Decidable Deadlock Detection for an Abstract
Scoped-Locking Language

JAMES BROTHERSTON, University College London, UK

PAUL BRUNET, University College London, UK

NIKOS GOROGIANNIS, Facebook London and Middlesex University, UK
MAX KANOVICH, University College London, UK

We study the problem of deadlock detection for an abstract programming language with balanced re-entrant
locks, nondeterministic iteration and branching, and non-recursive procedure calls.

First, we show that the existence of a deadlock in a concurrent program is equivalent to a certain condition
over the sets of so-called critical pairs of each of its threads. The critical pairs of a thread record, for all possible
executions of the thread, which locks are currently held at the point when a fresh lock is acquired.

Second, we show that the set of critical pairs of any program thread is finite and computable. As a conse-
quence, the deadlock detection problem for our abstract language is decidable, and in NP. We also present an
algorithm which computes critical pairs in a compositional, abstract interpretation style, running in quasi-
exponential time. All of our proof developments have been formalised in the Coq proof assistant.

Third, we provide an open-source implementation of a version of our analysis adapted to Java. Our analyser
is built in the INFER verification framework and has been in deployment at Facebook for over two years; it
has seen over two hundred fixed deadlock reports with a report fix rate of approximately 54%.

Additional Key Words and Phrases: deadlocks, concurrency, program analysis

1 INTRODUCTION

The avoidance and detection of deadlocks in a system is one of the most fundamental problems in
concurrency. Deadlocking is classically exemplified by Dijkstra’s "Five Dining Philosophers” [Di-
jkstra 1971]: Five philosophers sit around a table, with a fork between each pair of philosophers
and a bowl of “a very difficult kind of spaghetti” in the centre, so that each philosopher requires
both their left and right fork in order to eat. Without any communication between the philoso-
phers, they will generally enter a deadlocked situation in which it is impossible for any of them
to eat (for example if each of them immediately takes the fork to their left). More generally, in a
concurrent program, a deadlock describes a situation in which, for some subset of that program’s
threads, it is impossible that any thread can eventually execute its next command.

In this paper, we consider the problem of detecting deadlocks in an abstract concurrent pro-
gramming language featuring scoped re-entrant locks, nondeterministic iteration and branching,
and nonrecursive procedure calls. This language can be seen as an overapproximate model of
real-world programming languages such as Java, with all information about variable and memory
assignment abstracted away.

We make three principal contributions to the problem, two theoretical and one practical. Our
first contribution is to show that the existence of a deadlock in our abstract programs can be pre-
cisely characterised as a condition on the critical pairs of each of its (sequential) threads. Roughly
speaking, a critical pair of a thread is a pair (X, £) such that some execution of the thread acquires

Authors’ addresses: James Brotherston, Dept. of Computer Science, University College London, UK, J.Brotherston@ucl.ac.
uk; Paul Brunet, Dept. of Computer Science, University College London, UK, Paul@Brunet- Zamansky.fr; Nikos Gorogian-
nis, Facebook London and Middlesex University, UK, nikos.gorogiannis@gmail.com; Max Kanovich, Dept. of Computer
Science, University College London, UK, M.Kanovich@ucl.ac.uk.

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/

1:2 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

an unheld lock £ while already holding the set of locks X. For the case of two threads, we establish
that Cy || C; deadlocks if and only if there are critical pairs (X3, ¢1) and (X3, £2) of C; and C, respec-
tively such that ¢; € X; and £, € X;, with X; N X; = 0 (cf. Theorem 4.4). This condition can be
generalised to the case of arbitrarily many threads (cf. Theorem 5.5). Its correctness is crucially de-
pendent on the fact that locking is balanced in our language, in that any thread must release locks
in the reverse of the order in which they are acquired, i.e. “last in, first out”. This is true of real pro-
gramming languages whenever scoped-locking constructs are used, such as Java’s synchronized
keyword or C++’s std: : lock_guard.

Example 1.1. Consider a two-threaded program C; || C;, where C; and C; are the following
sequential programs acquiring locks (acq(—)) and releasing them (rel(-)) in reverse order:

Cy: acq(x); acq(y); skip; rel(y); rel(x)
Cy: acq(y); acq(x); skip; rel(x); rel(y)

C1 has two critical pairs, (0, x) and ({x}, y), and similarly C, has two critical pairs (0, y) and ({y}, x).
By taking (Xi,¢1) = ({x},y) and (X5, €2) = ({x},y), we can see that the condition above is met,
and indeed C; || C, deadlocks, because there is an execution in which, simultaneously, C; holds
x while waiting for y, and C; holds y while waiting for x. Now consider the modified program
C] || C5, where C| = acq(z); Cy; rel(z) and C, = acq(z); Cy; rel(z). C] now has three critical pairs
(0, 2), ({z}, x) and ({z, x}, y), and C, has critical pairs (0, z), ({z}, y) and ({z, y}, x). In this case, the
condition above is not met, and indeed C; || C;, does not deadlock, because z acts as a “guard lock”
preventing x and y from being accessed by C; and C; simultaneously.

Our second contribution is to show that the set of critical pairs of any thread in our language
is in fact finite and computable. Consequently, due to the above characterisation of deadlocks, the
existence of deadlocks in our abstract programs becomes decidable (and in NP). We present both
a direct inductive computation of critical pairs, and a context-insensitive, flow-sensitive program
analysis that computes them in abstract interpretation style, running in quasi-exponential time in
the syntactic size of the program.

Our third contribution is an adaptation of our analysis to Java, and an open-source implemen-
tation within the INFER static analysis framework, aimed at finding deadlocks in code changes in
Android applications. We describe its deployment and impact at Facebook, where it has seen over
two hundred deadlock reports fixed in the last two years.

All of our theoretical results have also been proved mechanically in the Coq proof assistant’.
The formalisation occupies roughly 8.7K lines of code, and follows fairly closely the pen-and-paper
proofs in this paper. However, whereas for pedagogical reasons we shall begin here by considering
two-threaded programs and then generalise to the case of n threads, the mechanised proofs deal
directly with the general case.

The remainder of this paper is structured as follows. First, Section 2 introduces the syntax and
semantics of our abstract concurrent programs (restricted initially to the two-threaded case). In
Section 3 we develop the notion of a (sequential) program execution’s trace, i.e. the sequence of
lock acquisitions and releases it makes, and establish the key technical relationships between traces
and executions. Then, in Section 4, we establish the soundness and completeness of our deadlock
condition based on critical pairs, for two-threaded programs (as above). Section 5 generalises this
result to the case of programs with n > 2 threads. In Section 6 we show that the set of critical
pairs of any sequential program is finite and computable, and establish complexity bounds on
the problem. Section 7 describes our implementation of the deadlock analysis and its deployment
impact at Facebook. Section 8 surveys the related work, and Section 9 concludes.

IMade available as supplementary material for the referees.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:3

2 PROGRAM SYNTAX AND SEMANTICS

Syntax. Locks is a finite set of global lock names and Procs is a set of procedure names.
We define statements C by the following grammar, where ¢ ranges over Locks and p over Procs:

C:= skip|p() | aca(?) | rel(€) | C;C | if(x) then C else C | while(x) do C

We assume there is a function body() : Procs — Stmt that sends every procedure name to a state-
ment, its body. A function computing the callees of a statement callees(-) : Stmt — P (Procs) can
be easily defined. We forbid recursion in statements; that is, for all p € Procs, p ¢ callees(body(p)).

A statement is called balanced if it is generated by the following grammar, which ensures that
acq(¢) and rel(¢) only appear in balanced pairs:

C:= skip | p() | acq(£);C;rel(£) | C;C | if(x) then C else C | while(x) do C

Moreover, balanced statements must call only balanced procedures: if C is balanced and p €
callees(C), then body(p) must be balanced as well. We note that our balanced statements are simi-
lar to those produced by compiling scope-based constructs like Java’s synchronized keyword, or
C++’s std: : 1lock_guard.

We will frequently need to reason by structural induction over (balanced) statements. To account
for procedure calls in such proofs, we employ an extended notion of “substructure” for statements,
given as the reflexive-transitive closure of the following condition: any sub-statement of C (accord-
ing to the grammar above) is a substructure of C, and body(p) is a substructure of p(). Since our
procedures are non-recursive, this ordering is still well-founded.

Finally, a parallel program is an ordered pair of balanced statements written C; || Cs.

Semantics. Since our programs employ only non-deterministic control flow and lock guards, our
program states record only information about locks. We treat locks as re-entrant in that a thread
already holding a lock can re-acquire it without deadlock.

A lock stateis a function L : Locks — N, recording how many times each lock has been acquired.
We use the notation |L] for {¢ € Locks | L(¢) > 0}. If L; and L, are lock states then we write
Ly # L, to mean that [L;] N [Ly] = 0. We write @ for the lock state sending all locks to 0. We
write L[{++] and L[£——] for the lock states defined as L, except that L[{++](€) = L({) + 1 and
L[t—=](£) = L(¢) - 1.

A configuration is a pair (C, L), where C is a statement and L is a lock state. A concurrent configu-
ration is a pair (C; || Cz, (L1, L2)), where C; || C; is a parallel program and L4, L are lock states. We
will also denote this concurrent configuration as (Cy, L1) || (Ca, L2). We write (Cy,L1) # (Ca, L2)
to mean that L; # L,.

In Figure 1 we define the operational semantics of our programs by giving the small-step re-
lations for statements on ordinary configurations, —, and for parallel programs on concurrent
configurations, ~~. A configuration (C, L) is called live if there exists a transition (C, L) — (C’,L’).

DEFINITION 2.1. An execution (of statement C) is a possibly infinite sequence of configurations
7 = (yi)iso (Withyy = (C,_)) such that y; — yi+1 foralli > 0.

A concurrent execution is defined analogously to an execution, by replacing concurrent configura-
tions for configurations and ~+ for — in the above.

We often represent executions (y;)i>o as yo —" yn, where —* is the reflexive-transitive closure of
—, and similarly using ~* for concurrent executions.

We make the following simple but useful observation on our semantics:

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:4 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

(skip;C,L) — (C,L) (skip)
(p(), LY — (body(p), L) (proc)
{acq(f), Ly — (skip, L[£++]) (acq)
(rel(),L) — (skip, L[{—=]) (L(£) > 0) (rel)
(if(x) then C, else Cp, LY — (Cq4, L) (if1)
(if(*) then C, else Cp, L) — (Cp, L) (if2)
(while(x) do C,L) — (skip, L) (while1l)
(while(*) do C,L) — (C;while(x) do C, L) (while2)
(C1, Ly = (CL, L")

(Ci;Co Ly — (C;Co L) (seq)
(C1,Ly) = (C, L) Li#Ly (par1)

(Cy || Ca, (L1, L2)) ~ {Cy || Coy (L], L2)) P
<C2,Lz> e <C/,L/2> Ll # Lé (parz)

(C1 | Co, (L1, L)) ~ (Cy || CJ, (L1, L))

Fig. 1. Small-step semantics for statements (—) and parallel programs (~).

REMARK 2.2. For any concurrent execution y; || y2 ~" y{ || y,, there exist standard executions
Y1 =" y{ andy, =" y,. Furthermore, if y1 # v, theny| # y,; i.e., the two threads cannot acquire the
same lock simultaneously.

DEFINITION 2.3. A concurrent configuration ¢ = (C; || C;, (L1, Lz)) is deadlocked if both (C{, L)
and (C,, Ly) are live, and there is no o’ such that ¢ ~~ o’. The parallel program C; || Cy is said to
deadlock if there exists an execution (C; || Ca, (2, @)) ~* o such that o is deadlocked.

Deadlocked configurations can be characterised using the following observation.

