$$
\begin{gathered}
\text { Biabduction (and Related Problems) } \\
\text { in Array Separation Logic }
\end{gathered}
$$

University of Vienna, 14 Mar 2017

Compositional proofs in separation logic (1)

- Separation logic is based on Hoare triples $\{A\} C\{B\}$, where C is a program and A, B are formulas.

Compositional proofs in separation logic (1)

- Separation logic is based on Hoare triples $\{A\} C\{B\}$, where C is a program and A, B are formulas.
- Its compositional nature, the key to scalable analysis, is supported by two main pillars.

Compositional proofs in separation logic (1)

- Separation logic is based on Hoare triples $\{A\} C\{B\}$, where C is a program and A, B are formulas.
- Its compositional nature, the key to scalable analysis, is supported by two main pillars.
- The first pillar is the soundness of the following frame rule:

$$
\frac{\{A\} C\{B\}}{\{A * F\} C\{B * F\}}(\text { Frame })
$$

where the separating conjunction $*$ is read, intuitively, as "and separately in memory".

Compositional proofs in separation logic (2)

- The second pillar is given by solving the biabduction problem:

Compositional proofs in separation logic (2)

- The second pillar is given by solving the biabduction problem: given formulas A and B, find formulas X, Y with

$$
A * X \models B * Y \text {, and } A * X \text { is satisfiable. }
$$

Compositional proofs in separation logic (2)

- The second pillar is given by solving the biabduction problem: given formulas A and B, find formulas X, Y with

$$
A * X \models B * Y \text {, and } A * X \text { is satisfiable. }
$$

- Then, if we have $\left\{A^{\prime}\right\} C_{1}\{A\}$ and $\{B\} C_{2}\left\{B^{\prime}\right\}$, we can infer a spec for $C_{1} ; C_{2}$:

Compositional proofs in separation logic (2)

- The second pillar is given by solving the biabduction problem: given formulas A and B, find formulas X, Y with

$$
A * X \models B * Y \text {, and } A * X \text { is satisfiable. }
$$

- Then, if we have $\left\{A^{\prime}\right\} C_{1}\{A\}$ and $\{B\} C_{2}\left\{B^{\prime}\right\}$, we can infer a spec for $C_{1} ; C_{2}$:

$$
\frac{\frac{\left\{A^{\prime}\right\} C_{1}\{A\}}{\left\{A^{\prime} * X\right\} C_{1}\{A * X\}}(\text { Frame })}{\frac{\left\{A^{\prime} * X\right\} C_{1}\{B * Y\}}{\left\{A^{\prime} * X\right\}} C_{1} ; C_{2}\left\{B^{\prime} * Y\right\}} \frac{\{B\} C_{2}\left\{B^{\prime}\right\}}{\{B * Y\} C_{2}\left\{B^{\prime} * Y\right\}}(\text { Frame })
$$

Symbolic-heap separation logic

- Terms t, pure formulas Π and spatial formulas F given by:

$$
\begin{aligned}
t & ::=x \in \operatorname{Var} \mid \text { nil } \\
\Pi & ::=t=t|t \neq t| \Pi \wedge \Pi \\
F & ::=\mathrm{emp}|t \mapsto t| \operatorname{ls}(t, t) \mid F * F
\end{aligned}
$$

Symbolic-heap separation logic

- Terms t, pure formulas Π and spatial formulas F given by:

$$
\begin{aligned}
t & ::=x \in \operatorname{Var} \mid \text { nil } \\
\Pi & ::=t=t|t \neq t| \Pi \wedge \Pi \\
F & ::=\text { emp }|t \mapsto t| \operatorname{ls}(t, t) \mid F * F
\end{aligned}
$$

- $t_{1} \mapsto t_{2}$ ("points-to") denotes a pointer in the heap.

Symbolic-heap separation logic

- Terms t, pure formulas Π and spatial formulas F given by:

$$
\begin{aligned}
t & ::=x \in \operatorname{Var} \mid \text { nil } \\
\Pi & ::=t=t|t \neq t| \Pi \wedge \Pi \\
F & ::=\text { emp }|t \mapsto t| \operatorname{ls}(t, t) \mid F * F
\end{aligned}
$$

- $t_{1} \mapsto t_{2}$ ("points-to") denotes a pointer in the heap.
- Is $\left(t_{1}, t_{2}\right)$ denotes a linked list segment in the heap.

Symbolic-heap separation logic

- Terms t, pure formulas Π and spatial formulas F given by:

$$
\begin{aligned}
t & ::=x \in \operatorname{Var} \mid \text { nil } \\
\Pi & ::=t=t|t \neq t| \Pi \wedge \Pi \\
F & ::=\text { emp }|t \mapsto t| \operatorname{ls}(t, t) \mid F * F
\end{aligned}
$$

- $t_{1} \mapsto t_{2}$ ("points-to") denotes a pointer in the heap.
- Is $\left(t_{1}, t_{2}\right)$ denotes a linked list segment in the heap.
- * ("and separately") demarks domain-disjoint heaps.

