A Non-Interactive Shuffle with Pairing Based
Verifiability *

Jens Groth** and Steve L&r **

! University College London
j-groth@ucl.ac.uk
2 University of California, Los Angeles
stevelu@math.ucla.edu

Abstract. A shuffle is a permutation and re-encryption of a set of ciphertexts.
Shuffles are for instance used in mix-nets for anonymous broadcast and voting.
One way to make a shuffle verifiable is to give a zero-knowledge proof of cor-
rectness. All currently known practical zero-knowledge proofs for correctness
of a shuffle rely on interaction. We give the first efficient non-interactive zero-
knowledge proof for correctness of a shuffle.

Keywords: Shuffle, mix-net, non-interactive zero-knowledge, bilinear group.

1 Introduction

A shuffle is a permutation and re-encryption of a set of ciphertexts. Shuffles are used
for instance in mix-nets [Cha81], which in turn are used in protocols for anonymous
broadcast and electronic voting. In a typical construction of a mix-net, the users encrypt
messages that they want to publish anonymously. They send the encrypted messages to
a set of mix-net servers that will anonymize the messages. The first server permutes
and re-encrypts the incoming set of messages, i.e., it carries out a shuffle. The next
server takes the output from the first server and shuffles these ciphertexts. The protocol
continues like this until all servers have permuted and re-encrypted the ciphertexts.
After the mixing is complete, the mix-servers may now perform a threshold decryption
operation to get out the permuted set of messages. The idea is that if just one mix-server
is honest, the messages will be randomly permuted and because of the re-encryption
step nobody will know the permutation. The messages therefore appear in random order
and cannot be traced back to the senders.

The mix-net protocol we just described is not secure if one of the mix-servers is
dishonest. A dishonest mix-server could for instance discard some of the ciphertexts and
inject new ciphertexts of its own choosing. It is therefore desirable to make the shuffle
verifiable. An obvious way to make the mix-net verifiable is to ask each mix-server to

* Work initiated while participating in Securing Cyberspace: Applications and Foundations of
Cryptography and Computer Security, Institute of Pure and Applied Mathematics, UCLA,
2006.

** Work done while at UCLA supported by NSF ITR/Cybertrust grant No. 0456717.
*** Supported by NSF Cybertrust grant No. 0430254.

provide a zero-knowledge proof of its shuffle being correct. The zero-knowledge proof
guarantees that the shuffle is correct, yet reveals nothing about the permutation or the
re-encryption and therefore preserves the privacy of the mix-net.

Much research has already been done on making shuffles verifiable by providing
interactive proofs of correctness [SK95, Abe99, AHO1, Nef01, FS01, Gro03, NSNKO6,
NSNKO5, Fur05, Wik05, GLO7]. The proofs in these papers are all interactive and rely
on the verifier choosing random challenges. Using the Fiat-Shamir heuristic, where the
verifier's challenges are computed through the use of a cryptographic hash-function,
it is possible to make these proofs non-interactive. As a heuristic argument for the se-
curity of these non-interactive proofs, one can prove them secure in the random oracle
model [BR93], where the cryptographic hash-function is viewed as a random oracle that
outputs a random string. However, Goldwasser and Kalai [GK03] demonstrate that the
Fiat-Shamir heuristic sometimes yields insecure non-interactive proofs. Other works
casting doubt on the Fiat-Shamir heuristic are [CGH98, Nie02, BBP04, CGHO04].

It is still an open problem to construct efficient non-interactive zero-knowledge
(NIZK) proofs or arguments for the correctness of a shuffle that do not rely on the ran-
dom oracle model in the security proof. Such NIZK arguments can be used to reduce
the round-complexity of protocols relying on verifiable shuffles. Moreover, interactive
zero-knowledge proofs are usually deniable [Pas03]; a transcript of an interactive proof
can only convince somebody who knows that the challenges were chosen correctly.
NIZK arguments on the other hand are transferable. They consist of a single message
that can be distributed and convince anybody that the shuffle is correct.

Obviously, one can apply general NIZK proof techniques to demonstrate the cor-
rectness of a shuffle. However, reducing the shuffle proof to a general NP statement
and applying a general NIZK to it is very inefficient. Using NIZK techniques devel-
oped by Groth, Ostrovsky and Sahai [GOS06b, GOS06a, Gro06, GS07] one can get
better performance. Some existing interactive zero-knowledge arguments for correct-
ness of a shuffle naturally fit this framework. For example, it is possible to achieve
non-interactive shuffle proofs of siz(nlogn) group elements for a shuffle af ci-
phertexts by using Abe and Hoshino’s scheme [AHO1]. This kind of efficiency still falls
short of what can be achieved using interactive techniques and the interactive proofs
or arguments that grow linearly in the size of the shuffle do not seem easy to make
non-interactive using the techniques of Groth, Ostrovsky and Sahai.

OUR CONTRIBUTION. We offer the first (efficient) non-interactive zero-knowledge ar-
gument for correctness of a shuffle. The NIZK argument is in the common reference
string model and has perfect zero-knowledge. The security proof of our scheme does
not rely on the random oracle model. Instead we make use of recently developed tech-
niques for making non-interactive witness-indistinguishable proofs for bilinear groups
by Groth and Sahai [GS07], which draws on earlier work by Groth, Ostrovsky and Sahai
[GOS06b, GOS064a, Gro06].

The NIZK argument we suggest is for the correctness of a shuffle of BBS cipher-
texts. This cryptosystem, suggested by Boneh, Boyen and Shacham [BBS04], has ci-
phertexts that consist of 3 group elements for each group element that they encrypt.
We consider statements consistingmoinput ciphertexts ana output ciphertexts and
the claim that the output ciphertexts are a shuffle of the input ciphertexts. Our NIZK

arguments consist dfsn group elements, which is reasonable in comparison with the
statement size, which & group elements.

