
Submitted to MFPS 2025

Cyclic Proofs in Hoare Logic and its Reverse

James Brotherston a Quang Loc Lea Gauri Desaia Yukihiro Odab

a Department of Computer Science, University College London, London, United Kingdom
b Tohoku University, Sendai, Japan

Abstract

We examine the relationships between axiomatic and cyclic proof systems for the partial and total versions of Hoare logic and
those of its dual, known as reverse Hoare logic (or sometimes incorrectness logic).
In the axiomatic proof systems for these logics, the proof rules for looping constructs involve an explicit loop invariant, which
in the case of the total versions additionally require a well-founded termination measure. In the cyclic systems, these are
replaced by rules that simply unroll the loops, together with a principle allowing the formation of cycles in the proof, subject
to a global soundness condition that ensures the well-foundedness of the circular reasoning. Interestingly, the cyclic soundness
conditions for partial Hoare logic and its reverse are similar and essentially coinductive in character, while those for the total
versions are also similar and essentially inductive. We show that these cyclic systems are sound, by direct argument, and
relatively complete, by translation from axiomatic to cyclic proofs.

Keywords: Cyclic proofs, Hoare logic, reverse Hoare logic, incorrectness logic

1 Introduction

Hoare logic [18] is long established as a formal framework in which to specify and reason about correctness
properties of computer programs. Typically, these properties, written as triples {P}C {Q}, are given a
partial correctness interpretation, meaning that certain unwanted behaviours of the program C cannot
happen: namely those in which C runs on a state satisfying the precondition P but results in a state not
satisfying the postcondition Q. Sometimes one works instead with a total correctness interpretation of
judgements, in which the termination of C from states satisfying P is additionally guaranteed.

More recently gaining in popularity is the dual notion of reverse Hoare logic proposed in [14] for
specifying and proving the presence of specified behaviours in programs, as opposed to their absence. In
the original version of reverse Hoare logic one gives a reachability or “incorrectness” interpretation to
triples [P]C [Q], meaning that certain behaviours of C do happen: namely, there are computations of C
reaching all states satisfying Q from states satisfying P . O’Hearn went on to propose an extension of this
logic dubbed incorrectness logic which supports the specification of various types of program errors in the
postcondition Q and so can be used as the basis of automatic bug detection via proof search [22,19]. A
weaker partial reachability interpretation of reverse Hoare triples can also be given, in which validity also
admits the possibility of program divergence from states satisfying P .

Turning to proof theory, Hoare logic was originally formulated as an axiomatic proof system with rules
for each program construct and a small number of generic rules; proofs themselves are then as usual finite
derivation trees of proof judgements. Of particular note is the partial Hoare logic rule for while loops,
which requires the prover to invent a suitable loop invariant that is preserved over any execution of the
loop body (and entails the desired postcondition). Total Hoare logic possesses a similar rule, except that

MFPS 2025 Proceedings will appear in Electronic Notes in Theoretical Informatics and Computer Science

Brotherston et. al.

we must also provide a well-founded termination measure t that decreases on each iteration of the loop:

{P ∧B}C {P}
(Inv)

{P} while B do C {P ∧ ¬B}

{P ∧B ∧ t = n}C {P ∧ t < n}
(Inv-Total)

{P} while B do C {P ∧ ¬B}

Reverse Hoare logic possesses analogous “backwards” versions of these proof rules in its partial and total
variants, respectively (cf. Section 3). Devising suitable loop invariants and termination measures is
challenging and a serious obstacle to automated proof search, and has been the subject of much work in
the literature on program verification [20].

An alternative way of approaching these challenges is to instead adopt systems based on cyclic proof,
which were first introduced to reason about process calculi [24,21] and later used to develop proof systems
for various logics with (co)inductively defined constructs (see e.g. [12,4,6,8,1,13,15,16]). Cyclic proofs
are essentially non-wellfounded, regular derivation trees known as “pre-proofs” — typically presented as
finite trees with “backlinks” from open leaves to interior nodes — subject to a global soundness condition
typically ensuring that each infinite path in the pre-proof implicitly embodies a valid argument by infinite
descent [5,10]. It is perhaps less widely known than it might be that both partial and total Hoare logic
can be formulated as cyclic proof systems sharing exactly the same proof rules but employing two different
global soundness conditions (an observation going back at least to [8]).

In this paper, we present axiomatic and cyclic proof systems for the total and partial versions of
Hoare logic and reverse Hoare logic, examine their commonalities and symmetries, and we show all of our
systems sound and relatively complete 1 . For partial correctness, we stipulate that any infinite path in
the pre-proof must contain infinitely many symbolic command executions, which (with local soundness
of the proof rules) ensures that any putative counterexample to {P}C {Q}, i.e. a finite execution of C
from P not resulting in Q, in fact cannot be finite and therefore is not a counterexample after all. For
total correctness, we instead require that any infinite path must contain an infinite descending chain of
well-founded values in the preconditions along the path. Thus, any putative counterexample to {P}C {Q},
i.e. an execution of C from P that either is infinite, or finite but does not result in Q, in fact must be
infinite and yield an infinite descending chain of well-founded values, again a contradiction. For reverse
Hoare logic, we obtain similar global soundness conditions: the condition for partial reverse Hoare logic is
similar to the condition for standard partial Hoare logic, and similarly for the total versions. Soundness of
the cyclic systems follows by direct arguments of the usual type for such systems (cf. [5]) and their relative
completeness follows by explicit transformations from standard proofs to cyclic proofs. The developments
in our paper are shown diagrammatically in Figure 1.

The remainder of this paper is structured as follows. Section 2 describes our programming language
and its semantics. Section 3 presents the partial and total versions of Hoare logic and their correspondents
in reverse Hoare logic, both semantically and as standard axiomatic proof systems. Section 4 and Section 5
present our cyclic proof systems for these logics, along with their corresponding soundness and relative
completeness arguments. Finally, Section 6 discusses future work and concludes.

2 Programming language

In this section, we give the syntax and semantics of a simple while programming language (without
procedures or function calls).

We assume an infinite set Var of variables ranged over by x, y, z, Expressions are first-order terms
built from variables, numerals and possibly function symbols (+, ×, etc). The syntax of Boolean conditions
B and programs C is then given by the following grammar:

B := E = E | E ≤ E | ¬B | B ∧B

C := skip | x := E | C;C | if B then C else C | while B do C

1 Note to referees: In fact we have not yet fully established the relative completeness of our axiomatic system for
partial reverse Hoare logic with respect to validity, but it seems highly plausible.

2

Brotherston et. al.

cyclic provability
in TRHL

provability
in TRHL

validity
in TRHL

cyclic provability
in PRHL

provability
in PRHL

validity
in PRHL

cyclic provability
in PHL

provability
in PHL

validity
in PHL

cyclic provability
in THL

provability
in THL

validity
in THL

Thm. 4.9 Thm. 4.9

Thm. 5.7Thm. 5.7

Prop. 3.3 /
Thm. 3.4

Prop. 3.3 /
Thm. 3.4

Prop. 3.7 /
Thm. 3.8

Prop. 3.7 /
Thm. 3.8

Defn. 4.3

Remark 3.2

Defn. 3.1

Defn. 5.2

Remark 3.6

Defn. 3.1

Thm. 4.7 Thm. 4.7

Thm. 5.5 Thm. 5.5

dual
(Defn. 3.1)

dual
(Defn. 3.1)

Fig. 1. Summary of our developments. PHL (resp. THL) is partial (resp. total) Hoare logic, and PRHL (resp. TRHL) is partial
(resp. total) reverse Hoare logic.

