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Abstract

A group signature scheme allows members of a group to sign messages anonymously. To counter
misuse, the so-called group manager can revoke the anonymity.

This paper contributes two results to the area of group signatures. First, we improve the state-of-the-
art scheme by Ateniese et al. by an order of magnitude. Our new scheme satisfies the recent security
definition by Bellare et al. Second, and of a more theoretical nature, we study the Bellare et al. definitions
and show that their notion of full-anonymity may require stronger assumptions than what is needed to
achieve a relaxed but reasonable notion of anonymity.

1 Introduction

Group signatures, introduced by Chaum and van Héyst [CvH91], allow a member to anonymously sign on
behalf of the group. More precisely, distinguishing whether or not two group-signatures originated by the
same or by different group members is infeasible to everyone but the group manager. A number of group
signature schemes are proposed in the literature [CvH91,|CP95] CS97] CM98, ACJT00]/ AST02, CL02a,
BMWO03,/AdM03,BBS04, CL04]. Many of them also allow members to join and leave the group at arbitrary
times [AST02[ CL02&, TX03].

Group signatures have many applications in the area of privacy protection. The most prominent one is
probably in trusted computing, where a computing device is required to authenticate as proper (i.e., secure)
device, i.e., that it has obtainedtestationby some third party. To protect privacy of the device’s user, this
authentication should not allow identification of the device. In fact, the protocol standardized by the Trusted
Computing Group to achieve this [Tru03] uses the Ateniese et al. group signature scheme JACJTO00] but
without its anonymity revocation feature.

In this paper, we present a new practical group signature scheme that is related to the Ateniese et al.
schemel[ACJT00]. We prove that it satisfies a strong security definition very similar to [BMWO03]. Security
is proved in the random oracle model under the strong RSA assumption and a DDH assumption.

Our scheme is considerably faster than the state of the art scheme in [ACJTO0O0]. Moreover, in our scheme
the protocol to join the group only takes two rounds. The prospective member sends a join request to the
group manager. The group manager sends a certificate back to the member.

The scheme supports dynamically joining new members to the group without changing the public key.
Furthermore, it is possible to revoke a secret key such that it can no longer be used to sign messages. Revo-
cation of a membership does require the public key to be modified. However, the modification is of constant
size and allows group members in good standing to update their secret keys easily. To accomplish the goal
we use methods similar to those of [CL02a] and [TX03]. Their schemes are not as efficient as our scheme.

We present a modification of our scheme that with only a small loss of efficiency also allows us to make
a full revocation, i.e., reveal all signatures signed with a revoked key. This scheme does not satisfy the
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[BMWO03] definition of security though. The problem is that given a private signature keydssible to
determine which signatures belong to the member in question.

As a separate theoretical contribution, we show that the existence of one-way functions and NIZK argu-
ments can be used to construct a group signature scheme. Again, we obtain a scheme that does not satisfy
the [BMWO3] definition because a member’s secret key does make it possible to identify signatures made by
this member. We propose how to define security of group signature schemes when compromise of members’
secret keys does matter.

We prove that the [BMWAOQ3] definition implies IND-CCA2 secure public key bit-encryption. As far as
we know, the existence of one-way functions and NIZK arguments does not entail the existence of public key
encryption. Therefore, it seems that to satisfy [BMWO03] one must use stronger security assumptions than
what is needed for just making a group signature scheme.

State of the art. The current state of the art group signature scheme is due to Ateniese_et al. [ACJTOO].
While being reasonably efficient, this scheme does not support certificate revocation. An extension by Ate-
niese, Song and Tsudik [ASTO02] implements the full revocation mentioned before, i.e., all bad signatures by
the revoked member are revealed. Unfortunately, this scheme is rather inefficient. Camenisch and Lysyan-
skaya[[CLO2Aa] and Tsudik and Xu [TXD3] propose schemes with dynamic revocation. This means that after

a certificate has been revoked the member cannot any longer make signatures. Both schemes are less efficient
than [ACJTOO]. [[TX03] is more efficient thah [CLO2a], but relies on a trusted third party to generate some

of the data, and need to update the key both when members join and leave the[group! [CL02a] can easily be
modified to only updating the verification key when memberships are revoked.

All the schemes mentioned here include in their assumptions the strong RSA assumption and the random
oracle model. Ateniese and de Medeiros [AAMO3] suggest a scheme that does not rely on knowledge of
the factorization of the modulus, but this scheme is much less efficient[than [ACJTO0]. [BMWO03] suggest
a scheme based on any trapdoor permutation and without the random oracle model. This scheme is only a
proof of concept; it is very inefficient.

Concurrent with our work, Boneh, Boyen, and Shacham [BBS04] as well as Camenisch and Lysyan-
skaya [CLO4] presented groups signatures schemes based on bilinear maps. While these schemes are more
efficient, they are based on new and alternative number theoretic assumptions.

2 Definitions

A group signature scheme involves three types of parties: members, non-members and a group manager.
It further consists of five algorithms KeyGen, Join, Sign, Verify, Open, and Revoke. The key generation
algorithm producegvk,gmsk «— KeyGen() as output, wherek is a public verification key andmskis
the group managers secret key. If the group of members is fixed, we may assume that the algorithm also
outputs a vectosk of secret keys to be used by the members. If, however, the group of members is dynamic,
KeyGen does not output secret keys for the members. Instead, the Join protocol can be used to let non-
members join the group. As the end of this protocol, a new member obtains a secrdt; keshile the
group manager obtains some informatigrrelated to the new member that he includes into his secret key
gmsk To sign a message the member runs — Sign(sk;, m). To verify a signaturer on messagen
one compute¥erify(vk, m, o). Furthermore, given a signatuseon m, the group manager can identify the
originating member by computin@pen(gmskm, o), which outputs the identity of the member who created
the signature. Finally, using the Revoke algoritfu®, gmsk «— Revoke(gmskY;), the group manager can
exclude the member relating 16 from the group.

Bellare, Micciancio, and Warinschi_ [BMWO3] propose two properties, full-traceability and full-
anonymity, that capture the security requirements of group signatures. These definition assume that the



key generation is run by a trusted party and do not consider members joining or leaving the group after the
key generation [BMWAQ3]. to include a dynamically changing membership.

Full-traceability. The short description of full-traceability is that without a member’s secret key it must be
infeasible to create a valid signature that frames this member. This must hold even if the group manager’s
secret key and an arbitrary number of the members’ secret keys are exposed.

