Biabduction (and Related Problems)
in Array Separation Logic

2

James Brotherston! Nikos Gorogiannis Max Kanovich?

tucL

2Middlesex University

University of Vienna, 14 Mar 2017

1/ 19

Compositional proofs in separation logic (1)

e Separation logic is based on Hoare triples {A} C {B}, where
C is a program and A, B are formulas.

2/ 19

Compositional proofs in separation logic (1)

e Separation logic is based on Hoare triples {A} C {B}, where
C is a program and A, B are formulas.

e Its compositional nature, the key to scalable analysis, is
supported by two main pillars.

2/ 19

Compositional proofs in separation logic (1)

e Separation logic is based on Hoare triples {A} C {B}, where
C is a program and A, B are formulas.

e Its compositional nature, the key to scalable analysis, is
supported by two main pillars.

e The first pillar is the soundness of the following frame rule:

{A} C{B}
{AxF}C{BxF}

(Frame)

where the separating conjunction x is read, intuitively, as “and
separately in memory”.

2/ 19

Compositional proofs in separation logic (2)

e The second pillar is given by solving the biabduction problem:

3/ 19

Compositional proofs in separation logic (2)

e The second pillar is given by solving the biabduction problem:
given formulas A and B, find formulas X, Y with

Ax X EBxY , and Ax X is satisfiable.

3/ 19

Compositional proofs in separation logic (2)

e The second pillar is given by solving the biabduction problem:
given formulas A and B, find formulas X, Y with

Ax X EBxY , and Ax X is satisfiable.

e Then, if we have {A'} C; {A} and {B} G, {B'}, we can infer a
spec for Cy; Go:

3/ 19

Compositional proofs in separation logic (2)

e The second pillar is given by solving the biabduction problem:
given formulas A and B, find formulas X, Y with

Ax X EBxY , and Ax X is satisfiable.

e Then, if we have {A'} C; {A} and {B} G, {B'}, we can infer a
spec for Cy; Go:

AT G A (Frame)
{A* X} G {A* X} {B} G{B'} (Frame)

{Ax X} G {B=*Y} {BxY}G{B' Y} .
(A« X} C: G{B + Y} ’

3/ 19

Symbolic-heap separation logic

e Terms t, pure formulas 1 and spatial formulas F given by:

t == x & Var|nil
M o= t=t|t#t|NAIN
F = emp|t—t]|ls(t,t)|FxF

4/ 19

Symbolic-heap separation logic

e Terms t, pure formulas 1 and spatial formulas F given by:

t == x & Var|nil
M o= t=t|t#t|NAIN
F = emp|t—t]|ls(t,t)|FxF

e t; — tp (“points-to”) denotes a pointer in the heap.

4/ 19

Symbolic-heap separation logic

e Terms t, pure formulas 1 and spatial formulas F given by:

t == x & Var|nil
M o= t=t|t#t|NAIN
F = emp|t—t]|ls(t,t)|FxF

e t; — tp (“points-to”) denotes a pointer in the heap.
e Is(t1, tp) denotes a linked list segment in the heap.

4/ 19

Symbolic-heap separation logic

Terms t, pure formulas I1 and spatial formulas F given by:

t == x & Var|nil
M o= t=t|t#t|NAIN
F = emp|t—t]|ls(t,t)|FxF

t1 — tp (“points-to”) denotes a pointer in the heap.
Is(t1, t2) denotes a linked list segment in the heap.

 (“and separately”) demarks domain-disjoint heaps.

4/ 19

Symbolic-heap separation logic

Terms t, pure formulas I1 and spatial formulas F given by:

t == x & Var|nil
M o= t=t|t#t|NAIN
F = emp|t—t]|ls(t,t)|FxF

t1 — tp (“points-to”) denotes a pointer in the heap.
Is(t1, t2) denotes a linked list segment in the heap.
 (“and separately”) demarks domain-disjoint heaps.
Symbolic heaps given by 3x. I1: F.

4/ 19

Array separation logic, ASL

e Here we focus on a different data structure, namely arrays.

