
1

Decidable Deadlock Detection for an Abstract
Scoped-Locking Language

JAMES BROTHERSTON, University College London, UK
PAUL BRUNET, University College London, UK
NIKOS GOROGIANNIS, Facebook London and Middlesex University, UK
MAX KANOVICH, University College London, UK

We study the problem of deadlock detection for an abstract programming language with balanced re-entrant
locks, nondeterministic iteration and branching, and non-recursive procedure calls.

First, we show that the existence of a deadlock in a concurrent program is equivalent to a certain condition
over the sets of so-called critical pairs of each of its threads. The critical pairs of a thread record, for all possible
executions of the thread, which locks are currently held at the point when a fresh lock is acquired.

Second, we show that the set of critical pairs of any program thread is finite and computable. As a conse-
quence, the deadlock detection problem for our abstract language is decidable, and in NP. We also present an
algorithm which computes critical pairs in a compositional, abstract interpretation style, running in quasi-
exponential time. All of our proof developments have been formalised in the Coq proof assistant.

Third, we provide an open-source implementation of a version of our analysis adapted to Java. Our analyser
is built in the Infer verification framework and has been in deployment at Facebook for over two years; it
has seen over two hundred fixed deadlock reports with a report fix rate of approximately 54%.

Additional Key Words and Phrases: deadlocks, concurrency, program analysis

1 INTRODUCTION
The avoidance and detection of deadlocks in a system is one of the most fundamental problems in
concurrency. Deadlocking is classically exemplified by Dijkstra’s "Five Dining Philosophers” [Di-
jkstra 1971]: Five philosophers sit around a table, with a fork between each pair of philosophers
and a bowl of “a very difficult kind of spaghetti” in the centre, so that each philosopher requires
both their left and right fork in order to eat. Without any communication between the philoso-
phers, they will generally enter a deadlocked situation in which it is impossible for any of them
to eat (for example if each of them immediately takes the fork to their left). More generally, in a
concurrent program, a deadlock describes a situation in which, for some subset of that program’s
threads, it is impossible that any thread can eventually execute its next command.

In this paper, we consider the problem of detecting deadlocks in an abstract concurrent pro-
gramming language featuring scoped re-entrant locks, nondeterministic iteration and branching,
and nonrecursive procedure calls. This language can be seen as an overapproximate model of
real-world programming languages such as Java, with all information about variable and memory
assignment abstracted away.

We make three principal contributions to the problem, two theoretical and one practical. Our
first contribution is to show that the existence of a deadlock in our abstract programs can be pre-
cisely characterised as a condition on the critical pairs of each of its (sequential) threads. Roughly
speaking, a critical pair of a thread is a pair (X , ℓ) such that some execution of the thread acquires

Authors’ addresses: James Brotherston, Dept. of Computer Science, University College London, UK, J.Brotherston@ucl.ac.
uk; Paul Brunet, Dept. of Computer Science, University College London, UK, Paul@Brunet-Zamansky.fr; Nikos Gorogian-
nis, Facebook London and Middlesex University, UK, nikos.gorogiannis@gmail.com; Max Kanovich, Dept. of Computer
Science, University College London, UK, M.Kanovich@ucl.ac.uk.

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/

1:2 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

an unheld lock ℓ while already holding the set of locksX . For the case of two threads, we establish
thatC1 | | C2 deadlocks if and only if there are critical pairs (X1, ℓ1) and (X2, ℓ2) ofC1 andC2 respec-
tively such that ℓ1 ∈ X2 and ℓ2 ∈ X1, with X1 ∩ X2 = ∅ (cf. Theorem 4.4). This condition can be
generalised to the case of arbitrarily many threads (cf. Theorem 5.5). Its correctness is crucially de-
pendent on the fact that locking is balanced in our language, in that any thread must release locks
in the reverse of the order in which they are acquired, i.e. “last in, first out”. This is true of real pro-
gramming languages whenever scoped-locking constructs are used, such as Java’s synchronized
keyword or C++’s std::lock_guard.
Example 1.1. Consider a two-threaded program C1 | | C2, where C1 and C2 are the following

sequential programs acquiring locks (acq(−)) and releasing them (rel(−)) in reverse order:
C1 : acq(x); acq(y); skip; rel(y); rel(x)
C2 : acq(y); acq(x); skip; rel(x); rel(y)

C1 has two critical pairs, (∅, x) and ({x},y), and similarlyC2 has two critical pairs (∅,y) and ({y}, x).
By taking (X1, ℓ1) = ({x},y) and (X2, ℓ2) = ({x},y), we can see that the condition above is met,
and indeed C1 | | C2 deadlocks, because there is an execution in which, simultaneously, C1 holds
x while waiting for y, and C2 holds y while waiting for x . Now consider the modified program
C ′
1 | | C

′
2, where C

′
1 = acq(z);C1; rel(z) and C ′

2 = acq(z);C2; rel(z). C ′
1 now has three critical pairs

(∅, z), ({z}, x) and ({z, x},y), andC ′
2 has critical pairs (∅, z), ({z},y) and ({z,y}, x). In this case, the

condition above is not met, and indeedC ′
1 | | C

′
2 does not deadlock, because z acts as a “guard lock”

preventing x and y from being accessed by C ′
1 and C

′
2 simultaneously.

Our second contribution is to show that the set of critical pairs of any thread in our language
is in fact finite and computable. Consequently, due to the above characterisation of deadlocks, the
existence of deadlocks in our abstract programs becomes decidable (and in NP). We present both
a direct inductive computation of critical pairs, and a context-insensitive, flow-sensitive program
analysis that computes them in abstract interpretation style, running in quasi-exponential time in
the syntactic size of the program.

Our third contribution is an adaptation of our analysis to Java, and an open-source implemen-
tation within the Infer static analysis framework, aimed at finding deadlocks in code changes in
Android applications. We describe its deployment and impact at Facebook, where it has seen over
two hundred deadlock reports fixed in the last two years.

All of our theoretical results have also been proved mechanically in the Coq proof assistant1.
The formalisation occupies roughly 8.7K lines of code, and follows fairly closely the pen-and-paper
proofs in this paper. However, whereas for pedagogical reasons we shall begin here by considering
two-threaded programs and then generalise to the case of n threads, the mechanised proofs deal
directly with the general case.

The remainder of this paper is structured as follows. First, Section 2 introduces the syntax and
semantics of our abstract concurrent programs (restricted initially to the two-threaded case). In
Section 3 we develop the notion of a (sequential) program execution’s trace, i.e. the sequence of
lock acquisitions and releases it makes, and establish the key technical relationships between traces
and executions. Then, in Section 4, we establish the soundness and completeness of our deadlock
condition based on critical pairs, for two-threaded programs (as above). Section 5 generalises this
result to the case of programs with n ≥ 2 threads. In Section 6 we show that the set of critical
pairs of any sequential program is finite and computable, and establish complexity bounds on
the problem. Section 7 describes our implementation of the deadlock analysis and its deployment
impact at Facebook. Section 8 surveys the related work, and Section 9 concludes.
1Made available as supplementary material for the referees.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:3

2 PROGRAM SYNTAX AND SEMANTICS
Syntax. Locks is a finite set of global lock names and Procs is a set of procedure names.
We define statements C by the following grammar, where ℓ ranges over Locks and p over Procs:

C := skip | p() | acq(ℓ) | rel(ℓ) | C;C | if(∗) then C else C | while(∗) do C

We assume there is a function body() : Procs → Stmt that sends every procedure name to a state-
ment, its body. A function computing the callees of a statement callees(·) : Stmt → P(Procs) can
be easily defined. We forbid recursion in statements; that is, for all p ∈ Procs, p < callees(body(p)).
A statement is called balanced if it is generated by the following grammar, which ensures that

acq(ℓ) and rel(ℓ) only appear in balanced pairs:

C := skip | p() | acq(ℓ);C; rel(ℓ) | C;C | if(∗) then C else C | while(∗) do C

Moreover, balanced statements must call only balanced procedures: if C is balanced and p ∈

callees(C), then body(p) must be balanced as well. We note that our balanced statements are simi-
lar to those produced by compiling scope-based constructs like Java’s synchronized keyword, or
C++’s std::lock_guard.

Wewill frequently need to reason by structural induction over (balanced) statements. To account
for procedure calls in such proofs, we employ an extended notion of “substructure” for statements,
given as the reflexive-transitive closure of the following condition: any sub-statement ofC (accord-
ing to the grammar above) is a substructure of C , and body(p) is a substructure of p(). Since our
procedures are non-recursive, this ordering is still well-founded.

Finally, a parallel program is an ordered pair of balanced statements written C1 | | C2.

Semantics. Since our programs employ only non-deterministic control flow and lock guards, our
program states record only information about locks. We treat locks as re-entrant in that a thread
already holding a lock can re-acquire it without deadlock.

A lock state is a function L : Locks → N, recording howmany times each lock has been acquired.
We use the notation ⌊L⌋ for {ℓ ∈ Locks | L(ℓ) > 0}. If L1 and L2 are lock states then we write
L1 # L2 to mean that ⌊L1⌋ ∩ ⌊L2⌋ = ∅. We write ∅ for the lock state sending all locks to 0. We
write L[ℓ++] and L[ℓ−−] for the lock states defined as L, except that L[ℓ++](ℓ) = L(ℓ) + 1 and
L[ℓ−−](ℓ) = L(ℓ) − 1.

A configuration is a pair ⟨C, L⟩, whereC is a statement and L is a lock state. A concurrent configu-

ration is a pair ⟨C1 | | C2, (L1, L2)⟩, whereC1 | | C2 is a parallel program and L1, L2 are lock states. We
will also denote this concurrent configuration as ⟨C1, L1⟩ ∥ ⟨C2, L2⟩. We write ⟨C1, L1⟩ # ⟨C2, L2⟩
to mean that L1 # L2.
In Figure 1 we define the operational semantics of our programs by giving the small-step re-

lations for statements on ordinary configurations, →, and for parallel programs on concurrent
configurations, . A configuration ⟨C, L⟩ is called live if there exists a transition ⟨C, L⟩ → ⟨C ′, L′⟩.

Definition 2.1. An execution (of statement C) is a possibly infinite sequence of configurations

π = (γi)i≥0 (with γ0 = ⟨C, _⟩) such that γi → γi+1 for all i ≥ 0.
A concurrent execution is defined analogously to an execution, by replacing concurrent configura-

tions for configurations and for → in the above.

We often represent executions (γi)i≥0 as γ0 →∗ γn , where →
∗
is the reflexive-transitive closure of

→, and similarly using ∗
for concurrent executions.

We make the following simple but useful observation on our semantics:

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:4 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

⟨skip;C, L⟩ → ⟨C, L⟩ (skip)
⟨p(), L⟩ → ⟨body(p), L⟩ (proc)

⟨acq(ℓ), L⟩ → ⟨skip, L[ℓ++]⟩ (acq)
⟨rel(ℓ), L⟩ → ⟨skip, L[ℓ−−]⟩ (L(ℓ) > 0) (rel)

⟨if(∗) then Ca else Cb , L⟩ → ⟨Ca, L⟩ (if1)
⟨if(∗) then Ca else Cb , L⟩ → ⟨Cb , L⟩ (if2)

⟨while(∗) do C, L⟩ → ⟨skip, L⟩ (while1)
⟨while(∗) do C, L⟩ → ⟨C; while(∗) do C, L⟩ (while2)

⟨C1, L⟩ → ⟨C ′
1, L

′⟩

⟨C1;C2, L⟩ → ⟨C ′
1;C2, L

′⟩
(seq)

⟨C1, L1⟩ → ⟨C ′
1, L

′
1⟩ L′1 # L2

⟨C1 | | C2, (L1, L2)⟩ ⟨C ′
1 | | C2, (L

′
1, L2)⟩

(par1)

⟨C2, L2⟩ → ⟨C ′
2, L

′
2⟩ L1 # L′2

⟨C1 | | C2, (L1, L2)⟩ ⟨C1 | | C
′
2, (L1, L

′
2)⟩

(par2)

Fig. 1. Small-step semantics for statements (→) and parallel programs ().

Remark 2.2. For any concurrent execution γ1 | | γ2 ∗ γ ′
1 | | γ ′

2 , there exist standard executions

γ1 →
∗ γ ′

1 and γ2 →
∗ γ ′

2 . Furthermore, if γ1 # γ2, then γ ′
1 # γ

′
2 ; i.e., the two threads cannot acquire the

same lock simultaneously.

Definition 2.3. A concurrent configuration σ = ⟨C ′
1 | | C

′
2, (L1, L2)⟩ is deadlocked if both ⟨C ′

1, L1⟩
and ⟨C ′

2, L2⟩ are live, and there is no σ ′
such that σ σ ′

. The parallel program C1 | | C2 is said to

deadlock if there exists an execution ⟨C1 | | C2, (∅,∅)⟩ ∗ σ such that σ is deadlocked.

Deadlocked configurations can be characterised using the following observation.

Proposition 2.4. Let σ = ⟨C1 | | C2, (L1, L2)⟩ be a concurrent configuration such that L1 # L2. The
configuration σ is deadlocked iff there are statements D1,D2 and locks ℓ1, ℓ2 such that

⟨C1, L1⟩ → ⟨D1, L1[ℓ1++]⟩ , ⟨C2, L2⟩ → ⟨D2, L2[ℓ2++]⟩ , ℓ1 ∈ ⌊L2⌋ and ℓ2 ∈ ⌊L1⌋ .