ProprosITION 2.4. Let 0 = (C1 || Ca, (L1, Ly)) be a concurrent configuration such that Ly # L,. The
configuration o is deadlocked iff there are statements D1, D, and locks €1, {; such that

(C1,L1) = (D1, Li[1++]) , (Co, Ly) — (Do, Lo[lo++]) , €1 € [Ly] and £ € |Ly] .

Proor. Case (=): By assumption, (Cy, L1) and (Cy, L,) are live, with Ly # Ly, but there is no
configuration ¢’ such that ¢ ~ ¢’. Since (Cy, Ly) is live, we have (Cy,L;) — (Dy, L]). We show
that L] = L;[£;++] for some lock ;. Otherwise, by inspection of the semantics for — (Figure 1),
the only other possibilities are either L] = L; or L] = Li[{;——]. In either case, |_L;J C |L], and
since L, # L, by assumption, we have L] # L, and thus a concurrent transition using the rule par1:

(C1,L1) = (D, L}) Li#Ly
(C1 || Ca, (L1, L2)) ~ (D1 || Co, (L], L))

which contradicts the fact that o is deadlocked. For the same reason, we must have £; € | L,], since
[L;J = |Ly]U{¢1} and Ly # L,. By a symmetric argument, we also have (Cy, Ly) — (D3, Lo[C2++])
and ¢, € |L;] for some lock &,.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:5

Case (<): Assume (Cy,L1) — (D1, L1[{1++]) and (Cy, Ly) — (D3, Ly[€o++]) with £; € |L;]
and £, € |L{]. Thus {(Cy,L;) and {(C,, L,) are both live. Assume for contradiction that o ~» ¢”’.
Without loss of generality, we assume that this transition occurs via the rule pari:

(Ci,Ly) = (C, L)) Li#L,
(C1 [l Ca, (L1, L2)) ~ (Cy I Co, (L], L2))

Since (Cy, L) — (D1, L1[€1++]), it is clear by inspection of the semantics for — that we must
have L] = Ly[{;++]; only the command acq(f;) (possibly suffixed by some other statement) can
increment ¢;. Thus L{[£1++] # Ly, which is a contradiction since ¢; € |L;] by assumption and
{1 € | L1[£1++]]. We conclude that ¢’ cannot exist, and so o is deadlocked as required. O

3 EXECUTIONS AND TRACES

In this section, we develop a key technical idea: any execution of a statement (in an arbitrary lock
state) can be viewed simply as a sequence of lock acquisitions ¢ and releases ¢, which we call the
execution’s trace. Thus, for example, the two possible executions of the statement

acq(€); if(x) then (acq(j); skip; rel(j)) else (acq(k); skip; rel(k)); rel(£)

have respective traces £jj £ and £ k ke, depending on which branch of the if statement is chosen.

From our point of view, traces preserve the essential information about executions, in that the
effect of an execution on any given initial lock state can be computed from its trace. Moreover,
executions of balanced statements have traces that are essentially well-parenthesized strings of
lock acquisitions and releases; in fact they can be seen as Dyck words [Hopcroft and Ullman 1969]
in formal language theory, as most notably used in the Chomsky-Schiitzenberger representation
theorem [Chomsky and Schiitzenberger 1963].

3.1 From executions to traces

In this section, we show how to map executions of our statements to traces, which are words over
a suitable “lock alphabet”, and statements to languages of such traces, in a consistent way.

DEFINITION 3.1. The lock alphabet X is defined as the union of two disjoint copies of Locks:
%:={€| (€ Locks} U{€ | { € Locks} .

A quasi-lock state is a function in Locks — Z. We lift the notations [(++] and [{——] from lock states
to quasi-lock states in the obvious way, and write + on quasi-lock states to denote the pointwise sum
of functions, i.e. (f +g)(x) = f(x)+g(x). We define the function (-) from X-words to quasi-lock states
inductively, as follows:

() = @ (u-€) = W)[l++] (u-) = (wt—] .
We immediately notice the following relation between (-) and concatenation.
LEMMA 3.2. For any X-words u and v we have (uv) = (u) + (v).

Proor. A straightforward induction on v. O

Next, we map executions of our statements to words over X. We can observe by inspecting our
semantics (Figure 1) that in any execution step (C,L) — (D, M) we have M = L, or M = L[{++]
or M = L[{——] for some lock ¢. This justifies the following definition.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:6 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

DEFINITION 3.3. Given a transition T : {C,L) — (C’,L’) in our operational semantics, we define
its trace A(7) € U {e} as follows:
e ifL' =1L
Mz)=1{¢ ifL' = L[{++]
¢ ifL = L[t—-].
The trace of an execution is then defined as the concatenation of the traces of its individual transitions.
We often write transitions and executions with their trace above the arrow, asint : (C, L) = (C', L")
and 1 : (C, L) —* (D, M).

The trace of an execution is preserved under suffixing statements.

PRroPOSITION 3.4. For any execution i : {Co, Lo) Ly (Cp, L) and statement C, there is also an
execution r’ : (Co; C, Lo) Ly (Cp; C, Ly).
Proor. The statement is an inductive consequence of the fact that for any step (C;, L;) —
(Cit1, Li+1) in the original execution 7 we can apply the rule (seq) in Figure 1 to obtain:
i+ {Ci, Li) = (Cis1s Liv1)
7} :{Ci;C, Li) = (Cis15C, Lisr).

Since this new transition has the same input-output lock states, it has the same trace. O

We now define the language of a statement, roughly speaking, as the set of traces generated by
its possible executions. Subsequent technical results will make this correspondence precise.

DEeFINITION 3.5. The language L(C) of a statement C is defined inductively as follows:

L(skip) = {e} L(C1;Cy) = L(Cr) - L(C2)
L(acq(?)) = {¢} L(if(x) then C; else Cy) := L(Cy) U L(Cy)
L(rel(0)) = {} L(while(x) do C) := L(O)*

L(p() = L(body(p))

REMARK 3.6. For any statement C we have that L(C) is in fact a regular language over X: it is
obtained from {¢}, {€} and {€} by applying concatenation, union, and Kleene star. Furthermore, by
construction, L(C) is never empty.

Our next lemma establishes that the trace of an execution of statement C determines its effect
on the lock state, and is a prefix of some word in L(C).

LEMMA 3.7. For any execution : {C, L) N (C’", L’y we have L’ = L+ (u) andu- L(C’") € L(C).

Proor. We first prove the case where 7 is a single transition step, by rule induction on the
transition relation (cf. Figure 1). The base cases — (skip), (proc), (acq), (rel), (if1), (if2), (whilel)
and (while2) — are all easy verifications. In the inductive case, (seq), we have:

(C1,Ly = (CI, L)

(C;Ca, LY = (C;;Co, L)
By the induction hypothesis we have L = L+(u) and u- £L(C]) € L(C;). Thus we get u- L(C;;C2) =
u- L(C]) - L(Cy) € L(Cy) - L(C,) = L(Cy;Cy) as required. This completes the single-step case.
For an arbitrary execution, the result then follows by reflexive-transitive induction on the tran-
sition relation. In the reflexive case, we have u = ¢, C’ = C and L’ = L, and so the statement

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:7

holds trivially. Otherwise we have 7 : (C, L) = (C”, L") Sy (C",L"), with u = vw. By our
result on single transitions, we get L = L + (v) and v - £(C"”) € L(C). By induction hypoth-
esis, we have L’ = L” + (w) and w - L(C)’ € L(C”). Therefore, using Lemma 3.2, we have
L” = L+ (w)+ (v) = L+ (vw), so the first property holds. For the second property, we have
(vw) - LIC)=v-(w- L(C")) Cv- L(C")C L(C) and are done. O

3.2 Dyck words and balanced executions

Here, we recall the notion of Dyck words over our lock alphabet ¥ and relate them to executions
of balanced statements. If we view £ and ¢ respectively as opening and closing “parentheses”,
then Dyck words are essentially the well-parenthesized words over %, which can be thought of as
“balanced traces”. These are exactly the traces generated by executing balanced statements.

DEFINITION 3.8. The language D of Dyck words over X is generated by the following grammar:
D:=¢ | DD | ¢{D¢.
It is immediate that the traces generated by executing balanced statements are Dyck words.
LemMA 3.9. IfC is a balanced statement, L(C) € D.

Proor. A straightforward structural induction on C. O

The key property of Dyck words we rely on is that any occurrence of a £ letter in a Dyck word
must be matched by an earlier occurrence of £, with the intervening word also a Dyck word.

LeEMMA 3.10. For any ulv € D, there exist words u1 € X* anduy € D such thatu = uy L u,.

ProOF. We proceed by structural induction (over Dyck words) on u £ v.
Case u{ v = ¢: This case is clearly impossible.

Case u (v = dy dy: We distinguish two subcases. First suppose d; is a prefix of u. Then u = d; w
and dy = w v for some w € 3*. Since wl v € D, by the induction hypothesis we obtain wy, w,
such that w = w; £ wy and wy € D. We choose u; = d; w; and uy = wy, and check that u = d; w =
d1W1€W2 =u1£’u2.

Otherwise, if d; is not a prefix of u, then it must be that u is a prefix of d;, i.e. d; = uw and
£v = wd, for some w € 3*. We can assume that w # ¢ (since this is covered by the first case), so
we have w = £w’ and v = W' d,. Since uw = ufw’ = d; € D, by the induction hypothesis we
obtain u;, u, such that u = u; €uy and uy € D.

Case ulv = kdk: We observe that u = ¢ is not possible, as it would entail tv = kdk. We
distinguish two further subcases on the length of u. First, if u = k d, then we have u to=kdlv=
kdk. Thus € = k and v = ¢, so we can choose u; = ¢ and u; = d, with u, € D.

Otherwise, there must be words u’, v’ such that u = ku’, v = vk and d = v’ £ v, In this case,
by the induction hypothesis on u’ £ v’ = d € D to get uj,u; such that u’ = u] fu; and u; € D. We
then choose u; = kuj and u, = u,, and check that u = ku’ = kujfu) = uy L uy. O

Our mapping (-) from Definition 3.1 sends all Dyck words to the empty lock state &, and all
prefixes of Dyck words to bona fide lock states (as opposed to quasi-lock states).

LEMMA 3.11. Foranyu € D we have (u) = &.
Proor. A straightforward structural induction on u, using Lemma 3.2. O

LEMMA 3.12. Foranyuv € D we have (u) € Locks — N.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:8 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

Proor. By structural induction on uv.
Case uv = ¢: We must have u = ¢, and so by definition (u) = @ € Locks — N.

Case uv = d; dy: By Lemma 3.11, (d;) = (d2) = @. We distinguish two subcases. First suppose
that d; is a prefix of u. Then u = d; w and d, = w o for some w € 3*. Therefore, using Lemma 3.2,
(u)y = (dyw) = {d1) + (w) = @ + (w) = (w). By the induction hypothesis on d, = wv, we have
(w) € Locks — N and are done. Otherwise, u must be a prefix of dy, i.e. d; = uw and v = wd, for
some w, and we are done immediately by induction hypothesis on d;.

Caseuv =(d(: First, if u = ¢ then (u) = @ and we are done. Next, if v = ¢ thenu = de, and
since (d) = @ by Lemma 3.11, we have (u) = @[{++][(——] = @ and are also done. Otherwise,
there must be words u’, v’ such that u = £u’ and v = v’ £ and d = u’ v’. By induction hypothesis
on d, we have (u’) € Locks — N. Using Lemma 3.2, we have

() =(tu’)y =) + W) = W) +({0) = W) = W)H[++].
Since (u’) € Locks — N, so is (u’)[£++]. This completes the proof.)

We can now establish an analogue of Lemma 3.10 for executions of balanced statements, which
will play a crucial role later on in “disentangling” concurrent executions (see Lemma 4.3).