5/ 19

Array separation logic, ASL

e Here we focus on a different data structure, namely arrays.

e Terms t, pure formulas I1 and spatial formulas F given by:

t = xeVar|neN|t+t
N = t=t|tAt|t<t|t<t|NADN
F == emp|tw t]array(t,t)| FxF

5/ 19

Array separation logic, ASL

e Here we focus on a different data structure, namely arrays.

e Terms t, pure formulas I1 and spatial formulas F given by:

t = xeVar|neN|t+t
N = t=t|tAt|t<t|t<t|NADN
F == emp|tw t]array(t,t)| FxF

e array(ti, t2) denotes an array from t; to tp (inclusive):
th—t1+1

LT

51 to

5/ 19

Array separation logic, ASL

e Here we focus on a different data structure, namely arrays.

e Terms t, pure formulas I1 and spatial formulas F given by:

t = xeVar|neN|t+t
N = t=t|tAt|t<t|t<t|NADN
F == emp|tw t]array(t,t)| FxF

e array(ti, t2) denotes an array from t; to tp (inclusive):
th—t1+1

LT

51 to

e We also allow linear arithmetic in the pure part.

5/ 19

Semantics of ASL

e Stacks are s : Var — Val; heaps are h: Loc —g, Val; o is
union of domain-disjoint heaps; e is the empty heap.

6/ 19

Semantics of ASL

e Stacks are s : Var — Val; heaps are h: Loc —g, Val; o is
union of domain-disjoint heaps; e is the empty heap.

e Forcing relation s, h = A given by

shEti~t & s(t)~s(t) (~e{=+#<75<})
s,hEMi AN, & s,hi=Npand s, h=M,

6/ 19

Semantics of ASL

e Stacks are s : Var — Val; heaps are h: Loc —g, Val; o is
union of domain-disjoint heaps; e is the empty heap.

e Forcing relation s, h = A given by

s,shEt~t & s(t)~s(t) (~e{=#<<})
s,hiENL AN, & s,hiENand s, h =1,
s,hiEemp < h=e
s,shiEti—t < dom(h) = {s(t1)} and h(s(t1)) = s(t2)

6/ 19

Semantics of ASL

e Stacks are s : Var — Val; heaps are h: Loc —g, Val; o is
union of domain-disjoint heaps; e is the empty heap.

e Forcing relation s, h = A given by

sshiEt~t s(t) ~s(t) (~€{=#<<})
s,hiETL AL s,h =Ny and s, h =1,
s,h |=emp h=e

s,hEt— b
s, h |= array(ti, t)

dom(h) = {s(t1)} and h(s(t1)) = s(t2)
s(t1) < s(t2) and dom(h) = {s(t1),...,s(t2)}

toeo e

6/ 19

Semantics of ASL

e Stacks are s : Var — Val; heaps are h: Loc —g, Val; o is
union of domain-disjoint heaps; e is the empty heap.

e Forcing relation s, h = A given by

s,hEt ~t

s, hiEM AL
s,h = emp
s,hEt— b
s, h |= array(ti, t)
s,hi= FLxF

tsoo e

s(t) ~s(k) (~e{=#<<})

s,h =i and s,h =1,

h=e

dom(h) = {s(t1)} and h(s(t1)) = s(t2)

s(t1) < s(t2) and dom(h) = {s(t1),...,s(t2)}
h=hiohyand s,hi |EFiand s, = F>

6/ 19

Semantics of ASL

e Stacks are s : Var — Val; heaps are h: Loc —g, Val; o is
union of domain-disjoint heaps; e is the empty heap.

e Forcing relation s, h = A given by

s,hEt ~t

s, hiEM AL
s,h = emp
s,hEt— b
s, h |= array(ti, t)
s,hi= FLxF
s,hi=3z.N:F

tsoo e

s(ti) ~s(k2) (~e{=#<<})

s,h =i and s,h =1,

h=e

dom(h) = {s(t1)} and h(s(t1)) = s(t2)

s(t1) < s(t2) and dom(h) = {s(t1),...,s(t2)}
h=hiohyand s,hi |EFiand s, = F>
Iv.slz—v],hENand slz—v],h EF

6/ 19

Motiwwating example
Suppose we have procedure foo with spec

{array(c, d)} foo(c,d) {Q}

7/ 19

Motiwwating example
Suppose we have procedure foo with spec

{array(c, d)} foo(c,d) {Q}

Now, consider code C; foo(c,d);..., with spec for C

{emp} C{array(a, b)}

7/ 19

Motiwwating example
Suppose we have procedure foo with spec

{array(c, d)} foo(c,d) {Q}
Now, consider code C; foo(c,d);..., with spec for C
{emp} C{array(a, b)}
By solving the biabduction problem
array(a, b) x X |= array(c,d) x Y
we get a valid spec {X} C; foo(c,d){Q * Y}.