Symbolic-heap separation logic

- Terms t, pure formulas Π and spatial formulas F given by:

$$
\begin{aligned}
t & ::=x \in \operatorname{Var} \mid \text { nil } \\
\Pi & ::=t=t|t \neq t| \Pi \wedge \Pi \\
F & ::=\text { emp }|t \mapsto t| \operatorname{ls}(t, t) \mid F * F
\end{aligned}
$$

- $t_{1} \mapsto t_{2}$ ("points-to") denotes a pointer in the heap.
- Is $\left(t_{1}, t_{2}\right)$ denotes a linked list segment in the heap.
- * ("and separately") demarks domain-disjoint heaps.
- Symbolic heaps given by $\exists \mathbf{x} . \Pi: F$.

Array separation logic, ASL

- Here we focus on a different data structure, namely arrays.

Array separation logic, ASL

- Here we focus on a different data structure, namely arrays.
- Terms t, pure formulas Π and spatial formulas F given by:

$$
\begin{aligned}
t & ::=x \in \operatorname{Var}|n \in \mathbb{N}| t+t \\
\Pi & ::=t=t|t \neq t| t \leq t|t<t| \Pi \wedge \Pi \\
F & ::=\operatorname{emp}|t \mapsto t| \operatorname{array}(t, t) \mid F * F
\end{aligned}
$$

Array separation logic, ASL

- Here we focus on a different data structure, namely arrays.
- Terms t, pure formulas Π and spatial formulas F given by:

$$
\begin{aligned}
t & ::=x \in \operatorname{Var}|n \in \mathbb{N}| t+t \\
\Pi & ::=t=t|t \neq t| t \leq t|t<t| \Pi \wedge \Pi \\
F & ::=\operatorname{emp}|t \mapsto t| \operatorname{array}(t, t) \mid F * F
\end{aligned}
$$

- $\operatorname{array}\left(t_{1}, t_{2}\right)$ denotes an array from t_{1} to t_{2} (inclusive):

Array separation logic, ASL

- Here we focus on a different data structure, namely arrays.
- Terms t, pure formulas Π and spatial formulas F given by:

$$
\begin{aligned}
t & ::=x \in \operatorname{Var}|n \in \mathbb{N}| t+t \\
\Pi & ::=t=t|t \neq t| t \leq t|t<t| \Pi \wedge \Pi \\
F & ::=\operatorname{emp}|t \mapsto t| \operatorname{array}(t, t) \mid F * F
\end{aligned}
$$

- $\operatorname{array}\left(t_{1}, t_{2}\right)$ denotes an array from t_{1} to t_{2} (inclusive):

- We also allow linear arithmetic in the pure part.

Semantics of ASL

- Stacks are $s:$ Var \rightarrow Val; heaps are $h:$ Loc $\rightharpoonup_{\text {fin }}$ Val; o is union of domain-disjoint heaps; e is the empty heap.

Semantics of ASL

- Stacks are $s:$ Var \rightarrow Val; heaps are $h:$ Loc $\rightharpoonup_{\text {fin }}$ Val; ○ is union of domain-disjoint heaps; e is the empty heap.
- Forcing relation $s, h \models A$ given by

$$
\begin{aligned}
s, h \models t_{1} \sim t_{2} & \Leftrightarrow s\left(t_{1}\right) \sim s\left(t_{2}\right) \quad(\sim \in\{=, \neq,<, \leq\}) \\
s, h \models \Pi_{1} \wedge \Pi_{2} & \Leftrightarrow s, h \models \Pi_{1} \text { and } s, h \models \Pi_{2}
\end{aligned}
$$

Semantics of ASL

- Stacks are $s:$ Var \rightarrow Val; heaps are $h:$ Loc $\rightarrow_{\text {fin }}$ Val; o is union of domain-disjoint heaps; e is the empty heap.
- Forcing relation $s, h \models A$ given by

$$
\begin{aligned}
s, h \models t_{1} \sim t_{2} & \Leftrightarrow s\left(t_{1}\right) \sim s\left(t_{2}\right) \quad(\sim \in\{=, \neq,<, \leq\}) \\
s, h \models \Pi_{1} \wedge \Pi_{2} & \Leftrightarrow s, h \models \Pi_{1} \text { and } s, h \models \Pi_{2} \\
s, h \models \mathrm{emp} & \Leftrightarrow h=e \\
s, h \models t_{1} \mapsto t_{2} & \Leftrightarrow \operatorname{dom}(h)=\left\{s\left(t_{1}\right)\right\} \text { and } h\left(s\left(t_{1}\right)\right)=s\left(t_{2}\right)
\end{aligned}
$$