3

Brotherston et. al.

⟨skip;C, σ⟩ → ⟨C, σ⟩ ⟨x := E, σ⟩ → ⟨skip, σ[x 7→ [[E]]σ]⟩
⟨C1, σ⟩ → ⟨C ′

1, σ
′⟩

⟨C1;C2, σ⟩ → ⟨C ′
1;C2, σ

′⟩

σ |= B

⟨if B then C1 else C2, σ⟩ → ⟨C1, σ⟩

σ |= ¬B

⟨if B then C1 else C2, σ⟩ → ⟨C2, σ⟩

σ |= B

⟨while B do C, σ⟩ → ⟨C; while B do C, σ⟩

σ |= ¬B

⟨while B do C, σ⟩ → ⟨skip, σ⟩

Fig. 2. Operational semantics of while programs.

We write E[E′/x] and B[E′/x] to denote the substitution of expression E′ for variable x in expression
E and Boolean condition B, respectively, and write fv(C) to denote the set of program variables in
C. We also employ standard shorthand notations such as E ̸= E for ¬(E1 = E2) and E1 < E2 for
E1 ≤ E2 ∧ ¬E1 = E2.

Semantically, expressions denote (program) values in a set Val, which for technical convenience we
take in this paper to be the natural numbers. A (program) state is a function σ : Var → Val. The
interpretations [[E]]σ ∈ Val of any expression E and [[B]]σ ∈ {⊤,⊥} of any Boolean condition B in state σ
are then standard: [[x]]σ = σ(x), [[E1 + E2]]σ = [[E1]]σ + [[E2]]σ, [[E1 ≤ E2]]σ ⇔ [[E1]]σ ≤ [[E2]]σ, and so on.
Finally, we write σ[x 7→ E] for the state defined exactly as σ except that σ[x 7→ E](x) = [[E]]σ.

We define a standard small-step operational semantics of our programs. A program configuration is
a pair ⟨C, σ⟩, where C is a program and σ a state. The small-step semantics is then given by a binary
relation → on configurations, as shown in Figure 2. An execution (of C) is a possibly infinite sequence
of configurations (γi)i≥0 with γ0 = ⟨C, ⟩ such that γi → γi+1 for all i ≥ 0. We write →n for the n-step
variant of → to represent (γi)0≤i≤n as γ0 →n γn, and →∗ for the reflexive-transitive closure of → to
represent finite executions of arbitrary length. We write ⟨C, σ⟩↑ if ⟨C, σ⟩ diverges, i.e. there is an infinite
execution beginning ⟨C, σ⟩ → . . ., and ⟨C, σ⟩↓ if ⟨C, σ⟩ converges, meaning that there is no such execution.
For any program C we may harmlessly identify C with C; skip (but only finitely often).

3 Hoare logic and reverse Hoare logic

In this section, we define Hoare logic and reverse Hoare logic, in both their partial and total forms, first
in terms of validity and then as axiomatic proof systems.

Assertions, ranged over by P,Q,R, . . . are standard formulas of first-order logic, whose terms at least
include our expressions E and whose atomic formulas at least include our Boolean conditions B as given
in the previous section. We write σ |= P to denote satisfaction of assertion P by state σ, defined as usual
in first-order logic, and write [[P]] as a shorthand for {σ | σ |= P}. Then a Hoare triple is written as
{P}C {Q} and a reverse Hoare triple as [P]C [Q], where C is a program and P and Q are assertions.

Definition 3.1 [Validity] First, for a program C and assertion P , define post(C)(P) , the post-states of
C under P , by

post(C)(P) = {σ′ | ∃σ. σ |= P and ⟨C, σ⟩ →∗ ⟨skip, σ′⟩} .

We write post(C)(P)↓ to mean that ⟨C, σ⟩↓ for all σ ∈ [[P]].
Then we have notions of validity for Hoare triples {P}C {Q} in partial (PHL) and total (THL) Hoare

logic, and for reverse Hoare triples [P]C [Q] in total (TRHL) and partial (PRHL) reverse Hoare logic:

• {P}C {Q} is valid in PHL iff post(C)(P) ⊆ [[Q]];

• {P}C {Q} is valid in THL iff post(C)(P) ⊆ [[Q]] and post(C)(P)↓;
• [P]C [Q] is valid in TRHL iff post(C)(P) ⊇ [[Q]] ;

• [P]C [Q] is valid in PRHL iff post(C)(P)↓ implies post(C)(P) ⊇ [[Q]].

We note that, by definition, validity in THL immediately implies validity in PHL, and validity in TRHL
implies validity in PRHL. By unpacking the notations in Defn. 3.1, validity for each of our logics can also
be restated in a perhaps more convenient operational form, as follows:

4

Brotherston et. al.

PHL: {P}C {Q} is valid iff ∀σ, σ′. if σ |= P and ⟨C, σ⟩ →∗ ⟨skip, σ′⟩ then σ′ |= Q;

THL: {P}C {Q} is valid iff ∀σ, σ′ if σ |= P then ⟨C, σ⟩↓, and if ⟨C, σ⟩ →∗ ⟨skip, σ′⟩ then σ′ |= Q;

TRHL: [P]C [Q] is valid iff ∀σ′. if σ′ |= Q then ∃σ. σ |= P and ⟨C, σ⟩ →∗ ⟨skip, σ′⟩;
PRHL: [P]C [Q] is valid iff ∀σ′. if σ′ |= Q then ∃σ. σ |= P and either ⟨C, σ⟩ →∗ ⟨skip, σ′⟩ or ⟨C, σ⟩↑.

3.1 Provability in partial and total Hoare logic

Provability in Hoare logic is defined as derivability using the rules in Fig. 3. The partial version PHL of
Hoare logic uses the rule (Inv), which requires the prover to find a loop invariant that is preserved by the
loop body at each iteration, while the total version THL omits this rule in favour of the rule (Inv-Total)
which additionally requires the prover to find a suitable well-founded termination measure t that decreases
at each iteration 2 . The remaining rules are standard [18,2], except that our assignment axiom is written
in the forward style from Floyd [17].

(Skip)
{P} skip {P}

(:=)
{P}x := E {P [x′/x] ∧ x = E[x′/x]}

{P}C1 {R} {R}C2 {Q}
(Seq)

{P}C1;C2 {Q}

P ′ |= P {P}C {Q} Q |= Q′

(|=)
{P ′}C {Q′}

{P ∧B}C1 {Q} {P ∧ ¬B}C2 {Q}
(If)

{P} if B then C1 else C2 {Q}

{P ∧B}C {P}
(Inv)

{P} while B do C {P ∧ ¬B}

{P ∧B ∧ t = n}C {P ∧ t < n}
(Inv-Total)

{P} while B do C {P ∧ ¬B}

Fig. 3. Proof rules for Hoare triples. Partial Hoare logic PHL uses the rule (Inv) and total Hoare logic THL uses (Inv-Total),
with all other rules shared. Variable x′ is fresh in rule (:=) and variable t is fresh in (Inv-Total).