LEMMA 3.13. Let C be a balanced statement. For any execution
<C’ ®> = <CO»LO> — <Cn, Ln) - <Cn+1’Ln[€__]> >
there exists j < n such that L; = L,[{—=] and Lj.1 = Ly,.

Proor. Let C be a balanced statement, and & = ({C;, L;))ogign+1 be a non-trivial execution such
that (Co, Lo) = (C, @) and L4+ = Lp[f——]. Necessarily, £ € |L,]. We write A(i) for the trace of
the transition (C;, L;) — (Cj41, Li+1); thus clearly A(n) = £. We also write Ai,j, where j > i, for the
word A(i) . .. A(j — 1), i.e. the trace of the sub-execution (C;, L;) =" (C;, L;). We write A(rr) for the
trace of the whole execution 7, meaning that A(7) = A9 p+1 = Ao, L.

Since 7 : (C, @) M* (Cp+1, Lu[€——1]), we can apply Lemma 3.7 to obtain that A(r)- £(Cy41) C
L(C). Recalling that the language of a statement is never empty, let w € L(C,41). Since C is
balanced, £(C) € D by Lemma 3.9, meaning that A(zx)w = A, {w € D. Thus by Lemma 3.10
there are words u € * and v € D such that Ay, = A(0)...A(n — 1) = u£v. This means there is
an index 0 < j < n— 1 such that Ay ; = u and A(j) = £ and 441, = v. By Lemma 3.11, we have
Ajarn) = (0) = 2.

We just need to check that our j satisfies the conditions of the lemma. Clearly j < n. To see that
Lj+1 = Ly, we use Lemma 3.7 again to see that for any index i we have L; = @ + (Ao;) = (4¢,;).
Therefore, using Lemma 3.2:

Ln = {Ao,n) = (Ao,js1 - Ajrr,n) = (Aoju1) + Ajsin) = Ljy1 + S =Ljiq .
Finally, since A(j) = €, wehave Ljy = Lj[{++],s0 Lp[{—=] = Lj1[({——] = L;[{++][(——] =L;. O
The final main technical result in this section is a kind of converse to Lemma 3.7 for the case of

balanced statements: for any prefix u of a word in £(C), we can find a corresponding execution of
C with trace u.

LemMa 3.14. Let C be a balanced statement, and let u,v € 3* such thatuv € L(C). For any lock

state L, there is a statement D and an execution n : (C,L) Ly (D, L + (u)) such thatv € L(D).
Furthermore, if v = ¢, then this statement also holds when D = skip.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:9

Proor. Let uv € L(C); we proceed by structural induction on the balanced statement C. We
just show the case C = while(x) do C’, which is the most complex since it entails constructing an
execution involving arbitrarily many executions of the loop body C’.

In this case, we have by assumption uv € L(C’)*, and consider two main subcases. First
suppose u = ¢, meaning that v € L(C')*. If also v = ¢, then we may take as our execution
(while(*) do C’, L) N (skip, L) using rule whilel and noting that L = L+ (e) = L+(u).Ifv # ¢,
then we take instead the trivial (0-step) execution (while(x) do C’, L) Ly (while(*) do C’, L),
taking D = while(x) do C” and noting that v € £(D) by assumption.

Otherwise, u # ¢, meaning that u = u;---u,u’ and v = v; vy, where each u; € L(C’) and
uw' vy € L(C’) and v, € L(C')*. (In other words, u is the trace of n complete iterations of the loop
body C’ plus some portion of the (n + 1)th iteration.) Moreover, since C’ is a balanced statement,
for each i we have u; € D by Lemma 3.9 and thus (u;) = @& by Lemma 3.11. Then, for each i,
by induction hypothesis on C’ and u; ¢ € L(C’) we obtain an execution (C’, L) Bl (skip, L).
We suffix these using Proposition 3.4 to modify these executions to (C’;while(x) do C’, L) Ly
(skip;while(x) do C’,L), and add an initial while2 step and a final skip step to modify them
again to (while(x) do C’, L) —* (while(x) do C’, L).

Next, by induction hypothesis on C’ with u’v; € L(C’), and using Proposition 3.4 to add the
suffixwhile(x) do C’, we obtain an execution (C’; while(x) do C’, L) Ly (D’;while(x) do C’, L+
(u”)) where v; € L(D’), and we may assume D’ = skip if v; = ¢. We then build our required
execution, using the sub-executions above and an intermediate while2 step, as follows:

7 :(while(x)do C',L) ——* (while(x)do C’,L)

Uz

—* (while(x) do C’,L)

2y (while(x) do €, L)
<5 (C’;while(x) do C’,L)
—* (D’;while(x) do C’, L+ {u’))
This execution indeed has trace u = uy uy . . . u, u’ and, using Lemma 3.2, we have
L+{uy=L+{u)+ - +u)+@)=L+T+---+T+ @)=L+).
Moreover, taking D = D’;while(x) do C’, we have
v=vv; € L(D) - LIC')* = L(D';while(x) do C’) = L(D).

It just remains to treat the special case where v = ¢. In that case v; = v; = ¢, and by the induction
hypothesis on C; we may take D’ = skip. We may then suffix 7 by the following execution steps
using skip and whilel:

(skip;while(x) do C’, L + (u)) —* (while(x) do C’, L + (u)) —* (skip,L + (u)) .
This modified execution still has trace u and ends in skip with lock state L + (u) as required. O

Observe that Lemma 3.14 does not hold for non-balanced statements. For example, we have
¢ € L(rel(¢)), but there are no possible executions of (rel(£), @).

A simple corollary of Lemmas 3.7 and 3.14 is that the language of a balanced statement is exactly
the set of traces of its “complete” executions to skip, starting from the empty lock state.

COROLLARY 3.15. For any balanced statement C, we have L(C) = {u | (C, @) Ly (skip, @)}.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:10 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

Proor. For the (2) inclusion, suppose that (C, &) 2y (skip, @). By Lemma 3.7 we have {u} -
L(skip) € L(C). Since L(skip) = {¢}, this means {u} € L(C), i.e. u € L(C) as required.

For the (C) inclusion, suppose that u € L(C), i.e. u ¢ € L£(C). By Lemma 3.14, with L = & and
v = ¢, there is an execution {C, @) Ly (skip, @ + (u)). By Lemma 3.11, (1) = &, and so we have
(C, @) Ly (skip, @) as required. o

REMARK 3.16. A statement C in our language can be viewed as a string acceptor on X-words, where

C accepts u iff (C, D) 2% (skip, @). If C is balanced then, by Corollary 3.15, it accepts exactly
the strings L(C). Since L(C) is a regular language (cf. Remark 3.6), this means that our balanced
statements can be viewed as nondeterministic finite automata (over X).

4 CHARACTERISATION OF DEADLOCK EXISTENCE

In this section, we obtain our main theoretical result: the existence of a deadlock in a parallel
program C; || C, amounts to the existence of a (certain kind of) conflict between individual “sum-
maries” of C; and C,, called their sets of critical pairs. Roughly speaking, a critical pair of a state-
ment C is a pair (X, ¢) such that some execution of C acquires the lock ¢ while holding the set of
locks X (which cannot already include £). Our main correctness result, relating deadlocks to the
conflict condition on critical pairs, is stated as Theorem 4.4. In the subsequent Section 6, we show
how to actually compute the critical pair summary of a statement and check the conflict condition.
First, we define the critical pairs of a statement in terms of its traces.

DEFINITION 4.1. The set Crit(C) of critical pairs of a statement C is defined as:
Crit(C) == {([{w)],€) | Fv.ulv e L(C)and € ¢ |{u)]} .
The reason for our trace-based definition of Crit(C), as opposed to an execution-based one, is
that it depends only on the language £(C), which turns out to be easy to compute (see Section 6).

The following lemma, which relies on our technical results from Section 3, gives an equivalent
formulation of critical pairs in terms of executions.

LEMMA 4.2. IfC is a balanced statement, then (X, €) € Crit(C) iff there exist statements C’,C"" and
lock state L such that (C, &) —* (C',Ly — (C”,L[{++]), withX = |L| and € ¢ X.

Proor. Case (=): Let (X,) € Crit(C). We have X = |[(u)] and £ ¢ X, where utv € L(C).
Thus we choose L = (u), and just require to build the needed execution. By Lemma 3.14 there is a
statement D and an execution

(C.2) 55 (D, 2 + (u0) = (D, W)[t++]) .
By a simple inductive analysis, we can decompose this execution as:
(C.2) 5" (C' (W) > (€, @e++]) =57 (D, wle++])

which completes the case.

Case (<): Adding trace labels to the execution, we have (C, &) Ly (C",L) R (C", L[t++]),
where £ ¢ |L]. By Lemma 3.7 we have L = @ + (u) = (u) and u - L(C’) € L(C),and ¢ - L(C") C
L(C’). Therefore, picking any v € L(C”), we have ufv € u- (- L(C")) C u- L(C") € L(O).
Since ¢ ¢ | L], we have (| L], ¢) € Crit(C) as required. O

Before we can characterise deadlocks in terms of critical pairs, we require one more crucial
lemma. This is to “disentangle” concurrent executions by showing that it suffices to consider their
sequential components individually, without having to account for all their possible interleavings.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:11

LEMMA 4.3. Let C,C’ be balanced statements such that C || C’ does not deadlock. Then we have
(CIC(,2)) ~"y |y iff (C,2) ="y and (C", &) =" y" withy #y’.

Proor. The (=) direction follows immediately from Remark 2.2.
For the (<) direction, we begin by assuming executions : (C, d) =" yand z’ : (C', &) =" v/,
with y # y’. We use the following notations for the intermediate configurations of 7 and "

T=Yy—=...Yi > —Vn Yi=<ci,Li>

e I A yi =<(Cj,L})

We have yp = (C,) and y; = (C’, &) and y, =y and y,, = y'.

In the following we call the concurrent configuration y; || y;, compatible whenever y; # y;, and
reachable whenever yo || y; ~" yi |l v;,. We shall show by induction on i + i’ that if y; || y; is
compatible then it is also reachable.

Ifi+i =0,theni =i =0,s0y; || yl.’, is trivially reachable. Otherwise, i + i’ > 0, and we
consider the compatibility of the concurrent configurations y;_1 || y;, and y; || y;,_,. If one of these
does not exist, i.e. either i = 0 or i’ = 0, then the other one does exist and is compatible; e.g. if
i=0thenL; = @andi’ > 0, and trivially @ # Ly_q, i.e. yo # yir—1.

Suppose first that one of these configurations is compatible, say y; || y;_, (the other case being
symmetric). By the induction hypothesis, y; || y;_, is reachable. Since y;,_, — y; and y; # y;, by
the assumption that y; || y;, is compatible, we have y; || y/_, ~ yi || v/, by the rule par2 (Figure 1).
Thus yo || yg ~* vi | y/_; ~ vi Il v}, meaning that y; || y/, is reachable as required.

The remaining subcase is that i,i" > 0 and neither y;_; || y; nor y; || y/_, is compatible. We
will show that C || C" must deadlock, thus contradicting the lemma assumption. We know that
Yi-1 = viand y/,_, — y/. We can deduce that L; = L;_;[{—~] for some lock ¢, for if not, then
[Li-1] € |L;] and thus y; || y; compatible implies y;_; || y;, compatible, contradicting the subcase
assumption. For a similar reason, L}, = L,_,[{’~—] for some lock £’. As C and C’ are balanced,
we can apply Lemma 3.13 (twice) to obtain j < i such that L; = L; and Lj;; = L;—y, and j* < i’
such that L;., =L}, and L;.,H = L,_,.Since y; || y; is compatible and L; = L; and Ly = Ly, the
configuration y; || yj’, is also compatible. We have j + j* < i + i’, so by the induction hypothesis
Y; Il v}, is reachable. To complete the proof, we show that y; || v} is deadlocked.