2 Preliminaries and Notation

In this paper, we work over prime order bilinear groups. In other words, we assume
there is probabilistic polynomial time algorithéhthat takes a security parameteas
input and output$p, G, Gr, e, g), where:
1. pis aprime
2. G andGr are cyclic groups of order
3. gis arandom generator ¢f
4. ¢ : G x G — Gr is a map with the following properties
— Bilinearity: e(¢%, g°) = e(g, 9)* for all a,b € Z,
— Non-degeneracy(g, g) generate&:
5. Group operations and the bilinear map are efficiently computable and group mem-
bership is efficiently decidable.

We will for notational simplicity assume that group membership always is checked
when appropriate without writing this explicitly.

2.1 BBS Encryption

The BBS cryptosystem was introduced by Boneh, Boyen and Shacham [BBS04]. We
work in a bilinear grougp, G, Gr, e, g). The public key is of the fornif = ¢*,h =

gY). The secret key iér, y) € (Z;)Q. To encryptm € G, we choose random ¢t € Z,,

and let the ciphertext be

(u,v,w) := (f5,ht, g5 'm).
To decrypt a ciphertextu, v, w) € G*, we compute
m=u" Ve V.

The BBS cryptosystem is semantically secure under chosen plaintext attack if the Deci-
sional Linear Problem is hard in the bilinear group. We refer to Section 3.1 for a formal
definition of this assumption.

2.2 Shuffling BBS Ciphertexts

The BBS cryptosystem is homomorphic in the sense that entrywise multiplication of
two ciphertexts yields an encryption of the product of the plaintexts. We have:

(fS> ht? g$+tm) : (fS> hTﬁ gS+TZ\/[) = (fs—&-S’ ht+Ta gs+S+t+TmM).

It is easy to make a random shuffle of BBS ciphertexts. Givémput ciphertexts,
we permute them randomly and then re-encrypt them by multiplying them with random
encryptions of 1. Multiplication with encryptions of 1 preserves the plaintexts by the
homomorphic property, but the plaintexts now appear in permuted order. If the Deci-
sional Linear Assumption holds, the BBS cryptosystem is semantically secure and thus
the permutation is hidden. For notational purposes, we widg} denote{z;}?_ ;.

Definition 1. A shuffleof n BBS ciphertextg (u;, v;, w;)} is a list of output cipher-
texts{(U;, Vi, W;)} such that there exists some permutatior S,, and randomizers
{(S;,T;)} so:

(Vi) Ui=uz)f AN Vi=veh™ A W =weg% .

2.3 Non-interactive Zero-Knowledge Arguments

We will construct non-interactive zero-knowledge (NIZK) arguments for correctness of
a shuffle ofn BBS ciphertexts. Informally, such an argument will demonstrate that the
shuffle is correct, but will not reveal anything else, in particular the permutation will
remain secret. We will now define NIZK arguments with perfect completeness, perfect
zero-knowledge andk.,-soundness. The notion of co-soundness in NIZK arguments
for NP-languages was introduced in the full paper of [GOS06b, GOS06a]. Since it is
quite new we will give some further intuition after the formal definitions.

An NIZK argument forR with R.,-soundness consists of six probabilistic poly-
nomial time algorithms: a setup algorithth a CRS generation algorithi, a prover
P, a verifierV and simulatorg.Sy, S;). The setup algorithng outputs some initial
informationgk. The CRS generation algorithm produces a common reference string
corresponding to the setup. The prover takes as ifyguto, «, w) and produces a proof
. The verifier takes as inpyk, o, z, 1) and outputs 1 if the proof is acceptable and 0
if the proof is rejected. The simulatdy takes as inpugk and outputs a simulated com-
mon reference string as well as a simulation trapdoor Ss takes as inpugk, o, 7, ©
and simulates a proaf.

Definition 2. We call (G, K, P,V,S1,S2) an NIZK argument forR with Rc.-
soundness if for all non-uniform adversarigswe have completeness, soundness and
zero-knowledge as described below.

Perfect completeness:
Pr gk — G(1") 5 0 — K(gk) ; (v, w) — A(gk,0)
b — Plgk,o,z,0) : (gk,z,w) & RV V(gk,o,z,%) = 1} ~ 1.
Computational R.,-soundness:
Pr [gk —G(1"); 0 — K(gk); (2,9, weo) — Algk,0) :
Vigh,o,2,9) =1 A (gk,z,weo) € RCO} ~ 0.
Perfect zero-knowledge:
Pr [gk —G(1*); o — K(gk); (St,z,w) — A(gk,0) ;
b — P(gk,0,z,w) : (gk,z,w) € R A A(St,) = 1]
= Pr gk — G(1"); (0.7) = S1(gk) : (St w) — A(gk,0)

Y «— Sy(gk,o,7,) : (gk,x,w) € R N A(St,9) = 1}.

We remark that ifR ignoresgk then R defines a language in NP. The definition
given here generalizes the notion of NIZK arguments by allowinhtp depend on a
setup. The setup we have in mind in this paper, is tgAdbe a description of a bilinear
group. Givergk describing a bilinear group, the relatidhdefines agroup-dependent
languagel. It is common in the cryptographic literature to assume an appropriate finite
group or bilinear group has already been chosen and build protocols in this setting, so
it is natural to consider NIZK arguments for setup-dependent languages as we do here.

Our definition also differs in the definition of soundness, where weR|gtbe a
relation that specifies what it means to break soundness. Informally, computatignal
soundness can be interpreted as it being infeasible for the adversary tacpeokef it
knowsx € L.,. We remark that the standard definition of soundness is a special type of
R..-soundness. IR ignoresgk and R, ignoresgk, w., and contains alk ¢ L, then
the definition given above corresponds to saying that it is infeasible to construct a valid
proof forz ¢ L.

