
Biabduction (and Related Problems)
in Array Separation Logic

James Brotherston1 Nikos Gorogiannis2 Max Kanovich1

1UCL

2Middlesex University

University of Vienna, 14 Mar 2017

1/ 19

Compositional proofs in separation logic (1)

• Separation logic is based on Hoare triples {A}C {B}, where
C is a program and A,B are formulas.

• Its compositional nature, the key to scalable analysis, is
supported by two main pillars.

• The first pillar is the soundness of the following frame rule:

{A}C {B}
(Frame)

{A ∗ F}C {B ∗ F}

where the separating conjunction ∗ is read, intuitively, as “and
separately in memory”.

2/ 19

Compositional proofs in separation logic (1)

• Separation logic is based on Hoare triples {A}C {B}, where
C is a program and A,B are formulas.

• Its compositional nature, the key to scalable analysis, is
supported by two main pillars.

• The first pillar is the soundness of the following frame rule:

{A}C {B}
(Frame)

{A ∗ F}C {B ∗ F}

where the separating conjunction ∗ is read, intuitively, as “and
separately in memory”.

2/ 19

Compositional proofs in separation logic (1)

• Separation logic is based on Hoare triples {A}C {B}, where
C is a program and A,B are formulas.

• Its compositional nature, the key to scalable analysis, is
supported by two main pillars.

• The first pillar is the soundness of the following frame rule:

{A}C {B}
(Frame)

{A ∗ F}C {B ∗ F}

where the separating conjunction ∗ is read, intuitively, as “and
separately in memory”.

2/ 19

Compositional proofs in separation logic (2)

• The second pillar is given by solving the biabduction problem:

given formulas A and B, find formulas X , Y with

A ∗ X |= B ∗ Y , and A ∗ X is satisfiable.

• Then, if we have {A′}C1 {A} and {B}C2 {B ′}, we can infer a
spec for C1;C2:

{A′}C1 {A}
(Frame)

{A′ ∗ X}C1 {A ∗ X}
(|=)

{A′ ∗ X}C1 {B ∗ Y }

{B}C2 {B ′}
(Frame)

{B ∗ Y }C2 {B ′ ∗ Y }
(;)

{A′ ∗ X}C1;C2 {B ′ ∗ Y }

3/ 19

Compositional proofs in separation logic (2)

• The second pillar is given by solving the biabduction problem:
given formulas A and B, find formulas X , Y with

A ∗ X |= B ∗ Y , and A ∗ X is satisfiable.

• Then, if we have {A′}C1 {A} and {B}C2 {B ′}, we can infer a
spec for C1;C2:

{A′}C1 {A}
(Frame)

{A′ ∗ X}C1 {A ∗ X}
(|=)

{A′ ∗ X}C1 {B ∗ Y }

{B}C2 {B ′}
(Frame)

{B ∗ Y }C2 {B ′ ∗ Y }
(;)

{A′ ∗ X}C1;C2 {B ′ ∗ Y }

3/ 19

Compositional proofs in separation logic (2)

• The second pillar is given by solving the biabduction problem:
given formulas A and B, find formulas X , Y with

A ∗ X |= B ∗ Y , and A ∗ X is satisfiable.

• Then, if we have {A′}C1 {A} and {B}C2 {B ′}, we can infer a
spec for C1;C2:

{A′}C1 {A}
(Frame)

{A′ ∗ X}C1 {A ∗ X}
(|=)

{A′ ∗ X}C1 {B ∗ Y }

{B}C2 {B ′}
(Frame)

{B ∗ Y }C2 {B ′ ∗ Y }
(;)

{A′ ∗ X}C1;C2 {B ′ ∗ Y }

3/ 19

Compositional proofs in separation logic (2)

• The second pillar is given by solving the biabduction problem:
given formulas A and B, find formulas X , Y with

A ∗ X |= B ∗ Y , and A ∗ X is satisfiable.

• Then, if we have {A′}C1 {A} and {B}C2 {B ′}, we can infer a
spec for C1;C2:

{A′}C1 {A}
(Frame)

{A′ ∗ X}C1 {A ∗ X}
(|=)

{A′ ∗ X}C1 {B ∗ Y }

{B}C2 {B ′}
(Frame)

{B ∗ Y }C2 {B ′ ∗ Y }
(;)

{A′ ∗ X}C1;C2 {B ′ ∗ Y }

3/ 19

Symbolic-heap separation logic

• Terms t, pure formulas Π and spatial formulas F given by:

t ::= x ∈ Var | nil
Π ::= t = t | t 6= t | Π ∧ Π
F ::= emp | t 7→ t | ls(t , t) | F ∗ F

• t1 7→ t2 (“points-to”) denotes a pointer in the heap.

• ls(t1 , t2) denotes a linked list segment in the heap.

• ∗ (“and separately”) demarks domain-disjoint heaps.

• Symbolic heaps given by ∃x. Π : F .

4/ 19

Symbolic-heap separation logic

• Terms t, pure formulas Π and spatial formulas F given by:

t ::= x ∈ Var | nil
Π ::= t = t | t 6= t | Π ∧ Π
F ::= emp | t 7→ t | ls(t , t) | F ∗ F

• t1 7→ t2 (“points-to”) denotes a pointer in the heap.

• ls(t1 , t2) denotes a linked list segment in the heap.

• ∗ (“and separately”) demarks domain-disjoint heaps.

• Symbolic heaps given by ∃x. Π : F .

4/ 19

Symbolic-heap separation logic

• Terms t, pure formulas Π and spatial formulas F given by:

t ::= x ∈ Var | nil
Π ::= t = t | t 6= t | Π ∧ Π
F ::= emp | t 7→ t | ls(t , t) | F ∗ F

• t1 7→ t2 (“points-to”) denotes a pointer in the heap.

• ls(t1 , t2) denotes a linked list segment in the heap.

• ∗ (“and separately”) demarks domain-disjoint heaps.

• Symbolic heaps given by ∃x. Π : F .

4/ 19

Symbolic-heap separation logic

• Terms t, pure formulas Π and spatial formulas F given by:

t ::= x ∈ Var | nil
Π ::= t = t | t 6= t | Π ∧ Π
F ::= emp | t 7→ t | ls(t , t) | F ∗ F

• t1 7→ t2 (“points-to”) denotes a pointer in the heap.

• ls(t1 , t2) denotes a linked list segment in the heap.

• ∗ (“and separately”) demarks domain-disjoint heaps.

• Symbolic heaps given by ∃x. Π : F .

4/ 19

Symbolic-heap separation logic

• Terms t, pure formulas Π and spatial formulas F given by:

t ::= x ∈ Var | nil
Π ::= t = t | t 6= t | Π ∧ Π
F ::= emp | t 7→ t | ls(t , t) | F ∗ F

• t1 7→ t2 (“points-to”) denotes a pointer in the heap.