Semantics of ASL

- Stacks are $s:$ Var \rightarrow Val; heaps are $h:$ Loc $\rightharpoonup_{\text {fin }}$ Val; ○ is union of domain-disjoint heaps; e is the empty heap.
- Forcing relation $s, h \models A$ given by

$$
\begin{aligned}
s, h \models t_{1} \sim t_{2} & \Leftrightarrow s\left(t_{1}\right) \sim s\left(t_{2}\right) \quad(\sim \in\{=, \neq,<, \leq\}) \\
s, h \models \Pi_{1} \wedge \Pi_{2} & \Leftrightarrow s, h \models \Pi_{1} \text { and } s, h \neq \Pi_{2} \\
s, h \models \mathrm{emp} & \Leftrightarrow h=e \\
s, h \models t_{1} \mapsto t_{2} & \Leftrightarrow \operatorname{dom}(h)=\left\{s\left(t_{1}\right)\right\} \text { and } h\left(s\left(t_{1}\right)\right)=s\left(t_{2}\right) \\
s, h \models \operatorname{array}\left(t_{1}, t_{2}\right) & \Leftrightarrow s\left(t_{1}\right) \leq s\left(t_{2}\right) \text { and } \operatorname{dom}(h)=\left\{s\left(t_{1}\right), \ldots, s\left(t_{2}\right)\right\}
\end{aligned}
$$

Semantics of ASL

- Stacks are $s:$ Var \rightarrow Val; heaps are $h:$ Loc $\rightharpoonup_{\text {fin }}$ Val; ○ is union of domain-disjoint heaps; e is the empty heap.
- Forcing relation $s, h \models A$ given by

$$
\begin{aligned}
s, h \models t_{1} \sim t_{2} & \Leftrightarrow s\left(t_{1}\right) \sim s\left(t_{2}\right) \quad(\sim \in\{=, \neq,<, \leq\}) \\
s, h \models \Pi_{1} \wedge \Pi_{2} & \Leftrightarrow s, h \models \Pi_{1} \text { and } s, h \models \Pi_{2} \\
s, h \models \mathrm{emp} & \Leftrightarrow h=e \\
s, h \models t_{1} \mapsto t_{2} & \Leftrightarrow \operatorname{dom}(h)=\left\{s\left(t_{1}\right)\right\} \text { and } h\left(s\left(t_{1}\right)\right)=s\left(t_{2}\right) \\
s, h \models \operatorname{array}\left(t_{1}, t_{2}\right) & \Leftrightarrow s\left(t_{1}\right) \leq s\left(t_{2}\right) \text { and } \operatorname{dom}(h)=\left\{s\left(t_{1}\right), \ldots, s\left(t_{2}\right)\right\} \\
s, h=F_{1} * F_{2} & \Leftrightarrow h=h_{1} \circ h_{2} \text { and } s, h_{1} \models F_{1} \text { and } s, h_{2} \models F_{2}
\end{aligned}
$$

Semantics of ASL

- Stacks are $s:$ Var \rightarrow Val; heaps are $h:$ Loc $\rightharpoonup_{\text {fin }}$ Val; ○ is union of domain-disjoint heaps; e is the empty heap.
- Forcing relation $s, h \models A$ given by

$$
\begin{aligned}
& s, h \models t_{1} \sim t_{2} \Leftrightarrow s\left(t_{1}\right) \sim s\left(t_{2}\right) \quad(\sim \in\{=, \neq,<, \leq\}) \\
& s, h \models \Pi_{1} \wedge \Pi_{2} \Leftrightarrow s, h \models \Pi_{1} \text { and } s, h \models \Pi_{2} \\
& s, h \models \mathrm{emp} \Leftrightarrow h=e \\
& s, h \models t_{1} \mapsto t_{2} \Leftrightarrow \operatorname{dom}(h)=\left\{s\left(t_{1}\right)\right\} \text { and } h\left(s\left(t_{1}\right)\right)=s\left(t_{2}\right) \\
& s, h \models \operatorname{array}\left(t_{1}, t_{2}\right) \Leftrightarrow s\left(t_{1}\right) \leq s\left(t_{2}\right) \text { and } \operatorname{dom}(h)=\left\{s\left(t_{1}\right), \ldots, s\left(t_{2}\right)\right\} \\
& s, h \models F_{1} * F_{2} \Leftrightarrow \quad h=h_{1} \circ h_{2} \text { and } s, h_{1} \models F_{1} \text { and } s, h_{2} \models F_{2} \\
& s, h \models \exists \mathbf{z} . \Pi: F \Leftrightarrow \\
& \hline \mathbf{v} . s[\mathbf{z} \mapsto \mathbf{v}], h \models \Pi \text { and } s[\mathbf{z} \mapsto \mathbf{v}], h \models F
\end{aligned}
$$

Motivating example

Suppose we have procedure foo with spec

$$
\{\operatorname{array}(c, d)\} \text { foo }(c, \mathrm{~d})\{Q\}
$$

Motivating example

Suppose we have procedure foo with spec

$$
\{\operatorname{array}(c, d)\} f \circ o(c, d)\{Q\}
$$

Now, consider code $C ;$ foo(c, d);, with spec for C $\{\mathrm{emp}\} \subset\{\operatorname{array}(a, b)\}$

Motivating example

Suppose we have procedure foo with spec

$$
\{\operatorname{array}(c, d)\} f \circ o(c, d)\{Q\}
$$

Now, consider code $C ;$ foo(c, d); ..., with spec for C $\{\operatorname{emp}\} C\{\operatorname{array}(a, b)\}$

By solving the biabduction problem

$$
\operatorname{array}(a, b) * X \models \operatorname{array}(c, d) * Y
$$

we get a valid spec $\{X\} C ; f \circ \circ(\mathrm{c}, \mathrm{d})\{Q * Y\}$.