Let us explain further, why it is worthwhile to considRg,-soundness in the context
of non-interactive arguments with perfect zero-knowledge instead of just using the stan-
dard definition of soundness. The problem with the standard definition appears when the
adversary produces a statemertnd a valid NI1ZK argument without knowing whether
x € Lorxz ¢ L. Inthese cases it may not be possible to reduce the adversary’s output
to a breach of some underlying (polynomial) cryptographic hardness assumption. Abe
and Fehr [AF07] give a more formal argument for this. They consider NIZK arguments
with direct black-box reductions to a cryptographic hardness assumption and show that
only languages i /poly can have direct black-box NIZK arguments with perfect zero-
knowledge. Since all known constructions of NIZK arguments rely on direct black-box
reductions this indicates that the “natural” definition of soundness is not the right defi-
nition of soundness for perfect NIZK arguments. We note that for NfZdofsthere is
no such problem since they are not perfect zero-knowledge except for trivial languages;
and in the case of interactive arguments with perfect zero-knowledge this problem does
not appear either because the security proofs rely on rewinding techniques which make
it possible to extract a witness for the statement being proven.

The generalization td.,-soundness makes it possible to get around the problem
we described above. The adversary only brdgkssoundness when it knows a withess
weo for & € Leo. By choosingR,, the right way, this witness can make it possible to
reduce a successfilil.,-soundness attack to a breach of a standard polynomial crypto-
graphic complexity assumption.

At this point, one may wonder whether it is natural to consider a soundness defini-
tion where we require the adversary to supply same It turns out that many crypto-
graphic schemes assume a setup where suc¢h B given automatically. One example
is shuffling that we consider in this paper: when setting up a mix-net using a homomor-
phic threshold cryptosystem, the threshold decryption keys can be used to decrypt the
ciphertexts and check whether indeed they do constitute a shuffle or not.

In our paper, the setup algorithm will Bethat outputs a description of a bilinear
group. The relatior? will consist of statements that contain a public key for the BBS
cryptosystem using the bilinear group and a shuffle ofphertexts. The witness will be
the permutation used in the shuffle as well as the randomness used for re-randomizing

the ciphertexts. In other words:

R = { ((pvavGTvevg) 9 (fa h7{(ulvv“wl)}v{(Ula‘/val)})) (ﬂ—v{(ssz‘z)})> ’
TeS, NVi:U; = Uﬂ(i)fsi ANV, = Uﬂ(i)hTi AN W; = wﬂ(i)gSiJrTi }

The relationR., will consist of non-shuffles. The witness., will be the decryption

key, which makes it easy to decrypt and check that there is no permutation matching the
input plaintexts with the output plaintexts. As we remarked above, NIZK arguments for
correctness of a shuffle are usually deployed in a context where such a decryption key
can be found. Itis for instance common in mix-nets that the mix-servers have a threshold
secret sharing of the decryption key for the cryptosystem used in the shuffle. NIZK
arguments withR.,-soundness for correctness of a shuffle therefore give us exactly the
guarantee we need for the shuffle being correct.

Reo = { ((vavGT’evg)) (fvh’{(uiaviywi)}’ {(UHVZ’Wl)})) (x,y)) ‘
r,y€Z, N f=9" Nh=g" A

Vi€ Su3i s WUV e Y

2.4 Non-interactive Witness-Indistinguishable Proofs for Bilinear Groups

We will employ the non-interactive proof techniques of Groth and Sahai [GS07]. They

allow a prover to give short proofs for the existence of group elements which satisfy
a list of so-called pairing product equations. With their techniques, one can prove that
there exists:y, ..., z, € G andgy, ..., ¢, € Z, such that they simultaneously satisfy

a set of pairing product equations, for instafqé_,e(a;, z;) = 1 and[]/_ 2% =

1. One instantiation of their scheme works over bilinear groups where the Decisional
Linear Assumption holds.

Their scheme has the following properties. It has a key generation algorithm that
outputs a common reference string consisting gfoup elements. Thesegroup ele-
ments specify the public key for two commitment schemes: one for group elements in
G and one for exponents i,. In their proof, the prover commits to the witness by
committing to the group elements, ..., z,, € G and the exponents,, . .., ¢,, € Z,.

After that the prover makes non-interactive proofs that the committed elements satisfy
all the pairing product equations.

There are two ways of setting up the commitment schemes. One can choose the
common reference string such that both commitment schemes are perfectly binding, in
which case the proof has perfect completeness and perfect soundness. With a perfect
binding key, the commitments to group elements are BBS ciphertexts, so we can decrypt
the commitments to learny, . .., z,,.

Another way to choose the common reference string is to have perfectly hiding
commitment schemes. In this case, we can set up the commitment to the exponents
¢1,...,0, as a perfect trapdoor commitment scheme. We can create a commitment
and two different openings to respectivélyand 1 for instance. When we have per-
fectly hiding keys in the common reference string, the non-interactive proof has perfect

completeness and perfect withess-indistinguishability. In other words, an adversary that

sees a proof for a statement for which two or more witnesses exist, gets no information

whatsoever as to whether one witness or the other was used in the non-interactive proof.
We write (obinding s Sextraction) — Kbinding(P; G, G, €, g), when creating a per-

fectly binding common reference string with extraction ey action for the commit-

ments to group elements . We Write (ohiding, Ttrapdoor) “— Khiding (9, G, G, €, 9)

when creating a perfect hiding common reference string with trapdeQfoor for

the commitments to exponents #),. Perfect binding common reference strings and

perfect hiding common reference strings are computationally indistinguishable if the

Decisional Linear Assumption holds for the bilinear group we are working over.