Assume for contradiction that y; || Y/, ~» ¢’. This must be a consequence of applying one of the
rules par1l and par2 from Figure 1; we assume the former, with the other case being symmetric.
In that case we have y; — (D, L) with L # L; and ¢’ = (D || CJ’,, (L, L;)) We know that there is
a transition y; — yj+1, and that L; = L; = L;_4[{——] = Lj41[{—~], meaning that Lj.; = L;[{++].
Hence C; must be the command acq(?), and thus this transition is unique, meaning that (D, L) =
Yj+1 and in particular L = Lj,;. Thus Lj,; # L;.,, and so also L;_; # L},. This means that y;_; || y;, is
compatible. This contradicts the subcase assumption. We conclude that y; || y;, is deadlocked after
all, and since it is also reachable, the program C || C’ deadlocks, a contradiction. O

Essentially, Lemma 4.3 implies that, when only balanced statements are involved, considera-
tions of reachability on the concurrent transition relation ~» can be reduced to reachability on the
sequential relation —.

We are now finally in a position to characterise deadlock existence as a “conflict condition” on
the critical pairs of its sequential components.

THEOREM 4.4 (DEADLOCK CHARACTERISATION). A parallel program C; || C; deadlocks if and only
if there are (X1, £1) € Crit(Cy) and (X,, {5) € Crit(C,) such that € € X; and{; € X1 withX;NX, = 0.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:12 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

Proor. Case (=): Suppose C; || C; deadlocks, meaning that some concurrent configuration o =
(Dy || Dg, (L1, L)) is deadlocked and {C; || C;, (&, @)) ~»* 0. By Remark 2.2, we have sequential
executions (Cy, @) —* (Dy, L;) and {Cy, @) —* (D,, Ly) with L; # L,. Since o is deadlocked and
Ly # L, we can apply Proposition 2.4 to obtain statements D7, D; and locks £y, £, such that

(D1,Ly) = (D, Li[t1++]) , (D2, L) — (Dj, Lo[la++]) , &4 € |Lz] and €3 € |Ly] .

Note that we have an execution (Cy, @) —* (D1, L) — (D!, L1[{;++]), and moreover ¢; ¢ | L],
because ¢; € |Ly] and L # L,. Thus, by Lemma 4.2, we obtain (| L], ¢;) € Crit(C;). A symmetric
argument yields (| L], £2) € Crit(C;), completing the case.

Case (<): Let (X4, £1) € Crit(Cy) and (X3, £3) € Crit(C,), with {; € X; and £, € X; and X;NX; =
0. By Lemma 4.2, for each i € {1,2} there exist statements C;,C;" and lock states L; such that
<C,‘, @> —* <C;,Ll> e <C;,,Li[5i++]> and X = |_L1J and fl' ¢ X;.

Suppose for contradiction that C; || C; does not deadlock. Since we have (Cy, @) —* (C/, L;) and
(Cy, @) =" (C;, Ly) with Ly # Ly, we have by Lemma 4.3 that (C || C2, (3, @)) ~" (C] || C, (L1, L2)).
Hence (C; || C;, (L1, L2)) cannot be deadlocked. However, because we also have

(Cl,L1) = (C{, Li[t1++]) , (Cj, L2y = (Cy, Lo[lo++]), €1 € Xo = |L2] and & € Xy =[L] ,

the configuration (C; || C;, (L1, L)) is deadlocked, by Proposition 2.4. We conclude by contradic-
tion that C; || C, deadlocks after all. O

We note that Theorem 4.4 immediately implies that the existence of deadlocks in our setting is
decidable provided that we can compute the critical pairs of any balanced statement. In Section 6
we show that this is indeed the case.

5 GENERALISING FROM 2 TO n THREADS

In this section, we generalise our critical pair condition for deadlock existence (Theorem 4.4) to
the case of parallel programs with an arbitrary (finite) number of threads.

First, we make the necessary generalisation of our two-threaded parallel programs (cf. Section 2)
to n > 2 threads. That is, a parallel program is now an n-tuple of balanced statements written
Ci ||...|| Cn, and a concurrent configuration is now a pair (C; ||...|| Cp,(L1,...,Ly)), where
Ly, ..., L, are lock states. We may also write concurrent configurations as (Cy, L1) || ... || (Cu, Ln),
or, using a “X-like” notation, as ||;<;<, (Ci, L;). We write (C;,L;) # (C;,L;) to mean that L; # L;
and, if X is a set of lock states, L # X to mean that L # L’ for all L’ € X. Finally, the transition
relation ~» on concurrent configurations is now given by the following general rule for a step
performed by the ith thread:

(CiLi) = (Ci, L)) Li#{Lj|j#i}
Collo MGy Ly o5 L))~ (Co [l N CEIL N Gy (Lo Lo, L))
Concurrent executions on our n-ary concurrent configurations are then defined as before, using

the above generalised version of ~.
We have the n-ary analogues of Remark 2.2 and Proposition 2.4:

(par i)

REMARK 5.1. For any concurrent execution yy ||...|| yn ~* y{ |l...|| v, there exist standard
executions y; —" y/ for each 1 < i < n. Furthermore, ify; # y;, theny/ # yj’; i.e., no two threads can
acquire the same lock simultaneously.

In the n-ary case, we define deadlock of a program as meaning that at least two of its threads are
deadlocked. For this, it is helpful to introduce a notation for projecting a concurrent configuration
onto a subset of its threads. If o = (C; || .. .|| Cu, (L1, ..., Ly)) is a concurrent configuration and

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:13

I = {iy,...,im} € {1,...,n} is a set of “thread indices”, we write o7 to mean the concurrent
configuration (C;,, L;,) || | <Ci,,,Li,,)-

DEFINITION 5.2 (n-ARY DEADLOCK). A concurrent configurationo’ = (Cj ||...|| C;, (L1, ...,Lp))
is deadlocked if (C;, L;) is live for all 1 < i < n but there is no o”’ such that ¢’ ~ ¢”’.

A parallel program Cy ||.. .|| C, deadlocks if (C1 ||...|| Cn, (D, ..., D)) ~* o and oy is dead-
locked for someI C {1,...,n}.

An immediate consequence of the above definition is that if Cy || . .. || Cp, deadlocks and m < n,
then C; || .. .|| C, also deadlocks (simply by ignoring transitions in the extra threads).

ProrosiTION 5.3. Let 0 = (Cy ||...|| Cy, (L1, ...,Ly)) be a concurrent configuration such that

L; # Lj foralli # j. The configuration o is deadlocked iff there are statements Dy, . .., D, and locks
€1,..., 0y such that, forall1 <i<n

(Ci,Liy = (Di, Lilti++]) and € € Uy |Lj] -

Proor. Case (=): By assumption, (C;,L;) is live forall 1 < i < n, with L; # L; for all j # i,
but there is no configuration ¢’ such that ¢ ~» ¢’. Let 1 < i < n; since (C;, L;) is live, (C;, L;) —
(Dj, L) for some D; and L}. We show that L} = L;[{;++] for some lock ¢;. Otherwise, either L} = L;
or L} = L;[£;—~], and in either case, [L;J C |L;]. Then, since L; # L; for all j # i by assumption,
we have L # L; for all j # i and thus there is a concurrent transition from ¢ using the rule par i
above, which contradicts the fact that o is deadlocked. Thus (C;, L;) — (D;, L;[£;++]) as required.
For the same reason, we must have ¢; € U#i |_LjJ; otherwise, L] # {L; | j # i} and, again, there is
a concurrent transition from o using rule par i.

Case (<): Assume that for all 1 < i < n we have (C;,L;) — (D;, L;[{1++]) for some D; and
Ci,and 6 € Uy |_LJ-J. We immediately have that (C;, L;) is live for all 1 < i < n. Assume for
contradiction that ¢ ~» ¢”, say via the rule par i above. Since (C;, L;) — (D;, L;[{;++]), it is clear
by inspection of the semantics for — that we must have L} = L;[£;++]; only the command acq(¢;)
(possibly suffixed by some other statement) can increment ¢;. Thus L;[€;++] # {L; | j # i}, which
is a contradiction since ; € (J;y; [L jJ by assumption and ¢; € |L;[{;++]]. We conclude that ¢’

cannot exist, and so o is deadlocked as required. O
The following lemma is the n-ary generalisation of the crucial “disentanglement” Lemma 4.3.

LEMMA 5.4. Suppose that Cy ||...|| C, does not deadlock. Then (Cy ||...|| Cp, (D, ..., D)) ~*
Yill.. |l yn iffi for each 1 < i < n, we have (C;, @) =" y; withy; # {y; | j # i}.

Proor. The (=) direction follows immediately from Remark 5.1.

For the (<) direction, we assume for each 1 < i < n an execution 7; : (C;, I) —* y;, with
vi #{y; | j # i}. We write y; ; = (C; j, L; ;) for the jth configuration in the execution ;, so that in
particular y; o = (C;, @).

An arbitrary concurrent configuration given by an interleaving from these n executions is then
given by ||;<;<, Vi,j,- We call such a configuration compatible to mean that y; ;, # yx j, for all

k # i, and reachable to mean that (C ||...|| Cu, (D, ...,9)) ~" |li<i<n Vi,j;- We shall show by
induction on X;<;<p j; that if ||, <;<, Vi, is compatible then it is also reachable. It then follows
that (Cy || ... || Cns (&, ..., D)) ~*y1 || ... || yn as required.

IfXi<i<n ji = 0, then j; = 0forall i, so ||i<i<n Yio = (Ci ||... || Cn, (@, ..., D)) is trivially

reachable. Otherwise, when X1<;<,j; > 0, we consider the compatibility of the “preceding” con-
figurations yi j, —1 || ||1<i<n.i2k Vi.j;» Where 1 < k < n. At least one such configuration must exist,
because X1<j<nji > 0.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:14 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

Suppose first that some such configuration yi j, —1 || |l;<;j<n,izk ¥i,j; is compatible. By the in-
duction hypothesis, it is also reachable. We have yi ;-1 — ¥k, j, by assumption, and y; j, #
U1<i<n.izk Vi,j; by the assumption that ||, .; ., i j, is compatible. Thus ||, ;< i,j; is reachable by
applying the rule par i.

The remaining subcase is that no configuration of the form y j, —1 || |l;<;<n,izk Vi,j; is compat-
ible. We assume without loss of generality that these configurations are defined for the first m
threads, i.e. jyr > 0 for 1 < k < m, and undefined otherwise, meaning that y; j, = yx.0 = (Cx, D)
forallm+1 < k < n.Note that m > 2, otherwise the only configuration of the above form becomes
Y1 Il lla<i<n (Ci, @), which is compatible, contrary to assumption. Now, letting 1 < k < m, we
must have L j, = Li j,—1[{x——] for some lock £;. Otherwise, |_Lk,jk—1J C | Lk, jk], and since
lli<i<n Vi,j; is compatible, so is y j.—1 || |l1<i<n.izk Vi,j;» contradiction. By Lemma 3.10, we can
find hy < ji such that Ly p, = Li j, and Lg p, 41 = Lg j,—1. Since ||y <;<, i,j; is compatible, and
we can find such an hy for each 1 < k < m, it follows that ||, <x<;m Vi he || mi1<i<n Vij, is also
compatible. Since X1<k<m bk + Zm+1<i<n Ji < Z1<i<n Jji» we then have by the induction hypoth-
esis that ||;<r<m Yi.he || mi1<i<n Vi,j; is reachable. To conclude the proof, we shall show that
[li<k<m Y&,k is deadlocked, and thus Cy || .. . || C,, deadlocks with index set I = {1, ..., m}, which
is a contradiction.