• ls(t1 , t2) denotes a linked list segment in the heap.

• ∗ (“and separately”) demarks domain-disjoint heaps.

• Symbolic heaps given by ∃x. Π : F .

4/ 19

Array separation logic, ASL

• Here we focus on a different data structure, namely arrays.

• Terms t, pure formulas Π and spatial formulas F given by:

t ::= x ∈ Var | n ∈ N | t + t
Π ::= t = t | t 6= t | t ≤ t | t < t | Π ∧ Π
F ::= emp | t 7→ t | array(t, t) | F ∗ F

• array(t1, t2) denotes an array from t1 to t2 (inclusive):

t2−t1+1︷ ︸︸ ︷
·
t1

· · . . . · · ·
t2

• We also allow linear arithmetic in the pure part.

5/ 19

Array separation logic, ASL

• Here we focus on a different data structure, namely arrays.

• Terms t, pure formulas Π and spatial formulas F given by:

t ::= x ∈ Var | n ∈ N | t + t
Π ::= t = t | t 6= t | t ≤ t | t < t | Π ∧ Π
F ::= emp | t 7→ t | array(t, t) | F ∗ F

• array(t1, t2) denotes an array from t1 to t2 (inclusive):

t2−t1+1︷ ︸︸ ︷
·
t1

· · . . . · · ·
t2

• We also allow linear arithmetic in the pure part.

5/ 19

Array separation logic, ASL

• Here we focus on a different data structure, namely arrays.

• Terms t, pure formulas Π and spatial formulas F given by:

t ::= x ∈ Var | n ∈ N | t + t
Π ::= t = t | t 6= t | t ≤ t | t < t | Π ∧ Π
F ::= emp | t 7→ t | array(t, t) | F ∗ F

• array(t1, t2) denotes an array from t1 to t2 (inclusive):

t2−t1+1︷ ︸︸ ︷
·
t1

· · . . . · · ·
t2

• We also allow linear arithmetic in the pure part.

5/ 19

Array separation logic, ASL

• Here we focus on a different data structure, namely arrays.

• Terms t, pure formulas Π and spatial formulas F given by:

t ::= x ∈ Var | n ∈ N | t + t
Π ::= t = t | t 6= t | t ≤ t | t < t | Π ∧ Π
F ::= emp | t 7→ t | array(t, t) | F ∗ F

• array(t1, t2) denotes an array from t1 to t2 (inclusive):

t2−t1+1︷ ︸︸ ︷
·
t1

· · . . . · · ·
t2

• We also allow linear arithmetic in the pure part.

5/ 19

Semantics of ASL

• Stacks are s : Var→ Val; heaps are h : Loc ⇀fin Val; ◦ is
union of domain-disjoint heaps; e is the empty heap.

• Forcing relation s, h |= A given by

s, h |= t1 ∼ t2 ⇔ s(t1) ∼ s(t2) (∼ ∈ {=, 6=, <,≤})
s, h |= Π1 ∧ Π2 ⇔ s, h |= Π1 and s, h |= Π2

s, h |= emp ⇔ h = e

s, h |= t1 7→ t2 ⇔ dom(h) = {s(t1)} and h(s(t1)) = s(t2)

s, h |= array(t1, t2) ⇔ s(t1) ≤ s(t2) and dom(h) = {s(t1), . . . , s(t2)}
s, h |= F1 ∗ F2 ⇔ h = h1 ◦ h2 and s, h1 |= F1 and s, h2 |= F2

s, h |= ∃z. Π : F ⇔ ∃v. s[z 7→ v], h |= Π and s[z 7→ v], h |= F

6/ 19

Semantics of ASL

• Stacks are s : Var→ Val; heaps are h : Loc ⇀fin Val; ◦ is
union of domain-disjoint heaps; e is the empty heap.

• Forcing relation s, h |= A given by

s, h |= t1 ∼ t2 ⇔ s(t1) ∼ s(t2) (∼ ∈ {=, 6=, <,≤})
s, h |= Π1 ∧ Π2 ⇔ s, h |= Π1 and s, h |= Π2

s, h |= emp ⇔ h = e

s, h |= t1 7→ t2 ⇔ dom(h) = {s(t1)} and h(s(t1)) = s(t2)

s, h |= array(t1, t2) ⇔ s(t1) ≤ s(t2) and dom(h) = {s(t1), . . . , s(t2)}
s, h |= F1 ∗ F2 ⇔ h = h1 ◦ h2 and s, h1 |= F1 and s, h2 |= F2

s, h |= ∃z. Π : F ⇔ ∃v. s[z 7→ v], h |= Π and s[z 7→ v], h |= F

6/ 19

Semantics of ASL

• Stacks are s : Var→ Val; heaps are h : Loc ⇀fin Val; ◦ is
union of domain-disjoint heaps; e is the empty heap.

• Forcing relation s, h |= A given by

s, h |= t1 ∼ t2 ⇔ s(t1) ∼ s(t2) (∼ ∈ {=, 6=, <,≤})
s, h |= Π1 ∧ Π2 ⇔ s, h |= Π1 and s, h |= Π2

s, h |= emp ⇔ h = e

s, h |= t1 7→ t2 ⇔ dom(h) = {s(t1)} and h(s(t1)) = s(t2)

s, h |= array(t1, t2) ⇔ s(t1) ≤ s(t2) and dom(h) = {s(t1), . . . , s(t2)}
s, h |= F1 ∗ F2 ⇔ h = h1 ◦ h2 and s, h1 |= F1 and s, h2 |= F2

s, h |= ∃z. Π : F ⇔ ∃v. s[z 7→ v], h |= Π and s[z 7→ v], h |= F

6/ 19

Semantics of ASL

• Stacks are s : Var→ Val; heaps are h : Loc ⇀fin Val; ◦ is
union of domain-disjoint heaps; e is the empty heap.

• Forcing relation s, h |= A given by

s, h |= t1 ∼ t2 ⇔ s(t1) ∼ s(t2) (∼ ∈ {=, 6=, <,≤})
s, h |= Π1 ∧ Π2 ⇔ s, h |= Π1 and s, h |= Π2

s, h |= emp ⇔ h = e

s, h |= t1 7→ t2 ⇔ dom(h) = {s(t1)} and h(s(t1)) = s(t2)

s, h |= array(t1, t2) ⇔ s(t1) ≤ s(t2) and dom(h) = {s(t1), . . . , s(t2)}

s, h |= F1 ∗ F2 ⇔ h = h1 ◦ h2 and s, h1 |= F1 and s, h2 |= F2

s, h |= ∃z. Π : F ⇔ ∃v. s[z 7→ v], h |= Π and s[z 7→ v], h |= F

6/ 19

Semantics of ASL

• Stacks are s : Var→ Val; heaps are h : Loc ⇀fin Val; ◦ is
union of domain-disjoint heaps; e is the empty heap.

