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3. Decidable fragments: finite vs. infinite valuations

4. Additional results

This is joint work with Prof. Max Kanovich, Queen Mary
University of London. This talk is based on the paper of the
same name (in Proc. LICS’10).
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Part I

Propositional separation logic
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Separation models

Separation logic is well established as a formalism for expressing
and reasoning about properties of memory.
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Separation models

Separation logic is well established as a formalism for expressing
and reasoning about properties of memory.

Definition

A separation model is a cancellative partial commutative
monoid 〈H, ◦, E〉. We define:

X · Y =def {x ◦ y | x ∈ X, y ∈ Y }

whence E ⊆ H is a set of units such that X · E = X.

Definition

〈H, ◦, E〉 has indivisible units if h1 ◦ h2 ∈ E implies h1, h2 ∈ E.

(NB. All models of practical interest have indivisible units!)
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Practical examples of separation models (I)

• Heap models 〈H, ◦, {e}〉, where H = L ⇀fin RV is the set
of heaps (L is infinite). e is the function with empty
domain, and:

h1 ◦ h2 =

{
h1 ∪ h2 if dom(h1), dom(h2) disjoint
undefined otherwise
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Practical examples of separation models (I)

• Heap models 〈H, ◦, {e}〉, where H = L ⇀fin RV is the set
of heaps (L is infinite). e is the function with empty
domain, and:

h1 ◦ h2 =

{
h1 ∪ h2 if dom(h1), dom(h2) disjoint
undefined otherwise

• A basic example of the above: the RAM-domain model
〈D, ◦, {e0}〉 where D is the class of finite subsets of N, the
operation ◦ is the union of disjoint sets, and the unit e0 is ∅.

5/ 27



Practical examples of separation models (II)

• Heap-with-permissions models 〈H, ◦, E〉, where
H = L ⇀fin (RV × P ) is a set of heaps with permissions.
h1 ◦ h2 is defined as before, except that for heaps with the
same value at overlapping locations, we add the
permissions.
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Practical examples of separation models (II)

• Heap-with-permissions models 〈H, ◦, E〉, where
H = L ⇀fin (RV × P ) is a set of heaps with permissions.
h1 ◦ h2 is defined as before, except that for heaps with the
same value at overlapping locations, we add the
permissions.

• Stack-and-heap models 〈S ×H, ◦, E〉, where H is a set of
heaps or heaps-with-permissions, S = Var ⇀fin Val is a set
of stacks, and 〈s1, h1〉 ◦ 〈s2, h2〉 is defined when s1 = s2 and
h1 ◦ h2 is defined (as above).
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Semantics (I)

Formulas extend standard propositional connectives with the
“multiplicatives” I, ∗ and —∗.
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A valuation for a separation model 〈H, ◦, E〉 is a function ρ

from propositional variables to P(H).

Given h ∈ H and formula A we define the relation h |=ρ A by
induction on A:

h |=ρ P ⇔ h ∈ ρ(P )
h |=ρ F1 ∧ F2 ⇔ h |=ρ F1 and r |=ρ F2

...
h |=ρ I ⇔ h = e

h |=ρ F1 ∗ F2 ⇔ h = h1 ◦ h2 and h1 |=ρ F1 and h2 |=ρ F2

h |=ρ F1 —∗ F2 ⇔ ∀h′. h ◦ h′ defined and h′ |=ρ F1 implies h ◦ h′ |=ρ F2

We define JAKρ =def {h | h |=ρ A}.

A “sequent” A ` B is valid in 〈H, ◦, E〉 if JAKρ ⊆ JBKρ for all ρ.
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Semantics (II)

In any separation model 〈H, ◦, E〉 we have:

JIKρ = E

JA ∗BKρ = JAKρ · JBKρ
JA —∗ BKρ = largest Z ⊆ H. Z · JAKρ ⊆ JBKρ
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Semantics (II)

In any separation model 〈H, ◦, E〉 we have:

JIKρ = E

JA ∗BKρ = JAKρ · JBKρ
JA —∗ BKρ = largest Z ⊆ H. Z · JAKρ ⊆ JBKρ

In particular this implies restricted ∗-contraction:

JI ∧AKρ = JI ∧AKρ · JI ∧AKρ = J(I ∧A) ∗ (I ∧A)Kρ

which doesn’t hold in linear logic because, e.g.:

JA ∗BKρ = Cl(JAKρ · JBKρ)

where Cl is a closure operator. This is less precise, and rules
out finite valuations since, e.g., Cl(∅) is infinite.
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Possible axiomatisations of separation logic

• BI, obtained by extending intuitionistic logic with the
standard MILL axioms and rules for I, ∗ and —∗;
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Possible axiomatisations of separation logic

• BI, obtained by extending intuitionistic logic with the
standard MILL axioms and rules for I, ∗ and —∗;