7/ 19

Motiwwating example
Suppose we have procedure foo with spec
{array(c, d)} foo(c,d) {Q}
Now, consider code C; foo(c,d);..., with spec for C
{emp} C{array(a, b)}
By solving the biabduction problem
array(a, b) x X |= array(c,d) x Y

we get a valid spec {X} C; foo(c,d){Q * Y}.

Spatially minimal, and incomparable, solutions include:
X:=a=cAb=d:emp and Y :=emp
X :=d < a:array(c,d) and Y :=array(a,b)
X:=a<cAb<d:emp and Y :=array(a,c—1)xarray(b+1,d)
X =a<c<b<d:array(b+1,d) and Y :=array(a,c—1)

7/ 19

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if
there is a stack s and heap h with s, h = A.

8/ 19

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if
there is a stack s and heap h with s, h = A.

e Write Aas 1: *7:1 array(aj, b;) * *ﬁ(:l ti — u;.

8/ 19

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if
there is a stack s and heap h with s, h = A.

e Write Aas 1: *7:1 array(aj, b;) * *ﬁ(:l ti — u;.

e Observe A is satisfiable iff there is stack s such that
e s =11, and

8/ 19

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if
there is a stack s and heap h with s, h = A.

e Write Aas 1: *7:1 array(aj, b;) * *ﬁ(:l ti — u;.

e Observe A is satisfiable iff there is stack s such that
e s =11, and
e each array is well-defined (s(a;) < s(b;)), and

8/ 19

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if
there is a stack s and heap h with s, h = A.

e Write Aas 1: *7:1 array(aj, b;) * *ﬁ(:l ti — u;.

e Observe A is satisfiable iff there is stack s such that
e s =11, and
e each array is well-defined (s(a;) < s(b;)), and

e all pointers and arrays are mutually non-overlapping

((s(b1) < s(a2) V s(a1) > s(b2)) A...).

8/ 19

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if
there is a stack s and heap h with s, h = A.

e Write Aas 1: *7:1 array(aj, b;) * *ﬁ(:l ti — u;.

e Observe A is satisfiable iff there is stack s such that
e s=11, and
e each array is well-defined (s(a;) < s(b;)), and
e all pointers and arrays are mutually non-overlapping

((s(b1) < s(a2) V s(a1) > s(b2)) A...).

e We can code this up as a formula y(A) in 9 Presburger
arithmetic.

8/ 19

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if
there is a stack s and heap h with s, h = A.

e Write Aas 1: *7:1 array(aj, b;) * *ﬁ(:l ti — u;.

e Observe A is satisfiable iff there is stack s such that
e s =11, and
e each array is well-defined (s(a;) < s(b;)), and
e all pointers and arrays are mutually non-overlapping

((s(b1) < s(a2) V s(a1) > s(b2)) A...).

e We can code this up as a formula y(A) in 9 Presburger
arithmetic.

e Thus the problem is in NP.

8/ 19

Satisfiability, lower bound

e NP-hardness follows by reduction from

9/ 19

Satisfiability, lower bound

e NP-hardness follows by reduction from

3-partition problem. Given B € N and a sequence of natural
numbers S = (ki, ko, ..., ksm) with 3™ kj = mB and

B/4 < ki < B/2 for all j € [1,3m], decide whether there is a
complete 3-partition of § s.t. each partition sums to B.

9/ 19

Satisfiability, lower bound

e NP-hardness follows by reduction from

3-partition problem. Given B € N and a sequence of natural
numbers S = (ki, ko, ..., ksm) with 3™ kj = mB and

B/4 < ki < B/2 for all j € [1,3m], decide whether there is a
complete 3-partition of § s.t. each partition sums to B.

e We can encode an instance (B, S) as a symbolic heap in ASL.