Formally, we say that the group signature scheme has full-traceability if the expectation of the following
experiment is negligible.

EXpi‘—trace (k‘) .

(vk, gmsk sk) — KeyGen(k)

(m’ 0.) - ASign(sk,-),Corrupt(-)(,Uk7ngK

If Verify(vk,m,o) = 1,7 = Open(gmskm, o) € [k], i was not queriedorrupt(-) and(i, m) was
not queried t®ign(sk., -) then return 1

If Verify(vk,m,o) =1 andi = Open(gmskm, o) ¢ [k] then return 1

Else return O

HereCorrupt(-) is an oracle that on quetye [k] returnssk;.

[BMWO3] argue that full-traceability implies what is meant by the more informal notions of unforgeabil-
ity, no-framing, traceability, and coalition resistance as defined, e.d., in [ACJTOQ].

Full-anonymity. We want to avoid that signatures can be linked to group members or other signatures. For
this purpose, we define full-anonymity as the notion that an adversary cannot distinguish signatures from two
different members. This must hold even when we give the secret keys to the adversary. In other words, even
if a member’s key is exposed, then it is still not possible for the adversary to see whether this member signed
some messages in the past, neither is it possible to see if any future messages are signed by this member.

Expi‘_anon(b, k) :

(vk, gmsk sk) — KeyGen(k)

(0, i1, m) «— AOPOMSK) (yF sk): o« Sign(sk;,, m)
d «— AOpen(gmsk~,~)(U)

If A did not querym, o returnd, else return O

We say the group signature scheme has fulI—anonymityP'rﬂExpf;anon(1, ky = 1] -
Pr[Exp'; (0, k) = 1] is negligible.

[BMWOQ3] argue that full-anonymity entails what is meant by the more informal notions of anonymity
and unlinkability.

Anonymity. The [BMWO03] model is strict in its anonymity requirements. It demands that even if a mem-
ber's secret key is exposed it must still be impossible to tell which signatures are made by the member in
guestion. This is a good definition of security in a threat model where parties may be corrupted adaptively
but can erase data. The schemes in [ACJT00] and [CL02a] have this strong anonymity property as does our
new scheme with Join and Revoke.

In other threat models, this may be aiming too high. Consider for instance a static adversary, then the key
is exposed before any messages are signed or it is never exposed. Or consider an adaptive adversary where
parties cannot erase data, in this case full-anonymity does not buy us more security. We therefore define a



weaker type of anonymity that is satisfied if both the group manager’s secret key and the member’s secret key
are not exposed. We note that for instance the scheme_in [CYH91, AdMO03] TX03] satisfy only this weaker
property. One positive effect of not requiring full-anonymity is that potentially it makes it possible for the
member to claim a signature she made, i.e., prove that she signed a particular signature, without having to
store specific data such as randomness, etc., used to generate the signature. This latter property is called
claiming in [KTYO0A].

Exp®°"(b, k) :
(vk, gmsk sk) — KeyGen(k)
(io, il, m) - AOpen(ngK,-),Sign(sk,-),Corrupt(~) (Uk‘); o — Sign(sk‘ib, m)
d(_AOpen(gmsk-,-),Sign(sk.,-)(O_)
If A did not querym, o to Open and did not queryy, i; to Corrupt(-) then returnd, else return O

We say the group signature scheme is anonymoBs[Exp?°"(1, k) = 1] - Pr[Exp®%'°"(0,k) = 1] is
negligible.

As Bellare et al.[BMWOB], we can argue that anonymity implies the informal notions of anonymity and
unlinkability mentioned in the introduction.

3 Preliminaries

Protocols to Prove Knowledge of and Relations among Discrete Logarithms.In our scheme, we will use
various protocols to prove knowledge of and relations among discrete logarithms. To describe these protocols,
we use notation introduced by Camenisch and Stadler [CS97] for various proofs of knowledge of discrete
logarithms and proofs of the validity of statements about discrete logarithms. For indeat{cey, 5,~) :
y=g*h® A §=g*h A (u < a < v)} denotes aZero-knowledg@roof of Knowledge of integers, S,
and~ such thaty = g1 and§ = G*h" holds, where: < o < v,” wherey, ¢, h, 7, §, andh are elements of
some groups’ = (g) = (h) andG = (3) = (h). The convention is that Greek letters denote the quantities
the knowledge of which is being proved, while all other parameters are known to the verifier. Using this
notation, a proof protocol can be described by just pointing out its aim while hiding all details.

In the random oracle model, such protocols can be turned into signature schemes using the Fiat-Shamir
heuristic [FS86, PS96]. We use the notat®RK{ («) : y = ¢*}(m) to denote a signature obtained in this
way.

Cryptographic Assumptions. We prove security under the strong RSA assumption and the decisional
Diffie-Hellman assumption.

Assumption 1 (Strong RSA Assumption) The strong RSA (SRSA) assumption states that it is computation-
ally infeasible, on input a random RSA moduiuand a random element € Z, to compute values > 1
andv such thaw® = u (mod n).

The tuple(n, u) generated as above is callediastanceof theflexibleRSA problem.

Assumption 2 (DDH Assumption) Letp be an/,-bit prime andp an/,-bit prime such thag|p — 1. Letg €
Z;, be an element of order. Then, for sufficiently large values §f and/,, the distribution{(g, g%, g%, 9%)}
is computationally indistinguishable from the distributiéfy, ¢, ¢°, ¢°)}, wherea, b, and ¢ are random
elements fronf0, ¢ — 1]

"We do not allowA to corrupt member’s in the second phase. This is simply because we WLOG may assume that it corrupts all
other members thaty andi, before getting the challenge signature.
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The Camenisch-Lysyanskaya Signature Scheme.The group signature scheme is based on the
Camenisch-Lysyanskaya (CL) signature scheme [CLI02b, Lys02]. Unlike most signature schemes, this one
is particularly suited for our purposes as it allows for efficient protocols to prove knowledge of a signature
and to retrieve signatures on secret messages efficiently using discrete logarithm based proofs of knowl-
edge [CLO2D|, Lys02]. We recall the signature scheme here.

Key generationOn input1”, choose an RSA modulus= pq, p = 2p’ + 1, ¢ = 2¢' + 1 as a product of safe
primes. Choose, uniformly atrandom,, ..., gz, h, a € QR,,. Output the public keyn, g1, ..., 91, h,a)
and the secret key. Let ¢,, be the length of.