3 Cryptographic Assumptions

The security of our NIZK argument for correctness of a shuffle will be based on three as-
sumptions: the Decisional Linear Assumption, the Permutation Pairing Assumption and
the Simultaneous Pairing Assumption. The BBS cryptosystem and the non-interactive
proofs of Groth and Sahai rely on the Decisional Linear Assumption. The other two
assumptions are needed for the NIZK argument for correctness of a shuffle. We will
now formally define these assumptions and for the two new assumptions give heuristic
reasons for believing them by showing that they hold in the generic group model.

3.1 Decisional Linear Assumption

We first recap the Decisional Linear Problem introduced by Boneh, Boyen and Shacham
[BBS04]: Givengk = (p, G, Gr,e,g) andf, h,g, f*,ht, g* € G, decide ifz = s + ¢.

Definition 3. The Decisional Linear Assumption holds f@rif for all non-uniform
polynomial time adversaried we have:

Pr |gh == (p.G.Gr,e,9) — G(1%) 5 f,h & G
st &2y 5 Algh, f.h 70 g7 =1]
~Pr gk = (p,G,Gr,e,9) — 9(1") 5 f,h & G

stz &2, 5 Algh, f,h, £, 0, g7) = 1).

3.2 Permutation Pairing Assumption

The Permutation Pairing Problem is: Given G, Gr, e, g) andg;y := g**,..., gy :=
9"y = g%, = g®» for randomzy,...,z, € Z, find elements
Q1y---,0n,b1,...,b, € G such that the following holds:

n n
[Ie: = I1o:
i=1 i=1

n n
Hbi = H%‘
=1 =1

e(a;,a;) =e(g,b;)fori=1...n
{a;} is nota permutation ofg; }

Note that if {a;} is a permutation of g;}, then by the third equatiofb;} is {v;}
permuted in the same way.

Observe that permutations trivially satisfy the first three conditions and not the
fourth, but one could imagine some particular choice of{hg and{b; } would satisfy
all four conditions. ThéPermutation Pairing Assumptidmolds if finding such a clever
choice is computationally infeasible.

Definition 4. The Permutation Pairing Assumption holds if for all non-uniform poly-
nomial time adversariesl we have:

Pr {gk = (p,G,Gr,e,g) «— g(lk) P & Zy ;
{9} = 19"} L} = {0")5 Haid {b:}) — Algk, {g:}, {ni})
Halgl =1A Hbz'Yz A (Vi) e(az,a;) = e(g,b;) A

{a;} is not a permutation Ofgi}} ~0

3.3 Simultaneous Pairing Assumption

The Simultaneous Pairing Problem is: GivgnG, Gr, e, g) andg; := ¢**, ..., gn :=

g%, Y1 = g, ...,y := g®~ for randomzy, ...z, € Z, find a non-trivial set of
elementsuy, ..., 1, € G such that the following holds:

n n

He Hi» gi) = A He iy i) =

1=1 =1

The intuition behind this problem is that it may be hard to find a set of non-trivial ele-
ments to simultaneously satisfy two pairing products of “independent” sets of elements.
The Simultaneous Pairing Assumptitwlds if this problem is hard.

Definition 5. The Simultaneous Pairing Assumption holds if for all non-uniform poly-
nomial time adversariegl we have:

Pr |gh = (.G, Gre,9) = G(1%) 5 a1, san & 2y s {gi} = {9}
{3} = {g" } s {mi} — Algk, {g:}. {%}) -
He(uugi) =1A He(#m%‘) =1 A Fitp# 1} ~

i=1 i=1

3.4 Our Assumptions in the Generic Group Model

We will provide heuristic evidence for our new assumptions by showing that they hold
in the generic group model [Sho97]. In this model the adversary is restricted to using
only generic bilinear group operations and evaluating equality of group elements.

We accomplish this restriction of the adversary by using a model of the bilinear
group where we encode the group elements (or equivalently we encode their discrete
logarithms) as unique random strings and letting the adversary see only this representa-
tion of the group elements. We then provide the adversary with a bilinear group opera-
tion oracle such that it can still perform group operations.

Let us give a few more details. We start by picking a random bilinear group
(p,G,Gr,e,g) «— G(1%), which the adversary gets as input. We also pick random
bijections[] : Z, — G and([[]] : Z, — Gr. We give the adversary access to an oracle
that operates as follows:

— Oninput(exp, a) returnfal.

— Oninput(mult, [a], [6]) return[a + b].

— On input(mult, [[a]], [[b]]) return[[a + b]].
— On input(map, [a], [b]) return|[ab]].

This oracle corresponds to the effect exponentiations, group operations and using the
bilinear map have on the discrete logarithms of group elements. Please note that other
operations such as inversion of a group element for instance can be easily computed
using these group operations since the group grdeknown to the adversary.

Theorem 1. The Permutation Pairing Assumption holds in the generic group model.

Proof. Let us first formulate the Permutation Pairing Assumption in the generic group
model. We generate, G, Gr, e, g) «— G(1*). We pick[] : Z, — G and[[]] : Z, —

G as random bijective functions. We piak, ..., z, < Z,. We now give the ad-
versaryA the following input:(p, G, Gr, e, g, {[xi]}, {[z?]}) and access to the bilinear
group operation oracled is computationally unbounded but can only make a polymo-
mial number of queries to the bilinear group operation oracle. The challengei$aio

find {([as), [b)} s0:
Zai:in A Zbi:Zx? A Vi a?:bi N VT a; # D).
i=1 i=1 i=1 i=1

In the generic group model we can without loss of generality assume the adversary
computega;], [b;] via repeated calls to the group operation oracle. This means we have

n n n n
2 2
a; = E Tja;; + E x50 —+7r; R b; = E CEjbij + E (Ejﬁij + s;
j=1 j=1 j=1 j=1

for values{a;; }, {c;}, {ri}, {bi;},{Bi;}, {s:} that can be deduced from the calls to
the group operation oracle.

