
A Compiler of Two-Party Protocols for

Composable and Game-Theoretic Security,

and Its Application to Oblivious Transfer

Shota Goto and Junji Shikata

Yokohama National University, Japan

IMACC 2015

Introduction

2

Security notions of cryptographic protocols

Cryptographic Security

To guarantee some basic concrete properties

when participants follow the designed algorithms.

Game-Theoretic Security

To guarantee that following the

specifications of the protocol is the most

reasonable for rational participants.

Composable Security

To guarantee security of protocols

even if they are composed with

other ones.

These concepts capture situations from different perspectives.

Universal Composability [C01]

3

𝑃1
𝑆𝜋,𝐴

ℱ

𝑃1 𝑃2

𝑃3 𝑃4

𝜋 𝐴

𝑃2 𝑃3
𝑃4

environment 𝑍

Ideal Process Protocol Execution

A protocol 𝜋 UC-realizes an ideal functionality ℱ, if for any

adversary 𝐴 there exists a simulator 𝑆 such that for any

environment 𝑍, Ideal Process ≈ Protocol Execution.

≈

[C01] R. Canetti, “Universally composable Security: A new paradigm for cryptographic protocols,” FOCS

2001.

Protocols remain secure even if arbitrarily composed with other ones.

Game-Theoretic Security

4

Utility Function :

Nash Equilibrium (NE) :

A protocol is game-theoretically secure. Following the specifications is in NE.

[ACH11]

[ACH11] G. Asharov, R. Canatti, C. Hazay, ”Towards a game theoretic view of secure computation,”

EUROCRYPT 2011.

• It mathematically represents the preferences of each participant.
 • Rational participants select the strategies with which they can get

the highest value of utility.

• One of the most commonly used solution concept.

• When all participants choose the NE strategies, no party can

gain his utility by changing his strategy unilaterally.

Our Study

5

＋
UC-Secure

Protocol

composition

UC-Secure

Protocol
UC-Secure

Protocol

GT-Secure

Protocol ＋

composition

？

Generally…

GT-Secure

Protocol

We consider the following question :

Does composing protocols having GT-security result in a secure

protocol in the sense of GT-security?

Our Study

6

• Our Primary Goal

We address how protocols with security in game-theoretic model can be

composed to obtain an overall game-theoretically secure protocol.

To achieve a primitive with both UC and GT security.

• Our Approach

1. We try to adapt the UC model compiler of [CLOS02] to

the Local UC framework [CV12].

2. We consider the application of our compiler to oblivious

transfer (OT) protocols. In particular, we consider the

construction of [GMW87, G04, CLOS02].

[G04] O. Goldreich, “The Foundations of Cryptography,” Basic Applications, vol. 2. Cambridge

University Press 2004.

[GMW87] O. Goldreich, S. Micali, A. Wigderson, “How to play any mental game or a completeness

theorem for protocols with honest majority,” STOC 1987.

[CV12] R. Canetti, M. Vald, ”Universally Composable Security With Local Adversaries,” SCN 2012.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai, “Universally composable two-party and multi-party

secure computation,” STOC 2002.

Uncapturable Situations

in the UC Framework

7

𝑃1

𝑃2

𝑃3
𝑃4

𝑃5

Corrupt

𝑃2
𝑃3 𝑃4

𝑃5

Corrupt

capturable uncapturable

A protocol is attacked by

a centralized adversary.

A protocol is attacked by

adversaries who are not cooperative.

Another model which is suitable for game-theoretic settings is needed.

𝑃1

Local UC [CV12]

8

𝑍

𝐴(1,2) 𝐴(1,𝑛) 𝐴(𝑛,1) 𝐴(𝑛,𝑛−1)

𝑃1 𝑃𝑛 ⋯

⋯ ⋯

LUC model

UC model 𝑍

𝑃1 𝑃𝑛

𝐴

⋯

: input / output

: communication

[CV12] R. Canetti, M. Vald, ”Universally Composable Security With Local Adversaries,” SCN 2012.

𝑷 : set of party IDs

𝐴(𝑖,𝑗) : adversary for ordered pairs 𝑖, 𝑗 ∈ 𝑷2

(𝑖 ≠ 𝑗)

Connection between the LUC

Framework and GT-security

9

At first sight, one may think these two notions are not well connected.