Assume for contradiction that ||; <k <, Vk,n, is not deadlocked, meaning that ||, <x <, Vi.n, ~> ©
for some . This must happen via an application of the rule par i, where i = kand 1 < k < m.In
that case we have y; ,, — (D,L) with L # {Li 5, | k # i}. We already know that y; p, = ¥i n,+1
and L; p, = L; j, = Li j-1[€i—] = Li p,+1[€i——], meaning that L; p, 41 = L; p,[€;++]. Hence C; j,
must begin with the command acq(¢;) and so the transition y; 5, — Vi p,+1 iS unique, meaning
that (D, L) = y; p,+1 and in particular L = L; ,41 = L; j,—1. Thus L; j,_1 # {Lk,n, | k # i}. This
means that y; j, 1 || ||;<x <m.k#i Vi.j; is compatible, which contradicts the subcase assumption. We
conclude that ||, <x <, Yk n, must be deadlocked after all. This completes the proof. O

THEOREM 5.5 (n-ARY DEADLOCK CHARACTERISATION). A parallel program Cy || .. .|| C, deadlocks
if and only if, for some index set I C {1,...,n} with cardinality > 2, there are critical pairs (X;, {;)
foreachi€ I suchthat X; N ;. X; =0 and t; € Uy X;.

Proor. Case (=): SupposeCy || .. .|| C, deadlocks, meaning that (Cy || ... || Cp, (D, ..., D)) ~>*
o for some configuration o and, for some index setI C {1, ..., n}, the “projection” oy is deadlocked.
Without loss of generality, we assume that I refers to the first m threads, ie. I = {1, ..., m}, where
we must have m > 2. Thus we may write o = (D1 ||...|| Dm,(L1,...,L)). By Remark 5.1, we
have for each 1 < i < m a sequential execution (C;, @) =" (D;,L;) with L; # {L; | j # i}.

Since oy is deadlocked and L; # L; for all i # j, we can apply Proposition 5.3 to obtain for all
1 < i < m statements D} and locks ¢; such that (D;,L;) — (D}, Li[¢;++]) and {; € U4 LL]-J.
Thus we have executions (C;, @) —* (D;, L;) — (D}, L;[{;++]), and moreover £; ¢ | L;|, because
ti € Ujgi [LjJ and L; # {L; | j # i}. By Lemma 4.2, we obtain (|L;],¢;) € Crit(C;). Taking
X; = |L;] for each 1 < i < m, it is clear that all conditions are satisfied: (X;, ¢;) € Crit(C;) by
construction; X; N J;,; Xj = O because L; # {L; | j # i}; and {; € U;y; X; because €; € 4, |_LjJ.
This completes the case.

Case (<): We assume without loss of generality that I = {1,...,m}, where m > 2. By as-
sumption we have for each 1 < i < m a critical pair (X;, {;) € Crit(C;), with X; N ;; X; = 0
and ¢; € U#i X;. By Lemma 4.2, there exists for each i statements C;,C;’ and a lock state L;
such that (C;, @) —* (C],L;) — (C{,L;[{;++]) and X; = |L;] and ¢; ¢ X;. Thus, in particular,
Ly #{L; | j # i} for each i.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:15

We show that the program Cy ||...|| C,, deadlocks. Suppose not, for contradiction. Since for
each 1 < i < m we have (C;, @) =" (C[,L;) with L; # {L; | j # i}, we have by Lemma 5.4 that
Cill.. N Cmi(D,...,2)) =" (Cy I ... || Cppy (L1, . .., Lpp)). Hence (C} || ... || Cppo (L1, - . ., L))
cannot be deadlocked. However, because we also have (C;, L;) — (C/, Li[{i++]) and {; € |_LjJ
for each i, the configuration (Cy || ... || C;,, (L1, - . ., Ln,)) is deadlocked, by Proposition 5.3. We con-
clude by contradiction that C; || C,, deadlocks after all, and therefore so does Cy || .. . || C,, (because
its first m threads deadlock). O

The following example illustrates the basic intuition behind our n-ary deadlock condition.

Example 5.6. We construct n sequential statements Cy, Cs, ..., Cy, as follows:
G = acq(lz); acq(ty); skip;rel(fy); rel(ty);
C, = acq(l3); acq(lz); skip;rel(ly); rel(ls);

Cu_1 = acq(fn); acq(fn—1); skip;rel(€,—1); rel(ty,);
Cn = acq(t1); acq(tn); skip;rel(£y,); rel(fy);

Observe that we have an n-ary “cycle” of critical pairs over the threads C;, namely ({£(i+1)modn }» £i) €
Crit(C;) for each 1 < i < n. It is clear that these critical pairs collectively satisfy the deadlock con-
dition of Theorem 5.5, and indeed Cy || . . . || C,, deadlocks, by executing the first acq(—) command
in each thread.

Conversely, any smaller collection of threads, e.g. Cy || .. .|| C,—1, does not satisfy the deadlock
condition: the only other critical pairs of any C; have empty LHSs, and we do not have {; €
{Cs,...,€n}. Indeed, C; || ...|| Cr-1 does not deadlock, because even when Cy, ..., C,_; have all
executed their first acq(—) command, it is still possible for C; to acquire ¢; and subsequently release
{1 and {3, at which point C, can acquire ¢, and release ¢; and 3, and so on.

6 COMPUTING CRITICAL PAIRS

Having established in the previous section that the existence of a deadlock in a parallel program
C1 || C; reduces to checking a condition on Crit(C;) and Crit(C;) (Theorem 4.4), our first order of
business in this section is to show that Crit(C) is in fact computable for any balanced statement C.
This is not immediately obvious from Definition 4.1, since Crit(C) is defined there in terms of the
language £L(C), which in general is infinite.

In Section 6.1 we show that Crit(C) can be computed inductively, with the immediate con-
sequence that the deadlock problem for our language is decidable and in NP (Theorem 6.6). In
Section 6.2 we show that Crit(C) can also be computed by an abstract interpretation-style analy-
sis, which forms the basis of our implementation and runs in worst-case exponential time (Theo-
rem 6.11). For programs without procedure calls, the procedure runs in polynomial time.

6.1 Inductive computation

ProprosITION 6.1. The following identities hold for all balanced statements C,C’ and locks {:

Crit(skip) = 0 (C1)

Crit(p()) = Crit(body(p)) (C2)

Crit(if(x) then C else C’) = Crit(C) U Crit(C’) (C3)
Crit(C; C’) = Crit(C) U Crit(C") (C4)

Crit(while(x) do C) = Crit(C) (C5)
Crit(acq(€); C;rel(€)) = {(0,0)} U {(X U {€}, ") | (X, £’) € Crit(C) and € + ¢’} (Co)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:16 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

Proor. We establish each identity in turn. We omit the proofs of the cases C1, C2 and C3 here,
since they are straightforward.

Case C4: We have L(C;C") = L(C) - L(C”"). We prove both inclusions separately.

(S) Let ([{u)],€) € Crit(C;C’). By definition, we have ufv € L(C)- L(C’) and ¢ ¢ |(u)]|. We
distinguish two subcases. First, suppose that u ¢ is a prefix of some word in £(C), meaning that
v =uvv; withufv, € L(C) and v, € L(C’). This immediately entails that (| (u)],) € Crit(C).
Otherwise, if u £ is not a prefix of any word in £(C), we must instead have u = u; u, withu; € £(C)
and u; Cv € L(C’). Since u; € L(C) € D, we have (u;) = @ by Lemma 3.11. Using Lemma 3.2,
we have (u) = (uiuz) = (W) + (uy) = I + (uy) = (uy), and thus £ ¢ |(uy)|. This entails that
(L{u)],€) € Crit(C’). In either case, we have (| (u)],¢) € Crit(C) U Crit(C’) as required.

(2) Let ([{u)], ¢) € Crit(C) U Crit(C’). First suppose (| {u)],¢) € Crit(C), meaning that u{v €
L(C) for some v, and ¢ ¢ | (u)]. Recalling that £(C’) is nonempty, let v’ € L£(C’),sothatulvv’ €
L(C) - L(C’). This immediately yields (| (u)],{) € Crit(C;C’). Otherwise, (| {(u)],{) € Crit(C’),
meaning that u £ v € L£(C’) for some v,and ¢ ¢ | (u)].Letu’ € L(C),sothatu’ ulv € L(C)- L(C').
Since u’ € L(C) € D by Lemma 3.9, we have (u1) = @& by Lemma 3.11. Using Lemma 3.2, we have
W uy = W)+)=+) =(u). Thus £ ¢ [(u'u)], and so again ([(v u)]|,€) = ([(u)].€) €
Crit(C; C’). This completes the case.

Case C5: Let us write C" to denote n copies of C in sequence (C;...;C). A simple induction
shows that £L(C") = L(C)" for all n > 0. Thus

L(while(x) do C) = L(C)* = Upzo LO)" = {e} U Ups0 LIO" = {e} U Upso L(CM) .
Using the above, we have

Crit(while(x) do C)

(L], 0) | Fv.ulv e {e} UlUpso LIC") and £ ¢ [(u)]}
{(L@].0) | Fv.ulv e Uy LIC") and £ ¢ [(u)]}

Upso Crit(C™) .

Since Crit(C;C) = Crit(C) U Crit(C) = Crit(C) by equation C4, it follows by induction that
Crit(C") = Crit(C) for all n > 0. Thus Crit(while(x) do C) = |J,-, Crit(C) = Crit(C).

Case C6: We have L(acq(€); C;rel(£)) = {¢} - L(C) - {€}. We show both inclusions.

() Let (X, ¢') € Crit(acq(£); C; rel(£)). Thus X = | (u)] for some u, where u ¢’ v € {£}- L(C)-{¢}
for some v and ¢" ¢ | (u)]|. We distinguish two subcases. First, if u = ¢ then ¢’ = € and | (u)] =
19| =0,s0 (X, ") =(0,¢) and we are done.

Otherwise, we have u = Cu’ and v = v’ £ with v’ £’ v’ € L(C). First, notice that by Lemma 3.12
we have (u’)(€) > 0. Thus |u] = [(€u’)] = [{w)[€++]] = [{u")] U {€}. Since £’ ¢ |(u)], we
have ¢’ ¢ |(u’)] and ¢’ # €. Since u’ ¢’ v’ € L(C)and ¢’ ¢ | {(u’)], we have (| {u’)],{’) € Crit(C).
Putting everything together, we have (X, ¢’) = ([(u’)] U {€},¢’) with ([{(u)],¢’) € Crit(C) and
¢" # {. This completes the inclusion.

@) Let (X, £") € {(0,)} u{(X U, L") | (X, L") € Crit(C) and £ # £'}. First suppose that (X, {’) =
(0,0). Let v € L(C), so that e vl € {€} - L(C) - {€}. Trivially, £ ¢ | ()] = 0, and thus (0,¢) €
Crit(acq(¢); C; rel(£)) as required.

Otherwise, we have X = X’ U {{} where (X’,¢’) € Crit(C) and £ # {’. In this case, we have
words u’, v’ such that X’ = | (u’)] and u’' €’ v’ € L(C) and ¢ ¢ X’. We observe that {u’ £’ v’ € €
{¢} - L(C) - {¢}, and, by Lemma 3.12, we have (u’)(€) > 0. Thus, using Lemma 3.2, |{({u)] =
L@[l++]+ (Ww)] = [(w)] U {€} = X. Since ¢’ ¢ X’ and ¢’ # £, we also have ¢’ ¢ X, and so again
(X, ") € Crit(acq(?); C; rel(?)). O

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:17

We begin our complexity analysis by defining suitable notions of size for statements and sets of
critical pairs. We write #X for the cardinality of a finite set X.