Consider now the first conditions on the adversary being successful:

n n n n
Zai—zgcizo AN ZbZ—fozo AN Vzaf:bl
i=1 i=1 i=1 i=1

These are polynomials over unknowns, . . ., z,, that are randomly chosen. The ad-
versary only has indirect access to them by using the bilinear group operation oracle.
The adversary can choose two strategies for satisfying the equations. It can pick the
valuesa;;, o;j, 73, bij, Bij, s; SO the polynomials are identical zeroZp |z, . . ., z,] or
it can hope to be lucky that the polynomials evaluate to zero on the random choice of
Z1,...,%Tn — Zy. The Schwartz-Sippel theorem tells us that a guess according to the
latter strategy has only negligible probability of being successful. Since the adversary
can access the bilinear group operation oracle only a polynomial number of times, it
can only verify a polynomial number of guesses, so the latter strategy has negligible
success probability.

Let us now see what happens if the adversary follows the first strategy. The first
equation gives us:

n n

n n
. 2.,) =0
Tia;; + T +r; | — x; = 0.
1 j=1 i=1

i=1 \j=

Viewed as a multivariate polynomial equation over vairables . ., x,, we must have
for all J E?:laij =1 andeZlaij =0 andzz;lm =0.
Next, if [T ,b; = > ,x7 then it must be the case that

n n n n
DI PIEED wET IR B 3R
i=1 \j=1 j=1 i=1
When viewed as a polynomial imq,...,x,, we see that we must have for gl|

Z?:lbij =0 and2?=1ﬂij =1 andz,?:lsi =0.
Finally, if (Vi) a? = b; then it must be the case that

n n

n n
TilrQ;i Qi + 2o +7’2
JLEW U4k Gl ik i

j=1k=1 j=1k=1

n n n n
§ § : 2 § /‘ 2 2
+2 xjxkaijaik + 2 xjaijri -+ 2 :cjaijri
Jj=1 Jj=1

j=1k=1

n n
=D wibij+ Y w38 + s
j=1

=1

Once again by viewing this as a polynomial equation, forialfe must have that
Qi QG = 0. Also QAijQik = 0 Whenj 7& k, 7"1»2 = S;, bij = 2aijri, ﬂij = a%j + 2aijri-

We now consider what the matrix = (a;;) must be. Each rom has at most one
non-zero entry by the fact thaf;a;, = 0 whenj # k. Also, each column must sum to

1by> " a;; = 1. These two facts combined impliesto have exactly one 1 in each
column and each row, thu4 is a permutation matrix. Since permutation matrices are
invertible, from the equations. " | a;jaie = > i ;0= 0,37 ja;r; = 350 1 bij =

0, we obtain thaty;, = 0 andr; = 0. Therefore, the{a;} are a permutation of the
{Jii}. O

Theorem 2. The Simultaneous Pairing Assumption holds in the generic group model.

Proof. Let us first formulate the Simulatenous Pairing Assumption in the generic
group model. We generaie, G, Gr,e,g) «— G(1%). We pick[] : Z, — G and
[[]] : Z, — Gr as random bijective functions. We piak, ..., z, «— Z,. We now
give the adversaryl the following input:(p, G, Gr, e, g, {[z:]}, {[#?]}) and access to
the bilinear group operation oracld.is computationally unbounded but can only make
a polymomial number of queries to the bilinear group operation oracle. The challenge
for A is to find non-trivial{[mw;]} so Y"1, p;z; = 0 and> | p;z? = 0. The Si-
multaneous Pairing Assumption in the generic model says that any advetdasag
negligible probability of succeeding in this game.

Without loss of generality we can think gf as being restricted to computiff.] }
using the bilinear group operation oracle only. This means it chooses

n n
2 : 2 : 2
Hi = X Qg + JCjOéij + T
j=1 j=1

for knowna;;, o;; andr;.
A successful adversary chooses these values so both of these equations are satisfied:

n n n
H =0
TjAij + xjaij +r; |z, =
i=1 \j=1 j=1
n n n
ziag + Y 2o+ |22 =0
jtij j¥ig T Ly =
i=1 \j=1 j=1

We can view them as multi-variate polynomialsup, . . . , 2, which are chosen at ran-

dom. The adversary never sees. . ., x,, it only has indirect access to them through

the group operation oracle. There are two strategies the adversary can use: It can select

ai;, o5, 15 SO the two polynomials have zero-coefficients or it can hope to be lucky that

the random choice afy, . . ., z,, actually evaluates zero. The Schwartz-Sippel theorem

tells us that a guess has negligible chance of being correct when. , z,, are chosen

at random fronZ,,. Since the adversary can access the bilinear group operations oracle

only a polynomial number of times, it can only verify the correctness of a polynomial

number of guesses. The latter strategy therefore has negligible success-probability.
Let us now consider the former strategy, where the adversary chooses the coeffi-

cients of the polynomials i, [z, . .., ,] SO they are the zero-polynomials. Looking

at the coefficients for the first polynomial we see that we must have0 anda;; = 0.

Looking at the coefficients of the second polynomial we seedhat 0. The adversary

can therefore only find the trivial solutign, = ... = u,, = 0. O

4 NIZK Argument for Correctness of a Shuffle

We will now present an NIZK argument for correctness of a shuffle of BBS ciphertexts.
The common reference string contailrs elements{g; := g%} and{y; := g””f} for
randomzs,...,z, € Z,. The statement contains a public kéf; #) and a set ofr
input ciphertexts (u;, v;, w;)} and a set of output ciphertex{sU;, V;, W;)} that may

be a shuffle of the input ciphertexts.