9/ 19

Satisfiability, lower bound

e NP-hardness follows by reduction from

3-partition problem. Given B € N and a sequence of natural
numbers S = (ki, ko, ..., ksm) with 3™ kj = mB and

B/4 < ki < B/2 for all j € [1,3m], decide whether there is a
complete 3-partition of § s.t. each partition sums to B.

e We can encode an instance (B, S) as a symbolic heap in ASL.

e Roughly, the idea is that we have m + 1 “delimiters” d; at
intervals of B cells, and 3m arrays of length k;.

9/ 19

Satisfiability, lower bound

e NP-hardness follows by reduction from

3-partition problem. Given B € N and a sequence of natural
numbers S = (ki, ko, ..., ksm) with 3™ kj = mB and

B/4 < ki < B/2 for all j € [1,3m], decide whether there is a
complete 3-partition of § s.t. each partition sums to B.

e We can encode an instance (B, S) as a symbolic heap in ASL.

e Roughly, the idea is that we have m + 1 “delimiters” d; at
intervals of B cells, and 3m arrays of length k;. We can fit all
the arrays between the dj iff there is a 3-partition:

T L L)

ki 1 9/ 19 ki 2 ki 3

Biabduction
Biabduction problem for ASL. Given satisfiable symbolic heaps

A and B, find symbolic heaps X and Y such that Ax X is
satisfiable and Ax X = B x Y.

10/ 19

Biabduction
Biabduction problem for ASL. Given satisfiable symbolic heaps

A and B, find symbolic heaps X and Y such that Ax X is
satisfiable and Ax X = B x Y.

e We concentrate on the quantifier-free case.

10/ 19

Biabduction

Biabduction problem for ASL. Given satisfiable symbolic heaps
A and B, find symbolic heaps X and Y such that Ax X is
satisfiable and Ax X = B x Y.

e We concentrate on the quantifier-free case.

e Our approach, diagrammatically, is as follows:

10/ 19

Biabduction

Biabduction problem for ASL. Given satisfiable symbolic heaps
A and B, find symbolic heaps X and Y such that Ax X is
satisfiable and Ax X = B x Y.

e We concentrate on the quantifier-free case.

e Our approach, diagrammatically, is as follows:

existence of biabduction
solution for (A, B)

[)

satisfiability existence of solu-
of B(A, B) tion seed for (A, B)

_/‘

10/ 19

The formula 5(A, B)

e Let (A, B) be an instance of the biabduction problem, where

A=T1: *7:1 array(aj, b;) * *fle ti = uj

B=1n: >|<I”;1 array(c;, d;) * *I‘le Vi = Wi

11/ 19

The formula 5(A, B)

e Let (A, B) be an instance of the biabduction problem, where
A=T1: *7:1 array(aj, b;) * *fle ti = uj
B=1n: >|<I”;1 array(c;, d;) * *I‘le Vi = Wi

e For a solution to exist, we need to know that
e A and B are simultaneously satisfiable; and

11/ 19

The formula 5(A, B)

e Let (A, B) be an instance of the biabduction problem, where
A=T1: *7:1 array(aj, b;) * *fle ti = uj
B=1n: >|<I”;1 array(c;, d;) * *I‘le Vi = Wi

e For a solution to exist, we need to know that
e A and B are simultaneously satisfiable; and

e pointers v; — w; in B are either covered by pointers t; — u; in
A with the right data value (t; = v; A uj = wj), or else not
covered by anything in A.

11/ 19

The formula 5(A, B)

e Let (A, B) be an instance of the biabduction problem, where
A=T1: *7:1 array(aj, b;) * *fle ti = uj
B=1n: >|<I”;1 array(c;, d;) * *le Vi = Wi

e For a solution to exist, we need to know that
e A and B are simultaneously satisfiable; and

e pointers v; — w; in B are either covered by pointers t; — u; in
A with the right data value (t; = v; A uj = wj), or else not
covered by anything in A.

e This can be coded up as a Presburger formula (A, B), using
the v(—) encoding of satisfiability.