• BBI, obtained by extending classical logic with the
standard MILL axioms and rules for I, ∗ and —∗;

• a minimal BBI with additives restricted to ∧ and →, i.e. no
negation and no falsum (see next slide);

• BBI+eW where eW is the restricted ∗-weakening:
I ∧ (A ∗B) ` I ∧A, which holds in all models with
indivisible units. Because of restricted ∗-contraction we
have I ∧ (A ∗B) ≡ I ∧A ∧B;

• BBI+W where W is the full ∗-weakening: A ∗B ` A. This
system collapses into classical logic!
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Minimal BBI

(A ∗B) ` (B ∗A) (A ∗ I) ` A

(A∗(B ∗ C)) ` ((A ∗B) ∗ C) A ` (A ∗ I)
(A ∗ (A —∗ B)) ` B

A ` B

(A ∗ C) ` (B ∗ C)

(A ∗B) ` C

A ` (B —∗ C)
(a) Axioms and rules for ∗, —∗ and I.
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Minimal BBI

(A ∗B) ` (B ∗A) (A ∗ I) ` A

(A∗(B ∗ C)) ` ((A ∗B) ∗ C) A ` (A ∗ I)
(A ∗ (A —∗ B)) ` B

A ` B

(A ∗ C) ` (B ∗ C)

(A ∗B) ` C

A ` (B —∗ C)
(a) Axioms and rules for ∗, —∗ and I.

A ` (B → A) A ` (B → (A ∧B))
(A → (B → C)) ` ((A → B) → (A → C)) (A ∧B) ` A

((A → B) → A) ` A (Peirce’s law) (A ∧B) ` B

A A ` B

B

(A ∧B) ` C

A ` (B → C)
(b) Axioms and rules for → and ∧.

10/ 27



Part II

Undecidability
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Outline proof of undecidability

M terminates from C
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Outline proof of undecidability

M terminates from C

FM,C provable in minimal BBI

(Thm 1)

FM,C provable in BBI

FM,C provable in BBI+eW
FM,C valid in any
separation model

FM,C valid in any separation
model with indivisible units

FM,C valid in some
concrete heap model

(Thm 2)

All problems above are undecidable. Undecidability of BBI also
established by Larchey-Wendling and Galmiche 2010.
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Minsky machines

A Minsky machine M with counters c1, c2 is given by a finite set
of labelled instructions of the following types, where k ∈ {1, 2}:

Li: ck++;goto Lj; “increment ck (and jump)”
Li: ck−−;goto Lj; “decrement ck (and jump)”
Li: if ck=0 goto Lj; “zero-test ck (and jump)”
Li:goto Lj; “jump”
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Minsky machines

A Minsky machine M with counters c1, c2 is given by a finite set
of labelled instructions of the following types, where k ∈ {1, 2}:

Li: ck++;goto Lj; “increment ck (and jump)”
Li: ck−−;goto Lj; “decrement ck (and jump)”
Li: if ck=0 goto Lj; “zero-test ck (and jump)”
Li:goto Lj; “jump”

Configurations of M have the form 〈Li, n1, n2〉. We write
〈Li, n1, n2〉⇓M if 〈Li, n1, n2〉 

∗
M 〈L0, 0, 0〉.

We introduce special labels L−1, L−2 with instructions:

L−1: c2−−;goto L−1; L−1:goto L0;
L−2: c1−−;goto L−2; L−2:goto L0;

whence 〈L−k, n1, n2〉⇓M iff nk = 0.
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Encoding configurations in minimal BBI

For each label Li we have a propositional variable li. We also
pick two propositional variables p1, p2 to represent counters c1,
c2.
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n times
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Encoding configurations in minimal BBI

For each label Li we have a propositional variable li. We also
pick two propositional variables p1, p2 to represent counters c1,
c2. A configuration 〈Li, n1, n2〉 will be represented as:

li ∗ p
n1

1
∗ pn2

2

where pnk denotes the formula
n times

pk ∗ pk ∗ · · · ∗ pk
︸ ︷︷ ︸

, with p0k = I.