Message spacket /,,, be a parameter. The message space is thgsat ..., mz) : m; € £{0,1}}.

Signing algorithmOn inputmy, ..., my, , choose a random prime numbeof length/. > ¢,, + 2, and a
random number of length?,. = ¢, + ¢,,, + {5, wherel, is a security parameter. Compute the vajigich
thaty® = ag{" ...g}'*h" (mod n). The signature on the message;, ..., mr) consists ofe,y, 7).

Verification algorithmTo verify that the tuplde, y, r) is a signature on message, ..., mz), check that
y° =ag™ ...g7'""h" (mod n), and check that®s > e > 21,

Theorem 1 ([CLO2K]) The signature scheme is secure against adaptive chosen message attacks [GMR88]
under the strong RSA assumption.

Remarks. The original scheme considered messages in the intié)r,\ﬂrn — 1] . Here, however, we allow
messages from-2¢" + 1, 2f» — 1]. The only consequence of this is that we need to require/that,,, + 2
holds instead of, > ¢,,, + 1.

Further note that a signature can be randomized: It is clear thatfag™h" mod n, then we also have
(yh)¢ = ag™h" ¢ mod n. Thus, the signature scheme is not strong but it is secure against chosen message
attack.

The CL-signature scheme makes it possible to sign a committed message. One party computes the
commitmentg™h” mod n, wherer’ — Z, such thatm is statistically hidden. This party also proves
knowledge ofm,r’. The signer now picks as a randonf. = ¢»-bit prime, and picks” € Zg,. He then
computes; soy = ag™h”' " and returngy, e, ). Now the party has a signature enwithout the signer
having any knowledge about which message was signed.

We note that careful analysis of the signhature scheme’s security proof shows that in fact the requirement
of Camenisch and Lysyanskaya tiiat= ¢,, + ¢,,, + {5 holds can be relaxed @ = /., by pickingr «— Z..
However, if the goal is to sign a commitment message that shall be kept secret from the signer, one requires
a largerr, for instancer «— 7Z,,.

4 The Basic Group Signature Scheme

The ideas underlying our group signature scheme. We base our group signature scheme on two groups.
One group iR,,, wheren is an RSA modulus chosen as a safe-prime product. The other group is of order
QinZ}p, whereQ|P — 1.

Each member receives a CL-signat(ge e;, ;) on a message;. As part of a group signature, they will
prove knowledge of such a CL-signature. Since outsiders cannot forge CL-signatures, this ensures that the
signer is member of the group. As the group manager must be able to open signatures and identify the signer
we include in the group signature also an encryptioi;of= G** mod P. The signer proves knowledge of
x; and that it is the same; that she knows a CL-signature on. The group manager knowing the secret key
can decrypt and identify the signer. Because the group manager does natkmnesvavoid members being
framed by malicious group managers. The group manager cannot compute the discrete lagardhdn
therefore cannot make a group signature pointing to the member.
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In Figure[], we present the actual protocol. Following the model of [BMWO3], it assumes that the key
generation algorithm is run by a trusted third party. We later extend this scheme to include dynamic join and
revocation such that this third party is not required.

Parameters. The parameters of our schemes are as follows. We/uss a bit-length such that for any
integera when we pickr as aa| + ¢,-bit random number them+  andr are statistically indistinguishable.
£, is the length of the output of the hash-functidpis a number large enough that we can assign all members
different numbers and make tlt§’s prime.

It must be the case thét + (. + ¢, + 1 < lgandlg +l.+ ls + 1 < lp < 0, /2.

A suggestion for parameters fs = (p = 2048, (g = 504, lg = 282, {. = 160, ¢, = {; = 60.
This choice should ensure that factoringéarbit number is about as hard as computing discrete logarithms
modulo ar?p-bit prime [LVO1].

The proof of the following theorem follows from Lemrph 7 and Lenjrna 8 that are found in Apgendix A.

Theorem 2 The basic group signature scheme has full-traceability and full-anonymity.

5 Join and Revoke

Flexible Join. It may be impractical to set up the signature scheme with all members in advance. Often
groups are dynamic and we may have members joining after the public keys have been generated. The
recent schemes [ACJTOO0, CL02a, TX03] support members joining at arbitrary points in time. The schemes
[CLO2&, TX03] require that the public key be updated when a new member joins. However, they can easily
be modified to the more attractive solution where the public key does not need to be updated when a member
joins.

Our scheme supports members joining throughout the protocol. The idea is that the member generates
Y; = G" mod P herself, so only she knows the discrete logaritbyn Jointly the group manager and the
member generateg®™ h™ mod n, wherer; is so large thatr; is statistically hidden. Then she gives it to
the group manager who generatgs e;) and gives them to the member. Here we use that the CL-signature
scheme is secure against adaptive chosen message attack such that members cannot forge signatures and
thereby falsely join themselves.

Revocation. On occasions, it may be necessary to revoke a member’s secret key. Since signatures are
anonymous, the standard approach of using certificate revocation lists cannot be used. Fallowing [CLO2a]
we suggest using roots of some elemento implement revocation. A signature contains an argument of
knowledge of a paifw;, E;) such thatw = wf mod n. If we want to revoke a membership we update the
public key to containv < w;. Now this member may no longer prove knowledge of a roab@nd thus

she cannot sign messages any n{ﬂ)re.

When changing the public key we need to communicate to the remaining members how they should
update their secret keys. In our scheme, we do this by publighiogrresponding to the revoked member.
Members in good standing may use this to obtain a root of thewnd¢lrough a simple computation. This
means that the change in the public key is of constant size, and old members may update their secret keys by
downloading only a constant amount of public information.

The protocol is described in Figyre 2.

2A member with a revoked key can still sign messages under the old verification key and claim that they were signed when this
key was valid. Whether such an attack makes sense depends on the application of the group signature scheme and is beyond the
scope of the paper. One obvious solution is of course to add a time-stamp.



Basic Group Signature Scheme
KeyGen(k): Choose arf,,-bit RSA modulus: = pq as a product of two safe primes= 2p’ + 1,9 = 2¢’ + 1.
Select at random, g, h € QR,,.

Select at randorfi,-bit and/ p-bit primesQ, P such that)|P — 1. Let F' be an element of ordep in Z%.
Choose at randonY ¢, X € Zg and selG = FX¢ mod P, H = FX# mod P.