• Forcing relation s, h |= A given by

s, h |= t1 ∼ t2 ⇔ s(t1) ∼ s(t2) (∼ ∈ {=, 6=, <,≤})
s, h |= Π1 ∧ Π2 ⇔ s, h |= Π1 and s, h |= Π2

s, h |= emp ⇔ h = e

s, h |= t1 7→ t2 ⇔ dom(h) = {s(t1)} and h(s(t1)) = s(t2)

s, h |= array(t1, t2) ⇔ s(t1) ≤ s(t2) and dom(h) = {s(t1), . . . , s(t2)}
s, h |= F1 ∗ F2 ⇔ h = h1 ◦ h2 and s, h1 |= F1 and s, h2 |= F2

s, h |= ∃z. Π : F ⇔ ∃v. s[z 7→ v], h |= Π and s[z 7→ v], h |= F

6/ 19

Semantics of ASL

• Stacks are s : Var→ Val; heaps are h : Loc ⇀fin Val; ◦ is
union of domain-disjoint heaps; e is the empty heap.

• Forcing relation s, h |= A given by

s, h |= t1 ∼ t2 ⇔ s(t1) ∼ s(t2) (∼ ∈ {=, 6=, <,≤})
s, h |= Π1 ∧ Π2 ⇔ s, h |= Π1 and s, h |= Π2

s, h |= emp ⇔ h = e

s, h |= t1 7→ t2 ⇔ dom(h) = {s(t1)} and h(s(t1)) = s(t2)

s, h |= array(t1, t2) ⇔ s(t1) ≤ s(t2) and dom(h) = {s(t1), . . . , s(t2)}
s, h |= F1 ∗ F2 ⇔ h = h1 ◦ h2 and s, h1 |= F1 and s, h2 |= F2

s, h |= ∃z. Π : F ⇔ ∃v. s[z 7→ v], h |= Π and s[z 7→ v], h |= F

6/ 19

Motivating example
Suppose we have procedure foo with spec

{array(c , d)} foo(c, d) {Q}

Now, consider code C ; foo(c, d); . . ., with spec for C

{emp}C {array(a, b)}

By solving the biabduction problem

array(a, b) ∗ X |= array(c , d) ∗ Y

we get a valid spec {X}C ; foo(c, d) {Q ∗ Y }.
Spatially minimal, and incomparable, solutions include:

X := a = c ∧ b = d : emp and Y := emp
X := d < a : array(c , d) and Y := array(a, b)
X := a < c ∧ b < d : emp and Y := array(a, c − 1) ∗ array(b + 1, d)
X := a < c < b < d : array(b + 1, d) and Y := array(a, c − 1)

...

7/ 19

Motivating example
Suppose we have procedure foo with spec

{array(c , d)} foo(c, d) {Q}

Now, consider code C ; foo(c, d); . . ., with spec for C

{emp}C {array(a, b)}

By solving the biabduction problem

array(a, b) ∗ X |= array(c , d) ∗ Y

we get a valid spec {X}C ; foo(c, d) {Q ∗ Y }.
Spatially minimal, and incomparable, solutions include:

X := a = c ∧ b = d : emp and Y := emp
X := d < a : array(c , d) and Y := array(a, b)
X := a < c ∧ b < d : emp and Y := array(a, c − 1) ∗ array(b + 1, d)
X := a < c < b < d : array(b + 1, d) and Y := array(a, c − 1)

...

7/ 19

Motivating example
Suppose we have procedure foo with spec

{array(c , d)} foo(c, d) {Q}

Now, consider code C ; foo(c, d); . . ., with spec for C

{emp}C {array(a, b)}

By solving the biabduction problem

array(a, b) ∗ X |= array(c , d) ∗ Y

we get a valid spec {X}C ; foo(c, d) {Q ∗ Y }.

Spatially minimal, and incomparable, solutions include:

X := a = c ∧ b = d : emp and Y := emp
X := d < a : array(c , d) and Y := array(a, b)
X := a < c ∧ b < d : emp and Y := array(a, c − 1) ∗ array(b + 1, d)
X := a < c < b < d : array(b + 1, d) and Y := array(a, c − 1)

...

7/ 19

Motivating example
Suppose we have procedure foo with spec

{array(c , d)} foo(c, d) {Q}

Now, consider code C ; foo(c, d); . . ., with spec for C

{emp}C {array(a, b)}

By solving the biabduction problem

array(a, b) ∗ X |= array(c , d) ∗ Y

we get a valid spec {X}C ; foo(c, d) {Q ∗ Y }.
Spatially minimal, and incomparable, solutions include:

X := a = c ∧ b = d : emp and Y := emp
X := d < a : array(c , d) and Y := array(a, b)
X := a < c ∧ b < d : emp and Y := array(a, c − 1) ∗ array(b + 1, d)
X := a < c < b < d : array(b + 1, d) and Y := array(a, c − 1)

...7/ 19

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if
there is a stack s and heap h with s, h |= A.

• Write A as Π :∗n
i=1

array(ai , bi) ∗∗k
i=1

ti 7→ ui .

• Observe A is satisfiable iff there is stack s such that
• s |= Π, and

• each array is well-defined (s(ai) ≤ s(bi)), and

• all pointers and arrays are mutually non-overlapping
((s(b1) < s(a2) ∨ s(a1) > s(b2)) ∧ . . .).

• We can code this up as a formula γ(A) in Σ0
1 Presburger

arithmetic.

• Thus the problem is in NP.

8/ 19

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if
there is a stack s and heap h with s, h |= A.

• Write A as Π :∗n
i=1

array(ai , bi) ∗∗k
i=1

ti 7→ ui .

• Observe A is satisfiable iff there is stack s such that
• s |= Π, and

• each array is well-defined (s(ai) ≤ s(bi)), and

• all pointers and arrays are mutually non-overlapping
((s(b1) < s(a2) ∨ s(a1) > s(b2)) ∧ . . .).

• We can code this up as a formula γ(A) in Σ0
1 Presburger

arithmetic.

• Thus the problem is in NP.

8/ 19

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if
there is a stack s and heap h with s, h |= A.

• Write A as Π :∗n
i=1

array(ai , bi) ∗∗k
i=1

ti 7→ ui .

• Observe A is satisfiable iff there is stack s such that
• s |= Π, and

• each array is well-defined (s(ai) ≤ s(bi)), and

• all pointers and arrays are mutually non-overlapping
((s(b1) < s(a2) ∨ s(a1) > s(b2)) ∧ . . .).

• We can code this up as a formula γ(A) in Σ0
1 Presburger

arithmetic.

• Thus the problem is in NP.

8/ 19

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if
there is a stack s and heap h with s, h |= A.

• Write A as Π :∗n
i=1

array(ai , bi) ∗∗k
i=1

ti 7→ ui .