Proof. Case (⇒): By assumption, ⟨C1, L1⟩ and ⟨C2, L2⟩ are live, with L1 # L2, but there is no
configuration σ ′ such that σ σ ′. Since ⟨C1, L1⟩ is live, we have ⟨C1, L1⟩ → ⟨D1, L

′
1⟩. We show

that L′1 = L1[ℓ1++] for some lock ℓ1. Otherwise, by inspection of the semantics for → (Figure 1),
the only other possibilities are either L′1 = L1 or L′1 = L1[ℓ1−−]. In either case,

⌊
L′1
⌋
⊆ ⌊L1⌋, and

since L1 # L2 by assumption, we have L′1 # L2 and thus a concurrent transition using the rule par1:

⟨C1, L1⟩ → ⟨D1, L
′
1⟩ L′1 # L2

⟨C1 | | C2, (L1, L2)⟩ ⟨D1 | | C2, (L
′
1, L2)⟩

which contradicts the fact that σ is deadlocked. For the same reason, we must have ℓ1 ∈ ⌊L2⌋, since⌊
L′1
⌋
= ⌊L1⌋ ∪{ℓ1} and L1 # L2. By a symmetric argument, we also have ⟨C2, L2⟩ → ⟨D2, L2[ℓ2++]⟩

and ℓ2 ∈ ⌊L1⌋ for some lock ℓ2.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:5

Case (⇐): Assume ⟨C1, L1⟩ → ⟨D1, L1[ℓ1++]⟩ and ⟨C2, L2⟩ → ⟨D2, L2[ℓ2++]⟩ with ℓ1 ∈ ⌊L2⌋
and ℓ2 ∈ ⌊L1⌋. Thus ⟨C1, L1⟩ and ⟨C2, L2⟩ are both live. Assume for contradiction that σ σ ′.
Without loss of generality, we assume that this transition occurs via the rule par1:

⟨C1, L1⟩ → ⟨C ′
1, L

′
1⟩ L′1 # L2

⟨C1 | | C2, (L1, L2)⟩ ⟨C ′
1 | | C2, (L

′
1, L2)⟩

Since ⟨C1, L1⟩ → ⟨D1, L1[ℓ1++]⟩, it is clear by inspection of the semantics for → that we must
have L′1 = L1[ℓ1++]; only the command acq(ℓ1) (possibly suffixed by some other statement) can
increment ℓ1. Thus L1[ℓ1++] # L2, which is a contradiction since ℓ1 ∈ ⌊L2⌋ by assumption and
ℓ1 ∈ ⌊L1[ℓ1++]⌋. We conclude that σ ′ cannot exist, and so σ is deadlocked as required. �

3 EXECUTIONS AND TRACES
In this section, we develop a key technical idea: any execution of a statement (in an arbitrary lock
state) can be viewed simply as a sequence of lock acquisitions ℓ and releases ℓ, which we call the
execution’s trace. Thus, for example, the two possible executions of the statement

acq(ℓ); if(∗) then (acq(j); skip; rel(j)) else (acq(k); skip; rel(k)); rel(ℓ)

have respective traces ℓ j j ℓ and ℓ k k ℓ, depending on which branch of the if statement is chosen.
From our point of view, traces preserve the essential information about executions, in that the

effect of an execution on any given initial lock state can be computed from its trace. Moreover,
executions of balanced statements have traces that are essentially well-parenthesized strings of
lock acquisitions and releases; in fact they can be seen as Dyck words [Hopcroft and Ullman 1969]
in formal language theory, as most notably used in the Chomsky–Schützenberger representation
theorem [Chomsky and Schützenberger 1963].

3.1 From executions to traces
In this section, we show how to map executions of our statements to traces, which are words over
a suitable “lock alphabet”, and statements to languages of such traces, in a consistent way.

Definition 3.1. The lock alphabet Σ is defined as the union of two disjoint copies of Locks:

Σ := {ℓ | ℓ ∈ Locks} ∪ {ℓ | ℓ ∈ Locks} .

A quasi-lock state is a function in Locks → Z. We lift the notations [ℓ++] and [ℓ−−] from lock states

to quasi-lock states in the obvious way, and write + on quasi-lock states to denote the pointwise sum

of functions, i.e. (f +д)(x) = f (x)+д(x). We define the function ⟨·⟩ from Σ-words to quasi-lock states
inductively, as follows:

⟨ε⟩ B ∅ ⟨u · ℓ⟩ B ⟨u⟩[ℓ++] ⟨u · ℓ⟩ B ⟨u⟩[ℓ−−] .

We immediately notice the following relation between ⟨·⟩ and concatenation.

Lemma 3.2. For any Σ-words u and v we have ⟨uv⟩ = ⟨u⟩ + ⟨v⟩.

Proof. A straightforward induction on v . �

Next, we map executions of our statements to words over Σ. We can observe by inspecting our
semantics (Figure 1) that in any execution step ⟨C, L⟩ → ⟨D,M⟩ we have M = L, or M = L[ℓ++]
orM = L[ℓ−−] for some lock ℓ. This justifies the following definition.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:6 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

Definition 3.3. Given a transition τ : ⟨C, L⟩ → ⟨C ′, L′⟩ in our operational semantics, we define

its trace λ(τ) ∈ Σ ∪ {ε} as follows:

λ(τ) =

ε if L′ = L

ℓ if L′ = L[ℓ++]

ℓ if L′ = L[ℓ−−].

The trace of an execution is then defined as the concatenation of the traces of its individual transitions.

We often write transitions and executions with their trace above the arrow, as in τ : ⟨C, L⟩
u
−−→ ⟨C ′, L′⟩

and π : ⟨C, L⟩
u
−−→∗ ⟨D,M⟩.

The trace of an execution is preserved under suffixing statements.

Proposition 3.4. For any execution π : ⟨C0, L0⟩
u
−−→∗ ⟨Cn, Ln⟩ and statement C , there is also an

execution π ′ : ⟨C0;C, L0⟩
u
−−→∗ ⟨Cn ;C, Ln⟩.

Proof. The statement is an inductive consequence of the fact that for any step ⟨Ci , Li ⟩ →

⟨Ci+1, Li+1⟩ in the original execution π we can apply the rule (seq) in Figure 1 to obtain:
πi : ⟨Ci , Li ⟩ → ⟨Ci+1, Li+1⟩

π ′
i : ⟨Ci ;C, Li ⟩ → ⟨Ci+1;C, Li+1⟩.

Since this new transition has the same input-output lock states, it has the same trace. �

We now define the language of a statement, roughly speaking, as the set of traces generated by
its possible executions. Subsequent technical results will make this correspondence precise.

Definition 3.5. The language L(C) of a statement C is defined inductively as follows:

L(skip) B {ε} L(C1;C2) B L(C1) · L(C2)

L(acq(ℓ)) B {ℓ} L(if(∗) then C1 else C2) B L(C1) ∪ L(C2)

L(rel(ℓ)) B {ℓ} L(while(∗) do C) B L(C)⋆

L(p()) B L(body(p))

Remark 3.6. For any statement C we have that L(C) is in fact a regular language over Σ: it is

obtained from {ε}, {ℓ} and {ℓ} by applying concatenation, union, and Kleene star. Furthermore, by

construction, L(C) is never empty.

Our next lemma establishes that the trace of an execution of statement C determines its effect
on the lock state, and is a prefix of some word in L(C).

Lemma 3.7. For any execution π : ⟨C, L⟩
u
−−→∗ ⟨C ′, L′⟩ we have L′ = L+ ⟨u⟩ and u · L(C ′) ⊆ L(C).

Proof. We first prove the case where π is a single transition step, by rule induction on the
transition relation (cf. Figure 1). The base cases — (skip), (proc), (acq), (rel), (if1), (if2), (while1)
and (while2) — are all easy verifications. In the inductive case, (seq), we have:

⟨C1, L⟩
u
−−→ ⟨C ′

1, L
′⟩

⟨C1;C2, L⟩
u
−−→ ⟨C ′

1;C2, L
′⟩

By the induction hypothesis we have L = L+ ⟨u⟩ andu ·L(C ′
1) ⊆ L(C1). Thus we getu ·L(C ′

1;C2) =

u · L(C ′
1) · L(C2) ⊆ L(C1) · L(C2) = L(C1;C2) as required. This completes the single-step case.

For an arbitrary execution, the result then follows by reflexive-transitive induction on the tran-
sition relation. In the reflexive case, we have u = ε , C ′ = C and L′ = L, and so the statement

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:7

holds trivially. Otherwise we have π : ⟨C, L⟩
v
−−→ ⟨C ′′, L′′⟩

w
−−→∗ ⟨C ′, L′⟩, with u = vw . By our

result on single transitions, we get L′′ = L + ⟨v⟩ and v · L(C ′′) ⊆ L(C). By induction hypoth-
esis, we have L′ = L′′ + ⟨w⟩ and w · L(C)′ ⊆ L(C ′′). Therefore, using Lemma 3.2, we have
L′ = L + ⟨w⟩ + ⟨v⟩ = L + ⟨vw⟩, so the first property holds. For the second property, we have
(vw) · L(C ′) = v · (w · L(C ′)) ⊆ v · L(C ′′) ⊆ L(C) and are done. �

3.2 Dyck words and balanced executions
Here, we recall the notion of Dyck words over our lock alphabet Σ and relate them to executions
of balanced statements. If we view ℓ and ℓ respectively as opening and closing “parentheses”,
then Dyck words are essentially the well-parenthesized words over Σ, which can be thought of as
“balanced traces”. These are exactly the traces generated by executing balanced statements.

Definition 3.8. The language D of Dyck words over Σ is generated by the following grammar:

D := ε | D D | ℓD ℓ.

It is immediate that the traces generated by executing balanced statements are Dyck words.

Lemma 3.9. If C is a balanced statement, L(C) ⊆ D.

Proof. A straightforward structural induction on C . �

The key property of Dyck words we rely on is that any occurrence of a ℓ letter in a Dyck word
must be matched by an earlier occurrence of ℓ, with the intervening word also a Dyck word.

Lemma 3.10. For any u ℓv ∈ D, there exist words u1 ∈ Σ⋆ and u2 ∈ D such that u = u1 ℓu2.

Proof. We proceed by structural induction (over Dyck words) on u ℓv .

Case u ℓv = ε: This case is clearly impossible.

Case u ℓv = d1 d2:We distinguish two subcases. First suppose d1 is a prefix of u. Then u = d1w
and d2 = w ℓv for some w ∈ Σ⋆. Since w ℓv ∈ D, by the induction hypothesis we obtain w1,w2
such thatw = w1 ℓw2 andw2 ∈ D. We choose u1 = d1w1 and u2 = w2, and check that u = d1w =
d1w1 ℓw2 = u1 ℓu2.

Otherwise, if d1 is not a prefix of u, then it must be that u is a prefix of d1, i.e. d1 = uw and
ℓv = w d2 for some w ∈ Σ⋆. We can assume that w , ε (since this is covered by the first case), so
we have w = ℓw ′ and v = w ′d2. Since uw = u ℓw ′ = d1 ∈ D, by the induction hypothesis we
obtain u1,u2 such that u = u1 ℓu2 and u2 ∈ D.

Case u ℓv = k d k: We observe that u = ε is not possible, as it would entail ℓv = k d k . We
distinguish two further subcases on the length of u. First, if u = k d , then we have u ℓv = k d ℓv =
k d k . Thus ℓ = k and v = ε , so we can choose u1 = ε and u2 = d , with u2 ∈ D.

Otherwise, there must be words u ′,v ′ such that u = k u ′, v = v ′ k and d = u ′ ℓv ′. In this case,
by the induction hypothesis on u ′ ℓv ′ = d ∈ D to get u ′

1,u
′
2 such that u ′ = u ′

1 ℓu
′
2 and u

′
2 ∈ D. We

then choose u1 = k u ′
1 and u2 = u

′
2, and check that u = k u ′ = k u ′

1ℓu
′
2 = u1 ℓu2. �

Our mapping ⟨·⟩ from Definition 3.1 sends all Dyck words to the empty lock state ∅, and all
prefixes of Dyck words to bona fide lock states (as opposed to quasi-lock states).

Lemma 3.11. For any u ∈ D we have ⟨u⟩ = ∅.

Proof. A straightforward structural induction on u, using Lemma 3.2. �

Lemma 3.12. For any uv ∈ D we have ⟨u⟩ ∈ Locks → N.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:8 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

Proof. By structural induction on uv .

Case uv = ε:We must have u = ε , and so by definition ⟨u⟩ = ∅ ∈ Locks → N.

Case uv = d1 d2: By Lemma 3.11, ⟨d1⟩ = ⟨d2⟩ = ∅. We distinguish two subcases. First suppose
that d1 is a prefix of u. Then u = d1w and d2 = w v for somew ∈ Σ⋆. Therefore, using Lemma 3.2,
⟨u⟩ = ⟨d1w⟩ = ⟨d1⟩ + ⟨w⟩ = ∅ + ⟨w⟩ = ⟨w⟩. By the induction hypothesis on d2 = w v , we have
⟨w⟩ ∈ Locks → N and are done. Otherwise, u must be a prefix of d1, i.e. d1 = uw and v = w d2 for
somew , and we are done immediately by induction hypothesis on d1.

Case uv = ℓ d ℓ: First, if u = ε then ⟨u⟩ = ∅ and we are done. Next, if v = ε then u = ℓ d ℓ, and
since ⟨d⟩ = ∅ by Lemma 3.11, we have ⟨u⟩ = ∅[ℓ++][ℓ−−] = ∅ and are also done. Otherwise,
there must be words u ′, v ′ such that u = ℓu ′ and v = v ′ ℓ and d = u ′v ′. By induction hypothesis
on d , we have ⟨u ′⟩ ∈ Locks → N. Using Lemma 3.2, we have

⟨u⟩ = ⟨ℓu ′⟩ = ⟨ℓ⟩ + ⟨u ′⟩ = ⟨u ′⟩ + ⟨ℓ⟩ = ⟨u ′ ℓ⟩ = ⟨u ′⟩[ℓ++] .

Since ⟨u ′⟩ ∈ Locks → N, so is ⟨u ′⟩[ℓ++]. This completes the proof. �

We can now establish an analogue of Lemma 3.10 for executions of balanced statements, which
will play a crucial role later on in “disentangling” concurrent executions (see Lemma 4.3).

Lemma 3.13. Let C be a balanced statement. For any execution

⟨C,∅⟩ = ⟨C0, L0⟩ → · · · → ⟨Cn, Ln⟩ → ⟨Cn+1, Ln[ℓ−−]⟩ ,

there exists j < n such that Lj = Ln[ℓ−−] and Lj+1 = Ln .