Select at random, ...,z € Zg and select at random, . .., ry € Zy,.
Choose different randorfy-bit numberse,, . . ., e, such thatls; = 2% e, ..., B, = 2°7 + ¢, are primes.
Computeyy, ..., yx such thatyfl = ag®™h™ modn,... ,ykEk = ag® h"* mod n.

Public key:vk= (n,a,g,h,Q, P, F,G, H).
Group managers private kegmsk= (vk, X¢,Y1 = G** mod P,...,Y; = G** mod P).
Memberi’s private key:sk; = (vk, z;, yi, €;,7)-

Sign(sk;, m): Select at random € {0,1}*»/2 andR € Zg. Setu = h"y; mod n, U; = F mod P,
Uy = G+ = GRY; mod P, andUs = H ¢ mod P Compute the (sub-)signature

SPK{(€7p7E,T) a4 = U22E+Eg_€hp mod n A U] = F" mod P A
Us=G  mod P A Us=H"" mod P A

= {_22e+€c+€s +2£E+ZC+ZS} AEe {_QEQJrécHs QEQJrécHs}}(m)
i.e., choose, € {0, 1}fetletts p € {0, 1}n/2Hletls € {0,1}feH et and Ry € Zg and compute
v=u"g " h" mod n, Vi = Ffr mod P, Vo = GFr*7= mod P, Vs = HEr¥Te mod P .

Compute a challenge= hash(vk u, v, Uy, Uy, Us, V1, Vo, V3, m) and set,, = r,, + cx;,
zr =71r +c(—=1; —TE;), 2e = re + ce;, andZi = Rg + ¢R mod Q.
Signatureo = (¢, u, Uy, Us, Us, 25, 2r, Zey ZR)-

Verify (vk, m,o): Check that, € {0, 1}fe**+¢ andz, € {0,1}¢e*+*+% Compute

—c — ‘E
v =a cg zzhzru02 —+ze

Vi = U;“F?% mod P, Vo = Uy “G#7 %2 mod P, Vy = Uy “H?5 %2 mod P

mod n,

and verify thatc = hash(vk u, v, Uy, Us, Us, Vi, Vo, V5, m)
Open(gmsk m, o): Verify that the signature is valid.

P—-1 P—1

Using X¢ decrypt(U; © mod P,U,° mod P)to getG @ “ mod P and returm.

2Goldreich and Rose [GRD3] show that to someone not knowing the factorizationthef element,” mod n is indistin-
guishable from a random element@Rr,, for r € {0, 1}‘"/2. This means that does not revea); to outsiders.

Figure 1: The Basic Group Signature Scheme.

Security. Asin the proof of Clainji 7]3, we could have generated the elementsg, h independently of the
factorization ofn such that we could still make signatures. Therefore, the adversary does not gain anything
extra from the ability to adaptively join members and revoke members. The scheme still has full-anonymity.
With respect to full-traceability, we have a problem since the group manager’s secret key now contains a
factorization ofn, and Clainj 7.B no longer holds. However, Clajmg 7.2[anpl 7.1 still hold so merahanot
be framed since only she knows the discrete logarithij; of
Remaining is the problem that the adversary may frame the group manager by creating a signature that
cannot be opened to any member. However, here we can prove that without knowledge of the group manager’s



Join and Revoke
KeyGen(): RunKeyGen(0) of the basic scheme. Choose also at random QR,, and include it invk. Prove that
g € (h) by runningPK{(«) : ¢ = h*} using binary challenges. Sginsk= (vk, p, ¢, X¢) wheren = pq.
Join: The member selects at randam«— Zg and compute¥; = G** mod P. She also forms a commitment to

x5, g"*h"i mod n with r; € Z,, and proves knowledge af;, 7, fitting the above. She sends, g% A" mod n
and the proof to the group manager.

The group manager seleetse {0, 1}% such thatt; = 2¢= + ¢, is prime. He computes; = w® ' mod n. He

selects at randon’ € Z. and setsy; = (ag® h™+")E " mod n. He sendsu;, y;, E;, r/ back to the new
member.

Her secret key isk; = (vk,w;, @i, = 1l + 1 yi, €;).

Sign(vk, sk;, m): Select at random € {0, 1}*/2 andR € Zq. Setu = h"y;w; mod n, U; = FF mod P,
Uy = GF+® mod P, andUs = H®+¢ mod P. Compute the (sub-)signature

SPK{(&, p,e,7) : aw = U2£E+697£hp modn A U; = F7 mod P A
Uy=G " mod P A Us=H " mod PA
= {_2€e+€c+es _~_2Ze+ec+es} A € c {_2€Q+€c+es 2€Q+€c+es}}(m)

i.e., choose, € {0,1}fettetts v ¢ {0, 1} /24 etls p € {0, 1} T+ and Ry € Zg and compute
v=u"*g""*h"™ mod n, V; = FB®= mod P, Vo = GRr¥72 mod P, Vs = HEr¥re mod P.
Compute a challenge= hash(vk, u, v, Uy, Us, Us, V1, Vo, V3, m) andz,, = r, + cx;, 2 = 1 + c(—1; — rE}),

Ze =Te+ce;y Zr = Rr 4+ ¢cR mod Q.

Signatures = (¢, u, U1, U, Us, 24, 2p, 2e, ZR)-
Verify (vk, m,o): Check that, € {0, 1}fe*¢+¢ andz, € {0, 1}t Compute

—c — ‘e
v = (aw) g *h*u? " T3 mod n,

Vi = U °F#% mod P, Vo = Uy °G#7F2= mod P, Vs = Uy “H?" "2 mod P

and verify thatc = hash(vk u, v, Uy, Us, Us, V1, Vo, V3, m)

OpenProof(gmsk ¢, m, o): This is the same as in the basic scheme.

Revokegmsk ¢): PublishE;. Replace irvk the elementv with w;.
Any member in good standing may update her secretskgys follows. She selects, 3 such that
al; + SE; = 1. Then she computes the newy «— wﬁqu mod n.

i

Figure 2: Protocol for Dynamic Join and Revoke.

secret key this is not possible.

Performance. We now discuss the performance of our group signature with join and revoke and compare
it to the ACJT scheme [ACJT0O0] and its extension to revocation by Camenisch and Lysyanskayal [CLO2b].
To compute a group-signature, one needs to do six exponentiations mBduith exponents fronZg,
one exponentiation modulo with an exponent of length, /2, and one multi-base exponentiation with one
exponent of lengtid,, /2 + ¢. + ¢, and two of length at modiy + /5 + /.. In a good implementation, the
computation of the multi-base exponentiation takes albboytercent more time than a single exponentiation
with an exponent of length, /2 + ¢, + ¢s.

