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Compositional proofs in separation logic (1)

e Separation logic is based on Hoare triples {A} C {B}, where
C is a program and A, B are formulas.

e Its compositional nature, the key to scalable analysis, is
supported by two main pillars.

e The first pillar is the soundness of the following frame rule:

{A} C{B}
{AxF}C{BxF}

(Frame)

where the separating conjunction x is read, intuitively, as “and
separately in memory”.
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Compositional proofs in separation logic (2)

e The second pillar is given by solving the biabduction problem:
given formulas A and B, find formulas X, Y with

Ax X EBxY , and Ax X is satisfiable.

e Then, if we have {A'} C; {A} and {B} G, {B'}, we can infer a
spec for Cy; Go:

AT G A (Frame)
{A* X} G {A* X} {B} G{B'} (Frame)

{Ax X} G {B=*Y} {BxY}G{B' Y} .
(A« X} C: G{B + Y} ’
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Symbolic-heap separation logic

Terms t, pure formulas I1 and spatial formulas F given by:

t == x & Var|nil
M o= t=t|t#t|NAIN
F = emp|t—t]|ls(t,t)|FxF

t1 — tp (“points-to”) denotes a pointer in the heap.
Is(t1, t2) denotes a linked list segment in the heap.
 (“and separately” ) demarks domain-disjoint heaps.
Symbolic heaps given by 3x. I1: F.
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e Terms t, pure formulas I1 and spatial formulas F given by:

t = xeVar|neN|t+t
N = t=t|tAt|t<t|t<t|NADN
F == emp|tw t]array(t,t)| FxF

e array(ti, t2) denotes an array from t; to tp (inclusive):
th—t1+1

LT

51 to

e We also allow linear arithmetic in the pure part.
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e Stacks are s : Var — Val; heaps are h: Loc —g, Val; o is
union of domain-disjoint heaps; e is the empty heap.

e Forcing relation s, h = A given by

s,hEt ~t

s, hiEM AL
s,h = emp
s,hEt— b
s, h |= array(ti, t)
s,hi= FLxF
s,hi=3z.N:F

tsoo e

s(ti) ~s(k2) (~e{=#<<})

s,h =i and s,h =1,

h=e

dom(h) = {s(t1)} and h(s(t1)) = s(t2)

s(t1) < s(t2) and dom(h) = {s(t1),...,s(t2)}
h=hiohyand s,hi |EFiand s, = F>
Iv.slz—v],hENand slz—v],h EF
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Motiwwating example
Suppose we have procedure foo with spec
{array(c, d)} foo(c,d) {Q}
Now, consider code C; foo(c,d);..., with spec for C
{emp} C{array(a, b)}
By solving the biabduction problem
array(a, b) x X |= array(c,d) x Y

we get a valid spec {X} C; foo(c,d){Q * Y}.

Spatially minimal, and incomparable, solutions include:
X:=a=cAb=d:emp and Y :=emp
X :=d < a:array(c,d) and Y :=array(a,b)
X:=a<cAb<d:emp and Y :=array(a,c—1)xarray(b+1,d)
X =a<c<b<d:array(b+1,d) and Y :=array(a,c—1)
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e Observe A is satisfiable iff there is stack s such that
e s =11, and
e each array is well-defined (s(a;) < s(b;)), and
e all pointers and arrays are mutually non-overlapping

((s(b1) < s(a2) V s(a1) > s(b2)) A...).

e We can code this up as a formula y(A) in 9 Presburger
arithmetic.

e Thus the problem is in NP.
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Satisfiability, lower bound

e NP-hardness follows by reduction from

3-partition problem. Given B € N and a sequence of natural
numbers S = (ki, ko, ..., ksm) with 3™ kj = mB and

B/4 < ki < B/2 for all j € [1,3m], decide whether there is a
complete 3-partition of § s.t. each partition sums to B.

e We can encode an instance (B, S) as a symbolic heap in ASL.

e Roughly, the idea is that we have m + 1 “delimiters” d; at
intervals of B cells, and 3m arrays of length k;. We can fit all
the arrays between the dj iff there is a 3-partition:

T L L)
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Biabduction problem for ASL. Given satisfiable symbolic heaps
A and B, find symbolic heaps X and Y such that Ax X is
satisfiable and Ax X = B x Y.

