Subtle Authenticated Encryption Achieving AE despite Deterministic Decryption Leakage

Guy Barwell Dan Page Martijn Stam

Department of Computer Science, University of Bristol

Autumn 2015

Outline

- **1** Security for the Real World
 - Authenticated Encryption
 - Extending the Security Framework
 - SAE
- 2 Comparison of Strengthened AE notions
 - BDPS
 - RUP
 - RAE[τ]
- 3 Conclusions
 - Conclusion

Authenticated Encryption Extending the Security Framework SAE

Security for the Real World

Security for the Real World

- Authenticated Encryption
- Extending the Security Framework
- SAE
- 2 Comparison of Strengthened AE notions

3 Conclusions

Authenticated Encryption Extending the Security Framework SAE

Authenticated Encryption

- Two parties share a key and want to communicate "securely"
- Their messages should be *private* and *authentic*
- An adversary wants to stop them doing this

Authenticated Encryption Extending the Security Framework SAE

Authenticated Encryption

- Two parties share a key and want to communicate "securely"
- Their messages should be *private* and *authentic*
- An adversary wants to stop them doing this

Authenticated Encryption Extending the Security Framework SAE

Authenticated Encryption

- Two parties share a key and want to communicate "securely"
- Their messages should be *private* and *authentic*
- An adversary wants to stop them doing this

Authenticated Encryption Extending the Security Framework SAE

Authenticated Encryption

Goals

What does the adversary want to do?

- Learn something about the content of a message
- Send a message that was not intended

Powers

What can they do to help them achieve this?

- Some sort of oracle access they've discovered/created
- eg request encryptions or decryptions

Authenticated Encryption Extending the Security Framework SAE

Authenticated Encryption

Goals

What does the adversary want to do?

- Distinguish encryptions from random
- Distinguish real decryption from one that always rejects

Powers

What can they do to help them achieve this?

- Make queries to an honest encryption oracle
- Make queries to an honest decryption oracle

Authenticated Encryption Extending the Security Framework SAE

Authenticated Encryption: Syntax

An Authenticated Encryption scheme is a pair of algorithms

$\begin{array}{rcl} \mathcal{E} & : \mathsf{K} \times \mathsf{N} \times \mathsf{A} \times \mathsf{M} & \to & \mathsf{C} \\ \mathcal{D} & : \mathsf{K} \times \mathsf{N} \times \mathsf{A} \times \mathsf{C} & \to & \mathsf{M} & \cup & \{\bot\} \end{array}$

Where:

- K Key space
- N Nonce space
- A Associated Data
- M Message Space
- C Ciphertext Space
- ⊥ Invalid ciphertext symbol

Authenticated Encryption Extending the Security Framework SAE

Authenticated Encryption: Syntax

An Authenticated Encryption scheme is a pair of algorithms

Where:

- K Key space
- N Nonce space
- A Associated Data
- M Message Space
- C Ciphertext Space
- ⊥ Invalid ciphertext symbol

Authenticated Encryption Extending the Security Framework SAE

Authenticated Encryption

Goals

What does the adversary want to do?

- Distinguish encryptions from random
- Distinguish real decryption from one that always rejects

Powers

What can they do to help them achieve this?

- Make queries to an honest encryption oracle
- Make queries to an honest decryption oracle

Authenticated Encryption Extending the Security Framework SAE

Authenticated Encryption

Goals

What does the adversary want to do?

What can they do to help them achieve this?

Reference world is *ideal* rather than attainable.

Authenticated Encryption Extending the Security Framework SAE

A piecewise name scheme for AE notions

- IND\$-CPA is our IND-CPA
- INT-CTXT is our CTI-CCA
- AE (CCA3) is our AE—PASS

Authenticated Encryption Extending the Security Framework SAE

A piecewise name scheme for AE notions

- IND\$-CPA is our IND-CPA
- INT-CTXT is our CTI-CCA
- AE (CCA3) is our AE—PASS

Authenticated Encryption Extending the Security Framework SAE

A piecewise name scheme for AE notions

- IND\$–CPA is our IND–CPA
- INT-CTXT is our CTI-CCA
- AE (CCA3) is our AE—PASS

Authenticated Encryption Extending the Security Framework SAE

A piecewise name scheme for AE notions

- IND\$–CPA is our IND–CPA
- INT-CTXT is our CTI-CCA
- AE (CCA3) is our AE—PASS

Authenticated Encryption Extending the Security Framework SAE

Decryption Leakage

Decryption is not ideal

In the real world, not all rejections are the same: The adversary may discover some extra information...