11/ 19

Solution seeds

e Write T g for the set of all terms in A and B. A solution

seed for (A, B) is a pure formula A = A, é; such that:

12/ 19

Solution seeds

e Write T g for the set of all terms in A and B. A solution
seed for (A, B) is a pure formula A = .., d; such that:

1. A is satisfiable, and A = 3(A, B);

i€l

12/ 19

Solution seeds

e Write T g for the set of all terms in A and B. A solution
seed for (A, B) is a pure formula A = .., d; such that:

1. A is satisfiable, and A = 3(A, B);
2. each ¢; is of the form (t < u) or (t = u), where t,u € Tap;

i€l

12/ 19

Solution seeds

e Write T g for the set of all terms in A and B. A solution
seed for (A, B) is a pure formula A = .., d; such that:

1. A is satisfiable, and A = 3(A, B);
2. each ¢; is of the form (t < u) or (t = u), where t,u € Tap;

i€l

3. all terms in T4 g are ordered by a conjunct of A.

12/ 19

Solution seeds

e Write T g for the set of all terms in A and B. A solution
seed for (A, B) is a pure formula A = .., d; such that:

1. A is satisfiable, and A = 3(A, B);

2. each ¢; is of the form (t < u) or (t = u), where t,u € Tap;

i€l

3. all terms in T4 g are ordered by a conjunct of A.

e That is, solution seeds enforce a total ordering on T4 g,
including all array bounds and pointer addresses.

12/ 19

Solution seeds

e Write T g for the set of all terms in A and B. A solution
seed for (A, B) is a pure formula A = .., d; such that:

1. A is satisfiable, and A = 3(A, B);
2. each ¢; is of the form (t < u) or (t = u), where t,u € Tap;

i€l

3. all terms in T4 g are ordered by a conjunct of A.

e That is, solution seeds enforce a total ordering on T4 g,
including all array bounds and pointer addresses.

e It is fairly straightforward to show
e 3 biabduction soln. for (A, B) = B(A, B) is satisfiable;

12/ 19

Solution seeds

e Write T g for the set of all terms in A and B. A solution
seed for (A, B) is a pure formula A = .., d; such that:

1. A is satisfiable, and A = 3(A, B);
2. each ¢; is of the form (t < u) or (t = u), where t,u € Tap;

i€l

3. all terms in T4 g are ordered by a conjunct of A.

e That is, solution seeds enforce a total ordering on T4 g,
including all array bounds and pointer addresses.

e It is fairly straightforward to show
e 3 biabduction soln. for (A, B) = B(A, B) is satisfiable;

o ((A, B) is satisfiable = 3 solution seed for (A, B).

12/ 19

From seeds to solutions

e A seed defines a total ordering of all array endpoints and
pointer addresses in A and B.

13/ 19

From seeds to solutions

e A seed defines a total ordering of all array endpoints and
pointer addresses in A and B.

e Given this info, computing X and Y becomes a relatively
simple (PTIME) process!

13/ 19

From seeds to solutions

e A seed defines a total ordering of all array endpoints and
pointer addresses in A and B.

e Given this info, computing X and Y becomes a relatively
simple (PTIME) process!

e First we compute X by covering every array / pointer in B
not already covered by A; then we compute Y the same way:

13/ 19

From seeds to solutions

e A seed defines a total ordering of all array endpoints and
pointer addresses in A and B.

e Given this info, computing X and Y becomes a relatively
simple (PTIME) process!

e First we compute X by covering every array / pointer in B
not already covered by A; then we compute Y the same way:

13/ 19

From seeds to solutions

A seed defines a total ordering of all array endpoints and
pointer addresses in A and B.

Given this info, computing X and Y becomes a relatively
simple (PTIME) process!

First we compute X by covering every array / pointer in B
not already covered by A; then we compute Y the same way:

We have to be a little careful about the pointer / array
distinction though.

13/ 19

Lower bounds and quantification

e Quantifier-free case is NP-hard, again by reduction from the
3-partition problem.

14/ 19

Lower bounds and quantification

e Quantifier-free case is NP-hard, again by reduction from the
3-partition problem.

e When we disallow 3 over R-values (3y.x — y) in B, the
problem is equivalent to the quantifier-free case.