Remark 3.2 Given the premise of (Inv-Total), namely {P ∧B ∧ t = n}C {P ∧ t < n}, it is easy to derive
the premise of (Inv), namely {P ∧B}C {P}: on the one hand we have P ∧ t < n |= P , and on the other
we have P ∧B |= P ∧B∧ t = n, because n is fresh. Thus, provability in total Hoare logic THL immediately
implies provability in its partial version PHL as well.

The following results are well known in the literature.

Proposition 3.3 (Soundness) If {P}C {Q} is provable in PHL (resp. THL) then it is valid in PHL (resp.
THL).

Theorem 3.4 (Relative completeness [11]) Assuming an oracle for logical entailment between asser-
tions, if {P}C {Q} is valid in PHL (resp. THL) then it is provable in PHL (resp. THL).

Example 3.5 We use the program while x > 0 do x := x− 2; as a running example. This program has
invariant x ≥ 0 ∧ x%2 = 0 where the modulo operator % is used to specify even numbers. Here, we show
a THL proof of the total correctness triple {x ≥ 0 ∧ x%2 = 0} while x > 0 do x := x− 2; {x = 0}.

(Skip)
{x ≥ 0 ∧ x%2 = 0 ∧ x < 2n} skip {x ≥ 0 ∧ x%2 = 0 ∧ x < 2n}

(|=)
{x′ ≥ 0 ∧ x′%2 = 0 ∧ x′ > 0 ∧ x′ = 2n ∧ x = x′ − 2} skip {x ≥ 0 ∧ x%2 = 0 ∧ x < 2n}

(:=)
{x ≥ 0 ∧ x%2 = 0 ∧ x > 0 ∧ x = 2n}x := x− 2; {x ≥ 0 ∧ x%2 = 0 ∧ x < 2n}

(Inv-Total)
{x ≥ 0 ∧ x%2 = 0} while x > 0 do x := x− 2; {x = 0}

2 Note that the termination measure may not become negative because all our values are natural numbers; but, if
desired, one can add for safety the requirement that P |= t ≥ 0.

5

Brotherston et. al.

In this proof, we use the termination measure t = x/2.

3.2 Provability in partial and total reverse Hoare logic

We give our proof rules for reverse Hoare triples [P]C [Q] in Figure 4. Here, PRHL uses rules (RInv-1) and
(RInv-2), while TRHL omits these in favour of (RInv-Total). Note that the conditional rules (RIf1) and
(RIf2), like those in [19], have stronger preconditions than the ones in [14,22].

(RSkip)
[P] skip [P]

(R:=)
[P]x := E [P [x′/x] ∧ x = E[x′/x]]

[P]C1 [R] [R]C2 [Q]
(RSeq)

[P]C1;C2 [Q]

P |= P ′ [P]C [Q] Q′ |= Q
(R|=)

[P ′]C [Q′]

[P ∧B]C1 [Q]
(RIf1)

[P ∧B] if B then C1 else C2 [Q]

[P ∧ ¬B]C2 [Q]
(RIf2)

[P ∧ ¬B] if B then C1 else C2 [Q]

(RInv-1)
[P ∧ ¬B] while B do C [P ∧ ¬B]

[P ∧B]C [P]
(RInv-2)

[P ∧B] while B do C [P ∧ ¬B]

[P ∧B ∧ t < n]C [P ∧ t = n]
(RInv-Total)

[P] while B do C [P ∧ ¬B]

Fig. 4. Proof rules for reverse Hoare triples. Partial reverse Hoare logic PRHL uses the rules (RInv-2) and (RInv-1), while
total reverse Hoare logic TRHL uses (RInv-Total), with all other rules shared. Variable x′ is fresh in rule (R:=) and variable
n is fresh in (RInv-Total).

Remark 3.6 Similarly to the observation in Remark 3.2, provability in TRHL immediately implies prov-
ability in PRHL as well.

The proofs of soundness and relative completeness in the total version of reverse Hoare logic appear in
[14] and also can be seen as the special ok case of incorrectness logic in [22].

Proposition 3.7 (Soundness) If [P]C [Q] is provable in PRHL (resp. TRHL) then it is valid in PRHL
(resp. TRHL).

Proof. By rule induction on the inference rules in Fig. 4. Generally speaking, for the shared rules, their
soundness of TRHL is a special case of the more general soundness for PRHL. Here we just show the more
interesting cases.

Case (RSeq): We first consider the case of PRHL. Then, supposing σ′ |= Q, we require to find σ with
σ |= P such that either ⟨C1;C2, σ⟩ →∗ ⟨skip, σ′⟩, or ⟨C1;C2, σ⟩ ↑. By validity of the right premise, we
obtain σ′′ with σ′′ |= R and for which there are two possibilities:

• We have ⟨C2, σ
′′⟩ →∗ ⟨skip, σ′⟩. By validity of the left premise there are two further subcases. In the

first we have σ with σ |= P and ⟨C1, σ⟩ →∗ ⟨skip, σ′′⟩. Then by the operational semantics we obtain
⟨C1;C2, σ⟩ →∗ ⟨skip;C2, σ

′′⟩ →∗ ⟨skip, σ′⟩ and are done. In the second we have σ with σ |= P and
⟨C1, σ⟩↑, in which case ⟨C1;C2, σ⟩↑ as well.

• We have ⟨C2, σ
′′⟩ ↑. Then by the left premise we have σ with σ |= P and either ⟨C1, σ⟩ →∗ ⟨skip, σ′′⟩

or ⟨C1, σ⟩↑. Either way, we have ⟨C1;C2, σ⟩↑ and so are done.

For TRHL, the argument above is simplified: we simply ignore all the subcases involving divergence.

Case (RIf1),(RIf2): These rules are symmetric; we just consider the first. In PRHL, suppose σ′ |= Q.
By validity of the rule premise, we obtain σ with σ |= P ∧ B obeying one of two possibilities. First, if

6

Brotherston et. al.

⟨C1, σ⟩ →∗ ⟨skip, σ′⟩ then ⟨if B then C1 else C2, σ⟩ →∗ ⟨skip, σ′⟩ as well, because σ |= B. Otherwise,
if ⟨C1, σ⟩↑ then ⟨if B then C1 else C2, σ⟩↑ too. (For TRHL, we simply ignore the second case.)

Case (RInv-1): Supposing σ′ |= P ∧ ¬B, we immediately have ⟨while B do C, σ′⟩ →∗ ⟨skip, σ′⟩.