DEFINITION 6.2. For any statement C we define its size ||C|| by
”C” = |C| + Zpecallees(c) |b°dY(P)|’
where |C| is defined inductively as follows:
Iskip| = [aca(f)] = |rel(O)] = |pOl = 1
|if(x) then C; else Cy| = |C1;C2| = |Cy| + |G
|while(x) do C| = |C|

Note that, if C does not make any procedure calls, i.e. callees(C) = 0, then ||C|| = |C|. Moreover,
since every statement has non-zero size (by definition), ||C|| > 1 + #callees(C).

ProPOSITION 6.3. For any balanced statement C, the set Crit(C) is finite and computable, with
#Crit(C) < ||C||1+#eallees(©) gnd #X < ||C|| for all (X, £) € Crit(C). In particular, if C does not contain
any procedure calls, then #Crit(C) < |C|.

Proor. We proceed by structural induction on C, making use of the equations in Proposition 6.1..
Case C = skip: Trivial, since Crit(C) = 0 by C1.
Case C = p(): For the first property, using C2 and the induction hypothesis, we have

#Crit(p()) = #Crit(body(p)) < [[body(p)|[+eaeesEotP) = (||p()||—1)FealleeslpO) < ||p(||!+#eatieestr).

For the second property, letting (X, £) € Crit(C), we have by induction hypothesis #X < ||body(p)|| <
I[Pl as required.

Case C € {Cy;Cy, if(x) then C; else Cy}:. Inboth these cases we have callees(C) = callees(Cy)U
callees(Cs), and Crit(C) = Crit(C;) U Crit(C,) by C3/C4. Thus, for the first property, we have

#Crit(C) < #Crit(Cy) + #Crit(Cy)
< ”C1”1+#callees(C1) + ”C2”1+#ca|]ees(Cz)
< ”C1||l+#callees(C) + ||C2||1+#callees(C) < ||C||1+#ca||ees(C)'
For the second property, letting (X, £) € Crit(C), we have (X, {) € Crit(C;) for some i € {1, 2}, and
thus by induction hypothesis #X < ||C;|| < ||C]|.

Case C = while(*) do C’: This case holds immediately by induction hypothesis, since ||C|| =
IC’|I, callees(C) = callees(C”) and Crit(C) = Crit(C’) by C5.

Case C = acq({); C’; rel(£): We have |C| = |C’| + 2 and callees(C) = callees(C’), and, by Cé:
Crit(C) = {(0,)} U{(X U {£},£") | (X, ') € Crit(C) and £ # ('}.
For the first property, we have
#Crit(C) < 1+ #Crit(C') < 1+ [|C7||!FFeallees(@) < ||| rocaliees(C) — o) 1#eatlees(C)

For the second property, let (X, ¢’) € Crit(C). If X = 0 then the bound holds trivially. Otherwise
X = X"U{{} with (X', ¢’) € Crit(C’), and using the induction hypothesis we have #X < 1+#X’ <
L+ [l < [IC]l.

This completes the induction. The case when C does not contain any procedure calls then follows
immediately from the general case by taking callees(C) = 0 and ||C|| = |C]. O

The following examples illustrate these bounds.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:18 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

Example 6.4. Let {1, ..., ¢, be distinct locks, and consider the following balanced statement C:
acq(ty); acq(ty);. .. aca(ly,); skip; rel(€y,) . . .;rel(fs); rel(4y)
We have |C| = 2n + 1 and, using equations C6 and C1, a simple induction establishes that
Crit(C) = Ur<icn{{rs - -, Cia 1, €}
Thus Crit(C) contains n elements, with the largest being ({¢1, ..., {n-1}, €n).
Example 6.5. Let {4, ..., ¢, be distinct locks, and consider the following procedures py, . . ., p,:
body(p;1) = if(x) then acq(¢;); skip; rel(¢;) else skip
body(p;) = if(*) then acq({;); pi—1(); rel(¢;) else p;—1() foreach2 <<i<n.

For each 1 < i < n, we have that callees(p;) = {pj [1<j< i}, and a straightforward induction
on i establishes that:

Crit(body(p;)) = {(X,€x) |1 <k <iand X C {€ks1,...,Ci}} .
The size of C = body(p,,) can be computed as follows:

ICIl = Ibody(pn)l + Xpecaliees(c) Ibody(@)] = Xy <i<n Ibody(pi)| = 4n.
Now Crit(C) = {(X,¢r) |1 <k <nand X C {€k41,...,Cn}} is in bijection with the set of non-

empty subsets of {1,...,n}. Given S C {1,...,n}, let m be its minimum,; then the critical pair
(¢ | i e S\ {m}},) belongs to Crit(C) (and vice-versa). Therefore, C has 25 1€ — 1 critical
pairs, and some of them, e.g. the pair ({{z, ..., ¢, }, €1), are of linear size in ||C||.

In order to precisely state complexity bounds on the deadlock problem, we define the size of a
parallel program as the sum of the sizes of its constituent threads: ||(Cy || . .. || Co)ll = X1<i<n IICill.

THEOREM 6.6. Whether a given parallel program deadlocks or not is decidable, and in NP.

Proor. First we establish decidability. By Theorem 4.4, Cy ||...|| C, deadlocks iff, for some
index set I C {1,...,n} with |I| > 2, there are critical pairs (X;, {;) € Crit(C;) for each i € I such
that X; N UJ;4; Xj = 0 and ¢; € {J;; X;. By Proposition 6.3, Crit(C;) is finite and computable for
any C;. Therefore, deciding the latter condition can be done by checking all possible sets of critical
pairs for all possible index sets.

The NP upper bound relies on the observation that we can use the equations in Proposition 6.1
to nondeterministically compute an arbitrary critical pair of any C; in polynomial time (in ||C;|| <
||P]]). Specifically, we can write a program that recurses on the structure of C; and selects a critical
pair by nondeterministically deciding which “branch” of the computation given by C1-Cé to follow
at each stage. Such a program clearly runs in polynomial time in ||C;]|.

Therefore, the NP procedure runs in three stages: (i) nondeterministically select an index set
I C {1,...,n} of size > 2; (ii) nondeterministically select a critical pair (X;, ¢;) for each i € I, as
above; (iii) verify that X; N (U;4; Xj = 0 and ¢; € U;4; X for all i, j € I. The last step can be done
in polynomial time in || P|| because, by Proposition 6.3, each X; is of size bounded by ||C;]|. O

REMARK 6.7. An immediate consequence of Proposition 6.1 is that, for any balanced statement C,
its critical pairs Crit(C) and size ||C|| both remain unchanged under applications of the following
rewrite rules to substatements of C:

if(x) then C; else C; — Ci;C, and while(x)doC’ — C’.

Therefore, the deadlock problem for our language reduces (polynomially) to the case where statements
are restricted to the “deterministic” grammar:

C:= skip|p() | aca(f);C;rel(¢) | C;C.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:19

{(LL].O)} ifL(£) =0

[aca(O)](L, Z) (L[t++1,ZU Z') where Z' = {

0 if L(£) > 0
[rel(OIKL,Z) = (L[t--1].2)
[pOL, Z)y = (L, ZuZ") where (_,Z") = [body(p)]e, in
Z' ={(lL]uM,)| (M,) e Z" NL(£) = 0}
[skip]Je = « [Ci;Colle = [C]([Ci] @)
[if(x) then C; else GJa = ([Ci]Ja)u ([C:]e) [while(x)do Cla = |ln [C]"a

Fig. 2. Abstract analysis definition.

6.2 Abstract interpretation-style computation

We now define an alternative way to compute the critical pairs of a statement, in abstract inter-
pretation style. The rationale is that this style of computation, rather than the direct inductive
computation given in the previous section, is the one that forms the basis of our implementation.
The main idea is that, given any statement C, we define an analysis function [C](-) on abstract
states, which essentially track the lock state and the set of critical pairs accumulated during the
possible executions of C.

DEFINITION 6.8. An abstract state of our analysis is a pair (L,Z), where L is a lock state and
Z C 2'ocks x Locks (i.e. a set of pairs each comprising a set of locks and a single lock). We define a
partial join operation LI on abstract states by

(L, Z1y UL, Zy) = (L, Z1 U Zy) .
We often write a to range over abstract states, and a; for the “empty” abstract state (&, 0).

The function [C](-) is then defined by structural induction on C in Figure 2. We remark that
the clauses for the control flow statement (if, while and sequencing) are generic to abstract
interpretation (given a suitable join operation LI), which is why we do not simply define, e.g.,
[while(*) do C]Ja = a U [C]a as would intuitively be implied by equation C5. However, this
identity and similar ones can be inferred from our correctness proof.

PROPOSITION 6.9. For any balanced statement C and abstract state « = (L, Z),
[Cle = (L, Z U {(IL] VX,)| (X,) € Crit(C) and L(€) = 0}) .
Moreover, [C]la is computable. Thus, in particular, [Clay = (@, Crit(C)) and is computable.

Proor. We proceed by structural induction on C. The cases C = skip, C = p(), C = C;C;
and C = if(x) then C; else C; are straightforward using the induction hypothesis and the
equations C1-C4. The case C = while(x) do D is similarly straightforward once one notices that,
writing D" for n > 0 copies of D in sequence (D;. . .;D), we have [D]"« = [D"]a by definition
and Crit(D") = Crit(while(x) do D) by equations C4 and C5. As a consequence, we in fact have
[while(*) do D& = aU[D]a, meaning that a computation of | |}, [D]"a will reach a fixed point
after a single application of [D].

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:20 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

We show only the locking case, C = acq({); C’; rel(£), in detail. First notice that |L[{++]] =
LL] U {¢}, and that L[¢++]({’) = 0iff L(¢’) = 0 and ¢ # £’. Then, using the induction hypothesis
on C’, we have:

[aca(€); C’; rel(d)]a
= [rel(O][C'][aca(O)]«
{(LL], 0y ifL(6) =0
0 if L(€) > 0
= [rel(OL[L++], Z U Z" U {([L[E++]] U X, ') | (X, ") € Crit(C’) and L[£++](¢") = 0})
= (L[t++][t——1,Zu Z" U {(LL[¢++]] U X, €") | (X, ') € Crit(C’) and L[£++](¢) = 0})
=(L,ZUZ U{(IL] UXU{t},)| (X,€) € Crit(C’) and L(¢’) = 0 and ¢’ # {})
Note that Z’ can be re-expressed as {(| L] U 0, ¢) | L(€) = 0}. Recall identity C6:
Crit(acq(£); C’;rel(0)) = {(0,)} U {(X U {€}, ") | (X, ") € Crit(C')and € # £’} .
We can thus conclude this case, and the induction, by rewriting the last set expression above:
ZUZ ' U{(ILJUXU{t},)| (X, ") € Crit(C')and L(¢’) = 0 and £ # '}
=ZU{(IL]V0,6) | L) =0y U{(LL]UX U {€},{") | (X,t") € Crit(C")and L(¢’) = 0 and £ # £’}
=ZU{(IL]UX,?') | (X, ') € Crit(acq(£); C’; rel(£)) and L({’) = 0} .
Finally, for the case a = a, = (&, 0), recalling that | @] = 0 and @(£) = 0 for all locks ¢, we obtain
[ClaL = (2,0 U {(l@] UX,{) | (X,) € Crit(C) and &(£) = 0}) = (&, Crit(C)) . O

= [rel(O][C'(LIL++]),Z U Z’y withZ' = {

LEMMA 6.10. Given a balanced statement C, the computation [C]et, requires at most quasi-exponential
time in ||C||. If C does not contain any procedure calls, the computation requires at most quadratic
time in |C|.