e.g.:

- Timing
- Error Codes
- Unsecured buffers (eg candidate/encoded plaintexts)

Authenticated Encryption Extending the Security Framework SAE

Decryption Leakage

Decryption is not ideal

In the real world, not all rejections are the same: The adversary may discover some extra information...

e.g.:

- Timing
- Error Codes
- Unsecured buffers (eg candidate/encoded plaintexts)

Authenticated Encryption Extending the Security Framework SAE

Decryption Leakage

Decryption is not ideal

In the real world, not all rejections are the same: The adversary may discover some leakage

e.g.: Timing, Error codes, temporary buffers, ...

- Only invalid decryption queries leak.
- Leakage is a deterministic function of its inputs.

Authenticated Encryption Extending the Security Framework SAE

Decryption Leakage

Decryption is not ideal

In the real world, not all rejections are the same: The adversary may discover some leakage

e.g.: Timing, Error codes, temporary buffers, ... We will assume that:

- Only invalid decryption queries leak.
- Leakage is a deterministic function of its inputs.

Authenticated Encryption Extending the Security Framework SAE

Modelling Decryption Leakage

So, our leakage functions looks like:

 $\Lambda \quad : \mathsf{K} \times \mathsf{N} \times \mathsf{A} \times \mathsf{C} \quad \rightarrow \quad \{\top\} \quad \cup \quad \mathsf{L}$

(Where an output of \top corresponds to a valid message)

Guy Barwell

Subtle Authenticated Encryption

Authenticated Encryption Extending the Security Framework SAE

Modelling Decryption Leakage

So, our leakage functions looks like:

$$\Lambda \quad : \mathsf{K} \times \mathsf{N} \times \mathsf{A} \times \mathsf{C} \quad \rightarrow \quad \{\top\} \quad \cup \quad \mathsf{L}$$

(Where an output of \top corresponds to a valid message)

Guy Barwell

Subtle Authenticated Encryption

Authenticated Encryption Extending the Security Framework SAE

Modelling Decryption Leakage

So, our leakage functions looks like:

$$\Lambda \quad : \mathsf{K} \times \mathsf{N} \times \mathsf{A} \times \mathsf{C} \quad \rightarrow \quad \{\top\} \quad \cup \quad \mathsf{L}$$

(Where an output of \top corresponds to a valid message)

Authenticated Encryption Extending the Security Framework SAE

Oracles

Thus our oracles have the syntax:

$$\begin{array}{rcl} \mathrm{Enc}, \mathcal{E} & : \mathsf{K} \times \mathsf{N} \times \mathsf{A} \times \mathsf{M} & \to & \mathsf{C} \\ \mathrm{Dec}, \mathcal{D} & : \mathsf{K} \times \mathsf{N} \times \mathsf{A} \times \mathsf{C} & \to & \mathsf{M} & \cup & \{\bot\} \\ \Lambda & : \mathsf{K} \times \mathsf{N} \times \mathsf{A} \times \mathsf{C} & \to & \{\top\} & \cup & \mathsf{L} \end{array}$$

The adversary will be given access to (some subset of):

Authenticated Encryption Extending the Security Framework SAE

Oracles

Thus our oracles have the syntax:

$$\begin{array}{rcl} \mathrm{Enc}, \mathcal{E} & : \mathsf{K} \times \mathsf{N} \times \mathsf{A} \times \mathsf{M} & \to & \mathsf{C} \\ \mathrm{Dec}, \mathcal{D} & : \mathsf{K} \times \mathsf{N} \times \mathsf{A} \times \mathsf{C} & \to & \mathsf{M} & \cup & \{\bot\} \\ & \Lambda & : \mathsf{K} \times \mathsf{N} \times \mathsf{A} \times \mathsf{C} & \to & \{\top\} & \cup & \mathsf{L} \end{array}$$

The adversary will be given access to (some subset of):

Authenticated Encryption Extending the Security Framework SAE

Oracles

Thus our oracles have the syntax:

The adversary will be given access to (some subset of):

Guy Barwell Subtle Authenticated Encryption

Authenticated Encryption Extending the Security Framework SAE

Oracles

Thus our oracles have the syntax:

The adversary will be given access to (some subset of):

Enc
 Dec

$$\mathcal{E}_k$$
 \mathcal{D}_k
 Λ_k

We extend our *power* terminology with the addition of an *s* for *subtle*

Authenticated Encryption Extending the Security Framework SAE

Disallowed Queries

- Prohibited Queries
- --> Superfluous Queries
- → Entangled Oracles

An arrow $A \rightarrow B$ means that queries made to A restrict queries to B. Arrows within the same row mean inputs cannot be repeated, those from one row to another mean the output of A cannot later be used as input to B.

Authenticated Encryption Extending the Security Framework SAE

Effective Games

So, there are a total of $24 = 3 * 2^3$ security games, some of which are equivalent:

AE–sCCA	AE–sCPA	AE–sCDA	AE–sPAS
AE—CCA	AE—CPA	AE—CDA	AE—PAS
IND-sCCA	IND-sCPA	IND-sCDA	IND-sPAS
IND—CCA	IND—CPA	IND—CDA	IND—PAS
CTI–sCCA	CTI–sCPA	CTI–sCDA	CTI–sPAS
CTI—CCA	CTI—CPA	CTI—CDA	CTI—PAS

Authenticated Encryption Extending the Security Framework SAE

Effective Games

So, there are a total of $24 = 3 * 2^3$ security games, some of which are equivalent:

AE–sCCA	AE-sCPA	AE-sCDA	AE-sPAS
AE—CCA	AE—CPA	AE—CDA	AE—PAS
IND-sCCA	IND-sCPA	IND-sCDA	IND-sPAS
IND—CCA	IND—CPA	IND—CDA	IND—PAS
CTI–sCCA	CTI–sCPA	CTI–sCDA	CTI–sPAS
CTI—CCA	CTI—CPA	CTI—CDA	CTI—PAS

Authenticated Encryption Extending the Security Framework SAE

Effective Games

So, there are a total of $24 = 3 * 2^3$ security games, some of which are equivalent:

		AE–sPAS
		AE—PAS
	IND-sCDA	IND-sPAS
	IND—CDA	IND—PAS
CTI–sCPA		CTI–sPAS
CTI—CPA		CTI—PAS

Authenticated Encryption Extending the Security Framework SAE

Effective Games

So, there are a total of $24 = 3 * 2^3$ security games, some of which are equivalent:

Authenticated Encryption Extending the Security Framework SAE

SAE: Subtle Authenticated Encryption

SAE := AE-sCCA

- Name inspired by WebCryptoAPI
- Security depends on subtleties of implementation
- Simulator Free: $(\mathcal{E}, \mathcal{D}, \Lambda)$ defines the scheme
- Reduces to AE-sPAS

Authenticated Encryption Extending the Security Framework SAE

Error Simulatability: A means not an end

Error Simulatability

"Leakage should not give out useful information"

A new goal: Error Simulatability

Authenticated Encryption Extending the Security Framework SAE

Error Simulatability: A means not an end

Error Simulatability

"Leakage should not give out useful information"

A new goal: Error Simulatability

Authenticated Encryption Extending the Security Framework SAE

Error Simulatability: A means not an end

Error Simulatability

"Leakage should not give out useful information"

For example: ERR-PAS

Authenticated Encryption Extending the Security Framework SAE

Error Simulatability: A means not an end

Error Simulatability

"Leakage should not give out useful information"

For example: ERR-CCA

Authenticated Encryption Extending the Security Framework SAE

Decomposing SAE

SAE decomposes in an intuitive manner

$\mathsf{SAE} \iff \mathsf{ERR}\mathsf{-}\mathsf{CCA} + \mathsf{CTI}\mathsf{-}\mathsf{CPA} + \mathsf{IND}\mathsf{-}\mathsf{CPA}$

SAE (as AE-sPAS)

Guy Barwell Subtle Authenticated Encryption

Authenticated Encryption Extending the Security Framework SAE

Decomposing SAE

SAE decomposes in an intuitive manner

 $\mathsf{SAE} \iff \mathsf{ERR}\text{-}\mathsf{CCA} + \mathsf{CTI}\text{-}\mathsf{CPA} + \mathsf{IND}\text{-}\mathsf{CPA}$