Case (RInv-2): This rule is sound for PRHL only. Suppose σ′ |= P ∧ ¬B. Since σ′ |= P , we obtain by
validity of the rule premise σ |= P ∧ B and two possible subcases. First, if ⟨C, σ⟩↑ then, because σ |= B,
we get ⟨while B do C, σ⟩ → ⟨C; while B do C, σ⟩↑ and are done. Otherwise, ⟨C, σ⟩ →∗ ⟨skip, σ′⟩. Using
the fact that σ′ ̸|= B, the operational semantics then gives us

⟨while B do C, σ⟩ → ⟨C; while B do C, σ⟩ →∗ ⟨while B do C, σ′⟩ →∗ ⟨skip, σ′⟩ .

Therefore, [P ∧B] while B do C [P ∧ ¬B] is valid as required.

Case (RInv-Total): This rule is used in TRHL only. We first prove the following general statement: for
all states σk, if [[t]]σk = k and σk |= P then ∃σ. σ |= P and ⟨while B do C, σ⟩ →∗ ⟨while B do C, σk⟩.
We proceed by complete induction on k, inductively assuming the statement for all k′ < k and showing
it then holds for k. Since σk |= P ∧ t = k by assumption, we have by validity of the rule premise σk′
with σk′ |= P ∧ B ∧ t < k and ⟨C, σk′⟩ →∗ σk. Writing [[t]]σk′ = k′, we then have k′ < k, and thus by
the induction hypothesis we have σ with σ |= P and ⟨while B do C, σ⟩ →∗ ⟨while B do C, σk′⟩. Thus,
because σk′ |= B, we get ⟨while B do C, σ⟩ →∗ ⟨while B do C, σk⟩ by the operational semantics. This
completes the induction.

Now, for the main proof, assume σ′ |= P ∧ ¬B, and write [[t]]σ′ = k say. By the inductive statement
above, we have σ with σ |= P and ⟨while B do C, σ⟩ →∗ ⟨while B do C, σ′⟩. Because σ′ ̸|= B, we can
then extend this execution to ⟨while B do C, σ⟩ →∗ ⟨skip, σ′⟩ and so are done. 2

Theorem 3.8 (Relative completeness) Assuming an oracle for logical entailment between assertions,
if [P]C [Q] is valid in TRHL then it is provable.

The equivalent result for PRHL is presently only conjectured. 3

Example 3.9 We show a reverse Hoare proof for the total incorrectness triple

[x ≥ 0 ∧ (x0 − x)%2 = 0] while x > 0 do x := x− 2; [x = 0 ∧ (x0 − x)%2 = 0]

where x0 is a logical variable expressing the initial value of x before the loop. This loop has invariant
P = x ≥ 0 ∧ x%2 = 0 ∧ (x0 − x)%2 = 0 and termination measure t = (x0 − x)/2.

(RSkip)
[x ≥ 0 ∧ (x0 − x)%2 = 0 ∧ x0 − x = 2n] skip [P ∧ x0 − x = 2n]

(R|=)
[x′ ≥ 0 ∧ (x0 − x′)%2 = 0 ∧ x′ > 0 ∧ x0 − x′ = 2n− 2 ∧ x = x′ − 2] skip [P ∧ x0 − x = 2n]

(R:=)
[P ∧ x > 0 ∧ x0 − x = 2n− 2]x := x− 2; [P ∧ x0 − x = 2n]

(R|=)
[P ∧ x > 0 ∧ x0 − x < 2n]x := x− 2; [P ∧ x0 − x = 2n]

(RInv-Total)
[P] while x > 0 do x := x− 2; [P ∧ ¬x > 0]

(R|=)
[x ≥ 0 ∧ (x0 − x)%2 = 0] while x > 0 do x := x− 2; [x = 0 ∧ (x0 − x)%2 = 0]

4 Cyclic proofs in Hoare logic

This section presents a system of cyclic proofs for PHL and THL, i.e. partial and total Hoare logic, together
with their soundness and their subsumption of the corresponding standard proof systems from the previous
section.

First, we give the rules of our cyclic proof system for Hoare triples in Figure 5, these being shared for
both PHL and THL. Compared to their standard equivalents, there are three main points of difference. First,

3 Note to referees: However, we think it ought to be a natural adaptation of the total case, and hope to clear it up
soon!

7

Brotherston et. al.

(CSkip)
{P} skip {P}

{P}C {Q}
(CSkip2)

{P} skip;C {Q}

{P [x′/x] ∧ x = E[x′/x]}C {Q}
(C:=)

{P}x := E;C {Q}

P ′ |= P {P}C {Q} Q |= Q′

(C|=)
{P ′}C {Q′}

{P ∧B}C1;C
′ {Q} {P ∧ ¬B}C2;C

′ {Q}
(CIf)

{P} if B then C1 else C2;C
′ {Q}

{P}C {Q}
(Sub)

{P [t/z]}C {Q[t/z]}

{P ∧ ¬B}C ′ {Q} {P ∧B}C; while B do C;C ′ {Q}
(CInv)

{P} while B do C;C ′ {Q}

Fig. 5. Cyclic proof rules for Hoare triples. x′ is fresh in (C:=), and z and t are not in fv(C) in (Sub).

we formulate the rules in “continuation style”, where the rule(s) for a program construct C is presented
as a rule whose conclusion has the general form {P}C;C ′ {Q}. Second, the partial and total rules for
while loops are replaced with a single rule (CInv) that simply unfolds the loop once (on the left). Third,
we include a rule (Sub) for explicit substitution of variables by expressions; this is sometimes included
anyway in Hoare logic (see e.g. [2]) but is well known to be necessary or at least useful in general for
forming backlinks between judgements that are required to be syntactically identical [5,9].

Next, we define cyclic pre-proofs — derivation trees with backlinks between judgement occurrences —
and the global soundness conditions qualifying such structures as either partial or total cyclic proofs.

Definition 4.1 [Pre-proof] A (cyclic) pre-proof is a pair P = (D,L), where D is a finite derivation tree
constructed according to the proof rules and L is a back-link function assigning to every leaf of D to which
no proof rule has been applied (called a bud) another node of D (called its companion) labelled by an
identical proof judgement. A leaf of D is called open if it is not applied with any proof rule.

We observe that a pre-proof P can be viewed as a representation of a regular, infinite derivation tree [5].
The global soundness condition qualifying pre-proofs P as genuine cyclic proofs is very simple in the

case of partial Hoare logic: We simply require that a symbolic execution rule (i.e. not (C|=) or (Sub))
is applied infinitely often along every infinite path in P. Essentially, this guarantees that any putative
counterexample to soundness corresponds to an infinite execution of the program and therefore cannot be
a counterexample after all. For total Hoare logic, the situation is a little more complex (cf. [7]); we require
that every infinite path in P contains in the preconditions along the path a trace of well-founded measures
that decrease, or “progress”, infinitely often. This ensures that any putative counterexample cannot after
all be terminating and therefore is not a counterexample either. To formulate traces, since we are using
expressions interpreted as natural numbers, we adopt Simpson’s definition from cyclic arithmetic [23].

Definition 4.2 [Trace [23]] Let P = (D,L) be a pre-proof and ({Pk}Ck {Qk})k≥0 be a path in P. For
terms n and n′, we say that n′ is a precursor of n at k if one of the following holds:

• {Pk}Ck {Qk} is the conclusion of an application of (C:=) or (Sub), and n′ = θ(n) where θ is the
substitution used in the rule application; or

• {Pk}Ck {Qk} is the conclusion of another rule, and n′ = n.