The verification of a signature requires three two-base exponentiations mBdahal one multi-base



exponentiation module. As one of the exponents of the two-base exponentiations mddidoather small

(4. bits), these three take roughly the same time as three ordinary exponentiations ioQulocerning the
multi-base exponentiation modulg the same statements as for the multi-base exponentiation moedialo
the signature generation holds.

Let us compare this with the JACJTOOQ] group signature scheme. In order to achieve the same security as
in our scheme, the modulusused there needs to be abd096 bits. The reason is that in their scheme, the
group manager is given a valdg = a*ag mod n by a member, where; is the member’s secret. As the
group manager knows the factorizationngthe has an advantage when trying to compute discrete logarithms
modulon and hence to compute.

Now, the computation of a signature in the ACJT scheme takes four exponentiations modiito
exponents about the size of and three multi-base exponentiations with exponents the size of aPout
Assuming that all the exponentiations in the ACJT and our scheme were carried out with the same modulus
(which is quite a bit in favor of the ACJT scheme), our scheme is about 20 times more efficient.) Moreover,
our scheme also provides revocation, which the ACJT scheme does not. The extension of the ACJT to
revocation proposed by Camenisch and Lysyanskaya requires about four multi-base base exponentiations
with a 2048-bit modulus and exponents, in which case our scheme is more than 26 times more efficient.

Finally we note that the ACJT scheme requires that the member are assured that the mislalsafe
prime product while in our scheme it is sufficient that they are convincedgtlmat(h). The latter can be
achievednuchmore efficiently than the former.

Comment added Jan 14, 2006: Comparison with pairing based cryptosystemsHansen and Pagels
[HPOE] compare the performance of our basic group signature scheme with group signature schemes based
on bilinear mapd [CL04, BBS04, Floﬁ]Our group signature scheme has larger signature size than all these
schemes since we are not using bilinear groups, which have short representations of group elements. For
parameters yielding comparable security, it is faster to sign messages using our scheme than [CL04] and also
slightly faster than in[[BBS04, FI05]. Signature verification is faster using our scheme than using any of the
group signature schemes based on bilinear pairings mentioned above.

Separating the membership management and the anonymity revocation capability. There may be
cases where we want to separate the process of granting (and revoking) membership and the process of
revoking anonymity of signatures. A simple modification to our scheme allows for this.

The idea is thah is generated by the membership manager who can produce the needed CL signatures
that we use in our scheme. On the other hand, we let the anonymity revocation manager genérakbe
membership manager then registéfs mod P andH“ mod P with the anonymity revocation managers.

Now, if the member that wants to sign a message pickand r,. large enough (for instance from
{0,1}f=+6), then in the group) R,, everything is statistically hidden. Furthermore, i3, everything is
encrypted. Therefore, the membership manager can no longer see who signs a particular message. How-
ever, the membership manager needs to proveythat w; € (h), otherwise the side-classes might leak
information.

6 Full Revocation

Revocation revisited. The current method of revocation does not allow us to revoke signatures valid under
an old key. It would be highly impractical to demand that all members re-sign messages when the public key
is updated. Instead, we would prefer a solution parallel to that of certificate revocation lists that allow us to
publish information that marks signatures signed by the now distrusted member. Nevertheless, of course we

3[BBS04] uses a weaker security model than we do.



still want to preserve the privacy of all other members so we cannot simply reveal the group manager’s secret
key.

We propose an addition that solves this problem. The idea is to pick a random elgneefil; when
the member joins. The member can now foffff mod P and F'*: mod P and include them in a group
signature. According to the DDH assumption, this will just look like two random elements. However, if the
group manager releasgs then all signatures suddenly become clearly marked as belonging to said member.

We do need to force the member to use otherwise the member could create group signatures that
could not be full-revoked. Therefore, we include a random elerfienQR,, in the public key and give the
member a CL-signature on the forfy;, E;, ;), whereyiEi = af%¢g*h" mod n. The member will form
Uy, Vy asUy = FB% mod P andV, = F% mod P, when making the signature and argues correctness of
this together with an argument thgtis included in the CL-signature that she knows.

The protocol is described in Figyre 3.

Security. A member’s secret key contairg. Therefore, if the secret key is exposed it is easy to link the
member with the signatures she has made. We can therefore not hope to have full anonymity but must settle
for anonymity.

In theory, it is possible to construct a signature scheme that supports full revocation and full-anonymity.
One idea could be that the group manager selects elemegnts with B; = AZX mod P and signs these el-
ements. Then the member must produce in addition to the standard signaturé4fpaiod P, B/** mod
P) and prove in zero-knowledge that it has been properly formed. Once the group manager wants to make
a full revocation, he publisheX;. However, the member’s secret key does not inclXgeso exposure of
this key does not reveal which messages she has signed. This method is not very efficient though. It is an
open problem to come up with an efficient group signature scheme that has full-anonymity and supports full
revocation.

On the flip side, we note that it may be seen as a positive thing that the member’s signing key reveals
which messages she signed.In [KTY04]'s notion of traceable signatures it is a requirement that the member
should be able to claim his signature. When the member’s secret key links him to her signatures then this
can be done easily without her having to store old randomness used in specific signatures that she might later
want to claim.

7 Separating Full-Anonymity and Anonymity

Full-anonymity implies IND-CCA2 public key bit-encryption. To appreciate the strength of the
[BMWO3J] definition of security of a group signature scheme, let us see that full-anonymity implies CCA2
secure public key bit-encryption.

Theorem 3 If a group signature scheme satisfying full-anonymity exists, thetNERCCA2 public key
cryptosystem for encrypting bits exists.

Sketch of proofWe set the group signature scheme up with just two identigig@s. The secret keys corre-
sponding to these two members is published, they are the public key of the cryptosystem. To encrypt a bit
we usesk;, to sign the message = 0. The group manager’s keymskcorresponds to the secret key of the
cryptosystem. Witlgmsk it is possible to open the signature to see whether it was signedyjtior sk;, .
This means that the bitcan be recovered.