The first part of the NIZK argument consists of setting up pairing product equations
that can only be satisfied if indeed we are dealing with a shuffle. The prover will use
a set of variableqa;} and {b;} in these pairing product equations. She will set up
a Permutation Pairing Problem over these variables to guaranteé(that;)} are a
permutation of (g;, i)}

Assume now thaf(a;, b;)} are a permutation of(g;,v;)}. Let {m;} be the plain-
texts of { (u;, v, w;)} and{M;} be the plaintexts of (U;, V;, W;)}. The prover also
sets up equations such thit"_,e(a;, M;) = 11— e(gi,m;) and [e(bi, M;) =
[T e(vi, m;). Since{(a;,b;)} are a permutation of(g;, v;)}, then there exists a per-
mutationr € S,, SO

He(gi,Mﬂ—l(i)mi—l) =1 A He(’yi,Mﬂfl(i)mi_l) =1.
= =1

This is a Simultaneous Pairing Problem, and assuming the hardness of this problem we
will have M. -1 ;) = m, for all 4.

To give further intuition of the construction, consider avweaprotocol where the
prover sends the permutation directly to the verifier. Dengte= g ;) andb; := v, ;.
With U; = uﬂ(i)fsf‘,Vi = Ur(s) hT"',Wi = ww(i)gsi"’_T" we have:

":]:

(au Tr(z)f =e€ Haz 7.f H €\Gr(i)» Tr(i)) = 6(67“ f) (gzauz)
i=1 = =1
ﬁ (a‘l?vﬂ' (4) hT =€ Hal s He 9r(i)> Un(3)) = €(CU, h)f[(guvz)
i=1 =1
He(aiawﬂ'(i)gsr‘rTi) = e(Ha;g7ag>He(g7r(1)7w7r(z)) = e(cwag)H (gi7wi)7
=1 =1

i=1 1

.
Il

n

wherec, = [11 a5, ¢, = [[}-,a]* ande,, = [[1_,a)" """, By constructiong,, =

cuCy- In addition, we may look at the equations by pairing {lbg} with the U;, V;,

and W;. From this we obtain another three equations, and we define new elements
=TT b5, ¢ = TIr,bi, ¢, = ¢,¢,. In total we have six equations:

[T e(ai, Ui) = €(Cu,f)H?:1e(gi7Ui) [T e(bs, Ui) = e(c,, FITi—qe(vi, us)
[T e(ai, Vi) = e(co, W e(gi,vi) Hz: e(bi,Vi) = e(C M T e(yis vi)
ITis e(ai, W;) = G(Cucmg)n e(giswi) TTiye(bs, Wi) = e(c, 1)79)1_[pe(yis wi)

A naive non-interactive argument would be to let the prover sends, c,, ¢/, ¢ to the

ur v

verifier. The verifier can check the six above equations himself for the verification step.

The naive protocol described is complete by observation. We also have the following
lemma:

Lemma 1. The nadve protocol isRk.,-sound.

Proof. The idea behind?.,-soundness is to look at the underlying messages. If a dis-
honest prover were to convince a verifier with a non-shuffle as well as produce a witness
(decryption keyy., = (x,y), we can “decrypt” the equations checked by the verifier.

Namely, if we letm; = u_l/”vi_l/ywi andM; = Ui_l/””vi_l/yWi, then by applying

%

the same algebraic manipulations to the equations, we obtain:

n n n

{He(ai, Uz):| e . {He(ai, VL)} o . [He(ai, W?):|

i=1 =1 i=1
n n n

= [etw N Tetw] " [eten M Tetoio] " [eleuco o) Teloiw)]

i=1 i=1 i=1

This gives us[[;_,e(a;, M;) = e(c;t g9)e(cyt, g)elcucy,) i e(gi,mi) =
L= e(gi, m).

In a similar way we can show tha"_, e(b;, M;) = []"_,e(v;, m;). Observe that
the equations may be rearranged to[B& ,e(u;, 9;) = 1 and] e(pi,v:) = 1
wherey; = m;/M,-1(;. By the Simultaneous Pairing Assumption, it it is infeasible
for the prover to find non-trivial:; satisfying these two equations and thus we reach a
contradiction. O

The downfall of the néve protocol is that it completely reveals the permutation. In the
actual NIZK argument, we will instead argue that there exist elemgntsand {b;}

that satisfy the equations above rather than revealing them directly. We accomplish this
by making a GS proof for the set of pairing product equations given earlier. Our NIZK
argument is described in Figure 1.

Theorem 3. The protocol in Figure 1 is a non-interactive perfectly complete, com-
putationally R..-sound, perfect zero-knowledge argument of a correct shuffle of BBS
ciphertexts under the Decisional Linear Assumption, Permutation Pairing Assumption,
and Simultaneous Pairing Assumption.

Proof. As we see in the protocol, the prover can generate the witness for the GS proof
herself. Perfect completeness follows from the perfect completeness of the GS proofs.
We will now prove that we have perfect zero-knowledge. The simul&toe
(S1, S2) will generate a transcript as described in Figure 2. By construction, the com-
mon reference strings are generated in the same way. The only difference between a
real proof and a simulated proof is the witness given to the GS proof. By the perfect
witness-indistinguishability of the GS proof, real proofs and simulated proofs are per-
fectly indistinguishable.
It remains to prove that we have computatiofia),-soundness. The adversary is
trying to output a public keyf, h) and a non-shuffle af input ciphertexts and output
ciphertexts, a convincing NIZK argumentof it being a shuffle, and a decryption key

Setup: Generate a bilinear grougk := (p, G, Gr, e, g) — G(1%).

Common reference string: Generate a perfectly hiding common reference string
(Ohiding; Terapdoor) < Kniding (P, G, G, €, g) to get perfectly
witness- indistinguishable GS proofs. Pick randen. . ., z,, < Z, and compute
Vi:gi =9, v :=g" i
The common reference stringds:= (o hiding, {9 }» {Vi})-

Shuffle statement: Public key(f, k) for the BBS cryptosystem. Input ciphertexts
{(ui, vi, w;i)} and output ciphertext§(U;, Vi, W;)}.