A trace following ({Pk}Ck {Qk})k≥0 is a sequence of terms (nk)k≥0 such that for every k ≥ 0, the term
nk occurs in Pk and also one of the following conditions holds:

• either nk+1 is a precursor of nk at k; or

• there exists n such that (nk+1 < n) ∈ Pk and n is a precursor of nk at k.

When the latter case holds, we say that the trace progresses (at k + 1). An infinitely progressing trace is
a trace that progresses at infinitely many points.

Definition 4.3 [Cyclic proof] A pre-proof P is a cyclic proof in PHL if there are infinitely many applica-
tions of symbolic execution rules along every infinite path in P. It is furthermore a cyclic proof in THL if
in addition there is an infinitely progressing trace along a tail of every path in P.

8

Brotherston et. al.

We remark that, by construction, cyclic provability in THL immediately implies cyclic provability in
PHL as well. We now show two examples, of partial and total cyclic proofs respectively.

Example 4.4 Let C stand for the program while x > 0 do x := x− 2;. Here we show a cyclic proof of
{x ≥ 0 ∧ x%2 = 0}C {x = 0} in PHL:

(CSkip)
{x = 0} skip {x = 0}

(C|=)
{x ≥ 0 ∧ x%2 = 0 ∧ ¬(x < 0)} skip {x = 0}

{x ≥ 0 ∧ x%2 = 0}C {x = 0}
(C|=)

{x′ ≥ 0 ∧ x′%2 = 0 ∧ x′ > 0 ∧ x = x′ − 2}C {x=0}
(C:=)

{x ≥ 0 ∧ x%2 = 0 ∧ x > 0} x := x - 2;C {x=0}
(CInv)

{x ≥ 0 ∧ x%2 = 0}C {x = 0}

Example 4.5 Continuing with the program C from the previous example, we show a total cyclic proof
of {x = 2n}C {x = 0}.

(CSkip)
{x = 0} skip {x = 0}

(C|=)
{x = 2n ∧ ¬(x > 0)} skip {x = 0}

{x = 2n}C {x = 0}
(Sub)

{x = 2(n− 1)}C {x = 0}
(C|=)

{x′ = 2n ∧ x′ > 0 ∧ x = x′ − 2}C {x=0}
(C:=)

{x = 2n ∧ x > 0} x:=x-2;C {x=0}
(CInv)

{x = 2n}C {x = 0}
In this proof, the progressing trace from companion to bud is given by the underlined terms involving n.

Lemma 4.6 Let P be a pre-proof of {P}C {Q} and suppose that {P}C {Q} is invalid. Then there exists
an infinite path ({Pk}Ck {Qk})k≥0 in P, beginning from {P}C {Q}, such that the following properties
hold, for all k ≥ 0:

(i) for all k ≥ 0, the triple {Pk}Ck {Qk} is invalid, meaning that either
(a) ∃σ, σ′. σ |= Pk and ⟨Ck, σ⟩ →mk ⟨skip, σ′⟩ but σ′ ̸|= Qk; or
(b) (in THL only) ∃σ. σ |= Pk but ⟨Ck, σ⟩↑.

(ii) If the first possibility (i)(a) above holds, then the computation length mk+1 ≤ mk, and if the rule
applied at k is a symbolic execution rule then mk+1 < mk.

(iii) (in THL only) if the second possibility (i)(b) above instead holds, and there is a trace (nk)k≥i following
a tail of the path ({Pk}Ck {Qk})k≥i, then the sequence of natural numbers defined by (σ(n(k)))k≥i is
monotonically decreasing, and strictly decreases at every progress point of the trace.

Proof. (Sketch) We construct the required path and prove its needed properties inductively, by analysis
of each proof rule in Figure 5. 2

Theorem 4.7 (Soundness) If {P}C {Q} has a cyclic proof in PHL (resp. THL) then it is valid in PHL
(resp. THL).

Proof. Suppose first that {P}C {Q} has a cyclic proof P in PHL but is invalid there. By Lemma 4.6
we can build an infinite path ({Pk}Ck {Qk})k≥0 in P, beginning from {P}C {Q}, satisfying properties
(i)(a) and (ii) above. In particular, we have an infinite, monotonically decreasing sequence (mk)k≥0 of
natural numbers such that for all k ≥ 0 we have ⟨Ck, σ⟩ →mk ⟨skip, σ′⟩ (for some σ and σ′). Since P is a
cyclic proof in PHL, this path contains infinitely many applications of symbolic execution rules, and thus
by property (ii) the sequence (mk)k≥0, which is a contradiction.

Next suppose that P is also a cyclic proof in THL but is not valid in THL. We apply Lemma 4.6 to
obtain an infinite path in P as above, satisfying properties (i)(b) and (iii); since it is already a cyclic proof
in PHL, we may rule out (i)(a) as a possibility (and need not consider (ii) either). Since P is a cyclic proof
in THL, there is an infinitely progressing trace (nk)k≥i following some tail (k ≥ i) of this path. Thus by
property (iii) there is an infinite, monotonically decreasing sequence (σ(nk))k≥i of numbers that moreover
strictly decreases infinitely often; again a contradiction. Thus {P}C {Q} is valid in THL after all. 2

9

Brotherston et. al.

Lemma 4.8 (Proof translation) If {P}C {Q} is provable in PHL (resp. THL), then for all statements
C ′ and assertions R, there is a cyclic pre-proof of {P}C;C ′ {R} in PHL (resp. THL) in which all open
leaves are occurrences of {Q}C ′ {R}:

···
{P}C {Q}

=⇒
{Q}C ′ {R}

···
{P}C;C ′ {R}

Moreover, any strongly connected subgraph of the pre-proof created by the translation satisfies the global
soundness condition for PHL (resp. THL) cyclic proofs.

Proof. We proceed by structural induction on the Hoare logic proof of {P}C {Q}, distinguishing cases
on the last rule applied in the proof and assuming arbitrary C ′ and R.

Case (Skip): The proof transformation is as follows:

(Skip)
{P} skip {P}

=⇒
{P}C ′ {R}

(CSkip2)
{P} skip;C ′ {R}

The only open leaf in the cyclic pre-proof is an instance of {P}C ′ {R}, as required.

Case (:=):

(:=)
{P}x := E {P [x′/x] ∧ x = E[x′/x]}

=⇒
{P [x′/x] ∧ x = E[x′/x]}C ′ {R}

(C:=)
{P}x := E;C ′ {R}

The only open leaf in this pre-proof is an instance of {P [x′/x] ∧ x = E[x′/x]}C ′ {R}, as required.

Case (|=):

···
P |= P ′ {P ′}C {Q′} Q′ |= Q

(|=)
{P}C {Q}

=⇒
P |= P ′

{Q}C {R}
(C|=)

{Q′}C ′ {R}
··· (IH)

{P ′}C;C ′ {R}
(C|=)

{P}C;C ′ {R}

On the RHS we first use the consequence rule to transform the precondition P to P ′, then apply the
induction hypothesis (marked (IH) in the derivation) to obtain a cyclic pre-proof with open leaves of the
form {Q′}C ′ {R}. By applying the consequence rule to each of these open leaves we obtain a pre-proof
with open leaves of the form {Q}C ′ {R} as required.