Motivating example

Suppose we have procedure foo with spec

$$
\{\operatorname{array}(c, d)\} f \circ \circ(c, d)\{Q\}
$$

Now, consider code C; foo(c, d); ..., with spec for C

$$
\{\operatorname{emp}\} \subset\{\operatorname{array}(a, b)\}
$$

By solving the biabduction problem

$$
\operatorname{array}(a, b) * X \models \operatorname{array}(c, d) * Y
$$

we get a valid spec $\{X\} C ; f \circ \circ(c, d)\{Q * Y\}$.
Spatially minimal, and incomparable, solutions include:

$$
\begin{aligned}
& X:=a=c \wedge b=d: \text { emp and } Y:=\mathrm{emp} \\
& X:=d<a: \operatorname{array}(c, d) \text { and } Y:=\operatorname{array}(a, b) \\
& X:=a<c \wedge b<d: \operatorname{emp} \text { and } Y:=\operatorname{array}(a, c-1) * \operatorname{array}(b+1, d) \\
& X:=a<c<b<d: \operatorname{array}(b+1, d) \text { and } \quad Y:=\operatorname{array}(a, c-1)
\end{aligned}
$$

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if there is a stack s and heap h with $s, h \mid A$.

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if there is a stack s and heap h with $s, h \models A$.

- Write A as $\Pi: *_{i=1}^{n} \operatorname{array}\left(a_{i}, b_{i}\right) * *_{i=1}^{k} t_{i} \mapsto u_{i}$.

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if there is a stack s and heap h with $s, h \mid A$.

- Write A as $\Pi: \mathbb{*}_{i=1}^{n} \operatorname{array}\left(a_{i}, b_{i}\right) * *_{i=1}^{k} t_{i} \mapsto u_{i}$.
- Observe A is satisfiable iff there is stack s such that
- $s \models \Pi$, and

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if there is a stack s and heap h with $s, h \mid A$.

- Write A as $\Pi: \mathbb{*}_{i=1}^{n} \operatorname{array}\left(a_{i}, b_{i}\right) * \mathcal{*}_{i=1}^{k} t_{i} \mapsto u_{i}$.
- Observe A is satisfiable iff there is stack s such that
- $s \models \Pi$, and
- each array is well-defined $\left(s\left(a_{i}\right) \leq s\left(b_{i}\right)\right)$, and

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if there is a stack s and heap h with $s, h \mid=A$.

- Write A as $\Pi: \mathbb{*}_{i=1}^{n} \operatorname{array}\left(a_{i}, b_{i}\right) * *_{i=1}^{k} t_{i} \mapsto u_{i}$.
- Observe A is satisfiable iff there is stack s such that
- $s \models \Pi$, and
- each array is well-defined $\left(s\left(a_{i}\right) \leq s\left(b_{i}\right)\right)$, and
- all pointers and arrays are mutually non-overlapping $\left(\left(s\left(b_{1}\right)<s\left(a_{2}\right) \vee s\left(a_{1}\right)>s\left(b_{2}\right)\right) \wedge \ldots\right)$.

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if there is a stack s and heap h with $s, h \models A$.

- Write A as $\Pi: \mathbb{*}_{i=1}^{n} \operatorname{array}\left(a_{i}, b_{i}\right) * *_{i=1}^{k} t_{i} \mapsto u_{i}$.
- Observe A is satisfiable iff there is stack s such that
- $s \models \Pi$, and
- each array is well-defined $\left(s\left(a_{i}\right) \leq s\left(b_{i}\right)\right)$, and
- all pointers and arrays are mutually non-overlapping $\left(\left(s\left(b_{1}\right)<s\left(a_{2}\right) \vee s\left(a_{1}\right)>s\left(b_{2}\right)\right) \wedge \ldots\right)$.
- We can code this up as a formula $\gamma(A)$ in Σ_{1}^{0} Presburger arithmetic.

Satisfiability, upper bound

Satisfiability problem for ASL. Given symbolic heap A, decide if there is a stack s and heap h with $s, h \mid A$.

- Write A as $\Pi: \mathcal{*}_{i=1}^{n} \operatorname{array}\left(a_{i}, b_{i}\right) * *_{i=1}^{k} t_{i} \mapsto u_{i}$.
- Observe A is satisfiable iff there is stack s such that
- $s \models \Pi$, and
- each array is well-defined $\left(s\left(a_{i}\right) \leq s\left(b_{i}\right)\right)$, and
- all pointers and arrays are mutually non-overlapping $\left(\left(s\left(b_{1}\right)<s\left(a_{2}\right) \vee s\left(a_{1}\right)>s\left(b_{2}\right)\right) \wedge \ldots\right)$.
- We can code this up as a formula $\gamma(A)$ in Σ_{1}^{0} Presburger arithmetic.
- Thus the problem is in NP.

Satisfiability, lower bound

- NP-hardness follows by reduction from

Satisfiability, lower bound

- NP-hardness follows by reduction from

3-partition problem. Given $B \in \mathbb{N}$ and a sequence of natural numbers $\mathcal{S}=\left(k_{1}, k_{2}, \ldots, k_{3 m}\right)$ with $\sum_{j=1}^{3 m} k_{j}=m B$ and $B / 4<k_{j}<B / 2$ for all $j \in[1,3 m]$, decide whether there is a complete 3-partition of \mathcal{S} s.t. each partition sums to B.