RUP RAE[τ]

Comparison of Strengthened AE notions

2 Comparison of Strengthened AE notions

- BDPS
- RUP
- RAE[τ]

Syntactic Choices

$$egin{array}{ccc} \mathcal{D}_k & \Lambda_k \ \hline \mathcal{C} = \mathcal{E}_k(\mathcal{M}) & \mathcal{M} \in \mathsf{M} & \top \ c \in \mathsf{C} \setminus \operatorname{im}(\mathcal{E}_k) & ot & ot$$

I.

BDPS: L, M disjoint RUP L = M add

RAE[au]: L, M disjoint

BDPS

RUP RAE $[\tau]$

Syntactic Choices

$$\begin{array}{c|c}
 & \mathcal{D}_k & \Lambda_k \\
\hline
C = \mathcal{E}_k(M) & M \in \mathsf{M} & \top \\
c \in \mathsf{C} \setminus \operatorname{im}(\mathcal{E}_k) & \bot & \bot_i \in \mathsf{L} \\
\end{array}$$

BDPS: L, M disjoint

RUP: L = M, add V RAE[τ]: L, M disjoint.

BDPS

RUP RAE $[\tau]$

BDPS: Distinguishable Decryption Failures

- Relaxed the assumption that all decryption errors were identical
- Gave definitions, relations and separations in the Probabilistic & random-IV models

BDPS RUP

 $RAE[\tau]$

- Nonce-based analogues of their definitions and relations
- Error-tolerance definition INV-ERR roughly says "only one error code is likely"

On Symmetric Encryption with Distinguishable Decryption Failures Boldyreva, Degabriele, Paterson & Stam; FSE 2013

 $\begin{array}{c} \mathsf{BDPS} \\ \mathsf{RUP} \\ \mathsf{RAE}[\tau] \end{array}$

Comparison with past works

Our Notion	BDPS Notion	
IND-CPA	IND\$-CPA	
IND-sCCA	IND\$-CCA	
IND-sCPA	IND\$-CVA	
CTI–CPA	INT-CTXT*	
CTI–sCPA	INT-CTXT	
AE		
SAE	\approx IND\$–CCA3	

RUP: Release of Unverified Plaintext

- Nonce-based definitions, relations and separations.
- Provisioned for the leakage of a candidate plaintext.
- Models Decrypt-then-authenticate (eg MtE,M&E).
- Observes that if Λ_k can be simulated, then Λ . does so.
- Key definitions are simulator based.
- Does not allow for any other leakage.

How To Securely Release Unverified Plaintext in Authenticated Encryption Andreeva, Bogdanov, Luykx, Mennink, Mouha & Yasuda; AC 2014

ROPS RUP RAE[τ]

Syntactic Choices

$$\begin{array}{c|c} & \mathcal{D}_k & \Lambda_k \\ \hline \\ \hline C = \mathcal{E}_k(M) & M \in \mathsf{M} & \top \\ c \in \mathsf{C} \setminus \operatorname{im}(\mathcal{E}_k) & \bot & \downarrow_i \in \mathsf{L} \\ \hline \\ \hline \\ D_k \end{array}$$

- BDPS: L, M disjoint
 RUP: L = M, add V
- RAE[\[\tau]: L, M disjoint

RUP RAE[τ]

Syntactic Choices

$$\begin{array}{c|c}
\mathcal{D}_k & \Lambda_k \\
\hline C = \mathcal{E}_k(M) & M \in \mathsf{M} > \mathsf{T}_i \\
c \in \mathsf{C} \setminus \operatorname{im}(\mathcal{E}_k) & \mathsf{L}_i \in \mathsf{L}_i \\
\hline V_k & \mathsf{D}_k
\end{array}$$

- BDPS: L, M disjoint
 RUP: L = M, add V
- RAE[au]: L, M disjoint

BDPS RUP RAE $[\tau]$

RUP: Release of Unverified Plaintext

- Authenticity definitions directly translate
- Confidentiality definitions do not (due to lack of access to V_k)
- Most interesting of these is "DI", being similar to ERR-CPA