Case (Seq):

···
{P}C1 {S}

···
{S}C2 {Q}

C
{P}C1;C2 {Q}

=⇒

{Q}C ′ {R}
··· (IH)

{S}C2;C
′ {R}

··· (IH)

{P}C1;C2;C
′ {R}

Here, we first use the induction hypothesis with the first premise {P}C1 {S} of {P}C1 {S} to yield a
pre-proof of {P}C1;C2;C

′ {R} with open leaves all of form {S}C2;C
′ {R}. Then, we use the induction

hypothesis with the second premise to expand these leaves into pre-proofs with open leaves all of form
{Q}C ′ {R}, as needed.

10

Brotherston et. al.

Case (If):

···
{P ∧B}C1 {Q}

···
{P ∧ ¬B}C2 {Q}

(If)
{P} if B then C1 else C2 {Q}

=⇒

{Q}C ′ {R}
··· (IH)

{P ∧B}C1;C
′ {R}

{Q}C ′ {R}
··· (IH)

{P ∧ ¬B}C2;C
′ {R}

(CIf)
{P} if B then C1 else C2;C

′ {R}

Case (Inv): Here the proof transformation involves creating (possibly many) new backlinks:

···
{P ∧B}C {P}

(Inv)
{P} while B do C {P ∧ ¬B}

=⇒ {P ∧ ¬B}C ′ {R}

{P} while B do C;C ′ {R}
··· (IH)

{P ∧B}C; while B do C;C ′ {R}
(CInv)

{P} while B do C;C ′ {R}

In the RHS pre-proof, we first apply the cyclic rule (CInv) to unfold the while loop. The resulting left-
hand premise is an open leaf of the permitted form, i.e. {P ∧ ¬B}C ′ {R}. For the right-hand premise,
using the induction hypothesis we can obtain a pre-proof of {P ∧B}C; while B do C;C ′ {R} with all
open leaves of the form {P} while B do C;C ′ {R}. These leaves are all back-linked to the conclusion of
the pre-proof, which is identical. We additionally note that at least one symbolic execution rule is applied
along the path from this companion to any of these buds, namely the instance of (CInv) itself.

Case (Inv-Total): By assumption, we have a proof of the form:

···
{P ∧B ∧ t = n}C {P ∧ t < n}

(Inv-Total)
{P} while B do C {P ∧ ¬B}

We derive a cyclic pre-proof of {P} while B do C;C ′ {R} as follows.

{P ∧ ¬B}C ′ {R}
(C|=)

{P ∧ ¬B ∧ t = n}C ′ {R}

{P ∧ t = n} while B do C;C ′ {R}
(Sub)

{P ∧ t = n′} while B do C;C ′ {R}
(C|=)

{P ∧ t = n′ ∧ n′ < n} while B do C;C ′ {R}
(C|=)

{P ∧ t < n} while B do C;C ′ {R}
··· (IH)

{P ∧B ∧ t = n}C; while B do C;C ′ {R}
(CInv)

{P ∧ t = n} while B do C;C ′ {R}
(C|=)

{P} while B do C;C ′ {R}

This construction is similar to the previous case, with a little more wrangling to deal with the termination
measure t. First, before unfolding the while loop we “record” the value of t as a fresh variable n to obtain
t = n in the precondition. In the left hand premise of (CInv) this fact is not needed and is discarded again
to obtain an open leaf of the permitted form {P ∧ ¬B}C ′ {R}. In the right-hand premise, we apply the
induction hypothesis to obtain a pre-proof with open leaves all of form {P ∧ t < n} while B do C;C ′ {R}.
In each of these open leaves we introduce another fresh variable n′ to record the new value of t as t = n′,
where n′ < n, thus recognising these transformed leaves as substitution instances of the conclusion of
(CInv), to which we form backlinks.

Note that we have a trace on n and n′ from the companion node in this proof to each of the buds,
which progresses when we “jump” from n to n′ (at the point where n′ < n is introduced). 2

11

Brotherston et. al.

(CRSkip)
[P] skip [P]

[P]C [Q]
(CRSkip2)

[P] skip;C [Q]

[P [x′/x] ∧ x = E[x′/x]]C [Q]
(CR:=)

[P]x := E;C [Q]

[P]C [Q]
(RSub)

[P [t/z]]C [Q[t/z]]

P |= P ′ [P]C [Q] Q′ |= Q
(C|=)

[P ′]C [Q′]

[P ∧B]C1;C
′ [Q]

(CRIf1)
[P] if B then C1 else C2;C

′ [Q]

[P ∧ ¬B]C2;C
′ [Q]

(CRIf2)
[P] if B then C1 else C2;C

′ [Q]

[P ∧ ¬B]C ′ [Q]
(CRInv1)

[P] while B do C;C ′ [Q]

[P ∧B]C; while B do C;C ′ [Q]
(CRInv2)

[P] while B do C;C ′ [Q]

Fig. 6. Cyclic proof rules for reverse Hoare triples. x′ is fresh in (C:=), and z and t are not in fv(C) in (RSub).

Theorem 4.9 (Relative completeness) If {P}C {Q} is provable in PHL (resp. THL) then it has a cyclic
proof in PHL (resp. THL).

Proof. By taking C ′ = skip and R = Q in Lemma 4.8 and using the elision of C; skip to C, we obtain
a pre-proof P of {P}C {Q} in PHL (resp. THL) in which all open leaves are of the form {P} skip {P} and
thus can be immediately closed by applications of the rule (CSkip).

To see that P is a genuine cyclic proof, observe that the only strongly connected subgraphs (i.e.
collections of cycles) in P are created by translations of (Inv) (in PHL) and (Inv-Total) (in THL); these are
disjoint from one another by construction, and satisfy the global soundness conditions for PHL and THL
respectively. Thus P itself is a cyclic proof in PHL / THL as required. 2

5 Cyclic proofs in reverse Hoare logic

This section presents a system of cyclic proofs for PRHL and TRHL, i.e. partial and total reverse Hoare logic,
together with their soundness and their subsumption of the corresponding standard proof systems from
Section 3. By and large, their development mirrors that of the cyclic proof systems for standard Hoare
logic in the previous section.

First, we give our cyclic proof rules for reverse Hoare triples in Figure 6. Like the cyclic proof rules for
standard Hoare triples in the previous section, they are formulated in “continuation style” (with conclusions
of general form [P]C;C ′ [Q], with a rule for explicit substitution (RSub) and an unfolding rule for while
loops (CRInv2).

Definition 5.1 [Trace] Let P be a pre-proof and ([Pk]Ck [Qk])k≥0 be a path in P. For terms n and n′,
we say that n′ is a precursor of n at k if one of the following holds:

• either [Pk]Ck [Qk] is the conclusion of an application of (RSub) or (CR:=) and n′ = θ(n), where θ is the
substitution used in the rule application; or

• [Pi]Ci [Qi] is the conclusion of another rule, and n′ = n.