Proof. LetC be a balanced statement, and π = (⟨Ci , Li ⟩)06i6n+1 be a non-trivial execution such
that ⟨C0, L0⟩ = ⟨C,∅⟩ and Ln+1 = Ln[ℓ−−]. Necessarily, ℓ ∈ ⌊Ln⌋. We write λ(i) for the trace of
the transition ⟨Ci , Li ⟩ → ⟨Ci+1, Li+1⟩; thus clearly λ(n) = ℓ. We also write λi , j , where j ≥ i , for the
word λ(i) . . . λ(j − 1), i.e. the trace of the sub-execution ⟨Ci , Li ⟩ →

∗ ⟨Cj , Lj ⟩. We write λ(π) for the
trace of the whole execution π , meaning that λ(π) = λ0,n+1 = λ0,n ℓ.

Since π : ⟨C,∅⟩
λ(π)
−−−−→∗ ⟨Cn+1, Ln[ℓ−−]⟩, we can apply Lemma 3.7 to obtain that λ(π)·L(Cn+1) ⊆

L(C). Recalling that the language of a statement is never empty, let w ∈ L(Cn+1). Since C is
balanced, L(C) ⊆ D by Lemma 3.9, meaning that λ(π)w = λ0,n ℓw ∈ D. Thus by Lemma 3.10
there are words u ∈ Σ⋆ and v ∈ D such that λ0,n = λ(0) . . . λ(n − 1) = u ℓv . This means there is
an index 0 ≤ j ≤ n − 1 such that λ0, j = u and λ(j) = ℓ and λj+1,n = v . By Lemma 3.11, we have
⟨λj+1,n⟩ = ⟨v⟩ = ∅.
We just need to check that our j satisfies the conditions of the lemma. Clearly j < n. To see that

Lj+1 = Ln , we use Lemma 3.7 again to see that for any index i we have Li = ∅ + ⟨λ0,i ⟩ = ⟨λ0,i ⟩.
Therefore, using Lemma 3.2:

Ln = ⟨λ0,n⟩ = ⟨λ0, j+1 · λj+1,n⟩ = ⟨λ0, j+1⟩ + ⟨λj+1,n⟩ = Lj+1 +∅ = Lj+1 .

Finally, since λ(j) = ℓ, we have Lj+1 = Lj [ℓ++], so Ln[ℓ−−] = Lj+1[ℓ−−] = Lj [ℓ++][ℓ−−] = Lj . �

The final main technical result in this section is a kind of converse to Lemma 3.7 for the case of
balanced statements: for any prefix u of a word in L(C), we can find a corresponding execution of
C with trace u.

Lemma 3.14. Let C be a balanced statement, and let u,v ∈ Σ⋆ such that uv ∈ L(C). For any lock

state L, there is a statement D and an execution π : ⟨C, L⟩
u
−−→∗ ⟨D, L + ⟨u⟩⟩ such that v ∈ L(D).

Furthermore, if v = ε , then this statement also holds when D = skip.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:9

Proof. Let uv ∈ L(C); we proceed by structural induction on the balanced statement C . We
just show the caseC = while(∗) do C ′, which is the most complex since it entails constructing an
execution involving arbitrarily many executions of the loop body C ′.
In this case, we have by assumption uv ∈ L(C ′)⋆, and consider two main subcases. First

suppose u = ε , meaning that v ∈ L(C ′)⋆. If also v = ε , then we may take as our execution
⟨while(∗) do C ′, L⟩

ε
−−→∗ ⟨skip, L⟩ using rule while1 and noting that L = L+ ⟨ε⟩ = L+ ⟨u⟩. Ifv , ε ,

then we take instead the trivial (0-step) execution ⟨while(∗) do C ′, L⟩
ε
−−→∗ ⟨while(∗) do C ′, L⟩,

taking D = while(∗) do C ′ and noting that v ∈ L(D) by assumption.
Otherwise, u , ε , meaning that u = u1 · · ·un u

′ and v = v1v2, where each ui ∈ L(C ′) and
u ′v1 ∈ L(C ′) and v2 ∈ L(C ′)⋆. (In other words, u is the trace of n complete iterations of the loop
body C ′ plus some portion of the (n + 1)th iteration.) Moreover, since C ′ is a balanced statement,
for each i we have ui ∈ D by Lemma 3.9 and thus ⟨ui ⟩ = ∅ by Lemma 3.11. Then, for each i ,
by induction hypothesis on C ′ and ui ε ∈ L(C ′) we obtain an execution ⟨C ′, L⟩

ui
−−→∗ ⟨skip, L⟩.

We suffix these using Proposition 3.4 to modify these executions to ⟨C ′; while(∗) do C ′, L⟩
ui
−−→∗

⟨skip; while(∗) do C ′, L⟩, and add an initial while2 step and a final skip step to modify them
again to ⟨while(∗) do C ′, L⟩

ui
−−→∗ ⟨while(∗) do C ′, L⟩.

Next, by induction hypothesis on C ′ with u ′v1 ∈ L(C ′), and using Proposition 3.4 to add the
suffix while(∗) do C ′, we obtain an execution ⟨C ′; while(∗) do C ′, L⟩

u′

−−→∗ ⟨D ′; while(∗) do C ′, L+
⟨u ′⟩⟩ where v1 ∈ L(D ′), and we may assume D ′ = skip if v1 = ε . We then build our required
execution, using the sub-executions above and an intermediate while2 step, as follows:

π : ⟨while(∗) do C ′, L⟩
u1
−−→∗ ⟨while(∗) do C ′, L⟩
u2
−−→∗ ⟨while(∗) do C ′, L⟩
...

un
−−−→∗ ⟨while(∗) do C ′, L⟩

ε
−−→ ⟨C ′; while(∗) do C ′, L⟩
u′

−−→∗ ⟨D ′; while(∗) do C ′, L + ⟨u ′⟩⟩

This execution indeed has trace u = u1 u2 . . .un u ′ and, using Lemma 3.2, we have

L + ⟨u⟩ = L + ⟨u1⟩ + · · · + ⟨un⟩ + ⟨u ′⟩ = L +∅ + · · · +∅ + ⟨u ′⟩ = L + ⟨u ′⟩ .

Moreover, taking D = D ′; while(∗) do C ′, we have

v = v1v2 ∈ L(D ′) · L(C ′)⋆ = L(D ′; while(∗) do C ′) = L(D) .

It just remains to treat the special case where v = ε . In that case v1 = v2 = ε , and by the induction
hypothesis on C1 we may take D ′ = skip. We may then suffix π by the following execution steps
using skip and while1:

⟨skip; while(∗) do C ′, L + ⟨u⟩⟩
ε
−−→∗ ⟨while(∗) do C ′, L + ⟨u⟩⟩

ε
−−→∗ ⟨skip, L + ⟨u⟩⟩ .

This modified execution still has trace u and ends in skip with lock state L + ⟨u⟩ as required. �

Observe that Lemma 3.14 does not hold for non-balanced statements. For example, we have
ℓ ∈ L(rel(ℓ)), but there are no possible executions of ⟨rel(ℓ),∅⟩.

A simple corollary of Lemmas 3.7 and 3.14 is that the language of a balanced statement is exactly
the set of traces of its “complete” executions to skip, starting from the empty lock state.

Corollary 3.15. For any balanced statement C , we have L(C) = {u | ⟨C,∅⟩
u
−−→∗ ⟨skip,∅⟩}.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:10 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

Proof. For the (⊇) inclusion, suppose that ⟨C,∅⟩
u
−−→∗ ⟨skip,∅⟩. By Lemma 3.7 we have {u} ·

L(skip) ⊆ L(C). Since L(skip) = {ε}, this means {u} ⊆ L(C), i.e. u ∈ L(C) as required.
For the (⊆) inclusion, suppose that u ∈ L(C), i.e. u ε ∈ L(C). By Lemma 3.14, with L = ∅ and

v = ε , there is an execution ⟨C,∅⟩
u
−−→∗ ⟨skip,∅+ ⟨u⟩⟩. By Lemma 3.11, ⟨u⟩ = ∅, and so we have

⟨C,∅⟩
u
−−→∗ ⟨skip,∅⟩ as required. �

Remark 3.16. A statementC in our language can be viewed as a string acceptor on Σ-words, where

C accepts u iff ⟨C,∅⟩
u
−−→∗ ⟨skip,∅⟩. If C is balanced then, by Corollary 3.15, it accepts exactly

the strings L(C). Since L(C) is a regular language (cf. Remark 3.6), this means that our balanced

statements can be viewed as nondeterministic finite automata (over Σ).

4 CHARACTERISATION OF DEADLOCK EXISTENCE
In this section, we obtain our main theoretical result: the existence of a deadlock in a parallel
programC1 ∥ C2 amounts to the existence of a (certain kind of) conflict between individual “sum-
maries” of C1 and C2, called their sets of critical pairs. Roughly speaking, a critical pair of a state-
ment C is a pair (X , ℓ) such that some execution of C acquires the lock ℓ while holding the set of
locks X (which cannot already include ℓ). Our main correctness result, relating deadlocks to the
conflict condition on critical pairs, is stated as Theorem 4.4. In the subsequent Section 6, we show
how to actually compute the critical pair summary of a statement and check the conflict condition.

First, we define the critical pairs of a statement in terms of its traces.

Definition 4.1. The set Crit(C) of critical pairs of a statement C is defined as:

Crit(C) B {(⌊⟨u⟩⌋ , ℓ) | ∃v .u ℓv ∈ L(C) and ℓ < ⌊⟨u⟩⌋} .

The reason for our trace-based definition of Crit(C), as opposed to an execution-based one, is
that it depends only on the language L(C), which turns out to be easy to compute (see Section 6).
The following lemma, which relies on our technical results from Section 3, gives an equivalent
formulation of critical pairs in terms of executions.

Lemma 4.2. IfC is a balanced statement, then (X , ℓ) ∈ Crit(C) iff there exist statementsC ′,C ′′
and

lock state L such that ⟨C,∅⟩ →∗ ⟨C ′, L⟩ → ⟨C ′′, L[ℓ++]⟩, with X = ⌊L⌋ and ℓ < X .

Proof. Case (⇒): Let (X , ℓ) ∈ Crit(C). We have X = ⌊⟨u⟩⌋ and ℓ < X , where u ℓv ∈ L(C).
Thus we choose L = ⟨u⟩, and just require to build the needed execution. By Lemma 3.14 there is a
statement D and an execution

⟨C,∅⟩
u ℓ
−−−→∗ ⟨D,∅ + ⟨u ℓ⟩⟩ = ⟨D, ⟨u⟩[ℓ++]⟩ .

By a simple inductive analysis, we can decompose this execution as:

⟨C,∅⟩
u
−−→∗ ⟨C ′, ⟨u⟩⟩

ℓ
−−→ ⟨C ′′, ⟨u⟩[ℓ++]⟩

ε
−−→∗ ⟨D, ⟨u⟩[ℓ++]⟩

which completes the case.

Case (⇐): Adding trace labels to the execution, we have ⟨C,∅⟩
u
−−→∗ ⟨C ′, L⟩

ℓ
−−→ ⟨C ′′, L[ℓ++]⟩,

where ℓ < ⌊L⌋. By Lemma 3.7 we have L = ∅ + ⟨u⟩ = ⟨u⟩ and u · L(C ′) ⊆ L(C), and ℓ · L(C ′′) ⊆

L(C ′). Therefore, picking any v ∈ L(C ′′), we have u ℓv ∈ u · (ℓ · L(C ′′)) ⊆ u · L(C ′) ⊆ L(C).
Since ℓ < ⌊L⌋, we have (⌊L⌋ , ℓ) ∈ Crit(C) as required. �

Before we can characterise deadlocks in terms of critical pairs, we require one more crucial
lemma. This is to “disentangle” concurrent executions by showing that it suffices to consider their
sequential components individually, without having to account for all their possible interleavings.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:11

Lemma 4.3. Let C,C ′
be balanced statements such that C | | C ′

does not deadlock. Then we have

⟨C | | C ′, (∅,∅)⟩ ∗ γ ∥ γ ′
iff ⟨C,∅⟩ →∗ γ and ⟨C ′,∅⟩ →∗ γ ′

with γ # γ ′
.

Proof. The (⇒) direction follows immediately from Remark 2.2.
For the (⇐) direction, we begin by assuming executions π : ⟨C,∅⟩ →∗ γ and π ′ : ⟨C ′,∅⟩ →∗ γ ′,

with γ # γ ′. We use the following notations for the intermediate configurations of π and π ′:

π = γ0 → . . .γi → · · · → γn γi = ⟨Ci , Li ⟩

π ′ = γ ′
0 → . . .γ

′
i′ → · · · → γ ′

n′ γi′ = ⟨C ′
i′, L

′
i′⟩

We have γ0 = ⟨C,∅⟩ and γ ′
0 = ⟨C ′,∅⟩ and γn = γ and γ ′

n′ = γ ′.
In the following we call the concurrent configuration γi ∥ γ ′

i′ compatible whenever γi # γ ′
i , and

reachable whenever γ0 ∥ γ ′
0

∗ γi ∥ γ ′
i′ . We shall show by induction on i + i ′ that if γi ∥ γ ′

i′ is
compatible then it is also reachable.

If i + i ′ = 0, then i = i ′ = 0, so γi ∥ γ ′
i′ is trivially reachable. Otherwise, i + i ′ > 0, and we

consider the compatibility of the concurrent configurations γi−1 ∥ γ ′
i′ and γi ∥ γ

′
i′−1. If one of these

does not exist, i.e. either i = 0 or i ′ = 0, then the other one does exist and is compatible; e.g. if
i = 0 then Li = ∅ and i ′ > 0, and trivially ∅ # Li′−1, i.e. γ0 # γi′−1.

Suppose first that one of these configurations is compatible, say γi ∥ γ ′
i′−1 (the other case being

symmetric). By the induction hypothesis, γi ∥ γ ′
i′−1 is reachable. Since γ

′
i′−1 → γ ′

i′ and γi # γ
′
i′ by

the assumption that γi ∥ γ ′
i′ is compatible, we have γi ∥ γ ′

i′−1 γi ∥ γ
′
i′ by the rule par2 (Figure 1).