• Observe A is satisfiable iff there is stack s such that
• s |= Π, and

• each array is well-defined (s(ai) ≤ s(bi)), and

• all pointers and arrays are mutually non-overlapping
((s(b1) < s(a2) ∨ s(a1) > s(b2)) ∧ . . .).

• We can code this up as a formula γ(A) in Σ0
1 Presburger

arithmetic.

• Thus the problem is in NP.

8/ 19

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if
there is a stack s and heap h with s, h |= A.

• Write A as Π :∗n
i=1

array(ai , bi) ∗∗k
i=1

ti 7→ ui .

• Observe A is satisfiable iff there is stack s such that
• s |= Π, and

• each array is well-defined (s(ai) ≤ s(bi)), and

• all pointers and arrays are mutually non-overlapping
((s(b1) < s(a2) ∨ s(a1) > s(b2)) ∧ . . .).

• We can code this up as a formula γ(A) in Σ0
1 Presburger

arithmetic.

• Thus the problem is in NP.

8/ 19

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if
there is a stack s and heap h with s, h |= A.

• Write A as Π :∗n
i=1

array(ai , bi) ∗∗k
i=1

ti 7→ ui .

• Observe A is satisfiable iff there is stack s such that
• s |= Π, and

• each array is well-defined (s(ai) ≤ s(bi)), and

• all pointers and arrays are mutually non-overlapping
((s(b1) < s(a2) ∨ s(a1) > s(b2)) ∧ . . .).

• We can code this up as a formula γ(A) in Σ0
1 Presburger

arithmetic.

• Thus the problem is in NP.

8/ 19

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if
there is a stack s and heap h with s, h |= A.

• Write A as Π :∗n
i=1

array(ai , bi) ∗∗k
i=1

ti 7→ ui .

• Observe A is satisfiable iff there is stack s such that
• s |= Π, and

• each array is well-defined (s(ai) ≤ s(bi)), and

• all pointers and arrays are mutually non-overlapping
((s(b1) < s(a2) ∨ s(a1) > s(b2)) ∧ . . .).

• We can code this up as a formula γ(A) in Σ0
1 Presburger

arithmetic.

• Thus the problem is in NP.

8/ 19

Satisfiability, lower bound

• NP-hardness follows by reduction from

3-partition problem. Given B ∈ N and a sequence of natural
numbers S = (k1, k2, . . . , k3m) with

∑3m
j=1 kj = mB and

B/4 < kj < B/2 for all j ∈ [1, 3m], decide whether there is a
complete 3-partition of S s.t. each partition sums to B.

• We can encode an instance (B,S) as a symbolic heap in ASL.

• Roughly, the idea is that we have m + 1 “delimiters” di at
intervals of B cells, and 3m arrays of length kj . We can fit all
the arrays between the di iff there is a 3-partition:

. . .
di

•

B︷ ︸︸ ︷
· · · · ·︸ ︷︷ ︸

kji,1

· · · ·︸ ︷︷ ︸
kji,2

· · ·︸ ︷︷ ︸
kji,3

di+1

• . . .

9/ 19

Satisfiability, lower bound

• NP-hardness follows by reduction from

3-partition problem. Given B ∈ N and a sequence of natural
numbers S = (k1, k2, . . . , k3m) with

∑3m
j=1 kj = mB and

B/4 < kj < B/2 for all j ∈ [1, 3m], decide whether there is a
complete 3-partition of S s.t. each partition sums to B.

• We can encode an instance (B,S) as a symbolic heap in ASL.

• Roughly, the idea is that we have m + 1 “delimiters” di at
intervals of B cells, and 3m arrays of length kj . We can fit all
the arrays between the di iff there is a 3-partition:

. . .
di

•

B︷ ︸︸ ︷
· · · · ·︸ ︷︷ ︸

kji,1

· · · ·︸ ︷︷ ︸
kji,2

· · ·︸ ︷︷ ︸
kji,3

di+1

• . . .

9/ 19

Satisfiability, lower bound

• NP-hardness follows by reduction from

3-partition problem. Given B ∈ N and a sequence of natural
numbers S = (k1, k2, . . . , k3m) with

∑3m
j=1 kj = mB and

B/4 < kj < B/2 for all j ∈ [1, 3m], decide whether there is a
complete 3-partition of S s.t. each partition sums to B.

• We can encode an instance (B,S) as a symbolic heap in ASL.

• Roughly, the idea is that we have m + 1 “delimiters” di at
intervals of B cells, and 3m arrays of length kj . We can fit all
the arrays between the di iff there is a 3-partition:

. . .
di

•

B︷ ︸︸ ︷
· · · · ·︸ ︷︷ ︸

kji,1

· · · ·︸ ︷︷ ︸
kji,2

· · ·︸ ︷︷ ︸
kji,3

di+1

• . . .

9/ 19

Satisfiability, lower bound

• NP-hardness follows by reduction from

3-partition problem. Given B ∈ N and a sequence of natural
numbers S = (k1, k2, . . . , k3m) with

∑3m
j=1 kj = mB and

B/4 < kj < B/2 for all j ∈ [1, 3m], decide whether there is a
complete 3-partition of S s.t. each partition sums to B.

• We can encode an instance (B,S) as a symbolic heap in ASL.

• Roughly, the idea is that we have m + 1 “delimiters” di at
intervals of B cells, and 3m arrays of length kj .

We can fit all
the arrays between the di iff there is a 3-partition:

. . .
di

•

B︷ ︸︸ ︷
· · · · ·︸ ︷︷ ︸

kji,1

· · · ·︸ ︷︷ ︸
kji,2

· · ·︸ ︷︷ ︸
kji,3

di+1

• . . .

9/ 19

Satisfiability, lower bound

• NP-hardness follows by reduction from

3-partition problem. Given B ∈ N and a sequence of natural
numbers S = (k1, k2, . . . , k3m) with

∑3m
j=1 kj = mB and

B/4 < kj < B/2 for all j ∈ [1, 3m], decide whether there is a
complete 3-partition of S s.t. each partition sums to B.

• We can encode an instance (B,S) as a symbolic heap in ASL.

• Roughly, the idea is that we have m + 1 “delimiters” di at
intervals of B cells, and 3m arrays of length kj . We can fit all
the arrays between the di iff there is a 3-partition:

. . .
di

•

B︷ ︸︸ ︷
· · · · ·︸ ︷︷ ︸

kji,1

· · · ·︸ ︷︷ ︸
kji,2

· · ·︸ ︷︷ ︸
kji,3

di+1

• . . .

9/ 19

Biabduction

Biabduction problem for ASL. Given satisfiable symbolic heaps
A and B, find symbolic heaps X and Y such that A ∗ X is
satisfiable and A ∗ X |= B ∗ Y .

• We concentrate on the quantifier-free case.