A trace following ([Pk]Ck [Qk])k≥0 is a sequence of terms (nk)k≥0 such that for every k ≥ 0, the term
nk occurs in either Pk or Qk and one of the following conditions holds:

• either ni+1 is a precursor of nk at k; or

• there exists (t = nk+1) ∈ Pi such that nk < nk+1 where nk is a precursor of nk+1 at i.

In the latter case, we say that the trace progresses at k+ 1. An infinitely progressing trace is a trace that
progresses at infinitely many points.

A pre-proof is a genuine cyclic proof if it satisfies the following global soundness condition(s).

12

Brotherston et. al.

Definition 5.2 [Cyclic proof] A pre-proof P is a cyclic proof in PRHL if there are infinitely many symbolic
execution rule applications along every infinite path in P. If in addition there is an infinitely progressing
trace along a tail of every infinite path in P, it is also a cyclic proof in TRHL.

Similarly to Definition 4.3, every cyclic proof in TRHL is also a cyclic proof in PRHL.

Example 5.3 We show a cyclic proof in TRHL for the reverse Hoare triple

[x = x0] while x > 0 do x := x− 2; [x = x0 − 2k]

[x = x0]C [x = x0 − 2k]r
(RSub)

[x = x0 − 2)]C [x = (x0 − 2)− 2(k − 1)]
(R|=)

[x′ = x0 ∧ x′ > 0 ∧ x = x′ − 2] while x > 0 do x := x− 2; [x = x0 − 2k]
(CR:=)

[x = x0 ∧ x > 0]x := x− 2; while x > 0 do x := x− 2; [x = x0 − 2k]
(CRInv2)

[x = x0] while x > 0 do x := x− 2; [x = x0 − 2k]

Note that, in this proof, the trace from companion to bud is underlined. It can be confirmed that the
induced infinite path includes infinitely instances of symbolic application and infinite progressing points.

Lemma 5.4 Let P be a pre-proof of [P]C [Q] and suppose that [P]C [Q] is invalid. Then there exists an
infinite path ([Pk]Ck [Qk])k≥0 in P, beginning from [P]C [Q], such that the following properties hold, for
all k ≥ 0:

(i) for all k ≥ 0, the triple [Pk]Ck [Qk] is invalid, meaning that
(a) ∀σ. σ |= Pk, ⟨Ck, σ⟩ ↓ within a maximum of mk steps, but there is a state sk |= Qk that is not

reachable from ⟨C, σ⟩ for any σ |= Pk; or
(b) (in TRHL only) ∀σ′. σ |= Qk, there exists σ. σ |= Pk ∧ ⟨Ck, σ⟩ →∗ ⟨skip, σ′⟩, but ∃σ. σ |= Pk,

⟨Ck, σ⟩↑.
(ii) If the first possibility (i)(a) above holds, then the computation length mk+1 ≤ mk, and if the rule

applied at k is a symbolic execution rule then mk+1 < mk.

(iii) (in TRHL only) if the second possibility (i)(b) above holds, and there is a trace (nk)k≥i following a
tail of the path ([Pk]Ck [Qk])k≥i, then the sequence of natural numbers defined by (σ(n(k)))k≥i is
monotonically decreasing, and strictly decreases at every progress point of the trace.

Theorem 5.5 (Soundness) If [P]C [Q] has a cyclic proof in PRHL (resp. TRHL) then it is valid in PRHL
(resp. TRHL).

Proof. Similar to Theorem 4.7, using Lemma 5.4. 2

Lemma 5.6 (Proof translation) If [P]C [Q] is provable in PRHL (resp. TRHL) then, for all statements
C ′ and assertions R, there is a cyclic pre-proof of [P]C;C [R] in which all open leaves are occurrences of
[Q]C ′ [R]:

···
[P]C [Q]

=⇒
[Q]C ′ [R]

···
[P]C;C ′ [R]

Moreover, any strongly connected subgraph of the pre-proof created by the translation satisfies the global
soundness condition for PRHL (resp. TRHL) cyclic proofs.

Proof. We proceed by structural induction on the Hoare logic proof of {P}C {Q}, distinguishing cases
on the last rule applied in the proof and assuming arbitrary C ′ and R. The rules (RSkip) and (RInv-1)
are trivial, while the cases of (R:=), (RSeq), (R|=) are similar to their counterparts in standard Hoare
logic (Lemma 4.8).

13

Brotherston et. al.

Case (RIf1), (RIf2): These cases are symmetric. For (RIf1), the transformation is as follows:

···
[P ∧B]C1 [Q]

(RIf1)
[P] if B then C1 else C2 [Q]

=⇒

[Q]C [R]
··· (IH)

[P]C1;C [R]
(CRIf1)

[P] if B then C1 else C2;C [Q]

Case (RInv-2):

···
[P ∧B]C [P]

(RInv-2)
[P] while B do C [P ∧ ¬B]

=⇒

[P] while B do C;C ′ [R]
··· (IH)

[P ∧B]C; while B do C;C ′ [R]
(CRInv2)

[P] while B do C;C ′ [R]

In the pre-proof above, by using the induction hypothesis, a pre-proof of [P ∧B]C; while B do C;C ′ [R]
contains open leaves which are occurrences of [P] while B do C;C ′ [R]. As those occurrences are involved
in a back-link, the pre-proof has no open leaves. (In this case, as the first condition in global soundness
holds, this pre-proof is a PRHL cyclic proof.)

Case (RInv-Total): By assumption, we have a proof of the form:

···
[P ∧B ∧ t < n]C [P ∧ t = n]

(Inv-Total)
[P] while B do C [P ∧ ¬B]

We derive a cyclic pre-proof of [P] while B do C;C ′ [R] as follows.

[P ∧ ¬B]C ′ [R]
(C|=)

[P ∧ t < n ∧ ¬B]C ′ [R]

[P ∧ t < n] while B do C;C ′ [R]
(RSub)

[P ∧ t < n′] while B do C;C ′ [R]
(R|=)

[P ∧ t < n′ ∧ n < n′] while B do C;C ′ [R]
(R|=)

[P ∧ t = n] while B do C;C ′ [R]
··· (IH)

[P ∧ t < n ∧B]C; while B do C;C ′ [R]
(CRInv2)

[P ∧ t < n] while B do C;C ′ [R]
(C|=)

[P] while B do C;C ′ [R]

In the pre-proof above, the left hand premise includes an open leaf of the permitted form [P ∧ ¬B]C ′ [R].
The right hand premise, by applying the induction hypothesis, [P ∧ t < n ∧B]C; while B do C;C ′ [R] has
a cyclic pre-proof in which all open leaves are of the form [P ∧ t = n] while B do C [R]. In each of these
open leaves, we introduce another fresh variable n′ to record the new value of t as t < n′, where n′ < n,
thus recognising these transformed leaves as substitution instances of the conclusion of (CRInv2), to which
we form backlinks. Similar to the translation in Hoare logic, in this proof we have a trace on n and n′

from the companion node to each of the buds, in which the progress point is at point when we “jump”
from n to n′ and n′ < n is introduced. 2

Theorem 5.7 (Relative completeness) If {P}C {Q} is provable in PRHL (resp. TRHL) then it has a
cyclic proof in PRHL (resp. TRHL).