Let us now restrict ourselves to adversaries that outjui;, 0) in the first phase. Then the definition of
full-anonymity corresponds exactly to the definition of IND-CCAZ2 security. O
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Group Signature with Full Revocation
KeyGen(): As in the basic scheme except we now also include a random elgffieth Q R,, in the public key, as
wellasw €r QR,,.
Join: The Join protocol remains the same except now the member chooses a random glenegtand gets
yi = (af* g= 7+ )E" mod n, while the group manager learas

Sign(vk, sk;, m): Choose randomizers as in the Join and Revoke scheme ané=skty;w; mod n,
Uy = FE mod P, Uy = G+ mod P, U3 = H®"¢ mod P, andU, = U;* mod P.

Compute the (sub-)signature

SPK{(¢,&, p,e,7) : aw = u2€E+8f_"/’g_5h" modn A Uy = F" mod P A
Uy=Gmod P A Us=H " mod P A Uy =U{ mod P A
= {72ze+éc+£s’+265+gc+és} A w’g c {72‘€Q+‘€c+‘€s’2‘€Q+‘€c+‘€s}}(m) ,

i.e., choose, € {0, 1}fatlette p e {0, 1}atbetle p € {0, 1}0n/2HbeFE ) € {0, 1}t e+ and
Rpr € Z¢g and compute

v=u"f"" g7 h" mod n, Vy = FER mod P, Vo = GBr¥7= mod P,
Vs = HErFTe mod P, Vi =U* mod P,
Compute a challenge= hash(vk u, v, Uy, Us, Us, V1, Vo, V5, m) andzs = rs + ¢S4, 2 = T2 + €24,
zr =1 +c(—r; —TE;), 2e =7¢ + ce;, Zr = Rr + cR mod Q.
Signatures = (¢, u, Uy, Ua, Us, Uy, 25, Zr, Za, Ze, ZR)-
Verify (vk,m, o): Check that, € {0,1}¢+¢+*% andz,, z, € {0, 1} e*+f+t Compute

v = (aw)_cf_ZSg_Z’hzTuCQZE+Z€ modn, Vi= UfCFZR mod P, V5= U{cGZR'*'Z“c mod P,
Vs = Uy “H?" 2 mod P, Vi = U, °Uf* mod P

and verify thatc = hash(vk u, v, Uy, Us, Us, Uy, V1, Vo, V3, Vi, m)
Open(gmsk m, o): The opening protocol remains the same.
Revokg gmsk ): The revocation protocol remains the same.
FullRevoke(gmsk 7): Look ups; and publish it on the certificate revocation list. Execute Refgesk ).

Sinces; is now public anybody may check in old signatures whethef = U,
whether the signatures have been formed by the fully revoked member.

P—1 P—1
q S

mod P and therefore

Figure 3: Group Signature with Full Revocation.

[AdMO3] speculate whether it is possible to construct a group signature scheme based only on one-way
functions. Following[[IR89] we believe it is not possible to construct public key encryption from one-way
functions, and therefore not possible to construct a group signature scheme from one-way functions that
satisfies the security definition of [BMW0D3].

8 A Group Signature Scheme Based on One-Way Functions and NIZK Ar-
guments

We will present a group signature scheme with full-traceability and anonymity based on the assumptions that
one-way functions exist and that non-interactive zero-knowledge arguments exist.

11



Recall that one-way functions imply the existence of pseudorandom functions, signature schemes secure
against existential forgery under adaptive chosen message attack and statistically binding commitment to any
string. As shown in[DIO98] the statistically binding commitment scheme based on one-way functions from
[Nao91] can be made non-interactive.

The central idea in the group signature scheme we are going to present is that a member can demonstrate
membership by producing a signature on the message under an authorized verification key that is part of the
public key.

There is the question how the group manager will be able to tell the members apart. We let the public key
contain a commitment to a seegfor a pseudorandom function. By evaluating this function on a randomly
chosen element, the member allows the group manager to identify him. On the other hand, nobody else can
tell the pseudorandom string apart from a random string, and therefore cannot tell who signed the message.
To force the member to use a correct seed we require him to produce a NIZK argument of correctness.

The protocol is described in Figuré 4. For simplicity and to facilitate comparison with the [BMWO03]
definition we do not include the join protocol in this description.

Group Signature Based on One-Way Functions and NIZK Arguments

KeyGen: Generate signature keyskcas, skaar). Letpk be a public key for an unconditionally binding
commitment scheme. Select at random a sgegd and letcay, be a commitment teg,, using
randomnessg,.

For each member generate signature Keys, msk;). Select also a seeq for the pseudorandom
function. Letc; be a commitment te; using randomness.

The public key isvk = (pk, canr, vkau, c1, vk, . . ., ci, vky). The group manager’s secret key is
gmsk= (vk, s1,..., k).

Memberi's secret key isk; = (vk,vk;, msk;, s;,7;).
Sign: The member wishing to sign messagedoes the following.

She generates a strong one-time signature key(pkisr, skor). She then forms

oor = Sign,,«, (vkor). She picks a random point She setg = PRF, (1) @ oor. Letp be a NIZK
argument that is indeed the pseudorandom function evaluatedunder a seed; in one of the
commitments, XORed with a valid signature ok under keyvk;, or it is the pseudorandom
function evaluated im under seedq ;s XORed withvkor signed under keykqy,. Having done all
this she computes a one-time signatugg = Signg, .. (m, vkor,, e, p).

The signature consists of= (vkor,r,e,p, o).

Verify: The verifier wishing to verify a signatutekor, r, e, p, 04;) On message: checks the signature
o4 and that the progp is valid.

Open: The group manager, wishing to open a signatufer, r, e, p, o4;;) ON Message first verifies the
signature. Then he goes through the list of segdisat he has given members computing ERF).
When he reaches= i he can extract a signatuse)r onvkor. Then he knows thatis the member
and he may demonstrate this by revealbing- together with the keyk;.

Figure 4: Group signature based on any one-way function and any general NIZK argument

We will now argue the following theorem.
Theorem 4 The group signature scheme described in Figure 4 has full-traceability and anonymity.

Sketch of proof.
Full-traceability. The zero-knowledge argument implies that either a valid signature points to one of the
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members oe contains a signature undekq,,. But if the latter is the case, then we would be able to forge
signatures. Therefore,must be such that it points to one of the members.