• Our approach, diagrammatically, is as follows:

existence of biabduction
solution for (A,B)

satisfiability
of β(A,B)

existence of solu-
tion seed for (A,B)

10/ 19

Biabduction

Biabduction problem for ASL. Given satisfiable symbolic heaps
A and B, find symbolic heaps X and Y such that A ∗ X is
satisfiable and A ∗ X |= B ∗ Y .

• We concentrate on the quantifier-free case.

• Our approach, diagrammatically, is as follows:

existence of biabduction
solution for (A,B)

satisfiability
of β(A,B)

existence of solu-
tion seed for (A,B)

10/ 19

Biabduction

Biabduction problem for ASL. Given satisfiable symbolic heaps
A and B, find symbolic heaps X and Y such that A ∗ X is
satisfiable and A ∗ X |= B ∗ Y .

• We concentrate on the quantifier-free case.

• Our approach, diagrammatically, is as follows:

existence of biabduction
solution for (A,B)

satisfiability
of β(A,B)

existence of solu-
tion seed for (A,B)

10/ 19

Biabduction

Biabduction problem for ASL. Given satisfiable symbolic heaps
A and B, find symbolic heaps X and Y such that A ∗ X is
satisfiable and A ∗ X |= B ∗ Y .

• We concentrate on the quantifier-free case.

• Our approach, diagrammatically, is as follows:

existence of biabduction
solution for (A,B)

satisfiability
of β(A,B)

existence of solu-
tion seed for (A,B)

10/ 19

The formula β(A,B)

• Let (A,B) be an instance of the biabduction problem, where

A = Π :∗n
i=1

array(ai , bi) ∗∗k
i=1

ti 7→ ui

B = Π′ :∗m
i=1

array(ci , di) ∗∗`
i=1

vi 7→ wi

• For a solution to exist, we need to know that
• A and B are simultaneously satisfiable; and

• pointers vj 7→ wj in B are either covered by pointers ti 7→ ui in
A with the right data value (ti = vj ∧ ui = wj), or else not
covered by anything in A.

• This can be coded up as a Presburger formula β(A,B), using
the γ(−) encoding of satisfiability.

11/ 19

The formula β(A,B)

• Let (A,B) be an instance of the biabduction problem, where

A = Π :∗n
i=1

array(ai , bi) ∗∗k
i=1

ti 7→ ui

B = Π′ :∗m
i=1

array(ci , di) ∗∗`
i=1

vi 7→ wi

• For a solution to exist, we need to know that
• A and B are simultaneously satisfiable; and

• pointers vj 7→ wj in B are either covered by pointers ti 7→ ui in
A with the right data value (ti = vj ∧ ui = wj), or else not
covered by anything in A.

• This can be coded up as a Presburger formula β(A,B), using
the γ(−) encoding of satisfiability.

11/ 19

The formula β(A,B)

• Let (A,B) be an instance of the biabduction problem, where

A = Π :∗n
i=1

array(ai , bi) ∗∗k
i=1

ti 7→ ui

B = Π′ :∗m
i=1

array(ci , di) ∗∗`
i=1

vi 7→ wi

• For a solution to exist, we need to know that
• A and B are simultaneously satisfiable; and

• pointers vj 7→ wj in B are either covered by pointers ti 7→ ui in
A with the right data value (ti = vj ∧ ui = wj), or else not
covered by anything in A.

• This can be coded up as a Presburger formula β(A,B), using
the γ(−) encoding of satisfiability.

11/ 19

The formula β(A,B)

• Let (A,B) be an instance of the biabduction problem, where

A = Π :∗n
i=1

array(ai , bi) ∗∗k
i=1

ti 7→ ui

B = Π′ :∗m
i=1

array(ci , di) ∗∗`
i=1

vi 7→ wi

• For a solution to exist, we need to know that
• A and B are simultaneously satisfiable; and

• pointers vj 7→ wj in B are either covered by pointers ti 7→ ui in
A with the right data value (ti = vj ∧ ui = wj), or else not
covered by anything in A.

• This can be coded up as a Presburger formula β(A,B), using
the γ(−) encoding of satisfiability.

11/ 19

Solution seeds

• Write TA,B for the set of all terms in A and B. A solution
seed for (A,B) is a pure formula ∆ =

∧
i∈I δi such that:

1. ∆ is satisfiable, and ∆ |= β(A,B);

2. each δi is of the form (t < u) or (t = u), where t, u ∈ TA,B ;

3. all terms in TA,B are ordered by a conjunct of ∆.

• That is, solution seeds enforce a total ordering on TA,B ,
including all array bounds and pointer addresses.

• It is fairly straightforward to show
• ∃ biabduction soln. for (A,B) ⇒ β(A,B) is satisfiable;

• β(A,B) is satisfiable ⇒ ∃ solution seed for (A,B).

12/ 19

Solution seeds

• Write TA,B for the set of all terms in A and B. A solution
seed for (A,B) is a pure formula ∆ =

∧
i∈I δi such that:

1. ∆ is satisfiable, and ∆ |= β(A,B);

2. each δi is of the form (t < u) or (t = u), where t, u ∈ TA,B ;

3. all terms in TA,B are ordered by a conjunct of ∆.

• That is, solution seeds enforce a total ordering on TA,B ,
including all array bounds and pointer addresses.

• It is fairly straightforward to show
• ∃ biabduction soln. for (A,B) ⇒ β(A,B) is satisfiable;

• β(A,B) is satisfiable ⇒ ∃ solution seed for (A,B).

12/ 19

Solution seeds

• Write TA,B for the set of all terms in A and B. A solution
seed for (A,B) is a pure formula ∆ =

∧
i∈I δi such that:

1. ∆ is satisfiable, and ∆ |= β(A,B);

2. each δi is of the form (t < u) or (t = u), where t, u ∈ TA,B ;

3. all terms in TA,B are ordered by a conjunct of ∆.

• That is, solution seeds enforce a total ordering on TA,B ,
including all array bounds and pointer addresses.

• It is fairly straightforward to show
• ∃ biabduction soln. for (A,B) ⇒ β(A,B) is satisfiable;

• β(A,B) is satisfiable ⇒ ∃ solution seed for (A,B).

12/ 19

Solution seeds

• Write TA,B for the set of all terms in A and B. A solution
seed for (A,B) is a pure formula ∆ =

∧
i∈I δi such that:

1. ∆ is satisfiable, and ∆ |= β(A,B);

2. each δi is of the form (t < u) or (t = u), where t, u ∈ TA,B ;

3. all terms in TA,B are ordered by a conjunct of ∆.

• That is, solution seeds enforce a total ordering on TA,B ,
including all array bounds and pointer addresses.

• It is fairly straightforward to show
• ∃ biabduction soln. for (A,B) ⇒ β(A,B) is satisfiable;

• β(A,B) is satisfiable ⇒ ∃ solution seed for (A,B).

