin Boyd, and Ed Dawson. A public key cryptosystem
based on a subgroup membership problem.Designs, Codes and Cryptography, 36(3):301–
316, 2005.

43. Miyako Ohkubo and Masayuki Abe. A length-invariant hybrid mix. Inproceedings of
ASIACRYPT ’00, LNCS series, volume 1976, pages 178–191, 2000.

44. Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem as secure as
factoring. Inproceedings of EUROCRYPT ’98, LNCS series, volume 1403, pages 308–318,
1998.

45. Takao Onodera and Keisuke Tanaka. Shufle for Paillier’s encryption scheme.IEICE Trans.
Fundam. Electron. Commun. Comput. Sci., E88-A(5):1241–1248, 2005.

46. Pascal Paillier. Public-key cryptosystems based on composite residuosity classes. Inpro-
ceedings of EUROCRYPT ’99, LNCS series, volume 1592, pages 223–239, 1999.

47. Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient anonymous channel and
all/nothing election scheme. Inproceedings of EUROCRYPT ’93, LNCS series, volume 765,
pages 248–259, 1993.

48. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret shar-
ing. In proceedings of CRYPTO ’91, LNCS series, volume 576, pages 129–140, 1991.

49. Kun Peng, Colin Boyd, Ed Dawson, and Kapalee Viswanathan. A correct, private, and effi-
cient mix network. Inproceedings of PKC ’04, LNCS series, volume 2947, pages 439–454,
2004.

50. Birgit Pfitzmann and Andreas Pfitzmann. How to break the direct RSA-implementation of
mixes. Inproceedings of EUROCRYPT ’89, LNCS series, volume 434, pages 373–381, 1989.

51. Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme - a practical solution to
the implementation of a voting booth. Inproceedings of EUROCRYPT ’95, LNCS series,
volume 921, pages 393–403, 1995.

52. Heiko Stamer. Efficient electronic gambling: An extended implementation of the toolbox for
mental card games. In Christopher Wolf, Stefan Lucks, and Po-Wah Yau, editors,WEWoRC
2005, volume P-74 ofLecture Notes in Informatics, pages 1–12. Gesellschaft für Informatik
e.V., 2005.

53. Douglas Wikstr̈om. The security of a mix-center based on a semantically secure cryptosys-
tem. Inproceedings of INDOCRYPT ’02, LNCS series, volume 2551, pages 368–381, 2002.

54. Douglas Wikstr̈om. Five practical attacks for optimistic mixing for exit-polls. Inproceedings
of SAC ’03, LNCS series, volume 3006, pages 160–175, 2003.