14/ 19

Lower bounds and quantification

e Quantifier-free case is NP-hard, again by reduction from the
3-partition problem.

e When we disallow 3 over R-values (3y.x — y) in B, the
problem is equivalent to the quantifier-free case.

e Otherwise, we get M%-hardness by reduction from

14/ 19

Lower bounds and quantification

e Quantifier-free case is NP-hard, again by reduction from the
3-partition problem.

e When we disallow 3 over R-values (3y.x — y) in B, the
problem is equivalent to the quantifier-free case.

e Otherwise, we get M%-hardness by reduction from

2-round 3-colourability problem Given an undirected graph
G, decide whether every 3-colouring of the leaves can be
extended to a 3-colouring of G, such that no two adjacent
vertices have the same colour.

14/ 19

Lower bounds and quantification

Quantifier-free case is NP-hard, again by reduction from the
3-partition problem.

When we disallow 3 over R-values (Jy.x — y) in B, the
problem is equivalent to the quantifier-free case.

Otherwise, we get M5 -hardness by reduction from

2-round 3-colourability problem Given an undirected graph
G, decide whether every 3-colouring of the leaves can be
extended to a 3-colouring of G, such that no two adjacent
vertices have the same colour.

(Given G, we define Ag to encode a 3-colouring of the leaves,
and Bg to encode a 3-colouring of G.)

14/ 19

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.

15/ 19

Entailment, upper bound
Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.

e Intuition: a stack s yields a countermodel for A |= B if A'is
satisfiable under s and for every instantiation of existential
variables z, either:

15/ 19

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.

e Intuition: a stack s yields a countermodel for A |= B if A'is
satisfiable under s and for every instantiation of existential
variables z, either:

1. B becomes unsatisfiable; or

15/ 19

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.

e Intuition: a stack s yields a countermodel for A |= B if A'is
satisfiable under s and for every instantiation of existential
variables z, either:

1. B becomes unsatisfiable; or
2. some heap location is covered by an array or pointer in A, but
not by any array or pointer in B, or vice versa; or

15/ 19

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.
e Intuition: a stack s yields a countermodel for A |= B if A'is
satisfiable under s and for every instantiation of existential

variables z, either:

1. B becomes unsatisfiable; or

2. some heap location is covered by an array or pointer in A, but
not by any array or pointer in B, or vice versa; or

3. the LHS of some pointer in B is covered by an array in A; or

15/ 19

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.

e Intuition: a stack s yields a countermodel for A |= B if A'is
satisfiable under s and for every instantiation of existential
variables z, either:

1. B becomes unsatisfiable; or

2. some heap location is covered by an array or pointer in A, but
not by any array or pointer in B, or vice versa; or

3. the LHS of some pointer in B is covered by an array in A; or

4. some pointer in B is covered by a pointer in A, but their data
contents disagree.

15/ 19

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.

e Intuition: a stack s yields a countermodel for A |= B if A'is
satisfiable under s and for every instantiation of existential
variables z, either:

1. B becomes unsatisfiable; or

2. some heap location is covered by an array or pointer in A, but
not by any array or pointer in B, or vice versa; or

3. the LHS of some pointer in B is covered by an array in A; or

4. some pointer in B is covered by a pointer in A, but their data
contents disagree.

e Thus we can encode existence of a countermodel as a ¥9
Presburger formula. Entailment becomes a M3 formula.

15/ 19

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.

e Intuition: a stack s yields a countermodel for A |= B if A'is
satisfiable under s and for every instantiation of existential
variables z, either:

1. B becomes unsatisfiable; or

2. some heap location is covered by an array or pointer in A, but
not by any array or pointer in B, or vice versa; or

3. the LHS of some pointer in B is covered by an array in A; or

4. some pointer in B is covered by a pointer in A, but their data
contents disagree.

e Thus we can encode existence of a countermodel as a ¥9
Presburger formula. Entailment becomes a M3 formula.

e Due to item 3, we can't allow 3 over R-values in pointers.

15/ 19

Entailment, lower bound

o We get I'Ig—hardness of entailment, even for restricted 3
quantifiers, by reduction from the previous colourability
problem.

16/ 19

Entailment, lower bound

o We get I'Ig—hardness of entailment, even for restricted 3

quantifiers, by reduction from the previous colourability
problem.

e Let's not go into the details!