12/ 19

Solution seeds

• Write TA,B for the set of all terms in A and B. A solution
seed for (A,B) is a pure formula ∆ =

∧
i∈I δi such that:

1. ∆ is satisfiable, and ∆ |= β(A,B);

2. each δi is of the form (t < u) or (t = u), where t, u ∈ TA,B ;

3. all terms in TA,B are ordered by a conjunct of ∆.

• That is, solution seeds enforce a total ordering on TA,B ,
including all array bounds and pointer addresses.

• It is fairly straightforward to show
• ∃ biabduction soln. for (A,B) ⇒ β(A,B) is satisfiable;

• β(A,B) is satisfiable ⇒ ∃ solution seed for (A,B).

12/ 19

Solution seeds

• Write TA,B for the set of all terms in A and B. A solution
seed for (A,B) is a pure formula ∆ =

∧
i∈I δi such that:

1. ∆ is satisfiable, and ∆ |= β(A,B);

2. each δi is of the form (t < u) or (t = u), where t, u ∈ TA,B ;

3. all terms in TA,B are ordered by a conjunct of ∆.

• That is, solution seeds enforce a total ordering on TA,B ,
including all array bounds and pointer addresses.

• It is fairly straightforward to show
• ∃ biabduction soln. for (A,B) ⇒ β(A,B) is satisfiable;

• β(A,B) is satisfiable ⇒ ∃ solution seed for (A,B).

12/ 19

Solution seeds

• Write TA,B for the set of all terms in A and B. A solution
seed for (A,B) is a pure formula ∆ =

∧
i∈I δi such that:

1. ∆ is satisfiable, and ∆ |= β(A,B);

2. each δi is of the form (t < u) or (t = u), where t, u ∈ TA,B ;

3. all terms in TA,B are ordered by a conjunct of ∆.

• That is, solution seeds enforce a total ordering on TA,B ,
including all array bounds and pointer addresses.

• It is fairly straightforward to show
• ∃ biabduction soln. for (A,B) ⇒ β(A,B) is satisfiable;

• β(A,B) is satisfiable ⇒ ∃ solution seed for (A,B).

12/ 19

From seeds to solutions

• A seed defines a total ordering of all array endpoints and
pointer addresses in A and B.

• Given this info, computing X and Y becomes a relatively
simple (PTIME) process!

• First we compute X by covering every array / pointer in B
not already covered by A; then we compute Y the same way:

A ∗ X

B ∗ Y

c1 a1 − 1

a1 b1

b1 + 1 d2 c3 a2 − 1

a2 b2

b2 + 1 d3

c1 d1

d1 + 1 c2 − 1

c2 d2 c3 d3

• We have to be a little careful about the pointer / array
distinction though.

13/ 19

From seeds to solutions

• A seed defines a total ordering of all array endpoints and
pointer addresses in A and B.

• Given this info, computing X and Y becomes a relatively
simple (PTIME) process!

• First we compute X by covering every array / pointer in B
not already covered by A; then we compute Y the same way:

A ∗ X

B ∗ Y

c1 a1 − 1

a1 b1

b1 + 1 d2 c3 a2 − 1

a2 b2

b2 + 1 d3

c1 d1

d1 + 1 c2 − 1

c2 d2 c3 d3

• We have to be a little careful about the pointer / array
distinction though.

13/ 19

From seeds to solutions

• A seed defines a total ordering of all array endpoints and
pointer addresses in A and B.

• Given this info, computing X and Y becomes a relatively
simple (PTIME) process!

• First we compute X by covering every array / pointer in B
not already covered by A; then we compute Y the same way:

A ∗ X

B ∗ Y

c1 a1 − 1

a1 b1

b1 + 1 d2 c3 a2 − 1

a2 b2

b2 + 1 d3

c1 d1

d1 + 1 c2 − 1

c2 d2 c3 d3

• We have to be a little careful about the pointer / array
distinction though.

13/ 19

From seeds to solutions

• A seed defines a total ordering of all array endpoints and
pointer addresses in A and B.

• Given this info, computing X and Y becomes a relatively
simple (PTIME) process!

• First we compute X by covering every array / pointer in B
not already covered by A; then we compute Y the same way:

A ∗ X

B ∗ Y

c1 a1 − 1

a1 b1

b1 + 1 d2 c3 a2 − 1

a2 b2

b2 + 1 d3

c1 d1

d1 + 1 c2 − 1

c2 d2 c3 d3

• We have to be a little careful about the pointer / array
distinction though.

13/ 19

From seeds to solutions

• A seed defines a total ordering of all array endpoints and
pointer addresses in A and B.

• Given this info, computing X and Y becomes a relatively
simple (PTIME) process!

• First we compute X by covering every array / pointer in B
not already covered by A; then we compute Y the same way:

A ∗ X

B ∗ Y

c1 a1 − 1

a1 b1

b1 + 1 d2 c3 a2 − 1

a2 b2

b2 + 1 d3

c1 d1

d1 + 1 c2 − 1

c2 d2 c3 d3

• We have to be a little careful about the pointer / array
distinction though.

13/ 19

Lower bounds and quantification

• Quantifier-free case is NP-hard, again by reduction from the
3-partition problem.

• When we disallow ∃ over R-values (∃y .x 7→ y) in B, the
problem is equivalent to the quantifier-free case.

• Otherwise, we get ΠP
2 -hardness by reduction from

2-round 3-colourability problem Given an undirected graph
G , decide whether every 3-colouring of the leaves can be
extended to a 3-colouring of G , such that no two adjacent
vertices have the same colour.

• (Given G , we define AG to encode a 3-colouring of the leaves,
and BG to encode a 3-colouring of G .)

14/ 19

Lower bounds and quantification

• Quantifier-free case is NP-hard, again by reduction from the
3-partition problem.

• When we disallow ∃ over R-values (∃y .x 7→ y) in B, the
problem is equivalent to the quantifier-free case.

• Otherwise, we get ΠP
2 -hardness by reduction from

2-round 3-colourability problem Given an undirected graph
G , decide whether every 3-colouring of the leaves can be
extended to a 3-colouring of G , such that no two adjacent
vertices have the same colour.

• (Given G , we define AG to encode a 3-colouring of the leaves,
and BG to encode a 3-colouring of G .)

14/ 19

Lower bounds and quantification

• Quantifier-free case is NP-hard, again by reduction from the
3-partition problem.

• When we disallow ∃ over R-values (∃y .x 7→ y) in B, the
problem is equivalent to the quantifier-free case.

• Otherwise, we get ΠP
2 -hardness by reduction from

2-round 3-colourability problem Given an undirected graph
G , decide whether every 3-colouring of the leaves can be
extended to a 3-colouring of G , such that no two adjacent
vertices have the same colour.

• (Given G , we define AG to encode a 3-colouring of the leaves,
and BG to encode a 3-colouring of G .)