Prover's input: Permutationr € S,, and randomizer$(S;, T;)} so
Ui = Un(iy 71, Vi = vpnyh" andW; = we (g% 7 for all i.

Proof: The prover sets up the following pairing product equations:

¢p=1modp, di=1, di=1, di=1 (d,)’=1 (d)°=1 (d,)" =1,

Ha?g;(ﬁ = 17 Hb?’Yz_¢ = 17 (VZ) e(ai7ai) = €(g7bi)
=1

e(gi7ui) e(d;vg)ne(b’“Ul) (czuf)ne

e(gi7 1) 6(vy 9 He(blvvl (L,h)H@(’Yi,Ui)
) [T e(ai, Wi) = e(cucy, 9) [T e(gi w:)
)He(b’HW) (Cmg)H (’Y”Uw’i)

A witness for satisfiability of the equations can be computed as:

n n n n

Si . T; /o Si /o T;

¢ =1, Cy = Hai’, Cy = Hai’, Cy i= Hbi’, Cyp = Hbi77
i=1 i=1 i=1 i=1

Vi oa; = Ir(i)s b; = V(i)
and setting the remaining variables to 1. The prover generates a GS/ptioat there
exists an exponent € Z, and group elements
{a:}, {bi}, cu,s Co, Chuy Coy duy dw, du, dy , dy, dr, that satisfy the equations.
Verification: The verifier accepts the non-interactive argument if and only if the GS proof
¢ is valid.

Fig. 1. NIZK Argument for Correct Shuffle of BBS Ciphertexts

(x,y). The relationR,, is a polynomial time decidable relation that tests thaty) is
the decryption key fof f,) and that indeed we do have a non-shuffle.

We will change the way we construct the common reference string for the NIZK
argument. Instead of generating= (oniding, {9:}, {7:}) as in the scheme, we return
g = (Ubinding7 {gi}7 {’Yl}) where (Ubindinga gextraction) — Kbinding(pa G,Gr,e, g)-
By the Decisional Linear Assumption, perfect binding and perfect hiding common ref-
erence strings for the GS proofs are computationally indistinguishable, so the adver-
sary’s success probability only changes negligibly.

The commitment with trivial randomness is now a perfectly binding commitment
to the exponentzb = 1. The GS proof is a perfect proof of knowledge of variables
Cus Cos Chyy Coy oy doyy doy, dly, dl L, {ai), {b;} satisfying the equations, which can be

u v

extracted USINGeyiraction- SiNCe€Y = 1, the equations demonstrate thgt = d, =

dy, = d, = d, = d, = 1. The elementda;}, {b;} satisfy a Permutation Pairing
problem and the hardness of this problem tells us that with overwhelming probability
they are a permutation df(g;,7;)}. Lemma 1 now gives us that there is negligible
probability ofc,,, ¢, ., ci , {a; }, {b; } satisfying the equations and at the same time the

u Cv

input and output ciphertexts not being a shuffle. O

Simulated common reference string: The simulatorS; runs the common reference string
generation protocol. It sets:= (Tirapdoor Z1, - - - , Tr) and outputgo, 7).

Shuffle statement: Public key(f, k) for the BBS cryptosystem. Input ciphertexts
{(ui,vi, w;)} and output ciphertexts(U;, Vi, Wi)}.

Simulator’s input: The simulatorS; receives the shuffle statement giad).

Simulated proof: Create a trapdoor commitment with double opening te 0 and¢ = 1.
Compute

S8

g

i
=

&,

Il
=

dy = ﬁuf’, dy 1=
d, :

n
T4
| |Ui ,
1 i=1
- 2 n 2
A | | i | | 3
du = ’LLi 5 UZ')
=1 1=1

2

2
T

/
dy : w

S

|

A

=1

Set the remaining variables to 1 and create a perfect witness indistinguishable GS proof
1 that there exists an exponepte Z, and group elements
{a;},{b:}, cu, co, iy, Cbyy du, dv, duw, diy, dy, di, that satisfy the required equations.

Fig. 2. Simulated Argument for Correct Shuffle of BBS Ciphertexts

Size oF THE NIZK ARGUMENT. To commit to¢ = 1 we can use trivial randomness,
so the commitment t@ does not have to be included in the proof — the verifier can
compute it himself. There a2 + 10 variables inG and it takes 3 group elements for
each commitment, so the commitments contribute a totélof 30 group elements
towards the proof size.

The first 6 equalities co$t group elements each for a total ®f group elements.
The next two multi-exponentiation equations cégroup elements each for a total of
18 group elements. We then hauepairing product equations of the forafa;, a;) =
e(g, b;) which cost a total obn group elements. Finally, we hawepairing product
equations, where one side of the pairings is publicly known and one side is committed.
They each cost group elements for a total a8 group elements.

The total size of the proof i$5n + 120 group elements. The size of the common
reference string i&n + 8 group elements.

We remark that the cost of shuffling multiple sets of ciphertexts with the same per-
mutation may be amortized to a constant number of group elements. The first set of
ciphertexts cost$5n + 120 group elements. But we only need to committob; and

3 One could wish for a common reference string that has only a constant number of group
elements, but currently even all knosrmove zero-knowledge arguments have common ref-
erence strings of siz€(n).

provee(a;, a;) = e(g, b;) once. Regardless af the subsequent shuffles under the same
permutation only cost20 group elements each.