Thus γ0 | | γ ′
0

∗ γi ∥ γ
′
i′−1 γi ∥ γ

′
i′ , meaning that γi ∥ γ ′

i′ is reachable as required.
The remaining subcase is that i, i ′ > 0 and neither γi−1 ∥ γ ′

i′ nor γi ∥ γ ′
i′−1 is compatible. We

will show that C | | C ′ must deadlock, thus contradicting the lemma assumption. We know that
γi−1 → γi and γ ′

i′−1 → γ ′
i′ . We can deduce that Li = Li−1[ℓ−−] for some lock ℓ, for if not, then

⌊Li−1⌋ ⊆ ⌊Li ⌋ and thus γi ∥ γ ′
i′ compatible implies γi−1 ∥ γ ′

i′ compatible, contradicting the subcase
assumption. For a similar reason, L′i′ = L′i′−1[ℓ

′−−] for some lock ℓ′. As C and C ′ are balanced,
we can apply Lemma 3.13 (twice) to obtain j < i such that Lj = Li and Lj+1 = Li−1, and j ′ < i ′

such that L′j′ = L′i′ and L′j′+1 = L′i′−1. Since γi ∥ γ ′
i′ is compatible and Lj = Li and Lj′ = Li′ , the

configuration γj ∥ γ ′
j′ is also compatible. We have j + j ′ < i + i ′, so by the induction hypothesis

γj ∥ γ
′
j′ is reachable. To complete the proof, we show that γj ∥ γ ′

j′ is deadlocked.
Assume for contradiction that γj ∥ γ ′

j′ σ ′. This must be a consequence of applying one of the
rules par1 and par2 from Figure 1; we assume the former, with the other case being symmetric.
In that case we have γj → ⟨D, L⟩ with L # L′j′ , and σ ′ = ⟨D | | C ′

j′, (L, L
′
j′)⟩. We know that there is

a transition γj → γj+1, and that Lj = Li = Li−1[ℓ−−] = Lj+1[ℓ−−], meaning that Lj+1 = Lj [ℓ++].
Hence Cj must be the command acq(ℓ), and thus this transition is unique, meaning that ⟨D, L⟩ =
γj+1 and in particular L = Lj+1. Thus Lj+1 # L′j′ , and so also Li−1 # L′i′ . This means that γi−1 ∥ γ ′

i′ is
compatible. This contradicts the subcase assumption. We conclude that γj ∥ γ ′

j′ is deadlocked after
all, and since it is also reachable, the program C | | C ′ deadlocks, a contradiction. �

Essentially, Lemma 4.3 implies that, when only balanced statements are involved, considera-
tions of reachability on the concurrent transition relation can be reduced to reachability on the
sequential relation →.

We are now finally in a position to characterise deadlock existence as a “conflict condition” on
the critical pairs of its sequential components.

Theorem 4.4 (Deadlock characterisation). A parallel programC1 | | C2 deadlocks if and only

if there are (X1, ℓ1) ∈ Crit(C1) and (X2, ℓ2) ∈ Crit(C2) such that ℓ1 ∈ X2 and ℓ2 ∈ X1 withX1∩X2 = ∅.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:12 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

Proof. Case (⇒): SupposeC1 | |C2 deadlocks, meaning that some concurrent configuration σ =
⟨D1 | | D2, (L1, L2)⟩ is deadlocked and ⟨C1 | | C2, (∅,∅)⟩ ∗ σ . By Remark 2.2, we have sequential
executions ⟨C1,∅⟩ →∗ ⟨D1, L1⟩ and ⟨C2,∅⟩ →∗ ⟨D2, L2⟩ with L1 # L2. Since σ is deadlocked and
L1 # L2, we can apply Proposition 2.4 to obtain statements D ′

1,D
′
2 and locks ℓ1, ℓ2 such that

⟨D1, L1⟩ → ⟨D ′
1, L1[ℓ1++]⟩ , ⟨D2, L2⟩ → ⟨D ′

2, L2[ℓ2++]⟩ , ℓ1 ∈ ⌊L2⌋ and ℓ2 ∈ ⌊L1⌋ .

Note that we have an execution ⟨C1,∅⟩ →∗ ⟨D1, L1⟩ → ⟨D ′
1, L1[ℓ1++]⟩, and moreover ℓ1 < ⌊L1⌋,

because ℓ1 ∈ ⌊L2⌋ and L1 # L2. Thus, by Lemma 4.2, we obtain (⌊L1⌋ , ℓ1) ∈ Crit(C1). A symmetric
argument yields (⌊L2⌋ , ℓ2) ∈ Crit(C2), completing the case.

Case (⇐): Let (X1, ℓ1) ∈ Crit(C1) and (X2, ℓ2) ∈ Crit(C2), with ℓ1 ∈ X2 and ℓ2 ∈ X1 andX1∩X2 =

∅. By Lemma 4.2, for each i ∈ {1, 2} there exist statements C ′
i ,C

′′
i and lock states Li such that

⟨Ci ,∅⟩ →∗ ⟨C ′
i , Li ⟩ → ⟨C ′′

i , Li [ℓi++]⟩ and Xi = ⌊Li ⌋ and ℓi < Xi .
Suppose for contradiction thatC1 | |C2 does not deadlock. Since we have ⟨C1,∅⟩ →∗ ⟨C ′

1, L1⟩ and
⟨C2,∅⟩ →∗ ⟨C ′

2, L2⟩withL1 # L2, we have by Lemma 4.3 that ⟨C1 | |C2, (∅,∅)⟩ ∗ ⟨C ′
1 | |C

′
2, (L1, L2)⟩.

Hence ⟨C ′
1 | | C

′
2, (L1, L2)⟩ cannot be deadlocked. However, because we also have

⟨C ′
1, L1⟩ → ⟨C ′′

1 , L1[ℓ1++]⟩ , ⟨C
′
2, L2⟩ → ⟨C ′′

2 , L2[ℓ2++]⟩ , ℓ1 ∈ X2 = ⌊L2⌋ and ℓ2 ∈ X1 = ⌊L1⌋ ,

the configuration ⟨C ′
1 | | C

′
2, (L1, L2)⟩ is deadlocked, by Proposition 2.4. We conclude by contradic-

tion that C1 | | C2 deadlocks after all. �

We note that Theorem 4.4 immediately implies that the existence of deadlocks in our setting is
decidable provided that we can compute the critical pairs of any balanced statement. In Section 6
we show that this is indeed the case.

5 GENERALISING FROM 2 TO n THREADS
In this section, we generalise our critical pair condition for deadlock existence (Theorem 4.4) to
the case of parallel programs with an arbitrary (finite) number of threads.
First, wemake the necessary generalisation of our two-threaded parallel programs (cf. Section 2)

to n ≥ 2 threads. That is, a parallel program is now an n-tuple of balanced statements written
C1 | | . . . | | Cn , and a concurrent configuration is now a pair ⟨C1 | | . . . | | Cn, (L1, . . . , Ln)⟩, where
L1, . . . , Ln are lock states. We may also write concurrent configurations as ⟨C1, L1⟩ | | . . . | | ⟨Cn, Ln⟩,
or, using a “Σ-like” notation, as | |1≤i≤n ⟨Ci , Li ⟩. We write ⟨Ci , Li ⟩ # ⟨Cj , Lj ⟩ to mean that Li # Lj
and, if X is a set of lock states, L # X to mean that L # L′ for all L′ ∈ X . Finally, the transition
relation on concurrent configurations is now given by the following general rule for a step
performed by the ith thread:

⟨Ci , Li ⟩ → ⟨C ′
i , L

′
i ⟩ L′i # {Lj | j , i}

⟨C1 | | . . . | | Cn, (L1, . . . , Ln)⟩ ⟨C1 | | . . . | | C
′
i | | . . . | | Cn, (L1, . . . , L

′
i , . . . , Ln)⟩

(par i)

Concurrent executions on our n-ary concurrent configurations are then defined as before, using
the above generalised version of .
We have the n-ary analogues of Remark 2.2 and Proposition 2.4:

Remark 5.1. For any concurrent execution γ1 | | . . . | | γn ∗ γ ′
1 | | . . . | | γ ′

n , there exist standard

executions γi →
∗ γ ′

i for each 1 ≤ i ≤ n. Furthermore, if γi # γj , then γ ′
i # γ

′
j ; i.e., no two threads can

acquire the same lock simultaneously.

In the n-ary case, we define deadlock of a program as meaning that at least two of its threads are
deadlocked. For this, it is helpful to introduce a notation for projecting a concurrent configuration
onto a subset of its threads. If σ = ⟨C1 | | . . . | | Cn, (L1, . . . , Ln)⟩ is a concurrent configuration and

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:13

I = {i1, . . . , im} ⊆ {1, . . . ,n} is a set of “thread indices”, we write σI to mean the concurrent
configuration ⟨Ci1, Li1⟩ | | | | ⟨Cim , Lim ⟩.

Definition 5.2 (n-ary deadlock). A concurrent configuration σ ′ = ⟨C ′
1 | | . . . | | C

′
n, (L1, . . . , Ln)⟩

is deadlocked if ⟨C ′
i , Li ⟩ is live for all 1 ≤ i ≤ n but there is no σ ′′

such that σ ′ σ ′′
.

A parallel program C1 | | . . . | | Cn deadlocks if ⟨C1 | | . . . | | Cn, (∅, . . . ,∅)⟩ ∗ σ and σI is dead-
locked for some I ⊆ {1, . . . ,n}.

An immediate consequence of the above definition is that ifC1 | | . . . | | Cm deadlocks andm ≤ n,
then C1 | | . . . | | Cn also deadlocks (simply by ignoring transitions in the extra threads).

Proposition 5.3. Let σ = ⟨C1 | | . . . | | Cn, (L1, . . . , Ln)⟩ be a concurrent configuration such that

Li # Lj for all i , j. The configuration σ is deadlocked iff there are statements D1, . . . ,Dn and locks

ℓ1, . . . , ℓn such that, for all 1 ≤ i ≤ n

⟨Ci , Li ⟩ → ⟨Di , Li [ℓi++]⟩ and ℓi ∈
⋃

j,i
⌊
Lj
⌋
.

Proof. Case (⇒): By assumption, ⟨Ci , Li ⟩ is live for all 1 ≤ i ≤ n, with Li # Lj for all j , i ,
but there is no configuration σ ′ such that σ σ ′. Let 1 ≤ i ≤ n; since ⟨Ci , Li ⟩ is live, ⟨Ci , Li ⟩ →
⟨Di , L

′
i ⟩ for someDi and L′i . We show that L′i = Li [ℓ1++] for some lock ℓi . Otherwise, either L′i = Li

or L′i = Li [ℓ1−−], and in either case,
⌊
L′i
⌋
⊆ ⌊Li ⌋. Then, since Li # Lj for all j , i by assumption,

we have L′i # Lj for all j , i and thus there is a concurrent transition from σ using the rule par i
above, which contradicts the fact that σ is deadlocked. Thus ⟨Ci , Li ⟩ → ⟨Di , Li [ℓi++]⟩ as required.
For the same reason, we must have ℓi ∈

⋃
j,i

⌊
Lj
⌋
; otherwise, L′i # {Lj | j , i} and, again, there is

a concurrent transition from σ using rule par i .

Case (⇐): Assume that for all 1 ≤ i ≤ n we have ⟨Ci , Li ⟩ → ⟨Di , Li [ℓ1++]⟩ for some Di and
ℓi , and ℓi ∈

⋃
j,i

⌊
Lj
⌋
. We immediately have that ⟨Ci , Li ⟩ is live for all 1 ≤ i ≤ n. Assume for

contradiction that σ σ ′, say via the rule par i above. Since ⟨Ci , Li ⟩ → ⟨Di , Li [ℓi++]⟩, it is clear
by inspection of the semantics for→ that we must have L′i = Li [ℓ1++]; only the command acq(ℓi)
(possibly suffixed by some other statement) can increment ℓi . Thus Li [ℓi++] # {Lj | j , i}, which
is a contradiction since ℓi ∈

⋃
j,i

⌊
Lj
⌋
by assumption and ℓi ∈ ⌊Li [ℓi++]⌋. We conclude that σ ′

cannot exist, and so σ is deadlocked as required. �

The following lemma is the n-ary generalisation of the crucial “disentanglement” Lemma 4.3.

Lemma 5.4. Suppose that C1 | | . . . | | Cn does not deadlock. Then ⟨C1 | | . . . | | Cn, (∅, . . . ,∅)⟩ ∗

γ1 | | . . . | | γn iff, for each 1 ≤ i ≤ n, we have ⟨Ci ,∅⟩ →∗ γi with γi # {γj | j , i}.

Proof. The (⇒) direction follows immediately from Remark 5.1.
For the (⇐) direction, we assume for each 1 ≤ i ≤ n an execution πi : ⟨Ci ,∅⟩ →∗ γi , with

γi # {γj | j , i}. We write γi , j = ⟨Ci , j , Li , j ⟩ for the jth configuration in the execution πi , so that in
particular γi ,0 = ⟨Ci ,∅⟩.
An arbitrary concurrent configuration given by an interleaving from these n executions is then

given by | |1≤i≤n γi , ji . We call such a configuration compatible to mean that γi , ji # γk , jk for all
k , i , and reachable to mean that ⟨C1 | | . . . | | Cn, (∅, . . . ,∅)⟩ ∗ | |1≤i≤n γi , ji . We shall show by
induction on Σ1≤i≤n ji that if | |1≤i≤n γi , ji is compatible then it is also reachable. It then follows
that ⟨C1 | | . . . | | Cn, (∅, . . . ,∅)⟩ ∗ γ1 | | . . . | | γn as required.
If Σ1≤i≤n ji = 0, then ji = 0 for all i , so | |1≤i≤n γi ,0 = ⟨C1 | | . . . | | Cn, (∅, . . . ,∅)⟩ is trivially

reachable. Otherwise, when Σ1≤i≤n ji > 0, we consider the compatibility of the “preceding” con-
figurations γk , jk−1 | | | |1≤i≤n,i,k γi , ji , where 1 ≤ k ≤ n. At least one such configuration must exist,
because Σ1≤i≤n ji > 0.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:14 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

Suppose first that some such configuration γk , jk−1 | | | |1≤i≤n,i,k γi , ji is compatible. By the in-
duction hypothesis, it is also reachable. We have γk , jk−1 → γk , jk by assumption, and γj , jk #⋃

1≤i≤n,i,k γi , ji by the assumption that | |1≤i≤n γi , ji is compatible. Thus | |1≤i≤n γi , ji is reachable by
applying the rule par i .