14/ 19

Lower bounds and quantification

• Quantifier-free case is NP-hard, again by reduction from the
3-partition problem.

• When we disallow ∃ over R-values (∃y .x 7→ y) in B, the
problem is equivalent to the quantifier-free case.

• Otherwise, we get ΠP
2 -hardness by reduction from

2-round 3-colourability problem Given an undirected graph
G , decide whether every 3-colouring of the leaves can be
extended to a 3-colouring of G , such that no two adjacent
vertices have the same colour.

• (Given G , we define AG to encode a 3-colouring of the leaves,
and BG to encode a 3-colouring of G .)

14/ 19

Lower bounds and quantification

• Quantifier-free case is NP-hard, again by reduction from the
3-partition problem.

• When we disallow ∃ over R-values (∃y .x 7→ y) in B, the
problem is equivalent to the quantifier-free case.

• Otherwise, we get ΠP
2 -hardness by reduction from

2-round 3-colourability problem Given an undirected graph
G , decide whether every 3-colouring of the leaves can be
extended to a 3-colouring of G , such that no two adjacent
vertices have the same colour.

• (Given G , we define AG to encode a 3-colouring of the leaves,
and BG to encode a 3-colouring of G .)

14/ 19

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.

• Intuition: a stack s yields a countermodel for A |= B if A is
satisfiable under s and for every instantiation of existential
variables z, either:

1. B becomes unsatisfiable; or
2. some heap location is covered by an array or pointer in A, but

not by any array or pointer in B, or vice versa; or
3. the LHS of some pointer in B is covered by an array in A; or
4. some pointer in B is covered by a pointer in A, but their data

contents disagree.

• Thus we can encode existence of a countermodel as a Σ0
2

Presburger formula. Entailment becomes a Π0
2 formula.

• Due to item 3, we can’t allow ∃ over R-values in pointers.

15/ 19

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.

• Intuition: a stack s yields a countermodel for A |= B if A is
satisfiable under s and for every instantiation of existential
variables z, either:

1. B becomes unsatisfiable; or
2. some heap location is covered by an array or pointer in A, but

not by any array or pointer in B, or vice versa; or
3. the LHS of some pointer in B is covered by an array in A; or
4. some pointer in B is covered by a pointer in A, but their data

contents disagree.

• Thus we can encode existence of a countermodel as a Σ0
2

Presburger formula. Entailment becomes a Π0
2 formula.

• Due to item 3, we can’t allow ∃ over R-values in pointers.

15/ 19

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.

• Intuition: a stack s yields a countermodel for A |= B if A is
satisfiable under s and for every instantiation of existential
variables z, either:

1. B becomes unsatisfiable; or

2. some heap location is covered by an array or pointer in A, but
not by any array or pointer in B, or vice versa; or

3. the LHS of some pointer in B is covered by an array in A; or
4. some pointer in B is covered by a pointer in A, but their data

contents disagree.

• Thus we can encode existence of a countermodel as a Σ0
2

Presburger formula. Entailment becomes a Π0
2 formula.

• Due to item 3, we can’t allow ∃ over R-values in pointers.

15/ 19

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.

• Intuition: a stack s yields a countermodel for A |= B if A is
satisfiable under s and for every instantiation of existential
variables z, either:

1. B becomes unsatisfiable; or
2. some heap location is covered by an array or pointer in A, but

not by any array or pointer in B, or vice versa; or

3. the LHS of some pointer in B is covered by an array in A; or
4. some pointer in B is covered by a pointer in A, but their data

contents disagree.

• Thus we can encode existence of a countermodel as a Σ0
2

Presburger formula. Entailment becomes a Π0
2 formula.

• Due to item 3, we can’t allow ∃ over R-values in pointers.

15/ 19

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.

• Intuition: a stack s yields a countermodel for A |= B if A is
satisfiable under s and for every instantiation of existential
variables z, either:

1. B becomes unsatisfiable; or
2. some heap location is covered by an array or pointer in A, but

not by any array or pointer in B, or vice versa; or
3. the LHS of some pointer in B is covered by an array in A; or

4. some pointer in B is covered by a pointer in A, but their data
contents disagree.

• Thus we can encode existence of a countermodel as a Σ0
2

Presburger formula. Entailment becomes a Π0
2 formula.

• Due to item 3, we can’t allow ∃ over R-values in pointers.

15/ 19

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.

• Intuition: a stack s yields a countermodel for A |= B if A is
satisfiable under s and for every instantiation of existential
variables z, either:

1. B becomes unsatisfiable; or
2. some heap location is covered by an array or pointer in A, but

not by any array or pointer in B, or vice versa; or
3. the LHS of some pointer in B is covered by an array in A; or
4. some pointer in B is covered by a pointer in A, but their data

contents disagree.

• Thus we can encode existence of a countermodel as a Σ0
2

Presburger formula. Entailment becomes a Π0
2 formula.

• Due to item 3, we can’t allow ∃ over R-values in pointers.

15/ 19

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.

• Intuition: a stack s yields a countermodel for A |= B if A is
satisfiable under s and for every instantiation of existential
variables z, either:

1. B becomes unsatisfiable; or
2. some heap location is covered by an array or pointer in A, but

not by any array or pointer in B, or vice versa; or
3. the LHS of some pointer in B is covered by an array in A; or
4. some pointer in B is covered by a pointer in A, but their data

contents disagree.

• Thus we can encode existence of a countermodel as a Σ0
2

Presburger formula. Entailment becomes a Π0
2 formula.

• Due to item 3, we can’t allow ∃ over R-values in pointers.

15/ 19

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.

• Intuition: a stack s yields a countermodel for A |= B if A is
satisfiable under s and for every instantiation of existential
variables z, either:

1. B becomes unsatisfiable; or
2. some heap location is covered by an array or pointer in A, but

not by any array or pointer in B, or vice versa; or
3. the LHS of some pointer in B is covered by an array in A; or
4. some pointer in B is covered by a pointer in A, but their data

contents disagree.

• Thus we can encode existence of a countermodel as a Σ0
2

Presburger formula. Entailment becomes a Π0
2 formula.

• Due to item 3, we can’t allow ∃ over R-values in pointers.
15/ 19

Entailment, lower bound

• We get ΠP
2 -hardness of entailment, even for restricted ∃

quantifiers, by reduction from the previous colourability
problem.

• Let’s not go into the details!

• This gives a gap in our complexity bounds for entailment:
• lower bound of ΠP

2 ;

• upper bound of ΠEXP
1 in the exponential-time hierarchy.

• I suspect the upper bound is closer to the “true complexity”.

16/ 19

Entailment, lower bound

• We get ΠP
2 -hardness of entailment, even for restricted ∃

quantifiers, by reduction from the previous colourability
problem.

• Let’s not go into the details!

• This gives a gap in our complexity bounds for entailment:
• lower bound of ΠP

2 ;

• upper bound of ΠEXP
1 in the exponential-time hierarchy.