Satisfiability, lower bound

- NP-hardness follows by reduction from

3-partition problem. Given $B \in \mathbb{N}$ and a sequence of natural numbers $\mathcal{S}=\left(k_{1}, k_{2}, \ldots, k_{3 m}\right)$ with $\sum_{j=1}^{3 m} k_{j}=m B$ and $B / 4<k_{j}<B / 2$ for all $j \in[1,3 m]$, decide whether there is a complete 3-partition of \mathcal{S} s.t. each partition sums to B.

- We can encode an instance (B, \mathcal{S}) as a symbolic heap in ASL.

Satisfiability, lower bound

- NP-hardness follows by reduction from

3-partition problem. Given $B \in \mathbb{N}$ and a sequence of natural numbers $\mathcal{S}=\left(k_{1}, k_{2}, \ldots, k_{3 m}\right)$ with $\sum_{j=1}^{3 m} k_{j}=m B$ and $B / 4<k_{j}<B / 2$ for all $j \in[1,3 m]$, decide whether there is a complete 3-partition of \mathcal{S} s.t. each partition sums to B.

- We can encode an instance (B, \mathcal{S}) as a symbolic heap in ASL.
- Roughly, the idea is that we have $m+1$ "delimiters" d_{i} at intervals of B cells, and $3 m$ arrays of length k_{j}.

Satisfiability, lower bound

- NP-hardness follows by reduction from

3-partition problem. Given $B \in \mathbb{N}$ and a sequence of natural numbers $\mathcal{S}=\left(k_{1}, k_{2}, \ldots, k_{3 m}\right)$ with $\sum_{j=1}^{3 m} k_{j}=m B$ and $B / 4<k_{j}<B / 2$ for all $j \in[1,3 m]$, decide whether there is a complete 3-partition of \mathcal{S} s.t. each partition sums to B.

- We can encode an instance (B, \mathcal{S}) as a symbolic heap in ASL.
- Roughly, the idea is that we have $m+1$ "delimiters" d_{i} at intervals of B cells, and $3 m$ arrays of length k_{j}. We can fit all the arrays between the d_{i} iff there is a 3-partition:

Biabduction

Biabduction problem for ASL. Given satisfiable symbolic heaps A and B, find symbolic heaps X and Y such that $A * X$ is satisfiable and $A * X \models B * Y$.

Biabduction

Biabduction problem for ASL. Given satisfiable symbolic heaps A and B, find symbolic heaps X and Y such that $A * X$ is satisfiable and $A * X \models B * Y$.

- We concentrate on the quantifier-free case.

Biabduction

Biabduction problem for ASL. Given satisfiable symbolic heaps A and B, find symbolic heaps X and Y such that $A * X$ is satisfiable and $A * X \models B * Y$.

- We concentrate on the quantifier-free case.
- Our approach, diagrammatically, is as follows:

Biabduction

Biabduction problem for ASL. Given satisfiable symbolic heaps A and B, find symbolic heaps X and Y such that $A * X$ is satisfiable and $A * X \models B * Y$.

- We concentrate on the quantifier-free case.
- Our approach, diagrammatically, is as follows:

$$
\begin{aligned}
& \text { existence of biabduction } \\
& \text { solution for }(A, B)
\end{aligned}
$$

The formula $\beta(A, B)$

- Let (A, B) be an instance of the biabduction problem, where

$$
\begin{aligned}
& A=\Pi: *_{i=1}^{n} \operatorname{array}\left(a_{i}, b_{i}\right) * *_{i=1}^{k} t_{i} \mapsto u_{i} \\
& B=\Pi^{\prime}: *_{i=1}^{m} \operatorname{array}\left(c_{i}, d_{i}\right) * *_{i=1}^{\ell} v_{i} \mapsto w_{i}
\end{aligned}
$$

The formula $\beta(A, B)$

- Let (A, B) be an instance of the biabduction problem, where

$$
\begin{aligned}
& A=\Pi: *_{i=1}^{n} \operatorname{array}\left(a_{i}, b_{i}\right) * *_{i=1}^{k} t_{i} \mapsto u_{i} \\
& B=\Pi^{\prime}: *_{i=1}^{m} \operatorname{array}\left(c_{i}, d_{i}\right) * *_{i=1}^{\ell} v_{i} \mapsto w_{i}
\end{aligned}
$$

- For a solution to exist, we need to know that
- A and B are simultaneously satisfiable; and

The formula $\beta(A, B)$

- Let (A, B) be an instance of the biabduction problem, where

$$
\begin{aligned}
& A=\Pi: *_{i=1}^{n} \operatorname{array}\left(a_{i}, b_{i}\right) * *_{i=1}^{k} t_{i} \mapsto u_{i} \\
& B=\Pi^{\prime}: *_{i=1}^{m} \operatorname{array}\left(c_{i}, d_{i}\right) * *_{i=1}^{\ell} v_{i} \mapsto w_{i}
\end{aligned}
$$

- For a solution to exist, we need to know that
- A and B are simultaneously satisfiable; and
- pointers $v_{j} \mapsto w_{j}$ in B are either covered by pointers $t_{i} \mapsto u_{i}$ in A with the right data value ($t_{i}=v_{j} \wedge u_{i}=w_{j}$), or else not covered by anything in A.