ProOF. Let us define the size of a (finite) set P of critical pairs as |[P| = #P+}(x ¢)ep #X. From the
definition of the analysis given in Figure 2, and the remarks made in the proof of Proposition 6.9,
it is apparent that the computation of [C]a, is linear in the size of Crit(C), its result. Therefore,
we can obtain the time bound from the bounds on Crit(C) given by Proposition 6.3. In the general
case, we have:

|Crit(C)| = #Crit(C) + X (x,¢)ecrit(c) #X

< #Crit(C) X (1 + max {#X | (X,) € Crit(C)})

< ([l #estees©) s (1 4 i) - 1) (by Prop.6.3)

< ||C|[2+#eallees(©)

< flcfiel.

In the procedure-free case, we get:
|Crit(C)| = #Crit(C) + X (x, r)ecrit(c) #X
< #Crit(C) X (1 + max {#X | (X, £) € Crit(C)})
<|C*. o
THEOREM 6.11. The problem of checking whether a parallel program P = Cy || .. .|| C, deadlocks

can be solved in time exponential in ||P|| and n. If the program does not contain any procedure calls,
checking for deadlocks can be solved in time polynomial in ||P|| and exponential in n.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:21

Proor. The decision algorithm consists in computing all critical pairs of the threads C; and
checking, for each possible index set I C {1,...,n} with #] > 2, there are critical pairs (Xj, {;)
for each i € I that collectively satisfy the deadlock condition of Theorem 5.5, namely that X; N
Ujzi Xj =0and {; € Ujy; X foralli € L.

The first stage of the algorithm, i.e. computing Crit(C;), . . ., Crit(C,), can be performed in ex-
ponential time in ||P||, by Lemma 6.10. Noting that for any critical pair (X;, ;) € Crit(C;) we have
#X < ||C;|| by Proposition 6.3, it is clear that any given set of < n critical pairs can be checked in
polynomial time in [|P||. There are roughly 2" possible index sets I, and in the worst case, the sets
Crit(Cy), . . ., Crit(C,) contain exponentially many critical pairs in ||Cy]|, . . ., ||Cp || respectively, by
Proposition 6.3. Therefore the number of critical pair sets to be checked is exponential in ||P|| and
n. This yields an overall time bound exponential in ||Cy]|, .. ., ||Cy]|| and n.

However, if P does not contain any procedure calls, then Lemma 6.10 and Proposition 6.3 instead
tells us that Crit(Cy), . . ., Crit(C,) can be computed in quadratic time and contain at most a linear
number of critical pairs, in ||Cy]|, . . ., ||Cy|| respectively. In that case, the argument above instead
yields a time bound polynomial in ||P|| (but still exponential in n). O

7 IMPLEMENTATION AND IMPACT

We have implemented a compositional program analyser based on the analysis presented in Fig-
ure 2 for the Java language. The flow-sensitive, context-insensitive analysis is developed in OCaml
(around 3kLoC) within the INFER static analysis framework [Distefano et al. 2019], and is specifi-
cally targeted at detecting 2-thread deadlocks in code changes (commits) of Android apps within a
continuous integration environment.” In this section we discuss this implementation and its impact
at Facebook. We note that we do not attempt an experimental evaluation with other tools, since the
deployment constraints (completeness versus soundness, code changes versus batch mode) lead to
very different design trade-offs, making a comparison on previously used benchmarks unhelpful.

7.1 Deployment and impact

INFER is deployed at Facebook through a CI system which launches an analysis job whenever a
commit is submitted for code review. This job concurrently runs multiple analysers on the sub-
mitted code changes and appears to the authors of the commit as yet another reviewer inserting
comments on the code, based on the potential bugs found. The implementation of the deadlock
analysis has been deployed on all Android code commits at Facebook for about two years.

Fixed reports. In a non-safety-critical context such as Facebook, an analysis engineer’s time is
better spent developing analysis features than triaging reports for false positives. In addition, theo-
retical veracity is not always correlated with actionability. For example, a report is sometimes ren-
dered an effective false positive by un-written invariants. For these reasons, fixed reports (reports
that code authors addressed by submitting a new version of a commit) rather than true positives
are tracked. Since it was deployed, the deadlock analyser has processed a total of 667k commits, has
issued a total of 479 deadlock reports, and has seen a total of 260 fixes, yielding a fix rate of 54%.

Analysis performance. The architecture of INFER means per-analyser runtime is not recorded.
For this reason, we report only the total analysis time (including various other analysers), which
provides an upper bound for our analysis. Runtime for all analysers in the last 100 days to submission
has seen a median of 90 seconds and an average of 213 seconds per commit. In the same time period,
INFER analysed a median of 1.9k methods and on average 4.5k methods per commit.

2The analyser (named starvation) is open-source code included in INFER, see https://fbinfer.com/.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://fbinfer.com/

1:22 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

7.2 Issues and differences between implementation and theory

The requirement that the analysis targets code changes leads to a number of design decisions,
chief amongst which is that the analysis does not have the runtime envelope to analyse the whole
program at hand; thus the analysis must work by analysing a modest superset of the modified
code in a commit. Such a constraint can be problematic in looking for concurrency bugs due to
their global nature. We note here techniques for addressing those difficulties as well as differences
between implementation and theory.

Balanced locking. Our analysis relies on balanced locking while Java allows unbalanced lock
operations. Language support for balanced locking (via the synchronized keyword) and good-
programming practices mean that the code-base targeted by our implementation has very few
instances of unbalanced locking, and thus analysis precision does not suffer.

Non-deterministic control. Control in Java is mostly deterministic, so our abstract semantics is
over-approximate. Most of the imprecision we observed in practice came from branching over two
conditions: whether a lock acquisition succeeded (e.g., via Lock. trylock), or whether the current
thread is the UI thread. We specialised the domain, introducing partial path sensitivity on these
conditions, thus removing the vast majority of false alarms due to control abstraction.

Lock names. The set Locks must approximate the set of Java objects that can be used as monitors.
Rather than use an expensive (and typically whole-program, which would run against our main
design constraint) pointer analysis, we use access paths: syntactic expressions built with a program
variable root and iteration of field- or array-dereferencing [Jones and Muchnick 1979]. For example,
this.f.g represents an object accessed through dereferencing the field f of the object this. Such
a domain of abstract addresses has several trade-offs with respect to false positives and negatives,
but that is beyond the scope of this paper.

We also classify objects into globally referenced or objects referenced through method param-
eters. Objects referenced through local variables are ignored. For globally referenced objects, the
rule for method calls in Figure 2 applies unchanged. For parameter-referenced objects we apply a
substitution of argument expressions over parameters on the callee summary before applying the
procedure call rule. For instance, if the summary of method foo(x) involves the lock x. f, then ap-
plying the procedure call rule on foo(h.g) will result in the substitution [h. g/x] and the resulting
critical pair at the callsite will involve the monitor h.g. f.

Concurrency inference. Since we cannot do a whole-program analysis, we cannot always ob-
serve the spawning of execution threads, for these may happen in methods that are unmodified
and unrelated via the call graph. As such we use an abstract domain for thread identity, where
each method can be: of unknown identity; the UI thread; some background thread; or both (it is
executed on the Ul thread as well as background threads). This information comes from (a) thread
annotations used in Android code such as @QUiThread and @WorkerThread; (b) Android method
calls that determine whether the current thread is the UI thread; (c) upward propagation through
the call graph. Each critical pair in a method summary is decorated with the inferred thread iden-
tity, and this information is used to determine whether two critical pairs can occur concurrently
(two Ul-thread pairs cannot be concurrent, though any other combination can).

Detecting deadlocks non-globally. As the analysis targets code changes, it begins by summarising
all methods in the set of changed files in a commit. By the procedure call rule, this leads to analysing
all methods transitively called by the modified files. If we restrict deadlock detection to this set of
summaries, we will miss deadlocks due to lock acquisitions performed by methods outside the call

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:23

class A { class B {
public synchronized void foo(B b) { public synchronized void bar (A a) {
b.foo(); a.bar();
3 3
public synchronized void bar() {3} public synchronized void foo() {3}
3 3

Fig. 3. Textbook deadlock across two Java classes.

graph rooted in modified files. Thus, the analysis selects additional methods to summarise using
the following heuristic.

For every method M summarised and every critical pair (L, root.f;..... fn) in the summary of M,
where root is of class C, all methods of class C are also analysed (in search of a critical pair (L, {’)
where root.fi..... fn € L’). The analyser continues this process until the set of analysed methods
reaches a fixpoint.

This heuristic works well when certain Java idioms are observed, namely when the monitors
used are (i) the this object, such as when using synchronised methods, or, (ii) immutable private
objects stored in object fields. For instance, this heuristic will catch the deadlock between classes
A and B in Figure 3 even in a commit where only A. foo is modified.

This clearly introduces the possibility of a false negative, e.g. when global locks are acquired in
methods that reside in classes not containing the globals. The use of locks in global variables is,
relatively, much rarer than locking non-global objects in the code we usually analyse. The heuristic
also allows for false positives, since it does not check for evidence of thread spawning. To counter
this effect, we use thread identity information as detailed above, and this reduces the incidence of
such false positives in correlation with developer use of such mechanisms.

8 RELATED WORK

Deadlock detectors are naturally distinguished into dynamic, static and hybrid, depending on
whether they operate primarily on program executions, program text, or both. Analysers that tar-
get Java programs typically rely on balanced locking and must accurately model re-entrant locks,
whereas analyses for C code do not expect balanced locking and assume non-reentrant locks. In ad-
dition, deadlock analyses can be categorised according to whether they detect deadlocks involving
two, or more threads, and whether they produce false positives on guarded cycles.

8.1 Static analyses

Deadlock detectors operating on program sources typically require a complete program, though
they can operate without test inputs. Most are focused on soundness (where absence of reports
implies deadlock freedom). All analyses discussed are interprocedural, top-down, context-sensitive
and typically non-compositional.

RacerX [Engler and Ashcraft 2003] is a path-insensitive analysis for C programs which does
not use a pointer analysis, instead using syntactic information and types about variables, ignoring
locks in local variables. Heavy use of caching transfer functions on statements is made, to improve
runtimes due to context sensitivity. The search for cycles is up to a user specified number of threads.
Many heuristics and techniques are employed to reduce false positive reports.

[Williams et al. 2005] reports on a Java analysis which targets libraries, thus partly dealing with
the problem of identifying program entrypoints. As such, the analysis cannot see global aliasing
information and uses a coarse, type-based memory domain. It can detect cycles of more than two

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:24 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

threads, up to a pre-specified bound. The pure analysis reports too many false positives, therefore
several unsound heuristics are used.

JADE [Naik et al. 2009] is a path-insensitive Java analysis which breaks down the problem into
several sub-analyses, including reachability, aliasing/escaping, reentrancy and guarded-ness. It
focuses on two-thread deadlocks, and has explicit mechanisms for rejecting guarded deadlock
reports. It is expressed in Datalog and uses an iterative refinement scheme to increase precision,
where the degree of sensitivity is increased based on the reports found in the last iteration.

[Pun et al. 2014] reports on an analysis for an abstract language, which reduces detection of
deadlocks into race detection. A type system captures lock dependencies, and the inferred types
are used to detect program points where a nested lock acquisition may occur. These points are in-
strumented with code mutating "race" variables. A data race detector then finds possible deadlocks.
Too many false positives are reported for deadlocks among more than two threads, and additional
checks are made to improve precision and to filter guarded cycles. No implementation is reported.

THREADSAFE [Atkey and Sannella 2015] is a commercial, flow- and path-sensitive, per-class
analysis for Java. Little detail is reported on the foundations of the analysis. It uses as entry points
the public methods of each class, or modelled Android lifecycle methods. Only calls to private and
protected methods are followed, for scalability.