How To Securely Release Unverified Plaintext in Authenticated Encryption Andreeva, Bogdanov, Luykx, Mennink, Mouha & Yasuda; AC 2014

BDPS RUP RAE $[\tau]$

Comparison with past works

-

Recent Literature	Our Notion	BDPS Notion	RUP Notion
IND-CPA	IND-CPA	IND\$-CPA	IND-CPA
	IND-sCCA	IND\$-CCA	
	IND-sCPA	IND\$-CVA	
INT-CTXT	CTI–CPA	INT-CTXT*	INT-CTXT
	CTI–sCPA	INT-CTXT	INT-RUP
AE	AE		AE
	SAE	\approx IND\$-CCA3	RUPAE

BDPS RUP RAE[τ]

RUP: A strengthened definition for AE

RUPAE := CTI-sCPA + DI + IND-CPA

How To Securely Release Unverified Plaintext in Authenticated Encryption Andreeva, Bogdanov, Luykx, Mennink, Mouha & Yasuda; AC 2014

BDPS RUP RAE $[\tau]$

RUP: A strengthened definition for AE

How To Securely Release Unverified Plaintext in Authenticated Encryption Andreeva, Bogdanov, Luykx, Mennink, Mouha & Yasuda; AC 2014

RUP RAE[τ]

RUP: A strengthened definition for AE

How To Securely Release Unverified Plaintext in Authenticated Encryption Andreeva, Bogdanov, Luykx, Mennink, Mouha & Yasuda; AC 2014

BDPS RUP RAE[τ]

Syntactic Choices

$$\begin{array}{c|c} & \mathcal{D}_k & \Lambda_k \\ \hline \\ \hline C = \mathcal{E}_k(M) & M \in \mathsf{M} & \top \\ c \in \mathsf{C} \setminus \operatorname{im}(\mathcal{E}_k) & \bot & \downarrow_i \in \mathsf{L} \\ \hline \\ \hline \\ D_k \end{array}$$

- BDPS: L, M disjoint
- $\blacksquare \mathsf{RUP}: \mathsf{L} = \mathsf{M}, \mathsf{add} \ \mathsf{V}$
- RAE[*τ*]: L, M disjoint

RAE: Robust Authenticated Encryption

- Nonce-based model
- Accurately models Decrypt-then-Decode (eg Encode-then-encipher)
- Allows leakage to be any element of the message space that is not of valid length (rather artificial limitation)

 $RAE[\tau]$

- Variable Length stretch
- Attainable rather than ideal security model

Robust Authenticated-Encryption: AEZ and the Problem that it Solves *Hoang, Krovetz & Rogaway*; EC 2015

RAE: Variable Length Stretch and Attainable security

Variable Length Stretch

Ciphertext expansion is an input parameter to \mathcal{E}_k

- Gives the user control over ciphertext expansion
- Allows user to specify \(\tau = 0\) without breaking security claims

Attainable Security

Security measured against "best possible" world

- Contrasts with popular ideal (unobtainable) world
- User must be made aware of generic attacks

Robust Authenticated-Encryption: AEZ and the Problem that it Solves *Hoang, Krovetz & Rogaway*; EC 2015

RAE: Robust Authenticated Encryption

- Nonce-based model
- Accurately models Decrypt-then-Decode (eg Encode-then-encipher)
- Allows leakage to be any element of the message space that is not of valid length

 $RAE[\tau]$

- Variable Length stretch
- Attainable rather than ideal security model

Robust Authenticated-Encryption: AEZ and the Problem that it Solves *Hoang, Krovetz & Rogaway*; EC 2015

Guy Barwell

BDPS RUP RAE[τ]

RAE: Robust Authenticated Encryption

- Nonce-based model
- Accurately models Decrypt-then-Decode (eg Encode-then-encipher)
- Allows leakage to be any element of the Leakage space

that is not of valid length

- Variable Length stretch
- Attainable rather than ideal security model

Robust Authenticated-Encryption: AEZ and the Problem that it Solves *Hoang, Krovetz & Rogaway*; EC 2015

BDPS RUP **RAE[**7]

RAE: Robust Authenticated Encryption

- Nonce-based model
- Accurately models Decrypt-then-Decode (eg Encode-then-encipher)
- Allows leakage to be any element of the Leakage space

that is not of valid length

- Variable Length stretch
- Attainable rather than ideal security model
- $\mathsf{RAE}[\tau] := \mathsf{Restriction} \text{ of RAE} \text{ to user-independent } \tau$