• GT-security requires that all participants can get the highest

utility when each of them acts honestly.

• LUC-security requires the indistinguishability between the

real-world and the ideal-world.

However, there is an important point common to these two notions, namely,

all participants are allowed to behave in a malicious (or rational) way.

If we define an ideal functionality in the LUC framework accurately so

that it captures correct actions of participants and matches utility

functions, we can say LUC-security implies GT-security.

Defining an ideal functionality of complicated protocol may be a

hard work, therefore it cannot be unconditionally said so.

Compiler in the UC Framework [CLOS02]

10

π

semi-honest 𝐴

Comp(π)-ℱ𝐶𝑃

malicious

ℱ UC-realize UC-realize

Compile

• A universally composable compiler based on the work of [GMW87].

• It transforms any protocol that is designed for the semi-honest adversarial

model into one that is secure against malicious adversaries.

How to obtain security :

 Force the adversary to use a fixed input.

 Force the adversary to use a uniform random tape.

 Force the adversary to follow the protocol exactly.

Commit-and-prove

functionality [CLOS02]

𝐴

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai, “Universally composable two-party and multi-party

secure computation,” STOC 2002.

[GMW87] O. Goldreich, S. Micali, A. Wigderson, “How to play any mental game or a completeness

theorem for protocols with honest majority,” STOC 1987.

11

1. Random tape generation

𝑃1 𝑃2

𝑟1
1 ∈𝑅 0,1 𝑘

ℱ𝐶𝑃
𝑟1
1 receipt

𝑟1
2 ∈𝑅 0,1 𝑘

𝑟1
2

𝑟1 ≝ 𝑟1
1 ⊕ 𝑟1

2

2. Activation due to a new input

(a) Input commitment

𝑃1
ℱ𝐶𝑃

𝑥 𝑃2 receipt

(b) Protocol computation

A party 𝑃1 proceeds as follows (the code for a party 𝑃2 is analogous).

𝑥 : The list of inputs.
𝑚1 ∶ The series of messages that 𝑃1 received until now.

𝑃1 runs the code of 𝜋 using 𝑥, 𝑚1, 𝑟1.

𝑟1 serves as 𝑃1’s random tape for execution of 𝜋.

Compiler in the UC Framework [CLOS02]

12

3. Activation due to incoming message

(b)𝑚2 equals the series of messages received by 𝑃2 from 𝑃1 until now.

4. Output

The relation 𝑅𝜋 for ℱ𝐶𝑃 is defined as follows.

(c) Outgoing message transmission

𝑃1
ℱ𝐶𝑃

𝑚, 𝑟1
2, 𝑚1 𝑃2 𝑚, 𝑟1

2, 𝑚1

𝑅𝜋 = { (𝑚, 𝑟1
2, 𝑚1 , 𝑥 , 𝑟1

1)| 𝑚 = 𝜋(𝑥 , 𝑟1
1 ⊕ 𝑟1

2, 𝑚1) }

𝑃1 proves that 𝑚 is truly the correct message.

𝑃1 verifies that the following conditions hold:

(a)𝑟2
1 is the string that 𝑃1 sent to 𝑃2 in the step 1.

If the conditions hold, then 𝑃1 appends 𝑚 to its list 𝑚1 and proceeds

as in the steps 2-(b) and 2-(c).

Whenever 𝜋 generates an output, Comp(𝜋) generates the same output.

Compiler in the UC Framework [CLOS02]

Compiler in the LUC Framework

13

To utilize the compiler in the LUC framework, we need to

similarly complete the simulation.

In the UC framework, a semi-honest adversary 𝐴 can internally

simulate the behavior of a malicious adversary 𝐴′ by delivering a

message only when 𝐴′ sends a correct message.

π Comp(π)-ℱ𝐶𝑃

semi-honest 𝐴 malicious

≈
𝐴′

However, we cannot do that without any modifications on

the existing process.

Compiler in the LUC Framework

14

The reason of this impossibility lies in the difference of communication models.