[Kroening et al. 2016] reports on an analysis targeting C code with Posix threads. It infers con-
currency on spawn/join points through the program graph, and contexts represent call- and thread-
creation- sites. A must-lock analysis is employed to deal with guarded locks. Function pointer calls
are inlined into case distinctions over the calls they might resolve to.

JADA [Laneve and Garcia 2018] reports on a Java bytecode analysis which uses behavioural
type rules for compositionally extracting an infinite-state abstract model from bytecode, and then
analysing that with a context-sensitive fixpoint computation, generating reports of cyclic depen-
dencies. The strength of the approach seems to be the ability to analyse recursive functions that
spawn an unbounded number of threads.

8.2 Dynamic and hybrid analyses

Analyses that work with program traces usually require the whole program as well as appropriate
test input, or a harness. They tend to be focused on completeness (most reports are true positives).

GoopLock [Havelund 2000] is an analysis for Java programs implemented in Java PathFinder
(JPF) [Havelund and Pressburger 2000] which maintains a lock-tree for each execution thread,
where each node represents the lifetime of a lock acquisition and children nodes represent acqui-
sitions wholly contained within the parent. A warning is reported whenever two threads have
lock-trees which may request the same pair of locks in opposite orders. Since the whole lock-tree
is available, gate locks can be detected and the warning suppressed.

[Bensalem and Havelund 2006] describes an analysis for Java programs, also implemented in JPF,
that constructs a lock-order graph from an execution trace of an instrumented program. Although
the graph edges denote dependencies between only a pair of locks, they are also labelled by the
complete lock-set and the thread acquiring the lock. These labels are used to detect deadlocks
between more than two threads and to filter out gated cycles.

[Agarwal et al. 2006] presents a sound type inference mechanism for types that ensure deadlock
freedom for Java programs. Appropriate instrumentation for the untyped parts of the program is
then used to feed an extension of the GoopLock algorithm to the unbounded thread case, yielding
a hybrid analysis. Further filtering is then used to exclude gated cycles.

SHERLOCK [Eslamimehr and Palsberg 2014] is an analysis for Java programs which uses Goop-
Lock to get a set of deadlock candidates. Using given program inputs, the program is then run,
producing an initial schedule which is then concolically executed and permuted in repeated steps,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Decidable Deadlock Detection 1:25

in search of witnessing schedules. The GoopLock-based algorithm can deal with more than two
threads, and the original version can deal with gated cycles.

9 CONCLUSIONS AND FUTURE WORK

In this paper we establish the decidability of the deadlock problem, and provide an open-source
deadlock analyser, for an abstract programming language with scoped (or “balanced”) locking,
nondeterministic control and nonrecursive procedure calls, but in which all other features — in
particular variable assignment — are abstracted away. Such an abstraction is of course necessary
to obtain decidability, for fundamental computability reasons. However, this overapproximation
of real concurrent programs turns out to be sufficiently faithful to detect deadlock bugs in practice,
and sufficiently scalable to run on real-world industrial codebases. Our deadlock analyser has been
deployed at Facebook as part of the INFER framework for the last two years and has resulted in
hundred of potential bugs being flagged, with an actual fix rate of over 50% (and we note that this
does not imply a false positive rate of nearly 50%).

One interesting connection that could benefit from further elucidation is that of our work to
automata-theoretic work on concurrent verification. We have already observed (cf. Remark 3.16)
that our parallel programs can be seen as collections of (particular kinds of) nondeterministic fi-
nite automata that synchronise via their shared locks. Other work on automata-based concurrent
systems, e.g. [Bouajjani et al. 2003; Esparza et al. 2013; Hague 2011; Heufner et al. 2010; Zielonka
1987] typically uses a slightly different synchronisation mechanism based on communication “vis-
ible”, or external actions must be fired simultaneously by two automata. Nevertheless, our model
can be polynomially encoded as a communicating pushdown system, as considered e.g. in [Boua-
jjani et al. 2003], which presents a high-level approach to analysing general safety properties of
such systems. Thus our deadlock problem can be seen as an instance of the general class of prob-
lems considered there, and we cannot rule out the possibility that the decidability of our deadlock
problem follows from some more general automata-theoretic result in the literature. However,
while typical dataflow properties of arbitrary communicating pushdown systems are undecidable
in general, the deadlock property we consider for our particular class of programs is decidable and
thus represents a special case, which relies crucially on the fact that locking in our language is
balanced. Our proof also has the added advantage of being direct. That is, we treat (abstract) pro-
grams rather than automata, our critical pair abstraction is specialised to the deadlock problem
and our computation of this abstraction forms the basis of our automated deadlock detection tool.

It is natural to wonder whether and how our abstract programming language might be extended
while preserving the decidability of deadlock existence. Unfortunately, it seems to us that almost
any nontrivial extension presents significant obstacles. For example, allowing procedure calls to
be recursive does not seem to drastically alter our language, since we already allow iteration, but
it causes technical problems for our approach since we cannot then reason by induction over
the structure of statements. Allowing control flow to be deterministic, e.g. by allowing guards
to query the lock state, is similarly problematic since the critical pairs of a statement are then
dependent on the lock state in which it is executed, meaning that at the very least we would
require a finer abstraction in order to avoid false positives. Finally, modelling forking and joining by
allowing parallel compositions to appear nested within statements makes the problem much more
complicated since, conceptually, it would require that we construct abstractions of all subthreads
as well as determining which of them can run in parallel with each other. We nevertheless consider
these (and other) extensions to be interesting potential directions for future work.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:26 James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich

REFERENCES

Rahul Agarwal, Ligiang Wang, and Scott D. Stoller. 2006. Detecting Potential Deadlocks with Static Analysis and Run-
Time Monitoring. In Hardware and Software, Verification and Testing, Shmuel Ur, Eyal Bin, and Yaron Wolfsthal (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 191-207.

Robert Atkey and Donald Sannella. 2015. ThreadSafe: Static Analysis for Java Concurrency. ECEASST 72 (2015). https:
//doi.org/10.14279/tuj.eceasst.72.1025

Saddek Bensalem and Klaus Havelund. 2006. Dynamic Deadlock Analysis of Multi-threaded Programs. In Hardware and
Software, Verification and Testing, Shmuel Ur, Eyal Bin, and Yaron Wolfsthal (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 208-223.

Ahmed Bouajjani, Javier Esparza, and Tayssir Touili. 2003. A Generic Approach to the Static Analysis of Concurrent
Programs with Procedures. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL °03). Association for Computing Machinery, New York, NY, USA, 62-73. https://doi.org/10.1145/
604131.604137

N. Chomsky and M.P. Schiitzenberger. 1963. The Algebraic Theory of Context-Free Languages. In Computer Programming
and Formal Systems, P. Braffort and D. Hirschberg (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 35.
Elsevier, 118 — 161. https://doi.org/10.1016/S0049-237X(08)72023-8

EW. Dijkstra. 1971. Hierarchical ordering of sequential processes. Acta Informatica 1, 2 (1971), 115-138.

Dino Distefano, Manuel Fahndrich, Francesco Logozzo, and Peter W. O’Hearn. 2019. Scaling Static Analyses at Facebook.
Commun. ACM 62, 8 (July 2019), 62-70. https://doi.org/10.1145/3338112

Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, Static Detection of Race Conditions and Deadlocks. In Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles (SOSP °03). Association for Computing Machinery,
New York, NY, USA, 237-252. https://doi.org/10.1145/945445.945468

Mahdi Eslamimehr and Jens Palsberg. 2014. Sherlock: Scalable Deadlock Detection for Concurrent Programs. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE 2014). Association for
Computing Machinery, New York, NY, USA, 353-365. https://doi.org/10.1145/2635868.2635918

Javier Esparza, Pierre Ganty, and Rupak Majumdar. 2013. Parameterized Verification of Asynchronous Shared-Memory
Systems. In Computer Aided Verification, Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 124-140.

Matthew Hague. 2011. Parameterised Pushdown Systems with Non-Atomic Writes. Leibniz International Proceedings in
Informatics, LIPIcs 13 (09 2011). https://doi.org/10.4230/LIPIcs.FSTTCS.2011.457

Klaus Havelund. 2000. Using Runtime Analysis to Guide Model Checking of Java Programs. In SPIN Model Checking
and Software Verification, Klaus Havelund, John Penix, and Willem Visser (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 245-264.

Klaus Havelund and Thomas Pressburger. 2000. Model checking JAVA programs using JAVA PathFinder. International
Journal on Software Tools for Technology Transfer 2, 4 (2000), 366-381. https://doi.org/10.1007/s100090050043

Alexander Heufiner, Jérome Leroux, Anca Muscholl, and Grégoire Sutre. 2010. Reachability Analysis of Communicating
Pushdown Systems. In Foundations of Software Science and Computational Structures, Luke Ong (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 267-281.

John E. Hopcroft and Jeffrey D. Ullman. 1969. Formal Languages and Their Relation to Automata. Addison-Wesley Longman
Publishing Co., Inc., USA.

Neil D. Jones and Steven S. Muchnick. 1979. Flow Analysis and Optimization of LISP-like Structures. In Proceedings of the
6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL °79). Association for Computing
Machinery, New York, NY, USA, 244-256. https://doi.org/10.1145/567752.567776

D. Kroening, D. Poetzl, P. Schrammel, and B. Wachter. 2016. Sound static deadlock analysis for C/Pthreads. In 2016 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE). 379-390.

Cosimo Laneve and Abel Garcia. 2018. Deadlock Detection of Java Bytecode. In Logic-Based Program Synthesis and Trans-
formation, Fabio Fioravanti and John P. Gallagher (Eds.). Springer International Publishing, Cham, 37-53.

Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. 2009. Effective Static Deadlock Detection. In Proceedings
of the 31st International Conference on Software Engineering (ICSE *09). IEEE Computer Society, USA, 386-396. https:
//doi.org/10.1109/ICSE.2009.5070538

KaIPun, Martin Steffen, and Volker Stolz. 2014. Deadlock checking by data race detection. Journal of Logical and Algebraic
Methods in Programming 83, 5 (2014), 400 — 426. https://doi.org/10.1016/].jlamp.2014.07.003 The 24th Nordic Workshop
on Programming Theory (NWPT 2012).

Amy Williams, William Thies, and Michael D. Ernst. 2005. Static Deadlock Detection for Java Libraries. In ECOOP 2005 -
Object-Oriented Programming, Andrew P. Black (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 602-629.

Wieslaw Zielonka. 1987. Notes on finite asynchronous automata. RAIRO - Theoretical Informatics and Applications 21, 2
(1987), 99-135. https://doi.org/10.1051/ita/1987210200991

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.14279/tuj.eceasst.72.1025
https://doi.org/10.14279/tuj.eceasst.72.1025
https://doi.org/10.1145/604131.604137
https://doi.org/10.1145/604131.604137
https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/10.1145/3338112
https://doi.org/10.1145/945445.945468
https://doi.org/10.1145/2635868.2635918
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.457
https://doi.org/10.1007/s100090050043
https://doi.org/10.1145/567752.567776
https://doi.org/10.1109/ICSE.2009.5070538
https://doi.org/10.1109/ICSE.2009.5070538
https://doi.org/10.1016/j.jlamp.2014.07.003
https://doi.org/10.1051/ita/1987210200991

	Abstract
	1 Introduction
	2 Program syntax and semantics
	3 Executions and traces
	3.1 From executions to traces
	3.2 Dyck words and balanced executions

	4 Characterisation of deadlock existence
	5 Generalising from 2 to n threads
	6 Computing critical pairs
	6.1 Inductive computation
	6.2 Abstract interpretation-style computation

	7 Implementation and Impact
	7.1 Deployment and impact
	7.2 Issues and differences between implementation and theory

	8 Related work
	8.1 Static analyses
	8.2 Dynamic and hybrid analyses

	9 Conclusions and future work
	References