Proof. Similar to Theorem 4.9, using Lemma 5.6. 2

14

Brotherston et. al.

6 Conclusions and future work

This paper presents formulations of the partial and total versions of Hoare logic and its reverse, semantically
and as axiomatic and cyclic proof systems. We observe in particular that

• the total versions of the logics are special cases of the corresponding partial version;

• partial reverse Hoare logic PRHL and total Hoare logic THL are semantic duals, as are TRHL and PHL;

• the partial versions of the logics are proof-theoretically similar, as are the total versions, with their cyclic
proof systems sharing a similar soundness condition;

• there is a natural translation from standard to cyclic proofs for each of the logics.

We must make a frank admission: Very little of what we present here is truly new, in that it could in
principle have been distilled from previous works on Hoare logic, reverse Hoare logic and cyclic proof. Of
course, the partial and total variants of Hoare logic have been extensively studied for decades [18,11,3,2]
and their formulations as cyclic proof systems can largely be inferred from previous works, in particu-
lar, on Hoare-style proofs in separation logic [7,8]. Meanwhile, reverse Hoare logic and its extension to
incorrectness logic has been studied in [14,22,19], both semantically and axiomatically, although not to
our knowledge in cyclic proof form. Moreover, Verscht and Kaminski provide a semantic taxonomy of
Hoare-like logics covering many more possibilities than the four we examine here [25]. We see our main
contribution as being primarily one of compiling and formulating these logics in such a way that their
proof-theoretic as well as their semantic relationships become clear.

We can additionally mention a few minor novelties of the present work. First, the partial variant of
reverse Hoare logic we consider here, PRHL, does not seem to be well known, apparently not being among
the logics in the Verscht-Kaminski taxonomy [25] and may even be somewhat new. A very recent short
paper by Verscht et al [26] describes “partial incorrectness logic” which also does not seem at first sight
the same thing as our PRHL; however, we believe that our version arises quite naturally as a semantic dual
of total correctness (Defn. 3.1) and a proof-theoretic dual of partial correctness (Figure 4). Second, we
formulate cyclic proof systems for reverse Hoare logic, observing that the soundness conditions required to
make them work correctly are natural analogues of their equivalents in standard Hoare logic. Lastly, our
essentially uniform translation of standard Hoare logic and reverse Hoare logic proofs into cyclic proofs is
quite pleasant and may provide, we hope, some minor technical interest.

Potential directions for future work might include, for example, the implementation of our cyclic proof
systems within a suitable platform such as the Cyclist theorem prover [9], or the extension of existing
systems of incorrectness logic with our cyclic proof principles [22,19].

References

[1] Bahareh Afshari and Graham E. Leigh. Cut-free completeness for modal µ-calculus. In Proceedings of LICS-32, pages
1–12. IEEE, 2017.

[2] Krzysztof Apt and Ernst-Rüdiger Olderog. Fifty years of Hoare’s logic. Formal Aspects of Computing, 31(6):751–807,
2019.

[3] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey-part I. ACM Trans. Program. Lang. Syst., 3(4):431–483, 1981.

[4] James Brotherston. Cyclic proofs for first-order logic with inductive definitions. In Proceedings of TABLEAUX-14, pages
78–92. Springer, 2005.

[5] James Brotherston. Sequent Calculus Proof Systems for Inductive Definitions. PhD thesis, University of Edinburgh,
November 2006.

[6] James Brotherston. Formalised inductive reasoning in the logic of bunched implications. In Proceedings of SAS-14,
volume 4634 of LNCS, pages 87–103. Springerg, 2007.

[7] James Brotherston, Richard Bornat, and Cristiano Calcagno. Cyclic proofs of program termination in separation logic.
In Proceedings of POPL-35. ACM, 2008.

[8] James Brotherston and Nikos Gorogiannis. Cyclic abduction of inductively defined safety and termination preconditions.
In Proceedings of SAS-21. Springer, 2014.

15

Brotherston et. al.

[9] James Brotherston, Nikos Gorogiannis, and Rasmus L. Petersen. A generic cyclic theorem prover. In Proceedings of
APLAS-10. Springer, 2012.

[10] James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent. Journal of Logic and
Computation, 21(6):1177–1216, 2011.

[11] Stephen A. Cook. Soundness and completeness of an axiom system for program verification. SIAM J. Comput., 7(1):70–
90, 1978.

[12] Mads Dam and Dilian Gurov. µ-calculus with explicit points and approximations. Journal of Logic and Computation,
12(2):255–269, 2002.

[13] Anupam Das and Damien Pous. A cut-free cyclic proof system for Kleene algebra. In Proceedings of TABLEAUX, pages
261–277. Springer, 2017.

[14] Edsko de Vries and Vasileios Koutavas. Reverse hoare logic. In Proceedings of SEFM, pages 155–171. Springer, 2011.

[15] Simon Docherty and Reuben N.S. Rowe. A non-wellfounded, labelled proof system for propositional dynamic logic. In
Proceedings of TABLEAUX, pages 335–352. Springer, 2019.

[16] Gadi Tellez Espinosa and James Brotherston. Automatically verifying temporal properties of programs with cyclic proof.
Journal of Automated Reasoning, 64:555–578, 2019.

[17] Robert W. Floyd. Assigning meanings to programs. In Proc. Amer. Math. Soc., volume 19 of Symposia in Applied
Mathematics, pages 19–31, 1967.

[18] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–580, 1969.

[19] Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. Finding real bugs in big
programs with incorrectness logic. In Proceedings of OOPSLA. ACM, 2022.

[20] Kenneth L. McMillan. Quantified invariant generation using an interpolating saturation prover. In Proceedings of
TACAS-14, pages 413–427. Springer, 2008.

[21] Damian Niwiński and Igor Walukiewicz. Games for the µ-calculus. Theoretical Computer Science, 163:99–116, 1997.

[22] Peter W. O’Hearn. Incorrectness logic. 2019.

[23] Alex Simpson. Cyclic arithmetic is equivalent to Peano arithmetic. In Proceedings of FoSSaCS, pages 283–300. Springer,
2017.

[24] C. Stirling and D. Walker. Local model checking in the modal µ-calculus. Theoretical Computer Science, 89:161–177,
1991.

[25] Lena Verscht and Benjamin Lucien Kaminski. A taxonomy of Hoare-like logics: Towards a holistic view using predicate
transformers and Kleene algebras with top and tests. 2025.

[26] Lena Verscht, Ānrán Wáng, and Benjamin Lucien Kaminski. Partial incorrectness logic, 2025.
https://arxiv.org/abs/2502.14626.

16

	Introduction
	Programming language
	Hoare logic and reverse Hoare logic
	Provability in partial and total Hoare logic
	Provability in partial and total reverse Hoare logic

	Cyclic proofs in Hoare logic
	Cyclic proofs in reverse Hoare logic
	Conclusions and future work
	References