The remaining subcase is that no configuration of the form γk , jk−1 | | | |1≤i≤n,i,k γi , ji is compat-
ible. We assume without loss of generality that these configurations are defined for the first m
threads, i.e. jk > 0 for 1 ≤ k ≤ m, and undefined otherwise, meaning that γk , jk = γk ,0 = ⟨Ck ,∅⟩

for allm+1 ≤ k ≤ n. Note thatm ≥ 2, otherwise the only configuration of the above form becomes
γ1, j1−1 | | | |2≤i≤n ⟨Ci ,∅⟩, which is compatible, contrary to assumption. Now, letting 1 ≤ k ≤ m, we
must have Lk , jk = Lk , jk−1[ℓk−−] for some lock ℓk . Otherwise,

⌊
Lk , jk−1

⌋
⊆ ⌊Lk , jk ⌋, and since

| |1≤i≤n γi , ji is compatible, so is γk , jk−1 | | | |1≤i≤n,i,k γi , ji , contradiction. By Lemma 3.10, we can
find hk < jk such that Lk ,hk = Lk , jk and Lk ,hk+1 = Lk , jk−1. Since | |1≤i≤n γi , ji is compatible, and
we can find such an hk for each 1 ≤ k ≤ m, it follows that | |1≤k≤m γk ,hk | | | |m+1≤i≤n γi , ji is also
compatible. Since Σ1≤k≤m hk + Σm+1≤i≤n ji < Σ1≤i≤n ji , we then have by the induction hypoth-
esis that | |1≤k≤m γk ,hk | | | |m+1≤i≤n γi , ji is reachable. To conclude the proof, we shall show that
| |1≤k≤m γk ,hk is deadlocked, and thusC1 | | . . . | | Cn deadlocks with index set I = {1, . . . ,m}, which
is a contradiction.

Assume for contradiction that | |1≤k≤m γk ,hk is not deadlocked, meaning that | |1≤k≤m γk ,hk σ
for some σ . This must happen via an application of the rule par i , where i = k and 1 ≤ k ≤ m. In
that case we have γi ,hi → ⟨D, L⟩ with L # {Lk ,hk | k , i}. We already know that γi ,hi → γi ,hi+1
and Li ,hi = Li , ji = Li , ji−1[ℓi−−] = Li ,hi+1[ℓi−−], meaning that Li ,hi+1 = Li ,hi [ℓi++]. Hence Ci ,hi
must begin with the command acq(ℓi) and so the transition γi ,hi → γi ,hi+1 is unique, meaning
that ⟨D, L⟩ = γi ,hi+1 and in particular L = Li ,hi+1 = Li , ji−1. Thus Li , ji−1 # {Lk ,hk | k , i}. This
means that γi , ji−1 | | | |1≤k≤m,k,i γi , ji is compatible, which contradicts the subcase assumption. We
conclude that | |1≤k≤m γk ,hk must be deadlocked after all. This completes the proof. �

Theorem 5.5 (n-ary deadlock characterisation). A parallel programC1 | | . . . | | Cn deadlocks

if and only if, for some index set I ⊆ {1, . . . ,n} with cardinality ≥ 2, there are critical pairs (Xi , ℓi)
for each i ∈ I such that Xi ∩

⋃
j,i X j = ∅ and ℓi ∈

⋃
j,i X j .

Proof. Case (⇒): SupposeC1 | | . . . | |Cn deadlocks, meaning that ⟨C1 | | . . . | |Cn, (∅, . . . ,∅)⟩ ∗

σ for some configuration σ and, for some index set I ⊆ {1, . . . ,n}, the “projection” σI is deadlocked.
Without loss of generality, we assume that I refers to the firstm threads, i.e. I = {1, . . . ,m}, where
we must havem ≥ 2. Thus we may write σI = ⟨D1 | | . . . | | Dm, (L1, . . . , Lm)⟩. By Remark 5.1, we
have for each 1 ≤ i ≤ m a sequential execution ⟨Ci ,∅⟩ →∗ ⟨Di , Li ⟩ with Li # {Lj | j , i}.

Since σI is deadlocked and Li # Lj for all i , j, we can apply Proposition 5.3 to obtain for all
1 ≤ i ≤ m statements D ′

i and locks ℓi such that ⟨Di , Li ⟩ → ⟨D ′
i , Li [ℓi++]⟩ and ℓi ∈

⋃
j,i

⌊
Lj
⌋
.

Thus we have executions ⟨Ci ,∅⟩ →∗ ⟨Di , Li ⟩ → ⟨D ′
i , Li [ℓi++]⟩, and moreover ℓi < ⌊Li ⌋, because

ℓi ∈
⋃

j,i
⌊
Lj
⌋
and Li # {Lj | j , i}. By Lemma 4.2, we obtain (⌊Li ⌋ , ℓi) ∈ Crit(Ci). Taking

Xi = ⌊Li ⌋ for each 1 ≤ i ≤ m, it is clear that all conditions are satisfied: (Xi , ℓi) ∈ Crit(Ci) by
construction; Xi ∩

⋃
j,i X j = ∅ because Li # {Lj | j , i}; and ℓi ∈

⋃
j,i X j because ℓi ∈

⋃
j,i

⌊
Lj
⌋
.

This completes the case.

Case (⇐): We assume without loss of generality that I = {1, . . . ,m}, where m ≥ 2. By as-
sumption we have for each 1 ≤ i ≤ m a critical pair (Xi , ℓi) ∈ Crit(Ci), with Xi ∩

⋃
j,i X j = ∅

and ℓi ∈
⋃

j,i X j . By Lemma 4.2, there exists for each i statements C ′
i ,C

′′
i and a lock state Li

such that ⟨Ci ,∅⟩ →∗ ⟨C ′
i , Li ⟩ → ⟨C ′′

i , Li [ℓi++]⟩ and Xi = ⌊Li ⌋ and ℓi < Xi . Thus, in particular,
Li # {Lj | j , i} for each i .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:15

We show that the program C1 | | . . . | | Cm deadlocks. Suppose not, for contradiction. Since for
each 1 ≤ i ≤ m we have ⟨Ci ,∅⟩ →∗ ⟨C ′

i , Li ⟩ with Li # {Lj | j , i}, we have by Lemma 5.4 that
⟨C1 | | . . . | | Cm, (∅, . . . ,∅)⟩ ∗ ⟨C ′

1 | | . . . | | C
′
m, (L1, . . . , Lm)⟩. Hence ⟨C ′

1 | | . . . | | C
′
m, (L1, . . . , Lm)⟩

cannot be deadlocked. However, becausewe also have ⟨C ′
i , Li ⟩ → ⟨C ′′

i , Li [ℓi++]⟩ and ℓi ∈
⋃

j,i
⌊
Lj
⌋

for each i , the configuration ⟨C ′
1 | | . . . | |C

′
m, (L1, . . . , Lm)⟩ is deadlocked, by Proposition 5.3.We con-

clude by contradiction thatC1 | |Cm deadlocks after all, and therefore so doesC1 | | . . . | |Cn (because
its firstm threads deadlock). �

The following example illustrates the basic intuition behind our n-ary deadlock condition.

Example 5.6. We construct n sequential statements C1, C2, . . . , Cn , as follows:
C1 := acq(ℓ2); acq(ℓ1); skip; rel(ℓ1); rel(ℓ2);
C2 := acq(ℓ3); acq(ℓ2); skip; rel(ℓ2); rel(ℓ3);
.

Cn−1 := acq(ℓn); acq(ℓn−1); skip; rel(ℓn−1); rel(ℓn);
Cn := acq(ℓ1); acq(ℓn); skip; rel(ℓn); rel(ℓ1);

Observe thatwe have ann-ary “cycle” of critical pairs over the threadsCi , namely ({ℓ(i+1)modn}, ℓi) ∈
Crit(Ci) for each 1 ≤ i ≤ n. It is clear that these critical pairs collectively satisfy the deadlock con-
dition of Theorem 5.5, and indeedC1 | | . . . | | Cn deadlocks, by executing the first acq(−) command
in each thread.

Conversely, any smaller collection of threads, e.g.C1 | | . . . | | Cn−1, does not satisfy the deadlock
condition: the only other critical pairs of any Ci have empty LHSs, and we do not have ℓ1 ∈

{ℓ2, . . . , ℓn}. Indeed, C1 | | . . . | | Cn−1 does not deadlock, because even when C1, . . . ,Cn−1 have all
executed their first acq(−) command, it is still possible forC1 to acquire ℓ1 and subsequently release
ℓ1 and ℓ2, at which point C2 can acquire ℓ2 and release ℓ2 and ℓ3, and so on.

6 COMPUTING CRITICAL PAIRS
Having established in the previous section that the existence of a deadlock in a parallel program
C1 | | C2 reduces to checking a condition on Crit(C1) and Crit(C2) (Theorem 4.4), our first order of
business in this section is to show that Crit(C) is in fact computable for any balanced statementC .
This is not immediately obvious from Definition 4.1, since Crit(C) is defined there in terms of the
language L(C), which in general is infinite.

In Section 6.1 we show that Crit(C) can be computed inductively, with the immediate con-
sequence that the deadlock problem for our language is decidable and in NP (Theorem 6.6). In
Section 6.2 we show that Crit(C) can also be computed by an abstract interpretation-style analy-
sis, which forms the basis of our implementation and runs in worst-case exponential time (Theo-
rem 6.11). For programs without procedure calls, the procedure runs in polynomial time.

6.1 Inductive computation
Proposition 6.1. The following identities hold for all balanced statements C,C ′

and locks ℓ:

Crit(skip) = ∅ (C1)
Crit(p()) = Crit(body(p)) (C2)

Crit(if(∗) then C else C ′) = Crit(C) ∪ Crit(C ′) (C3)
Crit(C;C ′) = Crit(C) ∪ Crit(C ′) (C4)

Crit(while(∗) do C) = Crit(C) (C5)
Crit(acq(ℓ);C; rel(ℓ)) = {(∅, ℓ)} ∪ {(X ∪ {ℓ}, ℓ′) | (X , ℓ′) ∈ Crit(C) and ℓ , ℓ′} (C6)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:16 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

Proof. We establish each identity in turn. We omit the proofs of the cases C1, C2 and C3 here,
since they are straightforward.

Case C4:We have L(C;C ′) = L(C) · L(C ′). We prove both inclusions separately.

(⊆) Let (⌊⟨u⟩⌋ , ℓ) ∈ Crit(C;C ′). By definition, we have u ℓv ∈ L(C) · L(C ′) and ℓ < ⌊⟨u⟩⌋. We
distinguish two subcases. First, suppose that u ℓ is a prefix of some word in L(C), meaning that
v = v1v2 with u ℓv1 ∈ L(C) and v2 ∈ L(C ′). This immediately entails that (⌊⟨u⟩⌋ , ℓ) ∈ Crit(C).
Otherwise, ifu ℓ is not a prefix of anyword inL(C), wemust instead haveu = u1 u2 withu1 ∈ L(C)
and u2 ℓv ∈ L(C ′). Since u1 ∈ L(C) ⊆ D, we have ⟨u1⟩ = ∅ by Lemma 3.11. Using Lemma 3.2,
we have ⟨u⟩ = ⟨u1 u2⟩ = ⟨u1⟩ + ⟨u2⟩ = ∅ + ⟨u2⟩ = ⟨u2⟩, and thus ℓ < ⌊⟨u2⟩⌋. This entails that
(⌊⟨u⟩⌋ , ℓ) ∈ Crit(C ′). In either case, we have (⌊⟨u⟩⌋ , ℓ) ∈ Crit(C) ∪ Crit(C ′) as required.

(⊇) Let (⌊⟨u⟩⌋ , ℓ) ∈ Crit(C) ∪ Crit(C ′). First suppose (⌊⟨u⟩⌋ , ℓ) ∈ Crit(C), meaning that u ℓv ∈

L(C) for somev , and ℓ < ⌊⟨u⟩⌋. Recalling that L(C ′) is nonempty, letv ′ ∈ L(C ′), so thatu ℓv v ′ ∈

L(C) · L(C ′). This immediately yields (⌊⟨u⟩⌋ , ℓ) ∈ Crit(C;C ′). Otherwise, (⌊⟨u⟩⌋ , ℓ) ∈ Crit(C ′),
meaning thatu ℓv ∈ L(C ′) for somev , and ℓ < ⌊⟨u⟩⌋. Letu ′ ∈ L(C), so thatu ′u ℓv ∈ L(C)·L(C ′).
Since u ′ ∈ L(C) ⊆ D by Lemma 3.9, we have ⟨u1⟩ = ∅ by Lemma 3.11. Using Lemma 3.2, we have
⟨u ′u⟩ = ⟨u ′⟩ + ⟨u⟩ = ∅ + ⟨u⟩ = ⟨u⟩. Thus ℓ < ⌊⟨u ′u⟩⌋, and so again (⌊⟨u ′u⟩⌋ , ℓ) = (⌊⟨u⟩⌋ , ℓ) ∈
Crit(C;C ′). This completes the case.

Case C5: Let us write Cn to denote n copies of C in sequence (C; . . . ;C). A simple induction
shows that L(Cn) = L(C)n for all n > 0. Thus

L(while(∗) do C) = L(C)⋆ =
⋃

n≥0 L(C)n = {ε} ∪
⋃

n>0 L(C)n = {ε} ∪
⋃

n>0 L(Cn) .

Using the above, we have

Crit(while(∗) do C) = {(⌊⟨u⟩⌋ , ℓ) | ∃v .u ℓv ∈ {ε} ∪
⋃

n>0 L(Cn) and ℓ < ⌊⟨u⟩⌋}
= {(⌊⟨u⟩⌋ , ℓ) | ∃v .u ℓv ∈

⋃
n>0 L(Cn) and ℓ < ⌊⟨u⟩⌋}

=
⋃

n>0 Crit(Cn) .