16/ 19

Entailment, lower bound

o We get I'Ig—hardness of entailment, even for restricted 3

quantifiers, by reduction from the previous colourability
problem.

e Let's not go into the details!

e This gives a gap in our complexity bounds for entailment:

16/ 19

Entailment, lower bound

o We get I'Ig—hardness of entailment, even for restricted 3

quantifiers, by reduction from the previous colourability
problem.

e Let's not go into the details!

e This gives a gap in our complexity bounds for entailment:
e |lower bound of I'If;

16/ 19

Entailment, lower bound

o We get I'Ig—hardness of entailment, even for restricted 3

quantifiers, by reduction from the previous colourability
problem.

e Let's not go into the details!

e This gives a gap in our complexity bounds for entailment:
e |lower bound of I'If;

e upper bound of ME*F in the exponential-time hierarchy.

16/ 19

Entailment, lower bound

We get I'Ig—hardness of entailment, even for restricted 3
quantifiers, by reduction from the previous colourability
problem.

Let's not go into the details!

This gives a gap in our complexity bounds for entailment:
e |lower bound of I'If;

e upper bound of ME*F in the exponential-time hierarchy.

| suspect the upper bound is closer to the “true complexity”.

16/ 19

Future work

e Obvious thing to do: implement a prototype INFER-style
analysis for array programs.

17/ 19

Future work

e Obvious thing to do: implement a prototype INFER-style
analysis for array programs.

e Our biabduction algorithm could be improved:

17/ 19

Future work

e Obvious thing to do: implement a prototype INFER-style
analysis for array programs.

e Our biabduction algorithm could be improved:
e commit to as little ordering as possible;

17/ 19

Future work

e Obvious thing to do: implement a prototype INFER-style
analysis for array programs.

e Our biabduction algorithm could be improved:

e commit to as little ordering as possible;
o find heuristics for improving solution quality.

17/ 19

Future work

e Obvious thing to do: implement a prototype INFER-style
analysis for array programs.

e Our biabduction algorithm could be improved:

e commit to as little ordering as possible;
o find heuristics for improving solution quality.

e One could also try to do biabduction proof-theoretically.

17/ 19

Future work

Obvious thing to do: implement a prototype INFER-style
analysis for array programs.

Our biabduction algorithm could be improved:

e commit to as little ordering as possible;
o find heuristics for improving solution quality.

One could also try to do biabduction proof-theoretically.

Another essential program analysis component is abstraction
heuristics for finding invariants, etc.

17/ 19

Future work

Obvious thing to do: implement a prototype INFER-style
analysis for array programs.

Our biabduction algorithm could be improved:

e commit to as little ordering as possible;
o find heuristics for improving solution quality.

One could also try to do biabduction proof-theoretically.

Another essential program analysis component is abstraction
heuristics for finding invariants, etc.

Extension of ASL with more expressive features (e.g. combine
with list segments?).

17/ 19

Conclusions

e We propose ASL, a version of symbolic-heap separation logic
for arrays.

18/ 19

Conclusions

e We propose ASL, a version of symbolic-heap separation logic
for arrays.

e Biabduction is the most critical step in inferring specifications
of whole programs.

18/ 19

Conclusions

e We propose ASL, a version of symbolic-heap separation logic
for arrays.

e Biabduction is the most critical step in inferring specifications
of whole programs.

e We give a sound, complete biabduction algorithm that runs in
NP-time.

18/ 19

Conclusions

We propose ASL, a version of symbolic-heap separation logic
for arrays.

Biabduction is the most critical step in inferring specifications
of whole programs.

We give a sound, complete biabduction algorithm that runs in
NP-time.

Indeed, biabduction is NP-complete, climbing higher when 3
quantifiers are added.

18/ 19

Conclusions

We propose ASL, a version of symbolic-heap separation logic
for arrays.

Biabduction is the most critical step in inferring specifications
of whole programs.

We give a sound, complete biabduction algorithm that runs in
NP-time.

Indeed, biabduction is NP-complete, climbing higher when 3
quantifiers are added.

We also establish decision procedures and complexity bounds
for satisfiability and entailment.

18/ 19

Thanks for listening!

Paper available on arXiv:

arXiv:1607.01993

19/ 19