𝜋 UC

𝑃1 𝑃2

Comp 𝜋 -ℱ𝐶𝑃

𝑃1 𝑃2 ℱ𝐶𝑃

LUC 𝜋 Comp 𝜋 -ℱ𝐶𝑃

𝑃1 𝑃2 𝑍 𝑃1 𝑃2 ℱ𝐶𝑃

The environment 𝑍 can distinguish these two situations.

We consider switching the interacting

process of an original protocol 𝜋 to

the one which uses a subroutine.

𝜋-ℱ 𝑚𝑡

𝑃1 𝑃2 ℱ 𝑚𝑡

Ideal functionality ℱ 𝑚𝑡(message transmission)

1. Upon receiving (𝐒𝐞𝐧𝐝, 𝑠𝑖𝑑,𝑚, 𝑃𝑗) from 𝑃𝑖, send a public delayed output (𝐒𝐞𝐧𝐝, 𝑠𝑖𝑑,𝑚, 𝑃𝑖)

to the party 𝑃𝑗.

2. Upon receiving (𝐃𝐞𝐥𝐢𝐯𝐞𝐫, 𝑆 𝑗,𝑖 , 𝑚) from 𝑆 𝑖,𝑗 , send (𝐃𝐞𝐥𝐢𝐯𝐞𝐫𝐞𝐝, 𝑆 𝑖,𝑗 , 𝑚) to 𝑆 𝑗,𝑖 .

committer : 𝐶 receiver : 𝑉 adversary : 𝑆

security parameter : 𝑘 relation : 𝑅

・Upon receiving a message (𝐂𝐨𝐦𝐦𝐢𝐭, 𝑠𝑖𝑑, 𝑤 ∈ 0,1 𝑘) from 𝐶, append the value 𝑤

to the list 𝑤 , and send a public delayed output (𝐫𝐞𝐜𝐞𝐢𝐩𝐭, 𝑠𝑖𝑑) to 𝑉.

・Upon receiving a message (𝐂𝐏⎼𝐩𝐫𝐨𝐯𝐞𝐫, 𝑠𝑖𝑑, 𝑥 ∈ 0,1 𝑝𝑜𝑙𝑦 𝑘) from 𝐶, compute

𝑅 𝑥,𝑤 ; If 𝑅 𝑥,𝑤 = 1, then send a public delayed output (𝐂𝐏⎼𝐩𝐫𝐨𝐨𝐟, 𝑠𝑖𝑑, 𝑥) to 𝑉.

・Upon receiving a message (𝐃𝐞𝐥𝐢𝐯𝐞𝐫, 𝑆 𝑗,𝑖 , 𝑚) from 𝑆 𝑖,𝑗 , send the message

(𝐃𝐞𝐥𝐢𝐯𝐞𝐫𝐞𝐝, 𝑆 𝑖,𝑗 , 𝑚) to 𝑆 𝑗,𝑖 .

Compiler in the LUC Framework

15

Ideal Functionality ℱ 𝐶𝑃(commit-and-prove)

[CV12] R. Canetti, M. Vald, ”Universally Composable Security With Local Adversaries,” SCN 2012.

For using the commit-and-prove functionality in the LUC model,

we adopt the notion of the merger functionality in [CV12].

We add the message delivery algorithm for simulators.

Compiler in the LUC Framework

16

π

semi-honest 𝐴

Comp(π⎼ℱ 𝑚𝑡)⎼ℱ 𝐶𝑃

malicious 𝐴

Compile

π⎼ℱ 𝑚𝑡

𝐴

ℱ ∗

semi-honest

Hybrid

ℱ ∗

LUC model

UC model

π

semi-honest 𝐴

ℱ∗

Compile
Comp(π)⎼ℱ𝐶𝑃

malicious 𝐴

ℱ∗

ℱ ∗

Theorem 1 :
Let ℱ be a two-party functionality and let 𝜋 be a protocol that LUC-realizes ℱ

against semi-honest adversaries. Then Comp(π⎼ℱ 𝑚𝑡)⎼ℱ 𝐶𝑃 LUC-realizes ℱ against

malicious adversaries.

Application to Oblivious Transfer

17

SOT
Compile

Comp(SOT⎼ℱ 𝑚𝑡)⎼ℱ 𝐶𝑃

• We consider the construction of 1-out-of-2 OT protocol,

denoted by SOT, in [CLOS02] which UC-realizes the OT

functionality in static and semi-honest adversarial model.