Since Crit(C;C) = Crit(C) ∪ Crit(C) = Crit(C) by equation C4, it follows by induction that
Crit(Cn) = Crit(C) for all n > 0. Thus Crit(while(∗) do C) =

⋃
n>0 Crit(C) = Crit(C).

Case C6:We have L(acq(ℓ);C; rel(ℓ)) = {ℓ} · L(C) · {ℓ}. We show both inclusions.

(⊆) Let (X , ℓ′) ∈ Crit(acq(ℓ);C; rel(ℓ)). ThusX = ⌊⟨u⟩⌋ for someu, whereu ℓ′v ∈ {ℓ}·L(C)·{ℓ}
for some v and ℓ′ < ⌊⟨u⟩⌋. We distinguish two subcases. First, if u = ε then ℓ′ = ℓ and ⌊⟨u⟩⌋ =
⌊∅⌋ = ∅, so (X , ℓ′) = (∅, ℓ) and we are done.
Otherwise, we have u = ℓu ′ and v = v ′ ℓ with u ′ ℓ′v ′ ∈ L(C). First, notice that by Lemma 3.12

we have ⟨u ′⟩(ℓ) ≥ 0. Thus ⌊u⌋ = ⌊⟨ℓu ′⟩⌋ = ⌊⟨u ′⟩[ℓ++]⌋ = ⌊⟨u ′⟩⌋ ∪ {ℓ}. Since ℓ′ < ⌊⟨u⟩⌋, we
have ℓ′ < ⌊⟨u ′⟩⌋ and ℓ′ , ℓ. Since u ′ ℓ′v ′ ∈ L(C) and ℓ′ < ⌊⟨u ′⟩⌋, we have (⌊⟨u ′⟩⌋ , ℓ′) ∈ Crit(C).
Putting everything together, we have (X , ℓ′) = (⌊⟨u ′⟩⌋ ∪ {ℓ}, ℓ′) with (⌊⟨u ′⟩⌋ , ℓ′) ∈ Crit(C) and
ℓ′ , ℓ. This completes the inclusion.

(⊇) Let (X , ℓ′) ∈ {(∅, ℓ)}∪{(X ∪ ℓ, ℓ′) | (X , ℓ′) ∈ Crit(C) and ℓ , ℓ′}. First suppose that (X , ℓ′) =
(∅, ℓ). Let v ∈ L(C), so that ε ℓv ℓ ∈ {ℓ} · L(C) · {ℓ}. Trivially, ℓ < ⌊⟨ε⟩⌋ = ∅, and thus (∅, ℓ) ∈
Crit(acq(ℓ);C; rel(ℓ)) as required.

Otherwise, we have X = X ′ ∪ {ℓ} where (X ′, ℓ′) ∈ Crit(C) and ℓ , ℓ′. In this case, we have
words u ′,v ′ such that X ′ = ⌊⟨u ′⟩⌋ and u ′ ℓ′v ′ ∈ L(C) and ℓ′ < X ′. We observe that ℓu ′ ℓ′v ′ ℓ ∈

{ℓ} · L(C) · {ℓ}, and, by Lemma 3.12, we have ⟨u ′⟩(ℓ) ≥ 0. Thus, using Lemma 3.2, ⌊⟨ℓu ′⟩⌋ =

⌊∅[ℓ++] + ⟨u ′⟩⌋ = ⌊⟨u ′⟩⌋ ∪ {ℓ} = X . Since ℓ′ < X ′ and ℓ′ , ℓ, we also have ℓ′ < X , and so again
(X , ℓ′) ∈ Crit(acq(ℓ);C; rel(ℓ)). �

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:17

We begin our complexity analysis by defining suitable notions of size for statements and sets of
critical pairs. We write #X for the cardinality of a finite set X .

Definition 6.2. For any statement C we define its size ∥C∥ by

∥C∥ B |C | +
∑
p∈callees(C) |body(p)|,

where |C | is defined inductively as follows:

|skip| = |acq(ℓ)| = |rel(ℓ)| = |p()| = 1
|if(∗) then C1 else C2 | = |C1;C2 | = |C1 | + |C2 |

|while(∗) do C | = |C |

Note that, ifC does not make any procedure calls, i.e. callees(C) = ∅, then ∥C ∥ = |C |. Moreover,
since every statement has non-zero size (by definition), ∥C∥ ≥ 1 + #callees(C).

Proposition 6.3. For any balanced statement C , the set Crit(C) is finite and computable, with

#Crit(C) ≤ ∥C∥1+#callees(C)
and #X < ∥C ∥ for all (X , ℓ) ∈ Crit(C). In particular, ifC does not contain

any procedure calls, then #Crit(C) ≤ |C |.

Proof. Weproceed by structural induction onC , making use of the equations in Proposition 6.1..

Case C = skip: Trivial, since Crit(C) = ∅ by C1.

Case C = p(): For the first property, using C2 and the induction hypothesis, we have

#Crit(p()) = #Crit(body(p)) ≤ ∥body(p)∥1+#callees(body(p)) = (∥p()∥−1)#callees(p()) ≤ ∥p()∥1+#callees(p()) .

For the second property, letting (X , ℓ) ∈ Crit(C), we have by induction hypothesis #X < ∥body(p)∥ <
∥p()∥ as required.

CaseC ∈ {C1;C2, if(∗) then C1 else C2}:. In both these caseswe have callees(C) = callees(C1)∪

callees(C2), and Crit(C) = Crit(C1) ∪ Crit(C2) by C3/C4. Thus, for the first property, we have

#Crit(C) ≤ #Crit(C1) + #Crit(C2)

≤ ∥C1∥
1+#callees(C1) + ∥C2∥

1+#callees(C2)

≤ ∥C1∥
1+#callees(C) + ∥C2∥

1+#callees(C) ≤ ∥C∥1+#callees(C).

For the second property, letting (X , ℓ) ∈ Crit(C), we have (X , ℓ) ∈ Crit(Ci) for some i ∈ {1, 2}, and
thus by induction hypothesis #X < ∥Ci ∥ < ∥C ∥.

Case C = while(∗) do C ′: This case holds immediately by induction hypothesis, since ∥C∥ =
∥C ′∥, callees(C) = callees(C ′) and Crit(C) = Crit(C ′) by C5.

Case C = acq(ℓ);C ′; rel(ℓ):We have |C | = |C ′ | + 2 and callees(C) = callees(C ′), and, by C6:

Crit(C) = {(∅, ℓ)} ∪ {(X ∪ {ℓ}, ℓ′) | (X , ℓ′) ∈ Crit(C) and ℓ , ℓ′}.

For the first property, we have

#Crit(C) ≤ 1 + #Crit(C ′) ≤ 1 + ∥C ′∥1+#callees(C
′) ≤ ∥C∥1+#callees(C

′) = ∥C∥1+#callees(C).

For the second property, let (X , ℓ′) ∈ Crit(C). If X = ∅ then the bound holds trivially. Otherwise
X = X ′∪ {ℓ} with (X ′, ℓ′) ∈ Crit(C ′), and using the induction hypothesis we have #X ≤ 1+ #X ′ <
1 + ∥C ′∥ < ∥C∥.

This completes the induction. The casewhenC does not contain any procedure calls then follows
immediately from the general case by taking callees(C) = ∅ and ∥C ∥ = |C |. �

The following examples illustrate these bounds.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:18 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

Example 6.4. Let ℓ1, . . . , ℓn be distinct locks, and consider the following balanced statement C:
acq(ℓ1); acq(ℓ2); . . . acq(ℓn); skip; rel(ℓn) . . .; rel(ℓ2); rel(ℓ1)

We have |C | = 2n + 1 and, using equations C6 and C1, a simple induction establishes that
Crit(C) =

⋃
1≤i≤n{({ℓ1, . . . , ℓi−1}, ℓi)} .

Thus Crit(C) contains n elements, with the largest being ({ℓ1, . . . , ℓn−1}, ℓn).
Example 6.5. Let ℓ1, . . . , ℓn be distinct locks, and consider the following procedures p1, . . . ,pn :

body(p1) = if(∗) then acq(ℓi); skip; rel(ℓi) else skip

body(pi) = if(∗) then acq(ℓi);pi−1(); rel(ℓi) else pi−1() for each 2 ≤< i ≤ n .

For each 1 ≤ i ≤ n, we have that callees(pi) =
{
pj | 1 ≤ j < i

}
, and a straightforward induction

on i establishes that:
Crit(body(pi)) = {(X , ℓk) | 1 ≤ k ≤ i and X ⊆ {ℓk+1, . . . , ℓi }} .

The size of C = body(pn) can be computed as follows:
∥C ∥ = |body(pn)| +

∑
p∈callees(C) |body(p)| =

∑
1≤i≤n |body(pi)| = 4n.

Now Crit(C) = {(X , ℓk) | 1 ≤ k ≤ n and X ⊆ {ℓk+1, . . . , ℓn}} is in bijection with the set of non-
empty subsets of {1, . . . ,n}. Given S ⊆ {1, . . . ,n}, let m be its minimum; then the critical pair
({ℓi | i ∈ S \ {m}} , ℓm) belongs to Crit(C) (and vice-versa). Therefore, C has 2 1

4 ∥C ∥ − 1 critical
pairs, and some of them, e.g. the pair ({ℓ2, . . . , ℓn}, ℓ1), are of linear size in ∥C ∥.

In order to precisely state complexity bounds on the deadlock problem, we define the size of a
parallel program as the sum of the sizes of its constituent threads: ∥(C1 | | . . . | |Cn)∥ =

∑
1≤i≤n ∥Ci ∥.

Theorem 6.6. Whether a given parallel program deadlocks or not is decidable, and in NP.

Proof. First we establish decidability. By Theorem 4.4, C1 | | . . . | | Cn deadlocks iff, for some
index set I ⊆ {1, . . . ,n} with |I | ≥ 2, there are critical pairs (Xi , ℓi) ∈ Crit(Ci) for each i ∈ I such
that Xi ∩

⋃
j,i X j = ∅ and ℓi ∈

⋃
j,i X j . By Proposition 6.3, Crit(Ci) is finite and computable for

anyCi . Therefore, deciding the latter condition can be done by checking all possible sets of critical
pairs for all possible index sets.

The NP upper bound relies on the observation that we can use the equations in Proposition 6.1
to nondeterministically compute an arbitrary critical pair of anyCi in polynomial time (in ∥Ci ∥ ≤

∥P ∥). Specifically, we can write a program that recurses on the structure ofCi and selects a critical
pair by nondeterministically deciding which “branch” of the computation given by C1-C6 to follow
at each stage. Such a program clearly runs in polynomial time in ∥Ci ∥.

Therefore, the NP procedure runs in three stages: (i) nondeterministically select an index set
I ⊆ {1, . . . ,n} of size ≥ 2; (ii) nondeterministically select a critical pair (Xi , ℓi) for each i ∈ I , as
above; (iii) verify that Xi ∩

⋃
j,i X j = ∅ and ℓi ∈

⋃
j,i X j for all i, j ∈ I . The last step can be done

in polynomial time in ∥P ∥ because, by Proposition 6.3, each Xi is of size bounded by ∥Ci ∥. �

Remark 6.7. An immediate consequence of Proposition 6.1 is that, for any balanced statement C ,
its critical pairs Crit(C) and size ∥C ∥ both remain unchanged under applications of the following

rewrite rules to substatements of C :

if(∗) then C1 else C2 7→ C1;C2 and while(∗) do C ′ 7→ C ′ .

Therefore, the deadlock problem for our language reduces (polynomially) to the case where statements

are restricted to the “deterministic” grammar:

C := skip | p() | acq(ℓ);C; rel(ℓ) | C;C .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:19

Jacq(ℓ)K⟨L,Z ⟩ = ⟨L[ℓ++],Z ∪ Z ′⟩ where Z ′ =

{
{(⌊L⌋ , ℓ)} if L(ℓ) = 0
∅ if L(ℓ) > 0

Jrel(ℓ)K⟨L,Z ⟩ = ⟨L[ℓ−−],Z ⟩

Jp()K⟨L,Z ⟩ = ⟨L,Z ∪ Z ′⟩ where ⟨ _ ,Z ′′⟩ = Jbody(p)Kα⊥ in
Z ′ = {(⌊L⌋ ∪M, ℓ) | (M, ℓ) ∈ Z ′′ ∧ L(ℓ) = 0}

JskipKα = α JC1;C2Kα = JC2K(JC1Kα)

Jif(∗) then C1 else C2Kα = (JC1Kα) ⊔ (JC2Kα) Jwhile(∗) do CKα =
⊔∞

n=0 JCKnα

Fig. 2. Abstract analysis definition.

6.2 Abstract interpretation-style computation
We now define an alternative way to compute the critical pairs of a statement, in abstract inter-
pretation style. The rationale is that this style of computation, rather than the direct inductive
computation given in the previous section, is the one that forms the basis of our implementation.
The main idea is that, given any statement C , we define an analysis function JCK(·) on abstract

states, which essentially track the lock state and the set of critical pairs accumulated during the
possible executions of C .

Definition 6.8. An abstract state of our analysis is a pair ⟨L,Z ⟩, where L is a lock state and

Z ⊆ 2Locks × Locks (i.e. a set of pairs each comprising a set of locks and a single lock). We define a

partial join operation ⊔ on abstract states by

⟨L,Z1⟩ ⊔ ⟨L,Z2⟩ = ⟨L,Z1 ∪ Z2⟩ .

We often write α to range over abstract states, and α⊥ for the “empty” abstract state ⟨∅, ∅⟩.

The function JCK(·) is then defined by structural induction on C in Figure 2. We remark that
the clauses for the control flow statement (if, while and sequencing) are generic to abstract
interpretation (given a suitable join operation ⊔), which is why we do not simply define, e.g.,
Jwhile(∗) do CKα = α ⊔ JCKα as would intuitively be implied by equation C5. However, this
identity and similar ones can be inferred from our correctness proof.

Proposition 6.9. For any balanced statement C and abstract state α = ⟨L,Z ⟩,

JCKα = ⟨L,Z ∪ {(⌊L⌋ ∪ X , ℓ) | (X , ℓ) ∈ Crit(C) and L(ℓ) = 0}⟩ .