e We concentrate on the quantifier-free case.

e Our approach, diagrammatically, is as follows:

existence of biabduction
solution for (A, B)

[ )

satisfiability existence of solu-
of B(A, B) tion seed for (A, B)

\_/‘
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The formula 5(A, B)

e Let (A, B) be an instance of the biabduction problem, where
A=T1: *7:1 array(aj, b;) * *fle ti = uj
B=1n: >|<I”;1 array(c;, d;) * *le Vi = Wi

e For a solution to exist, we need to know that
e A and B are simultaneously satisfiable; and

e pointers v; — w; in B are either covered by pointers t; — u; in
A with the right data value (t; = v; A uj = wj), or else not
covered by anything in A.

e This can be coded up as a Presburger formula (A, B), using
the v(—) encoding of satisfiability.
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2. each ¢; is of the form (t < u) or (t = u), where t,u € Tap;

i€l

3. all terms in T4 g are ordered by a conjunct of A.

e That is, solution seeds enforce a total ordering on T4 g,
including all array bounds and pointer addresses.

e It is fairly straightforward to show
e 3 biabduction soln. for (A, B) = B(A, B) is satisfiable;

o ((A, B) is satisfiable = 3 solution seed for (A, B).
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From seeds to solutions

A seed defines a total ordering of all array endpoints and
pointer addresses in A and B.

Given this info, computing X and Y becomes a relatively
simple (PTIME) process!

First we compute X by covering every array / pointer in B
not already covered by A; then we compute Y the same way:

We have to be a little careful about the pointer / array
distinction though.
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Lower bounds and quantification

Quantifier-free case is NP-hard, again by reduction from the
3-partition problem.

When we disallow 3 over R-values (Jy.x — y) in B, the
problem is equivalent to the quantifier-free case.

Otherwise, we get M5 -hardness by reduction from

2-round 3-colourability problem Given an undirected graph
G, decide whether every 3-colouring of the leaves can be
extended to a 3-colouring of G, such that no two adjacent
vertices have the same colour.

(Given G, we define Ag to encode a 3-colouring of the leaves,
and Bg to encode a 3-colouring of G.)
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4. some pointer in B is covered by a pointer in A, but their data
contents disagree.

e Thus we can encode existence of a countermodel as a ¥9
Presburger formula. Entailment becomes a M3 formula.
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Entailment problem for ASL. Given symbolic heaps A and B,
decide whether A |= B.

e Intuition: a stack s yields a countermodel for A |= B if A'is
satisfiable under s and for every instantiation of existential
variables z, either:

1. B becomes unsatisfiable; or

2. some heap location is covered by an array or pointer in A, but
not by any array or pointer in B, or vice versa; or

3. the LHS of some pointer in B is covered by an array in A; or

4. some pointer in B is covered by a pointer in A, but their data
contents disagree.

e Thus we can encode existence of a countermodel as a ¥9
Presburger formula. Entailment becomes a M3 formula.

e Due to item 3, we can't allow 3 over R-values in pointers.
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problem.
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Entailment, lower bound

We get I'Ig—hardness of entailment, even for restricted 3
quantifiers, by reduction from the previous colourability
problem.

Let's not go into the details!

This gives a gap in our complexity bounds for entailment:
e |lower bound of I'If;

e upper bound of ME*F in the exponential-time hierarchy.

| suspect the upper bound is closer to the “true complexity”.
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analysis for array programs.
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Obvious thing to do: implement a prototype INFER-style
analysis for array programs.

Our biabduction algorithm could be improved:

e commit to as little ordering as possible;
o find heuristics for improving solution quality.

One could also try to do biabduction proof-theoretically.

Another essential program analysis component is abstraction
heuristics for finding invariants, etc.

Extension of ASL with more expressive features (e.g. combine
with list segments?).
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Conclusions

We propose ASL, a version of symbolic-heap separation logic
for arrays.

Biabduction is the most critical step in inferring specifications
of whole programs.

We give a sound, complete biabduction algorithm that runs in
NP-time.

Indeed, biabduction is NP-complete, climbing higher when 3
quantifiers are added.

We also establish decision procedures and complexity bounds
for satisfiability and entailment.
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Thanks for listening!

Paper available on arXiv:
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