The formula $\beta(A, B)$

- Let (A, B) be an instance of the biabduction problem, where

$$
\begin{aligned}
& A=\Pi: *_{i=1}^{n} \operatorname{array}\left(a_{i}, b_{i}\right) * *_{i=1}^{k} t_{i} \mapsto u_{i} \\
& B=\Pi^{\prime}: *_{i=1}^{m} \operatorname{array}\left(c_{i}, d_{i}\right) * *_{i=1}^{\ell} v_{i} \mapsto w_{i}
\end{aligned}
$$

- For a solution to exist, we need to know that
- A and B are simultaneously satisfiable; and
- pointers $v_{j} \mapsto w_{j}$ in B are either covered by pointers $t_{i} \mapsto u_{i}$ in A with the right data value ($t_{i}=v_{j} \wedge u_{i}=w_{j}$), or else not covered by anything in A.
- This can be coded up as a Presburger formula $\beta(A, B)$, using the $\gamma(-)$ encoding of satisfiability.

Solution seeds

- Write $\mathcal{T}_{A, B}$ for the set of all terms in A and B. A solution seed for (A, B) is a pure formula $\Delta=\bigwedge_{i \in I} \delta_{i}$ such that:

Solution seeds

- Write $\mathcal{T}_{A, B}$ for the set of all terms in A and B. A solution seed for (A, B) is a pure formula $\Delta=\bigwedge_{i \in I} \delta_{i}$ such that:

1. Δ is satisfiable, and $\Delta \models \beta(A, B)$;

Solution seeds

- Write $\mathcal{T}_{A, B}$ for the set of all terms in A and B. A solution seed for (A, B) is a pure formula $\Delta=\bigwedge_{i \in I} \delta_{i}$ such that:

1. Δ is satisfiable, and $\Delta \models \beta(A, B)$;
2. each δ_{i} is of the form $(t<u)$ or $(t=u)$, where $t, u \in \mathcal{T}_{A, B}$;

Solution seeds

- Write $\mathcal{T}_{A, B}$ for the set of all terms in A and B. A solution seed for (A, B) is a pure formula $\Delta=\bigwedge_{i \in I} \delta_{i}$ such that:

1. Δ is satisfiable, and $\Delta \models \beta(A, B)$;
2. each δ_{i} is of the form $(t<u)$ or $(t=u)$, where $t, u \in \mathcal{T}_{A, B}$;
3. all terms in $\mathcal{T}_{A, B}$ are ordered by a conjunct of Δ.

Solution seeds

- Write $\mathcal{T}_{A, B}$ for the set of all terms in A and B. A solution seed for (A, B) is a pure formula $\Delta=\bigwedge_{i \in I} \delta_{i}$ such that:

1. Δ is satisfiable, and $\Delta \models \beta(A, B)$;
2. each δ_{i} is of the form $(t<u)$ or $(t=u)$, where $t, u \in \mathcal{T}_{A, B}$;
3. all terms in $\mathcal{T}_{A, B}$ are ordered by a conjunct of Δ.

- That is, solution seeds enforce a total ordering on $\mathcal{T}_{A, B}$, including all array bounds and pointer addresses.

Solution seeds

- Write $\mathcal{T}_{A, B}$ for the set of all terms in A and B. A solution seed for (A, B) is a pure formula $\Delta=\bigwedge_{i \in I} \delta_{i}$ such that:

1. Δ is satisfiable, and $\Delta \models \beta(A, B)$;
2. each δ_{i} is of the form $(t<u)$ or $(t=u)$, where $t, u \in \mathcal{T}_{A, B}$;
3. all terms in $\mathcal{T}_{A, B}$ are ordered by a conjunct of Δ.

- That is, solution seeds enforce a total ordering on $\mathcal{T}_{A, B}$, including all array bounds and pointer addresses.
- It is fairly straightforward to show
- \exists biabduction soln. for $(A, B) \Rightarrow \beta(A, B)$ is satisfiable;

Solution seeds

- Write $\mathcal{T}_{A, B}$ for the set of all terms in A and B. A solution seed for (A, B) is a pure formula $\Delta=\bigwedge_{i \in I} \delta_{i}$ such that:

1. Δ is satisfiable, and $\Delta \models \beta(A, B)$;
2. each δ_{i} is of the form $(t<u)$ or $(t=u)$, where $t, u \in \mathcal{T}_{A, B}$;
3. all terms in $\mathcal{T}_{A, B}$ are ordered by a conjunct of Δ.

- That is, solution seeds enforce a total ordering on $\mathcal{T}_{A, B}$, including all array bounds and pointer addresses.
- It is fairly straightforward to show
- \exists biabduction soln. for $(A, B) \Rightarrow \beta(A, B)$ is satisfiable;
- $\beta(A, B)$ is satisfiable $\Rightarrow \exists$ solution seed for (A, B).