5 Remark on Shuffling BGN Ciphertexts

Another homomorphic cryptosystem over bilinear groups was introduced by Boneh,
Goh and Nissim [BGNO5]. This cryptosystem is based on the Subgroup Decision As-
sumption over composite order bilinear groups. The ciphertexts consist of one group
element each, so with input ciphertexts ane outputs ciphertexts, the shuffle state-
ment contain®n group elements and another group elements to describe the public
key. The techniques we have presented in this paper can also be used to shuffle BGN
ciphertexts. Assuming the Subgroup Decision Assumption holds and assuming suitable
variants of the Permutation Pairing and the Simultaneous Pairing Assumptions hold,
we can make an NIZK argument for correctness of a shuffle consistifig ef O(1)
group elements. Since the Subgroup Decision Assumption only holds when factoring
the group order is hard, the group elements in this scheme are quite large though.
While this scheme may have applications, we note that there is one subtle issue that
one must be careful about. The GS proofs can be instantiated with bilinear groups of
composite order where the Subgroup Decision Problem is hard, but they are only secure
if the factorization of the composite group is unknown. The decryption key for the
cryptosystem is the factorization of the group order. Fg-soundness of the scheme
therefore only holds as long as the adversary does not know the decryption key for the
cryptosystem. The NIZK argument is therefore it -sound as defined in this paper,
albeit it will satisfy a suitably weakenefi..-soundness definition.

References

[Abe99] Masayuki Abe. Mix-networks on permutation networks. ploceedings of ASI-
ACRYPT '99pages 258-273, 1999.

[AFO7] Masayuki Abe and Serge Fehr. Perfect nizk with adaptive soundnegpsodeed-
ings of TCC '07, LNCS series, volume 4383ges 118-136, 2007.

[AHO1] Masayuki Abe and Fumitaka Hoshino. Remarks on mix-network based on per-
mutation networks. Iproceedings of PKC '01, LNCS series, volume 198®jes
317-324, 2001.

[BBPO4] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An uninstantiable
random-oracle-model scheme for a hybrid encryption problenprdoeedings of
EUROCRYPT ’'04, LNCS series, volume 3023ges 171-188, 2004. Full paper
available ahttp://eprint.iacr.org/2003/077 .

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signaturpso-In
ceedings of CRYPTO '04, LNCS series, volume 3fp&8es 41-55, 2004.

[BGNO5] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ci-
phertexts. Irproceedings of TCC '05, LNCS series, volume 3p&gjes 325-341,
2005.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. IACM CCS '93 pages 62—-73, 1993.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. Inproceedings of STOC '9®ages 209-218, 1998.

[CGHO4]

[Cha81]
[FS01]
[Fur05]

[GKO3]

[GLO7]

[GOS063]

[GOS06b]

[Gro03]

[Gro06]

[GS07]

[Nefo1]

[Nie02]

[NSNKO5]

[NSNKO06]

[Pas03]

[Sho97]

[SK95]

[Wik05]

Ran Canetti, Oded Goldreich, and Shai Halevi. On the random-oracle methodology
as applied to length-restricted signature schemesrdeeedings of TCC '04, LNCS
series, volume 295pages 40-57, 2004.

David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonymsCommunications of the ACN24(2):84—88, 1981.

Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle. In
proceedings of CRYPTO '01, LNCS series, volume 218§es 368—-387, 2001.

Jun Furukawa. Efficient and verifiable shuffling and shuffle-decrypti@&iCE
Trans. Fundam. Electron. Commun. Comput.,88-A(1):172-188, 2005.

Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir
paradigm. Irproceedings of FOCS 'Q®ages 102-113, 2003. Full paper available
athttp://eprint.iacr.org/2003/034

Jens Groth and Steve Lu. Verifiable shuffle of large size ciphertextsotieedings

of Practice and Theory in Public Key Cryptography - PKC '07, LNCS 44B@es
377-392, 2007.

Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new tech-
niques for nizk. Inproceedings of CRYPTO 06, LNCS series, volume 4fidges
97-111, 2006.

Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero-
knowledge for NP. Irproceedings of EUROCRYPT '06, LNCS series, volume,4004
pages 339-358, 2006.

Jens Groth. A verifiable secret shuffle of homomorphic encryptionsobreedings
of PKC '03, LNCS series, volume 25@@&ages 145-160, 2003.

Jens Groth. Simulation-sound nizk proofs for a practical language and constant size
group signatures. Iproceedings of ASIACRYPT '06, LNCS ser2806. Full paper
available ahttp://www.brics.dk/ ~jg/NIZKGroupSignFull.pdf
Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilin-
ear groups. Cryptology ePrint Archive, Report 2007/155, 2007. Available at
http://eprint.iacr.org/2007/155
C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In
proceedings of ACM CCS 'QOpages 116-125, 2001.

Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption casephceedings of CRYPTO 02, LNCS
series, volume 244pages 111-126, 2002.

Lan Nguyen, Reihaneh Safavi-Naini, and Kaoru Kurosawa. A provably secure and
effcient verifiable shuffle based on a variant of the paillier cryptosysenmnal of
Universal Computer Scienc#1(6):986-1010, 2005.

Lan Nguyen, Reihaneh Safavi-Naini, and Kaoru Kurosawa. Verifiable shuffles: a
formal model and a paillier-based three-round construction with provable security.
International Journal of Informations Securjty(4):241-255, 2006.

Rafael Pass. On deniability in the common reference string and random oracle
model. Inproceedings of CRYPTO '03, LNCS series, volume 27&8es 316337,
2003.

Victor Shoup. Lower bounds for discrete logarithms and related problems. In
proceedings of EUROCRYPT '97, LNCS series, volume, 1i28fes 256-266, 1997.
Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme - a practical
solution to the implementation of a voting booth. droceedings of EUROCRYPT
'95, LNCS series, volume 92fiages 393-403, 1995.

Douglas Wikstdm. A sender verifiable mix-net and a new proof of a shuffle. In
proceedings of ASIACRYPT '05, LNCS series, volume, 3¥%8§s 273-292, 2005.