• We investigate whether SOT is GT-secure, before and after

being compiled.

Oblivious Transfer [R81] ：
A sender transfers one of potentially many pieces of information to a receiver,

but remains oblivious as to what piece has been transferred.

[R81] M.O. Rabin, “How to exchange secrets with oblivious transfer,” Tech. Rep. TR-81,

Aiken Computation Lab, Harvard University, 1981.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai, “Universally composable two-party and multi-party

secure computation,” STOC 2002.

OT Protocol in the UC Framework

18

Sender 𝑇 Receiver 𝑅

𝑓

𝑦0, 𝑦1

𝑏0, 𝑏1

𝑦𝑖 = 𝑓(𝑟) 𝑟 ∈𝑅 0,1 𝑘

𝑦1−𝑖 ∈𝑅 0,1 𝑘

𝑏0 = 𝑥0 ⊕ 𝐵(𝑓−1 𝑦0)

𝑏1 = 𝑥1 ⊕ 𝐵(𝑓−1(𝑦1)) 𝑥𝑖 = 𝑏𝑖 ⊕ 𝑟

(𝑥0, 𝑥1 ∈ {0,1}) (𝑖 ∈ {0,1})

𝑓: Trapdoor permutation

0,1 𝑘 → 0,1 𝑘

𝐵: Hard core predicate for 𝑓

𝑅 receives 𝑥𝑖 such that 𝑅 cannot obtain any more information,

while 𝑇 obtains no information about the selection of 𝑅.

(𝑘: security parameter)

SOT [CLOS02]

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai, “Universally composable two-party and multi-party

secure computation,” STOC 2002.

Analysis of GT-Security

19

 𝑈𝑅 = −𝛼𝑅 ⋅ Pr 𝑖′ = 𝑖 𝑔𝑢𝑒𝑠𝑠𝑇 𝑇 𝑥0, 𝑥1 , 𝑅 𝑖 = 𝑖′ −
1

2
)

 +𝛽𝑅 ⋅ (Pr 𝑓𝑖𝑛 𝑇 𝑥0, 𝑥1 , 𝑅 𝑖 = 1 − 1)

 +𝛾𝑅 ⋅ Pr 𝑥′ = 𝑥1−𝑖 𝑔𝑢𝑒𝑠𝑠𝑅 𝑇 𝑥0, 𝑥1 , 𝑅 𝑖, 𝑥𝑖 = 𝑥′ −
1

2
)

 𝑈𝑇 = −𝛼𝑇 ⋅ Pr 𝑥′ = 𝑥1−𝑖 𝑔𝑢𝑒𝑠𝑠𝑅 𝑇 𝑥0, 𝑥1 , 𝑅 𝑖, 𝑥𝑖 = 𝑥′ −
1

2
)

 +𝛽𝑇 ⋅ (Pr 𝑓𝑖𝑛 𝑇 𝑥0, 𝑥1 , 𝑅 𝑖 = 1 − 1)

 +𝛾𝑇 ⋅ Pr 𝑖′ = 𝑖 𝑔𝑢𝑒𝑠𝑠𝑇 𝑇 𝑥0, 𝑥1 , 𝑅 𝑖 = 𝑖′ −
1

2
)

Definition : Utility functions [HTYY12]

Let 𝜋 be an OT protocol having a sender 𝑇 with inputs 𝑥0, 𝑥1 ∈ {0,1} and a receiver

𝑅 with an input 𝑖 ∈ 0,1 . Let 𝛼𝑇 , 𝛽𝑇 , 𝛾𝑇 , 𝛼𝑅, 𝛽𝑅 , 𝛾𝑅 be positive constants.

The utility functions 𝑈𝑇 for 𝑇 and 𝑈𝑅 for 𝑅 are defined as follows.

where 𝑔𝑢𝑒𝑠𝑠T ∙ and 𝑔𝑢𝑒𝑠𝑠R(∙) mean guessing by 𝑇 and 𝑅 for the

opponent’s private value, and 𝑓𝑖𝑛(∙) represents the completion of the

protocol execution.

[HTYY12] H. Higo, K. Tanaka, A. Yamada, K. Yasunaga, “A game-theoretic perspective on oblivious

transfer,” ACISP 2012.