Robust Authenticated-Encryption: AEZ and the Problem that it Solves *Hoang, Krovetz & Rogaway*; EC 2015

BDPS RUP RAE[7]

Comparison of Robust AE notions

Conclusion

Conclusions

Security for the Real World

2 Comparison of Strengthened AE notions

3 Conclusions Conclusion

Conclusion

To summarise

In this talk, we have

The full paper is available on the IACR eprint http://eprint.iacr.org/2015/895; or, http://ia.cr/2015/895

Guy Barwell Subtle Authenticated Encryption

Conclusion

To summarise

In this talk, we have

- Provided an intuitive mechanism for naming AE notions
- Defined SAE: a strengthened definition of AE that is simulator free
- (briefly) Compared with some alternative frameworks
- Observed the equivalence between (common variants of) RUP and RAE

Conclusion

To summarise

In this talk, we have

- Provided an intuitive mechanism for naming AE notions
- Defined SAE: a strengthened definition of AE that is simulator free
- (briefly) Compared with some alternative frameworks
- Observed the equivalence between (common variants of) RUP and RAE

Conclusion

To summarise

In this talk, we have

- Provided an intuitive mechanism for naming AE notions
- Defined SAE: a strengthened definition of AE that is simulator free
- (briefly) Compared with some alternative frameworks
- Observed the equivalence between (common variants of) RUP and RAE

Conclusion

To summarise

In this talk, we have

- Provided an intuitive mechanism for naming AE notions
- Defined SAE: a strengthened definition of AE that is simulator free
- (briefly) Compared with some alternative frameworks
- Observed the equivalence between (common variants of) RUP and RAE

In the full paper we provide

- The historical context behind modern AE definitions.
- An intuitive mechanism for naming AE notions.
- SAE: A simulator free strengthening of AE.
- Comparison between SAE and BDPS,RUP&RAE (we find many similarities, and discuss their differences)
- Proof that their strongest of security notions essentially coincide.
- A reminder that subtle security depends on the implementation, giving an optimisation that renders a particular RAE scheme insecure.

Conclusion

Thank you for your time

The full paper is available on the IACR eprint http://eprint.iacr.org/2015/895; or, http://ia.cr/2015/895

Guy Barwell Subtle Authenticated Encryption

Conclusion

Thank you for your time

Any Questions

The full paper is available on the IACR eprint http://eprint.iacr.org/2015/895; or, http://ia.cr/2015/895

Guy Barwell Subtle Authenticated Encryption

Quick Shortcuts

- 2 Outline
- 4 Authenticated Encryption
- 7 Authenticated Encryption
- 8 Authenticated Encryption: Syntax
- 10 A piecewise name scheme for AE notions
- 11 Decryption Leakage
- 12 Modelling Decryption
- Leakage
- 13 Oracles
- 14 Disallowed Queries
- 15 Effective Games
- 16 SAE: Subtle Authenticated Encryption

17 Error Simulatability: A means not an end

- 18 Decomposing SAE
- 22 Syntactic Choices
- 23 BDPS: Distinguishable

Decryption Failures

- 25 RUP: Release of Unverified Plaintext
- 27 RUP: Release of Unverified Plaintext
- 28 Comparison with past works
- 29 RUP: A strengthened definition for AE
- 31 RAE: Robust Authenticated Encryption
- 32 RAE: Variable Length Stretch and Attainable security
- 33 RAE: Robust Authenticated Encryption
- 34 Comparison of Robust AE notions
- 36 To summarise
- 37 In the full paper we provide
- 38 Thank you for your time
- 40 Comparison with past works

Comparison with past works

-

Recent Literature	Our Notion	BDPS Notion	RUP Notion
IND-CPA	IND-CPA	IND\$-CPA	IND-CPA
	IND-sCCA	IND\$-CCA	
	IND-sCPA	IND\$-CVA	
INT-CTXT	CTI–CPA	INT-CTXT*	INT-CTXT
	CTI–sCPA	INT-CTXT	INT-RUP
AE	AE		AE
	SAE	\approx IND\$-CCA3	RUPAE