From seeds to solutions

- A seed defines a total ordering of all array endpoints and pointer addresses in A and B.

From seeds to solutions

- A seed defines a total ordering of all array endpoints and pointer addresses in A and B.
- Given this info, computing X and Y becomes a relatively simple (PTIME) process!

From seeds to solutions

- A seed defines a total ordering of all array endpoints and pointer addresses in A and B.
- Given this info, computing X and Y becomes a relatively simple (PTIME) process!
- First we compute X by covering every array / pointer in B not already covered by A; then we compute Y the same way:

From seeds to solutions

- A seed defines a total ordering of all array endpoints and pointer addresses in A and B.
- Given this info, computing X and Y becomes a relatively simple (PTIME) process!
- First we compute X by covering every array / pointer in B not already covered by A; then we compute Y the same way:

From seeds to solutions

- A seed defines a total ordering of all array endpoints and pointer addresses in A and B.
- Given this info, computing X and Y becomes a relatively simple (PTIME) process!
- First we compute X by covering every array / pointer in B not already covered by A; then we compute Y the same way:

- We have to be a little careful about the pointer / array distinction though.

Lower bounds and quantification

- Quantifier-free case is NP-hard, again by reduction from the 3-partition problem.

Lower bounds and quantification

- Quantifier-free case is NP-hard, again by reduction from the 3-partition problem.
- When we disallow \exists over R-values $(\exists y \cdot x \mapsto y)$ in B, the problem is equivalent to the quantifier-free case.

Lower bounds and quantification

- Quantifier-free case is NP-hard, again by reduction from the 3-partition problem.
- When we disallow \exists over R-values $(\exists y . x \mapsto y)$ in B, the problem is equivalent to the quantifier-free case.
- Otherwise, we get Π_{2}^{P}-hardness by reduction from

Lower bounds and quantification

- Quantifier-free case is NP-hard, again by reduction from the 3-partition problem.
- When we disallow \exists over R-values $(\exists y \cdot x \mapsto y)$ in B, the problem is equivalent to the quantifier-free case.
- Otherwise, we get Π_{2}^{P}-hardness by reduction from

2-round 3-colourability problem Given an undirected graph G, decide whether every 3-colouring of the leaves can be extended to a 3-colouring of G, such that no two adjacent vertices have the same colour.

Lower bounds and quantification

- Quantifier-free case is NP-hard, again by reduction from the 3-partition problem.
- When we disallow \exists over R-values $(\exists y . x \mapsto y)$ in B, the problem is equivalent to the quantifier-free case.
- Otherwise, we get Π_{2}^{P}-hardness by reduction from

2-round 3-colourability problem Given an undirected graph G, decide whether every 3-colouring of the leaves can be extended to a 3-colouring of G, such that no two adjacent vertices have the same colour.

- (Given G, we define A_{G} to encode a 3-colouring of the leaves, and B_{G} to encode a 3-colouring of G.)

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B, decide whether $A \models B$.

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B, decide whether $A \models B$.

- Intuition: a stack s yields a countermodel for $A \models B$ if A is satisfiable under s and for every instantiation of existential variables \mathbf{z}, either:

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B, decide whether $A \models B$.

- Intuition: a stack s yields a countermodel for $A \models B$ if A is satisfiable under s and for every instantiation of existential variables z, either:

1. B becomes unsatisfiable; or

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B, decide whether $A \models B$.

- Intuition: a stack s yields a countermodel for $A \models B$ if A is satisfiable under s and for every instantiation of existential variables \mathbf{z}, either:

1. B becomes unsatisfiable; or
2. some heap location is covered by an array or pointer in A, but not by any array or pointer in B, or vice versa; or

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B, decide whether $A \models B$.

- Intuition: a stack s yields a countermodel for $A \models B$ if A is satisfiable under s and for every instantiation of existential variables \mathbf{z}, either:

1. B becomes unsatisfiable; or
2. some heap location is covered by an array or pointer in A, but not by any array or pointer in B, or vice versa; or
3. the LHS of some pointer in B is covered by an array in A; or

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B, decide whether $A \models B$.

- Intuition: a stack s yields a countermodel for $A \models B$ if A is satisfiable under s and for every instantiation of existential variables \mathbf{z}, either:

1. B becomes unsatisfiable; or
2. some heap location is covered by an array or pointer in A, but not by any array or pointer in B, or vice versa; or
3. the LHS of some pointer in B is covered by an array in A; or
4. some pointer in B is covered by a pointer in A, but their data contents disagree.

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B, decide whether $A \models B$.

- Intuition: a stack s yields a countermodel for $A \models B$ if A is satisfiable under s and for every instantiation of existential variables \mathbf{z}, either:

1. B becomes unsatisfiable; or
2. some heap location is covered by an array or pointer in A, but not by any array or pointer in B, or vice versa; or
3. the LHS of some pointer in B is covered by an array in A; or
4. some pointer in B is covered by a pointer in A, but their data contents disagree.

- Thus we can encode existence of a countermodel as a Σ_{2}^{0} Presburger formula. Entailment becomes a Π_{2}^{0} formula.