Analysis of GT-Security

20

𝑈𝑇 𝜎𝑇 , 𝜎𝑅 ≥ 𝑈𝑇 𝜎𝑇
∗ , 𝜎𝑅 − 𝑛𝑒𝑔𝑙 𝑛

𝑈𝑅 𝜎𝑇 , 𝜎𝑅 ≥ 𝑈𝑅 𝜎𝑇 , 𝜎𝑅
∗ − 𝑛𝑒𝑔𝑙 𝑛

Definition : Nash equilibrium

For a pair of utility functions (𝑈𝑇 , 𝑈𝑅), we say that a pair of strategies (𝜎𝑇 , 𝜎𝑅)
is in Nash equilibrium, if for every pair of strategies (𝜎𝑇

∗ , 𝜎𝑅
∗), it holds:

Definition : Game-theoretic security for OT

Let 𝜋 be an OT protocol having a sender 𝑇 and a receiver 𝑅.

Let 𝜎𝑇 and 𝜎𝑅 be strategies planned to follow all the specifications of 𝜋.

We say that 𝜋 is game-theoretically secure, if the pair of strategies 𝜎𝑇 , 𝜎𝑅

is in Nash equilibrium with respect to the pair of utility functions (𝑈𝑇 , 𝑈𝑅).

Analysis of GT-Security

21

• SOT

Sender 𝑇 :

Receiver 𝑅 :

+𝛾𝑅 ⋅ Pr 𝑥′ = 𝑥1−𝑖 𝑔𝑢𝑒𝑠𝑠𝑅 𝑇 𝑥0, 𝑥1 , 𝑅 𝑖, 𝑥𝑖 = 𝑥′ −
1

2
)

• If 𝑇 prefers the completion of the protocol … ⅰdecrease /ⅱincrease

• If 𝑇 prefers to protect the secret value … ⅰincrease /ⅱdecrease

−𝛼𝑇 ⋅ Pr 𝑥′ = 𝑥1−𝑖 𝑔𝑢𝑒𝑠𝑠𝑅 𝑇 𝑥0, 𝑥1 , 𝑅 𝑖, 𝑥𝑖 = 𝑥′ −
1

2
)

+𝛽𝑇 ⋅ Pr 𝑓𝑖𝑛 𝑇 𝑥0, 𝑥1 , 𝑅 𝑖 = 1 − 1

Theorem 2 :

The protocol SOT is not game-theoretically secure in the presence of

rational parties, however, the compiled protocol Comp(SOT-ℱ 𝑀𝑇)-ℱ 𝐶𝑃 is

game-theoretically secure in the presence of rational parties.

• If 𝑅 applies 𝑓 for generating 𝑦1−𝑖, 𝑅 can obviously obtain 𝑇’s

private value 𝑥1−𝑖 in addition to 𝑥𝑖 .

• 𝑦1−𝑖 and 𝑟 are randomly chosen, so 𝑅’s dishonest behavior is

not detectable.

• This results in increasing the value

ⅰ.

ⅱ.

Analysis of GT-Security

22

• Comp(SOT-ℱ 𝑀𝑇)-ℱ 𝐶𝑃

The pair of strategies 𝜎𝑇 , 𝜎𝑅 is in Nash equilibrium.

Receiver 𝑅 :

Sender 𝑇 :

The compiled protocol of SOT meets GT-security.

• 𝑅 cannot enhance its own utility even if applying 𝑓 for

generating 𝑦𝑖 , 𝑦1−𝑖.

+𝛽𝑅 ⋅ (Pr 𝑓𝑖𝑛 𝑇 𝑥0, 𝑥1 , 𝑅 𝑖 = 1 − 1)

• Compared to the case where 𝑅 follows the protocol

specifications, it results in decreasing the value

• 𝑇 can obtain the highest utility by following the

protocol honestly.

Conclusion

23

We have proposed a compiler of two-party protocols in

the LUC framework based on [CLOS02].

We have shown the application of our compiler to an

oblivious transfer protocol to achieve a primitive with

both UC and GT security.

Thank You!

- It transforms any two-party protocol secure against semi-

honest adversaries into a protocol secure against malicious

adversaries.