Moreover, JCKα is computable. Thus, in particular, JCKα⊥ = ⟨∅,Crit(C)⟩ and is computable.

Proof. We proceed by structural induction on C . The cases C = skip, C = p(), C = C1;C2
and C = if(∗) then C1 else C2 are straightforward using the induction hypothesis and the
equations C1–C4. The case C = while(∗) do D is similarly straightforward once one notices that,
writing Dn for n > 0 copies of D in sequence (D; . . . ;D), we have JDKnα = JDnKα by definition
and Crit(Dn) = Crit(while(∗) do D) by equations C4 and C5. As a consequence, we in fact have
Jwhile(∗) do DKα = α ⊔JDKα , meaning that a computation of

⊔∞
n=0 JDKnα will reach a fixed point

after a single application of JDK.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:20 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

We show only the locking case, C = acq(ℓ);C ′; rel(ℓ), in detail. First notice that ⌊L[ℓ++]⌋ =
⌊L⌋ ∪ {ℓ}, and that L[ℓ++](ℓ′) = 0 iff L(ℓ′) = 0 and ℓ , ℓ′. Then, using the induction hypothesis
on C ′, we have:

Jacq(ℓ);C ′; rel(ℓ)Kα
= Jrel(ℓ)KJC ′KJacq(ℓ)Kα

= Jrel(ℓ)KJC ′K⟨L[ℓ++],Z ∪ Z ′⟩ with Z ′ =

{
{(⌊L⌋ , ℓ)} if L(ℓ) = 0
∅ if L(ℓ) > 0

= Jrel(ℓ)K⟨L[ℓ++],Z ∪ Z ′ ∪ {(⌊L[ℓ++]⌋ ∪ X , ℓ′) | (X , ℓ′) ∈ Crit(C ′) and L[ℓ++](ℓ′) = 0}⟩
= ⟨L[ℓ++][ℓ−−],Z ∪ Z ′ ∪ {(⌊L[ℓ++]⌋ ∪ X , ℓ′) | (X , ℓ′) ∈ Crit(C ′) and L[ℓ++](ℓ′) = 0}⟩
= ⟨L,Z ∪ Z ′ ∪ {(⌊L⌋ ∪ X ∪ {ℓ}, ℓ′) | (X , ℓ′) ∈ Crit(C ′) and L(ℓ′) = 0 and ℓ′ , ℓ}⟩

Note that Z ′ can be re-expressed as {(⌊L⌋ ∪ ∅, ℓ) | L(ℓ) = 0}. Recall identity C6:
Crit(acq(ℓ);C ′; rel(ℓ)) = {(∅, ℓ)} ∪ {(X ∪ {ℓ}, ℓ′) | (X , ℓ′) ∈ Crit(C ′) and ℓ , ℓ′} .

We can thus conclude this case, and the induction, by rewriting the last set expression above:
Z ∪ Z ′ ∪ {(⌊L⌋ ∪ X ∪ {ℓ}, ℓ′) | (X , ℓ′) ∈ Crit(C ′) and L(ℓ′) = 0 and ℓ , ℓ′}
= Z ∪ {(⌊L⌋ ∪ ∅, ℓ) | L(ℓ) = 0} ∪ {(⌊L⌋ ∪ X ∪ {ℓ}, ℓ′) | (X , ℓ′) ∈ Crit(C ′) and L(ℓ′) = 0 and ℓ , ℓ′}
= Z ∪ {(⌊L⌋ ∪ X , ℓ′) | (X , ℓ′) ∈ Crit(acq(ℓ);C ′; rel(ℓ)) and L(ℓ′) = 0} .

Finally, for the case α = α⊥ = ⟨∅, ∅⟩, recalling that ⌊∅⌋ = ∅ and∅(ℓ) = 0 for all locks ℓ, we obtain
JCKα⊥ = ⟨∅, ∅ ∪ {(⌊∅⌋ ∪ X , ℓ) | (X , ℓ) ∈ Crit(C) and ∅(ℓ) = 0}⟩ = ⟨∅,Crit(C)⟩ . �

Lemma 6.10. Given a balanced statementC , the computation JCKα⊥ requires atmost quasi-exponential

time in ∥C ∥. If C does not contain any procedure calls, the computation requires at most quadratic

time in |C |.

Proof. Let us define the size of a (finite) set P of critical pairs as |P | = #P+
∑

(X ,ℓ)∈P #X . From the
definition of the analysis given in Figure 2, and the remarks made in the proof of Proposition 6.9,
it is apparent that the computation of JCKα⊥ is linear in the size of Crit(C), its result. Therefore,
we can obtain the time bound from the bounds on Crit(C) given by Proposition 6.3. In the general
case, we have:

|Crit(C)| = #Crit(C) +
∑

(X ,ℓ)∈Crit(C) #X
≤ #Crit(C) × (1 +max {#X | (X , ℓ) ∈ Crit(C)})

≤ ∥C ∥1+#callees(C) × (1 + ∥C∥ − 1) (by Prop.6.3)

≤ ∥C ∥2+#callees(C)

≤ ∥C ∥1+∥C ∥ .

In the procedure-free case, we get:
|Crit(C)| = #Crit(C) +

∑
(X ,ℓ)∈Crit(C) #X

≤ #Crit(C) × (1 +max {#X | (X , ℓ) ∈ Crit(C)})

≤ |C |2 . �

Theorem 6.11. The problem of checking whether a parallel program P = C1 | | . . . | | Cn deadlocks

can be solved in time exponential in ∥P ∥ and n. If the program does not contain any procedure calls,

checking for deadlocks can be solved in time polynomial in ∥P ∥ and exponential in n.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:21

Proof. The decision algorithm consists in computing all critical pairs of the threads Ci and
checking, for each possible index set I ⊆ {1, . . . ,n} with #I ≥ 2, there are critical pairs (Xi , ℓi)
for each i ∈ I that collectively satisfy the deadlock condition of Theorem 5.5, namely that Xi ∩⋃

j,i X j = ∅ and ℓi ∈
⋃

j,i X j for all i ∈ I .
The first stage of the algorithm, i.e. computing Crit(C1), . . . ,Crit(Cn), can be performed in ex-

ponential time in ∥P ∥, by Lemma 6.10. Noting that for any critical pair (Xi , ℓi) ∈ Crit(Ci) we have
#X ≤ ∥Ci ∥ by Proposition 6.3, it is clear that any given set of ≤ n critical pairs can be checked in
polynomial time in ∥P ∥. There are roughly 2n possible index sets I , and in the worst case, the sets
Crit(C1), . . . ,Crit(Cn) contain exponentially many critical pairs in ∥C1∥, . . . , ∥Cn ∥ respectively, by
Proposition 6.3. Therefore the number of critical pair sets to be checked is exponential in ∥P ∥ and
n. This yields an overall time bound exponential in ∥C1∥, . . . , ∥Cn ∥ and n.

However, if P does not contain any procedure calls, then Lemma 6.10 and Proposition 6.3 instead
tells us that Crit(C1), . . . ,Crit(Cn) can be computed in quadratic time and contain at most a linear
number of critical pairs, in ∥C1∥, . . . , ∥Cn ∥ respectively. In that case, the argument above instead
yields a time bound polynomial in ∥P ∥ (but still exponential in n). �

7 IMPLEMENTATION AND IMPACT
We have implemented a compositional program analyser based on the analysis presented in Fig-
ure 2 for the Java language. The flow-sensitive, context-insensitive analysis is developed in OCaml
(around 3kLoC) within the Infer static analysis framework [Distefano et al. 2019], and is specifi-
cally targeted at detecting 2-thread deadlocks in code changes (commits) of Android apps within a
continuous integration environment.2 In this sectionwe discuss this implementation and its impact
at Facebook.We note that we do not attempt an experimental evaluation with other tools, since the
deployment constraints (completeness versus soundness, code changes versus batch mode) lead to
very different design trade-offs, making a comparison on previously used benchmarks unhelpful.

7.1 Deployment and impact
Infer is deployed at Facebook through a CI system which launches an analysis job whenever a
commit is submitted for code review. This job concurrently runs multiple analysers on the sub-
mitted code changes and appears to the authors of the commit as yet another reviewer inserting
comments on the code, based on the potential bugs found. The implementation of the deadlock

analysis has been deployed on all Android code commits at Facebook for about two years.

Fixed reports. In a non-safety-critical context such as Facebook, an analysis engineer’s time is
better spent developing analysis features than triaging reports for false positives. In addition, theo-
retical veracity is not always correlated with actionability. For example, a report is sometimes ren-
dered an effective false positive by un-written invariants. For these reasons, fixed reports (reports
that code authors addressed by submitting a new version of a commit) rather than true positives
are tracked. Since it was deployed, the deadlock analyser has processed a total of 667k commits, has

issued a total of 479 deadlock reports, and has seen a total of 260 fixes, yielding a fix rate of 54%.

Analysis performance. The architecture of Infer means per-analyser runtime is not recorded.
For this reason, we report only the total analysis time (including various other analysers), which
provides an upper bound for our analysis. Runtime for all analysers in the last 100 days to submission

has seen a median of 90 seconds and an average of 213 seconds per commit. In the same time period,

Infer analysed a median of 1.9k methods and on average 4.5k methods per commit.

2The analyser (named starvation) is open-source code included in Infer, see https://fbinfer.com/.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://fbinfer.com/

1:22 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

7.2 Issues and differences between implementation and theory
The requirement that the analysis targets code changes leads to a number of design decisions,
chief amongst which is that the analysis does not have the runtime envelope to analyse the whole
program at hand; thus the analysis must work by analysing a modest superset of the modified
code in a commit. Such a constraint can be problematic in looking for concurrency bugs due to
their global nature. We note here techniques for addressing those difficulties as well as differences
between implementation and theory.

Balanced locking. Our analysis relies on balanced locking while Java allows unbalanced lock
operations. Language support for balanced locking (via the synchronized keyword) and good-
programming practices mean that the code-base targeted by our implementation has very few
instances of unbalanced locking, and thus analysis precision does not suffer.

Non-deterministic control. Control in Java is mostly deterministic, so our abstract semantics is
over-approximate. Most of the imprecision we observed in practice came from branching over two
conditions: whether a lock acquisition succeeded (e.g., via Lock.trylock), or whether the current
thread is the UI thread. We specialised the domain, introducing partial path sensitivity on these
conditions, thus removing the vast majority of false alarms due to control abstraction.

Lock names. The set Locksmust approximate the set of Java objects that can be used as monitors.
Rather than use an expensive (and typically whole-program, which would run against our main
design constraint) pointer analysis, we use access paths: syntactic expressions built with a program
variable root and iteration of field- or array-dereferencing [Jones andMuchnick 1979]. For example,
this.f.g represents an object accessed through dereferencing the field f of the object this. Such
a domain of abstract addresses has several trade-offs with respect to false positives and negatives,
but that is beyond the scope of this paper.

We also classify objects into globally referenced or objects referenced through method param-
eters. Objects referenced through local variables are ignored. For globally referenced objects, the
rule for method calls in Figure 2 applies unchanged. For parameter-referenced objects we apply a
substitution of argument expressions over parameters on the callee summary before applying the
procedure call rule. For instance, if the summary of method foo(x) involves the lock x.f, then ap-
plying the procedure call rule on foo(h.g)will result in the substitution [h.g/x] and the resulting
critical pair at the callsite will involve the monitor h.g.f.

Concurrency inference. Since we cannot do a whole-program analysis, we cannot always ob-
serve the spawning of execution threads, for these may happen in methods that are unmodified
and unrelated via the call graph. As such we use an abstract domain for thread identity, where
each method can be: of unknown identity; the UI thread; some background thread; or both (it is
executed on the UI thread as well as background threads). This information comes from (a) thread
annotations used in Android code such as @UiThread and @WorkerThread; (b) Android method
calls that determine whether the current thread is the UI thread; (c) upward propagation through
the call graph. Each critical pair in a method summary is decorated with the inferred thread iden-
tity, and this information is used to determine whether two critical pairs can occur concurrently
(two UI-thread pairs cannot be concurrent, though any other combination can).

Detecting deadlocks non-globally. As the analysis targets code changes, it begins by summarising
all methods in the set of changed files in a commit. By the procedure call rule, this leads to analysing
all methods transitively called by the modified files. If we restrict deadlock detection to this set of
summaries, we will miss deadlocks due to lock acquisitions performed by methods outside the call

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:23

class A {

public synchronized void foo(B b) {

b.foo();

}

public synchronized void bar() {}

}

class B {

public synchronized void bar(A a) {

a.bar();

}

public synchronized void foo() {}

}

Fig. 3. Textbook deadlock across two Java classes.

graph rooted in modified files. Thus, the analysis selects additional methods to summarise using
the following heuristic.

For every method M summarised and every critical pair (L, root. f1. fn) in the summary of M,
where root is of class C, all methods of class C are also analysed (in search of a critical pair (L′, ℓ′)
where root. f1. fn ∈ L′). The analyser continues this process until the set of analysed methods
reaches a fixpoint.

This heuristic works well when certain Java idioms are observed, namely when the monitors
used are (i) the this object, such as when using synchronised methods, or, (ii) immutable private
objects stored in object fields. For instance, this heuristic will catch the deadlock between classes
A and B in Figure 3 even in a commit where only A.foo is modified.

This clearly introduces the possibility of a false negative, e.g. when global locks are acquired in
methods that reside in classes not containing the globals. The use of locks in global variables is,
relatively, much rarer than locking non-global objects in the code we usually analyse. The heuristic
also allows for false positives, since it does not check for evidence of thread spawning. To counter
this effect, we use thread identity information as detailed above, and this reduces the incidence of
such false positives in correlation with developer use of such mechanisms.

8 RELATEDWORK
Deadlock detectors are naturally distinguished into dynamic, static and hybrid, depending on
whether they operate primarily on program executions, program text, or both. Analysers that tar-
get Java programs typically rely on balanced locking and must accurately model re-entrant locks,
whereas analyses for C code do not expect balanced locking and assume non-reentrant locks. In ad-
dition, deadlock analyses can be categorised according to whether they detect deadlocks involving
two, or more threads, and whether they produce false positives on guarded cycles.