Entailment, upper bound

Entailment problem for ASL. Given symbolic heaps A and B, decide whether $A \models B$.

- Intuition: a stack s yields a countermodel for $A \models B$ if A is satisfiable under s and for every instantiation of existential variables \mathbf{z}, either:

1. B becomes unsatisfiable; or
2. some heap location is covered by an array or pointer in A, but not by any array or pointer in B, or vice versa; or
3. the LHS of some pointer in B is covered by an array in A; or
4. some pointer in B is covered by a pointer in A, but their data contents disagree.

- Thus we can encode existence of a countermodel as a Σ_{2}^{0} Presburger formula. Entailment becomes a Π_{2}^{0} formula.
- Due to item 3, we can't allow \exists over R-values in pointers.

Entailment, lower bound

- We get Π_{2}^{P}-hardness of entailment, even for restricted \exists quantifiers, by reduction from the previous colourability problem.

Entailment, lower bound

- We get Π_{2}^{P}-hardness of entailment, even for restricted \exists quantifiers, by reduction from the previous colourability problem.
- Let's not go into the details!

Entailment, lower bound

- We get Π_{2}^{P}-hardness of entailment, even for restricted \exists quantifiers, by reduction from the previous colourability problem.
- Let's not go into the details!
- This gives a gap in our complexity bounds for entailment:

Entailment, lower bound

- We get Π_{2}^{P}-hardness of entailment, even for restricted \exists quantifiers, by reduction from the previous colourability problem.
- Let's not go into the details!
- This gives a gap in our complexity bounds for entailment:
- lower bound of Π_{2}^{P};

Entailment, lower bound

- We get Π_{2}^{P}-hardness of entailment, even for restricted \exists quantifiers, by reduction from the previous colourability problem.
- Let's not go into the details!
- This gives a gap in our complexity bounds for entailment:
- lower bound of Π_{2}^{P};
- upper bound of $\Pi_{1}^{E X P}$ in the exponential-time hierarchy.

Entailment, lower bound

- We get Π_{2}^{P}-hardness of entailment, even for restricted \exists quantifiers, by reduction from the previous colourability problem.
- Let's not go into the details!
- This gives a gap in our complexity bounds for entailment:
- lower bound of Π_{2}^{P};
- upper bound of $\Pi_{1}^{E X P}$ in the exponential-time hierarchy.
- I suspect the upper bound is closer to the "true complexity".

Future work

- Obvious thing to do: implement a prototype INFER-style analysis for array programs.

Future work

- Obvious thing to do: implement a prototype INFER-style analysis for array programs.
- Our biabduction algorithm could be improved:

Future work

- Obvious thing to do: implement a prototype INFER-style analysis for array programs.
- Our biabduction algorithm could be improved:
- commit to as little ordering as possible;

Future work

- Obvious thing to do: implement a prototype INFER-style analysis for array programs.
- Our biabduction algorithm could be improved:
- commit to as little ordering as possible;
- find heuristics for improving solution quality.

Future work

- Obvious thing to do: implement a prototype INFER-style analysis for array programs.
- Our biabduction algorithm could be improved:
- commit to as little ordering as possible;
- find heuristics for improving solution quality.
- One could also try to do biabduction proof-theoretically.

Future work

- Obvious thing to do: implement a prototype INFER-style analysis for array programs.
- Our biabduction algorithm could be improved:
- commit to as little ordering as possible;
- find heuristics for improving solution quality.
- One could also try to do biabduction proof-theoretically.
- Another essential program analysis component is abstraction heuristics for finding invariants, etc.

Future work

- Obvious thing to do: implement a prototype INFER-style analysis for array programs.
- Our biabduction algorithm could be improved:
- commit to as little ordering as possible;
- find heuristics for improving solution quality.
- One could also try to do biabduction proof-theoretically.
- Another essential program analysis component is abstraction heuristics for finding invariants, etc.
- Extension of ASL with more expressive features (e.g. combine with list segments?).

Conclusions

- We propose ASL, a version of symbolic-heap separation logic for arrays.

Conclusions

- We propose ASL, a version of symbolic-heap separation logic for arrays.
- Biabduction is the most critical step in inferring specifications of whole programs.

Conclusions

- We propose ASL, a version of symbolic-heap separation logic for arrays.
- Biabduction is the most critical step in inferring specifications of whole programs.
- We give a sound, complete biabduction algorithm that runs in NP-time.

Conclusions

- We propose ASL, a version of symbolic-heap separation logic for arrays.
- Biabduction is the most critical step in inferring specifications of whole programs.
- We give a sound, complete biabduction algorithm that runs in NP-time.
- Indeed, biabduction is NP-complete, climbing higher when \exists quantifiers are added.

Conclusions

- We propose ASL, a version of symbolic-heap separation logic for arrays.
- Biabduction is the most critical step in inferring specifications of whole programs.
- We give a sound, complete biabduction algorithm that runs in NP-time.
- Indeed, biabduction is NP-complete, climbing higher when \exists quantifiers are added.
- We also establish decision procedures and complexity bounds for satisfiability and entailment.

Thanks for listening!

Paper available on arXiv:

arXiv:1607.01993