Suppose now that the adversary is able to generate a valid signature pointing to memibeout
corrupting partyi or querying(i, m) to the signing oracle. We will use the adversary to forge a signature
underwvk; or vkaps. First, since we are using a strong one-time signature scheme the adversary cannot
reuse a public keykor that it has received fror8ign(sk.,-). By the NIZK argumenfp we havee =
PRFg, (1) ® oor, Whereoor is a signature underk; or vkgy,. However, with the knowledge &f ands
we may then extract this signature and therefore we have made a forgery.

Anonymity. Imagine the two experiments defining anonymity where we use respectivglpr sk;, to
generate the signature are distinguishable. In that case, the two experiments where we firgt fuats
random, then run the two experiments but only oupiftwe guessed correctly and the adversary did not
querym, o to Open orig, i1 to Corrupt, are also distinguishable. Now, set these two experiments up such
that forig andi; we simulate the NIZK proofs when making signatures. By the zero-knowledge property of
the NIZK arguments, this means that we still have two distinguishable experiments. Imagine further, that
we form¢;, andc¢;, as commitments t0 but still uses;, ands;, when making signatures. By the hiding
property of the commitment scheme, the two experiments are again indistinguishable. Now, modify further
the experiments such that we use= PRF(r) @ Signg,,, (vkor) whenever Sign outputs a signature.
Since PRF is a pseudorandom function, the two experiments are still indistinguishable. Finally, instead of
simulating proofs make instead proofs usinigands. Now, the two experiments are both distinguishable
and identical, a clear contradiction. O

We do not know of any construction of public key encryption from one-way functions and non-interactive
zero-knowledge arguments. Theordms 3[and 4 therefore indicate that a group signature scheme having full-
anonymity may require stronger assumptions than what is needed to obtain anonymity.

The scheme in Figufg 4 can easily be extended to a traceable signature scheme [KTYO04]. THeorems 3 and
[ can then be seen as indications that group signatures require stronger assumptions than traceable signature
schemes.

9 Conclusion

We have contributed in two directions. On the practical side, we have suggested a new group signature
scheme that is efficient and can be extended to support revocation and full revocation. Of a more theoretical
nature, we have noted that full-anonymity may require stronger assumptions than what is needed to achieve
anonymity.

This leaves an interesting open problem of suggesting a group signature scheme that supports full revo-
cation but at the same time has full-anonymity.

While we have shown that in the static model our group signature realizes security model of [BMWO03],
but for the dynamic case we gave only sketches of security proofs in this extended abstract.
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A Security Proof of Basic Group Signature Scheme

Lemma5 Letn = pq, wherep = 2p' + 1 andq = 2¢’ + 1 are safe primes. We assume the strong RSA
assumption holds fd£;. Lets, ¢t € Z* andd > 1 be produced by an adversa# such thats? = t? mod n.
If dis odd we have = ¢ and ifd is even we have = +t.

Proof. Assume to start with that is odd. Then we havés/t)? = 1 mod n. If p'¢’|d then we can break the
strong RSA assumption, since for alyve haveh = h?+! mod n. If p’|d andq’ fd thenged(n, 224 —1) =
p and we have factored. Likewise we get a non-trivial factorization efif p’ Jd and¢’|d. Finally, if p’ fd
andq’ Jd then we are looking at a normal RSA-exponentiation and therefere.

If d is even, then we can use the theorem to take care of the odd part. Assume therefore WLOG that
d = 2¢. Sinceged(2,p'q’) = 1 we get(s/t)?" = 1 mod n implies (s/t)> = 1 mod n. Then(s/t)? — 1 =
((s/d) —1)((s/d) + 1) mod n gives uss = =+t or a non-trivial factorization of.. O

Lemma6 Letn = pq, wherep = 2p’ + 1 andqg = 2¢’ + 1. We will assume the strong RSA assumption
holds. Pickgy, ..., g at random fromQR,,. Let an adversary produce € Z) andz,z1,...,z; such that

u® = gi' -+ g/ mod n. Then with overwhelming probability | 1, ...,z | ;. In particular, if 2 = 0 then
3:1:362:...:1:[:0

We refer to Camenisch and Shoup for the proof of this Lemma [CS].

Lemma 7 The basic group signature scheme has full-traceability.
Proof. In any group signature the pdit/;, Uz) defines a unique such thaﬁ%m = (UQUfXG)% mod
P, whereX(; is such thatz = FX¢ mod P. A group signature contains an argument of knowledge of this
2 and an argument of knowledge of a signatureron

We will first argue in Clainj 7]1 that we can use the group manager’s secret key to make perfect sim-
ulations of group signatures without knowing thgs. This means that the signing oracle does not reveal
anything about the; belonging to a member.

Next, we will argue in Claini 7]2 that if an adversary successfully produces a group signature on a new
messagen not queried before, and this signature &g, Us) encryptingY;, then this implies knowledge of
x;. This means that we can usgkin an algorithm to break the DDH problem {#’).

Finally, we will argue in CIai3 that any valid signature must contéin Us) pointing to one of the
T;'S.

Claim 7.1 GivenY; (= G* mod P), e;, andy; we can make a perfect simulation of a group signature for
memberi.

Proof. Pickr € {0,1}*/2 at random from and set = h"y; mod n. ChooseR € Z at random and set
Uy = Ffmod P,Us = GRY; mod P,Us = H*¢ mod P.

Choosec € {0,1}% at random and choose, € {0,1}fe*ttls 5 {0,1}n/2Hetls | 5 ¢
{0, 1}fettetts "and Zr € Zg at random. Set = a~¢g 2 hryu2 Pz mod n V; = U; °FZR mod P,
Vo = Uy °GZrT22 mod P, andVs = Uy “HZr% mod P

Define the random oracle to outpubn query(vk, u, v, Uy, Us, Us, Vi, Va, V3, m).

Claim 7.2 If the z; of an uncorrupted member is inside the group signature, then the group signature con-
tains a proof of knowledge af,.
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Suppose(UQU_XG)% G'@ " mod P. In a valid signature we have, among other things, =
FZrU ¢ mod P andV, = GZr Uy mod P.

The ¢ matches that of the hash- functlon evaluated in, among other tHikg&, 1, V2. Modeling the
hash-function as a random oracle the adversary can only have negligible chance of guessing this, so we can
assume that the adversary actually at some point made a query conf@dinirig 11, V5. As an answer to
this query, it received a random challengend was able to producér andz,. To have noticeable chance of
success it should also have had noticeable chance of answering another chaliemgproduce satisfactory
Zy, 2. such thal; = FZrUT mod P andVy = GZr+%: U5 ¢ mod P.