8.1 Static analyses
Deadlock detectors operating on program sources typically require a complete program, though
they can operate without test inputs. Most are focused on soundness (where absence of reports
implies deadlock freedom). All analyses discussed are interprocedural, top-down, context-sensitive
and typically non-compositional.

RacerX [Engler and Ashcraft 2003] is a path-insensitive analysis for C programs which does
not use a pointer analysis, instead using syntactic information and types about variables, ignoring
locks in local variables. Heavy use of caching transfer functions on statements is made, to improve
runtimes due to context sensitivity. The search for cycles is up to a user specified number of threads.
Many heuristics and techniques are employed to reduce false positive reports.

[Williams et al. 2005] reports on a Java analysis which targets libraries, thus partly dealing with
the problem of identifying program entrypoints. As such, the analysis cannot see global aliasing
information and uses a coarse, type-based memory domain. It can detect cycles of more than two

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:24 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

threads, up to a pre-specified bound. The pure analysis reports too many false positives, therefore
several unsound heuristics are used.

Jade [Naik et al. 2009] is a path-insensitive Java analysis which breaks down the problem into
several sub-analyses, including reachability, aliasing/escaping, reentrancy and guarded-ness. It
focuses on two-thread deadlocks, and has explicit mechanisms for rejecting guarded deadlock
reports. It is expressed in Datalog and uses an iterative refinement scheme to increase precision,
where the degree of sensitivity is increased based on the reports found in the last iteration.

[Pun et al. 2014] reports on an analysis for an abstract language, which reduces detection of
deadlocks into race detection. A type system captures lock dependencies, and the inferred types
are used to detect program points where a nested lock acquisition may occur. These points are in-
strumented with code mutating "race" variables. A data race detector then finds possible deadlocks.
Too many false positives are reported for deadlocks among more than two threads, and additional
checks are made to improve precision and to filter guarded cycles. No implementation is reported.

ThreadSafe [Atkey and Sannella 2015] is a commercial, flow- and path-sensitive, per-class
analysis for Java. Little detail is reported on the foundations of the analysis. It uses as entry points
the public methods of each class, or modelled Android lifecycle methods. Only calls to private and
protected methods are followed, for scalability.

[Kroening et al. 2016] reports on an analysis targeting C code with Posix threads. It infers con-
currency on spawn/join points through the program graph, and contexts represent call- and thread-
creation- sites. A must-lock analysis is employed to deal with guarded locks. Function pointer calls
are inlined into case distinctions over the calls they might resolve to.

JaDA [Laneve and Garcia 2018] reports on a Java bytecode analysis which uses behavioural
type rules for compositionally extracting an infinite-state abstract model from bytecode, and then
analysing that with a context-sensitive fixpoint computation, generating reports of cyclic depen-
dencies. The strength of the approach seems to be the ability to analyse recursive functions that
spawn an unbounded number of threads.

8.2 Dynamic and hybrid analyses
Analyses that work with program traces usually require the whole program as well as appropriate
test input, or a harness. They tend to be focused on completeness (most reports are true positives).
GoodLock [Havelund 2000] is an analysis for Java programs implemented in Java PathFinder

(JPF) [Havelund and Pressburger 2000] which maintains a lock-tree for each execution thread,
where each node represents the lifetime of a lock acquisition and children nodes represent acqui-
sitions wholly contained within the parent. A warning is reported whenever two threads have
lock-trees which may request the same pair of locks in opposite orders. Since the whole lock-tree
is available, gate locks can be detected and the warning suppressed.

[Bensalem andHavelund 2006] describes an analysis for Java programs, also implemented in JPF,
that constructs a lock-order graph from an execution trace of an instrumented program. Although
the graph edges denote dependencies between only a pair of locks, they are also labelled by the
complete lock-set and the thread acquiring the lock. These labels are used to detect deadlocks
between more than two threads and to filter out gated cycles.

[Agarwal et al. 2006] presents a sound type inference mechanism for types that ensure deadlock
freedom for Java programs. Appropriate instrumentation for the untyped parts of the program is
then used to feed an extension of the GoodLock algorithm to the unbounded thread case, yielding
a hybrid analysis. Further filtering is then used to exclude gated cycles.

Sherlock [Eslamimehr and Palsberg 2014] is an analysis for Java programs which uses Good-
Lock to get a set of deadlock candidates. Using given program inputs, the program is then run,
producing an initial schedule which is then concolically executed and permuted in repeated steps,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:25

in search of witnessing schedules. The GoodLock-based algorithm can deal with more than two
threads, and the original version can deal with gated cycles.

9 CONCLUSIONS AND FUTUREWORK
In this paper we establish the decidability of the deadlock problem, and provide an open-source
deadlock analyser, for an abstract programming language with scoped (or “balanced”) locking,
nondeterministic control and nonrecursive procedure calls, but in which all other features — in
particular variable assignment — are abstracted away. Such an abstraction is of course necessary
to obtain decidability, for fundamental computability reasons. However, this overapproximation
of real concurrent programs turns out to be sufficiently faithful to detect deadlock bugs in practice,
and sufficiently scalable to run on real-world industrial codebases. Our deadlock analyser has been
deployed at Facebook as part of the Infer framework for the last two years and has resulted in
hundred of potential bugs being flagged, with an actual fix rate of over 50% (and we note that this
does not imply a false positive rate of nearly 50%).
One interesting connection that could benefit from further elucidation is that of our work to

automata-theoretic work on concurrent verification. We have already observed (cf. Remark 3.16)
that our parallel programs can be seen as collections of (particular kinds of) nondeterministic fi-
nite automata that synchronise via their shared locks. Other work on automata-based concurrent
systems, e.g. [Bouajjani et al. 2003; Esparza et al. 2013; Hague 2011; Heußner et al. 2010; Zielonka
1987] typically uses a slightly different synchronisation mechanism based on communication “vis-
ible”, or external actions must be fired simultaneously by two automata. Nevertheless, our model
can be polynomially encoded as a communicating pushdown system, as considered e.g. in [Boua-
jjani et al. 2003], which presents a high-level approach to analysing general safety properties of
such systems. Thus our deadlock problem can be seen as an instance of the general class of prob-
lems considered there, and we cannot rule out the possibility that the decidability of our deadlock
problem follows from some more general automata-theoretic result in the literature. However,
while typical dataflow properties of arbitrary communicating pushdown systems are undecidable
in general, the deadlock property we consider for our particular class of programs is decidable and
thus represents a special case, which relies crucially on the fact that locking in our language is
balanced. Our proof also has the added advantage of being direct. That is, we treat (abstract) pro-
grams rather than automata, our critical pair abstraction is specialised to the deadlock problem
and our computation of this abstraction forms the basis of our automated deadlock detection tool.

It is natural to wonder whether and how our abstract programming language might be extended
while preserving the decidability of deadlock existence. Unfortunately, it seems to us that almost
any nontrivial extension presents significant obstacles. For example, allowing procedure calls to
be recursive does not seem to drastically alter our language, since we already allow iteration, but
it causes technical problems for our approach since we cannot then reason by induction over
the structure of statements. Allowing control flow to be deterministic, e.g. by allowing guards
to query the lock state, is similarly problematic since the critical pairs of a statement are then
dependent on the lock state in which it is executed, meaning that at the very least we would
require a finer abstraction in order to avoid false positives. Finally, modelling forking and joining by
allowing parallel compositions to appear nested within statements makes the problem much more
complicated since, conceptually, it would require that we construct abstractions of all subthreads
as well as determining which of them can run in parallel with each other. We nevertheless consider
these (and other) extensions to be interesting potential directions for future work.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:26 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

REFERENCES
Rahul Agarwal, Liqiang Wang, and Scott D. Stoller. 2006. Detecting Potential Deadlocks with Static Analysis and Run-

Time Monitoring. In Hardware and Software, Verification and Testing, Shmuel Ur, Eyal Bin, and Yaron Wolfsthal (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 191–207.

Robert Atkey and Donald Sannella. 2015. ThreadSafe: Static Analysis for Java Concurrency. ECEASST 72 (2015). https:
//doi.org/10.14279/tuj.eceasst.72.1025

Saddek Bensalem and Klaus Havelund. 2006. Dynamic Deadlock Analysis of Multi-threaded Programs. In Hardware and

Software, Verification and Testing, Shmuel Ur, Eyal Bin, and Yaron Wolfsthal (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 208–223.

Ahmed Bouajjani, Javier Esparza, and Tayssir Touili. 2003. A Generic Approach to the Static Analysis of Concurrent
Programs with Procedures. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’03). Association for Computing Machinery, New York, NY, USA, 62–73. https://doi.org/10.1145/
604131.604137

N. Chomsky and M.P. Schützenberger. 1963. The Algebraic Theory of Context-Free Languages. In Computer Programming

and Formal Systems, P. Braffort and D. Hirschberg (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 35.
Elsevier, 118 – 161. https://doi.org/10.1016/S0049-237X(08)72023-8

E.W. Dijkstra. 1971. Hierarchical ordering of sequential processes. Acta Informatica 1, 2 (1971), 115–138.
Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. 2019. Scaling Static Analyses at Facebook.

Commun. ACM 62, 8 (July 2019), 62–70. https://doi.org/10.1145/3338112
Dawson Engler andKenAshcraft. 2003. RacerX: Effective, Static Detection of Race Conditions andDeadlocks. In Proceedings

of the Nineteenth ACM Symposium on Operating Systems Principles (SOSP ’03). Association for Computing Machinery,
New York, NY, USA, 237–252. https://doi.org/10.1145/945445.945468

Mahdi Eslamimehr and Jens Palsberg. 2014. Sherlock: Scalable Deadlock Detection for Concurrent Programs. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE 2014). Association for
Computing Machinery, New York, NY, USA, 353–365. https://doi.org/10.1145/2635868.2635918

Javier Esparza, Pierre Ganty, and Rupak Majumdar. 2013. Parameterized Verification of Asynchronous Shared-Memory
Systems. In Computer Aided Verification, Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 124–140.

Matthew Hague. 2011. Parameterised Pushdown Systems with Non-Atomic Writes. Leibniz International Proceedings in

Informatics, LIPIcs 13 (09 2011). https://doi.org/10.4230/LIPIcs.FSTTCS.2011.457
Klaus Havelund. 2000. Using Runtime Analysis to Guide Model Checking of Java Programs. In SPIN Model Checking

and Software Verification, Klaus Havelund, John Penix, and Willem Visser (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 245–264.

Klaus Havelund and Thomas Pressburger. 2000. Model checking JAVA programs using JAVA PathFinder. International

Journal on Software Tools for Technology Transfer 2, 4 (2000), 366–381. https://doi.org/10.1007/s100090050043
Alexander Heußner, Jérôme Leroux, Anca Muscholl, and Grégoire Sutre. 2010. Reachability Analysis of Communicating

Pushdown Systems. In Foundations of Software Science and Computational Structures, Luke Ong (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 267–281.

John E. Hopcroft and Jeffrey D. Ullman. 1969. Formal Languages and Their Relation to Automata. Addison-Wesley Longman
Publishing Co., Inc., USA.

Neil D. Jones and Steven S. Muchnick. 1979. Flow Analysis and Optimization of LISP-like Structures. In Proceedings of the

6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL ’79). Association for Computing
Machinery, New York, NY, USA, 244–256. https://doi.org/10.1145/567752.567776

D. Kroening, D. Poetzl, P. Schrammel, and B. Wachter. 2016. Sound static deadlock analysis for C/Pthreads. In 2016 31st

IEEE/ACM International Conference on Automated Software Engineering (ASE). 379–390.
Cosimo Laneve and Abel Garcia. 2018. Deadlock Detection of Java Bytecode. In Logic-Based Program Synthesis and Trans-

formation, Fabio Fioravanti and John P. Gallagher (Eds.). Springer International Publishing, Cham, 37–53.
Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. 2009. Effective Static Deadlock Detection. In Proceedings

of the 31st International Conference on Software Engineering (ICSE ’09). IEEE Computer Society, USA, 386–396. https:
//doi.org/10.1109/ICSE.2009.5070538

Ka I Pun, Martin Steffen, and Volker Stolz. 2014. Deadlock checking by data race detection. Journal of Logical and Algebraic
Methods in Programming 83, 5 (2014), 400 – 426. https://doi.org/10.1016/j.jlamp.2014.07.003 The 24th Nordic Workshop
on Programming Theory (NWPT 2012).

Amy Williams, William Thies, and Michael D. Ernst. 2005. Static Deadlock Detection for Java Libraries. In ECOOP 2005 -

Object-Oriented Programming, Andrew P. Black (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 602–629.
Wieslaw Zielonka. 1987. Notes on finite asynchronous automata. RAIRO - Theoretical Informatics and Applications 21, 2

(1987), 99–135. https://doi.org/10.1051/ita/1987210200991

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.14279/tuj.eceasst.72.1025
https://doi.org/10.14279/tuj.eceasst.72.1025
https://doi.org/10.1145/604131.604137
https://doi.org/10.1145/604131.604137
https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/10.1145/3338112
https://doi.org/10.1145/945445.945468
https://doi.org/10.1145/2635868.2635918
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.457
https://doi.org/10.1007/s100090050043
https://doi.org/10.1145/567752.567776
https://doi.org/10.1109/ICSE.2009.5070538
https://doi.org/10.1109/ICSE.2009.5070538
https://doi.org/10.1016/j.jlamp.2014.07.003
https://doi.org/10.1051/ita/1987210200991

	Abstract
	1 Introduction
	2 Program syntax and semantics
	3 Executions and traces
	3.1 From executions to traces
	3.2 Dyck words and balanced executions

	4 Characterisation of deadlock existence
	5 Generalising from 2 to n threads
	6 Computing critical pairs
	6.1 Inductive computation
	6.2 Abstract interpretation-style computation

	7 Implementation and Impact
	7.1 Deployment and impact
	7.2 Issues and differences between implementation and theory

	8 Related work
	8.1 Static analyses
	8.2 Dynamic and hybrid analyses

	9 Conclusions and future work
	References