• I suspect the upper bound is closer to the “true complexity”.

16/ 19

Entailment, lower bound

• We get ΠP
2 -hardness of entailment, even for restricted ∃

quantifiers, by reduction from the previous colourability
problem.

• Let’s not go into the details!

• This gives a gap in our complexity bounds for entailment:

• lower bound of ΠP
2 ;

• upper bound of ΠEXP
1 in the exponential-time hierarchy.

• I suspect the upper bound is closer to the “true complexity”.

16/ 19

Entailment, lower bound

• We get ΠP
2 -hardness of entailment, even for restricted ∃

quantifiers, by reduction from the previous colourability
problem.

• Let’s not go into the details!

• This gives a gap in our complexity bounds for entailment:
• lower bound of ΠP

2 ;

• upper bound of ΠEXP
1 in the exponential-time hierarchy.

• I suspect the upper bound is closer to the “true complexity”.

16/ 19

Entailment, lower bound

• We get ΠP
2 -hardness of entailment, even for restricted ∃

quantifiers, by reduction from the previous colourability
problem.

• Let’s not go into the details!

• This gives a gap in our complexity bounds for entailment:
• lower bound of ΠP

2 ;

• upper bound of ΠEXP
1 in the exponential-time hierarchy.

• I suspect the upper bound is closer to the “true complexity”.

16/ 19

Entailment, lower bound

• We get ΠP
2 -hardness of entailment, even for restricted ∃

quantifiers, by reduction from the previous colourability
problem.

• Let’s not go into the details!

• This gives a gap in our complexity bounds for entailment:
• lower bound of ΠP

2 ;

• upper bound of ΠEXP
1 in the exponential-time hierarchy.

• I suspect the upper bound is closer to the “true complexity”.

16/ 19

Future work

• Obvious thing to do: implement a prototype INFER-style
analysis for array programs.

• Our biabduction algorithm could be improved:
• commit to as little ordering as possible;
• find heuristics for improving solution quality.

• One could also try to do biabduction proof-theoretically.

• Another essential program analysis component is abstraction
heuristics for finding invariants, etc.

• Extension of ASL with more expressive features (e.g. combine
with list segments?).

17/ 19

Future work

• Obvious thing to do: implement a prototype INFER-style
analysis for array programs.

• Our biabduction algorithm could be improved:

• commit to as little ordering as possible;
• find heuristics for improving solution quality.

• One could also try to do biabduction proof-theoretically.

• Another essential program analysis component is abstraction
heuristics for finding invariants, etc.

• Extension of ASL with more expressive features (e.g. combine
with list segments?).

17/ 19

Future work

• Obvious thing to do: implement a prototype INFER-style
analysis for array programs.

• Our biabduction algorithm could be improved:
• commit to as little ordering as possible;

• find heuristics for improving solution quality.

• One could also try to do biabduction proof-theoretically.

• Another essential program analysis component is abstraction
heuristics for finding invariants, etc.

• Extension of ASL with more expressive features (e.g. combine
with list segments?).

17/ 19

Future work

• Obvious thing to do: implement a prototype INFER-style
analysis for array programs.

• Our biabduction algorithm could be improved:
• commit to as little ordering as possible;
• find heuristics for improving solution quality.

• One could also try to do biabduction proof-theoretically.

• Another essential program analysis component is abstraction
heuristics for finding invariants, etc.

• Extension of ASL with more expressive features (e.g. combine
with list segments?).

17/ 19

Future work

• Obvious thing to do: implement a prototype INFER-style
analysis for array programs.

• Our biabduction algorithm could be improved:
• commit to as little ordering as possible;
• find heuristics for improving solution quality.

• One could also try to do biabduction proof-theoretically.

• Another essential program analysis component is abstraction
heuristics for finding invariants, etc.

• Extension of ASL with more expressive features (e.g. combine
with list segments?).

17/ 19

Future work

• Obvious thing to do: implement a prototype INFER-style
analysis for array programs.

• Our biabduction algorithm could be improved:
• commit to as little ordering as possible;
• find heuristics for improving solution quality.

• One could also try to do biabduction proof-theoretically.

• Another essential program analysis component is abstraction
heuristics for finding invariants, etc.

• Extension of ASL with more expressive features (e.g. combine
with list segments?).

17/ 19

Future work

• Obvious thing to do: implement a prototype INFER-style
analysis for array programs.

• Our biabduction algorithm could be improved:
• commit to as little ordering as possible;
• find heuristics for improving solution quality.

• One could also try to do biabduction proof-theoretically.

• Another essential program analysis component is abstraction
heuristics for finding invariants, etc.

• Extension of ASL with more expressive features (e.g. combine
with list segments?).

17/ 19

Conclusions

• We propose ASL, a version of symbolic-heap separation logic
for arrays.

• Biabduction is the most critical step in inferring specifications
of whole programs.

• We give a sound, complete biabduction algorithm that runs in
NP-time.

• Indeed, biabduction is NP-complete, climbing higher when ∃
quantifiers are added.

• We also establish decision procedures and complexity bounds
for satisfiability and entailment.

18/ 19

Conclusions

• We propose ASL, a version of symbolic-heap separation logic
for arrays.

• Biabduction is the most critical step in inferring specifications
of whole programs.

• We give a sound, complete biabduction algorithm that runs in
NP-time.

• Indeed, biabduction is NP-complete, climbing higher when ∃
quantifiers are added.

• We also establish decision procedures and complexity bounds
for satisfiability and entailment.

18/ 19

Conclusions

• We propose ASL, a version of symbolic-heap separation logic
for arrays.

• Biabduction is the most critical step in inferring specifications
of whole programs.

• We give a sound, complete biabduction algorithm that runs in
NP-time.

• Indeed, biabduction is NP-complete, climbing higher when ∃
quantifiers are added.

• We also establish decision procedures and complexity bounds
for satisfiability and entailment.

18/ 19

Conclusions

• We propose ASL, a version of symbolic-heap separation logic
for arrays.

• Biabduction is the most critical step in inferring specifications
of whole programs.

• We give a sound, complete biabduction algorithm that runs in
NP-time.

• Indeed, biabduction is NP-complete, climbing higher when ∃
quantifiers are added.

• We also establish decision procedures and complexity bounds
for satisfiability and entailment.

18/ 19

Conclusions

• We propose ASL, a version of symbolic-heap separation logic
for arrays.

• Biabduction is the most critical step in inferring specifications
of whole programs.

• We give a sound, complete biabduction algorithm that runs in
NP-time.

• Indeed, biabduction is NP-complete, climbing higher when ∃
quantifiers are added.

• We also establish decision procedures and complexity bounds
for satisfiability and entailment.

18/ 19

Thanks for listening!

Paper available on arXiv:

arXiv:1607.01993

19/ 19