We deduce that/“™® = FZ7r~Zr mod P andUS™® = G7r~ZrG*~* mod P. This implies that
((UzU_XG) Ql)c ¢ — g'a =) nod P, So, if (U1,Us) point to z;, then we must have; =
Z" Zz mod (). Thus, we have successfully computed the discrete logarithohY; mod P.

Claim 7.3 A valid group signature contains one of tb€:’s inside (Uy, Us).

Proof. Definex as the element frorg such tha(UgU‘XG) — '@ * mod P. We will show that the
strong RSA assumption implies that a valid group signature witbt being one of the;’s implies that the
adversary is capable of an existential forgery attack on the CL-signature.

First, we have to make sure that the key generation algorithm does not reveal anything about the factor-
ization ofn, otherwise we could not use the strong RSA assumption in the proof.

We ch00S8ip,s¢, Gbases Pbase at random fromQR,,, and choosé”, ..., Ej as random primes with the
. k E; k_E; k B,
correct distribution. We may now compute= abHa’Sj "modn,g = ggjsel " mod n,h = hgfsel " mod

n. This means that we do not need the factorization t§ produce the signaturés;, E£;, ;) on thex; that
we give to the members.

Consider nowA trying to form a valid signature that does not point to one of the members. Dgfine
22 4 z,. From correct proofs to two different challenges’ we havev = a=¢g~* h* u*# mod n andv =

k / k
—c 2yl .. . ez (C—C/)Hj:l E; (zz—2z) j=1 Ej . (2 ZW)H] 1 B
a”¢ g *h*u”e mod n. This implies that*? = = a; base hbase ” mod

n. By Lemmal} this implies thatzg — 27%) | (¢ — ¢) H;?:l E; and thus(c — )2/ + (2. — 2) | (¢ —
)H] 1 Ei. Considering the sizes aofy — 2/, En, ..., Eg, andc — ¢ we get that(c — ) | (ze — 2.)

and hencdzg — zj;) = £E;(c — ) for someE;. From Lemmd b we also gét — ¢) | (2, — z,) and
(c—=¢) | (2 — 2.). We definer = == ZI andr = 2. Removing the: — ¢ factor in the exponent we get
(£uthFi = £4*Fi = qg®h" mod n, which is a CL- S|gnature on.

In a real execution we do not set up the protocol with kndwrroots ofa, g, h. Rather we just reveal
a set of signatures. What we have shown above is just that the adversary will generate a CL-signature on
x using one of thek;’s belonging to a member. This means that we have an existential forgery on the CL-
signature scheme unless= x; mod E; for somei. Considering the sizes af,, 2. relative toE; we then
havex = z; for somekE;.

At the same time we have already seen in Clain 7.2 that a signature contains a proof of knowledge of
z such that Uy Uy XG) — G2 * mod P, wherez = Zz__j,; mod Q. Sincezg__cz,lz = x; we therefore
deduce that a valid group signature does indeed point out a menabjés . O

It is worth noting that Claim 7]1 and Claim 7.2 hold even if we know the factorization dhis matters
when we consider scenarios where the group manager generatestherefore may generate it maliciously
and with knowledge of a lot of extra information about it.

Lemma 8 The basic group signature scheme has full-anonymity.
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Proof. The intuitive reason that we have full-anonymity is that since everything is encrypted and proved in
zero-knowledge, a signature does not reveal anything about the signer’s secret key. The obstacle is that the
adversary can ask the group manager to open messages. Essentially this gives a chosen ciphertext attack
on the cryptosystem used to hide the identities. We will argue that a signature actually is a CCA2 secure
encryption of the identity of the signer.

A valid group signature actually contains two encryptions of the member’s identity. Wg tiayE,) =
(FE mod P, G®Y; mod P) and also(Uy,Us) = (F® mod P, H'H® mod P). This means we have two
ElGamal encryptions of messages that will allow the group manager to identify the signer. In addition to that,
the proof of Clai shows that a group signature actually contains a proof of knowledg€thds) and
(U1, Us) point to the same member. We therefore have a setup of a CCA2 secure cryptosystem much like in
[NY90,/CS98[ Sah01].

Let us start with the expectation Expi(*mon(l, k). We may setup, g, h asin Clai , such that we
do not reveal the factorization ef By Claim[7.], we may simulate the group signature when generating the
challenge group signature by choosing the challenge in an appropriate way.

Since we are simulating the proof, we may fofth , Us) as a ciphertext encrypting “oc mod P instead
of H%1 mod P. If A can notice the difference, then it means that it can break the semantic security of the
ElGamal encryption.

The next step we take is to switch the key we are using to decrypt. We set up the signature scheme
with knowledge ofX ; instead ofX, and use decryption di/;, Us) to find out who signed the message.
Since a proof thatU;, Us) and (U, Us) point to the same member is included in the signatutegieries to
Open(gmsk -, -) this oracle answers the same on all queries where, Uy, Us, Us, V1, Va, V3, m) is not the
same as in the challenge signature. In other watddpes not learn from the openings whether iKig or
Xy that we use to decrypt.

The only thing we have to guard against is thiateusegm, u, v, Uy, Ua, Us, V1, Vo, V3) from the chal-
lenge signature. Call the answers used in the simulated signatures, for z., Zr, and let the answers
produced byd bez, z,., 2}, Z1,.

SinceUV; = F#r mod P we must have that’, = Zp. U§V3H—ZR = H%* = H% mod P implies
thatz. = 2/ mod Q. Sincez. andz/ are smaller tha® this shows that. = 2..

The equationv = a “g~ % hery2 Ptz = a_cg_zéhzi'uCQZE‘*'Ze modn shows thatl =
g7~ h*~* mod n. By Lemmd 6 we then have, = 2/, andz, = z..

Overall, we therefore see that the adversary cannot re¢ycle Uy, Us, Us, Vi, Va, V3, m) without recy-
cling the entire challenge group signature. Therefore, the adversary cannot tell the difference between using
X and Xy to decrypt.

We now have a hybrid signature with simulated proof &fd mod P in (U, Us) and H% mod P in
(U1,Us) and we useX g to reveal the identity of parties. We now consider the experiment where we use
U, = Gt mod P. By the semantic security of EIGamal encryption, this is not something4haill
notice. The experiment has now been modified so much that it is siE@b{[aﬂon(O, k) with simulated
proof. O
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