Also pick propositional variable b and write

A =def A —∗ b

b will be interpreted as “all terminating configurations”.
—∗ corresponds to replacement of parts of configurations.
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Encoding machines in minimal BBI

We code each instruction γ of a machine M as a formula κ(γ)
of minimal BBI:

Li: ck++;goto Lj; ⇒ ( (lj ∗ pk) —∗ li)
Li: ck−−;goto Lj; ⇒ ( lj —∗ (li ∗ pk))
Li: if ck=0 goto Lj; ⇒ ( (lj ∨ l−k) —∗ li)
Li:goto Lj; ⇒ ( lj —∗ li)

15/ 27



Encoding machines in minimal BBI

We code each instruction γ of a machine M as a formula κ(γ)
of minimal BBI:

Li: ck++;goto Lj; ⇒ ( (lj ∗ pk) —∗ li)
Li: ck−−;goto Lj; ⇒ ( lj —∗ (li ∗ pk))
Li: if ck=0 goto Lj; ⇒ ( (lj ∨ l−k) —∗ li)
Li:goto Lj; ⇒ ( lj —∗ li)

We code a whole machine M = {γ1, . . . , γt} as:

κ(M) = I ∧
t∧

i=1

κ(γi)

We’ll use restricted ∗-contraction to duplicate instructions as
needed!
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First main theorem

Theorem
Suppose 〈Li, n1, n2〉⇓M . Then the following sequent is derivable
in minimal BBI:

κ(M) ∗ li ∗ p
n1

1
∗ pn2

2
∗ (I ∧ l0) ` b
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First main theorem

Theorem
Suppose 〈Li, n1, n2〉⇓M . Then the following sequent is derivable
in minimal BBI:

κ(M) ∗ li ∗ p
n1

1
∗ pn2

2
∗ (I ∧ l0) ` b

Proof relies heavily on “quasi-negation” properties of (e.g.
A ≡ A) and the restricted ∗-contraction:

I ∧A ` (I ∧A) ∗ (I ∧A)

which is derivable in minimal BBI.
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Second main theorem

Theorem
〈Li, n1, n2〉⇓M whenever the following sequent is valid in some
concrete heap-like model used in practice (recall examples):

κ(M) ∗ li ∗ p
n1

1
∗ pn2

2
∗ (I ∧ l0) ` b
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concrete heap-like model used in practice (recall examples):

κ(M) ∗ li ∗ p
n1

1
∗ pn2

2
∗ (I ∧ l0) ` b

Proof outline. Consider for simplicity the RAM-domain model
〈D, ◦, {e0}〉 based on subsets of N. We have for any ρ:

Jκ(M) ∗ li ∗ p
n1

1
∗ pn2

2
∗ (I ∧ l0)Kρ ⊆ JbKρ

We want to pick ρ with e0 ∈ Jκ(M)Kρ and e0 ∈ JI ∧ l0Kρ to get:

Jli ∗ p
n1

1
∗ pn2

2
Kρ ⊆ JbKρ

and infer 〈Li, n1, n2〉⇓M .
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e0 ∈ Jκ(M)Kρ: The edge of disaster

To check e0 ∈ Jκ(M)Kρ we check e0 ∈ Jκ(γ)Kρ for each
instruction γ.
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e0 ∈ Jκ(M)Kρ: The edge of disaster

To check e0 ∈ Jκ(M)Kρ we check e0 ∈ Jκ(γ)Kρ for each
instruction γ.
Why do we encode, e.g., Li: ck++;goto Lj; as

( (lj ∗ pk) —∗ li) and not li —∗ (lj ∗ pk) ?

Let’s try to check: e0 ∈ Jli —∗ (lj ∗ pk)Kρ, i.e. JliKρ ⊆ Jlj ∗ pkKρ.

But suppose Li = Lj. In separation models this means:

JliKρ ⊆ JliKρ · JpkKρ ⊆ JliKρ · JpkKρ · JpkKρ ⊆ . . .

i.e., any heap can be split into arbitrarily many pieces!
(Not a problem in linear logic.)
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JpnkKρ: The (second) edge of disaster

We intend that Jli ∗ p
n1

1
∗ pn2

2
Kρ should encode configuration

〈Li, n1, n2〉. Thus Jpnk

k Kρ should determine the number nk.
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JpnkKρ: The (second) edge of disaster

We intend that Jli ∗ p
n1

1
∗ pn2

2
Kρ should encode configuration

〈Li, n1, n2〉. Thus Jpnk

k Kρ should determine the number nk.

But composition of heaps is disjoint so that, e.g., if we take
ρ(pk) = {h} for a nonempty heap h, then ρ(p2k) = ρ(pk ∗ pk) is
empty!

In general, whenever ρ(pk) is finite we must have:

JpnkKρ = Jpmk Kρ

for sufficiently large n and m, which obstructs us in uniquely
representing the number nk by the formula pnk .
(We discuss decidability consequences shortly.)
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Choosing a valuation

We choose a valuation ρ for 〈D, ◦, {e0}〉 as follows:

ρ(p1) = {{2m} | m ∈ N}
ρ(p2) = {{3m} | m ∈ N}
ρ(li) = {{δmi } | m ∈ N}

where δi is a fresh prime number for each propositional variable
l−2, l−1, l0, l1, . . .
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We choose a valuation ρ for 〈D, ◦, {e0}〉 as follows:

ρ(p1) = {{2m} | m ∈ N}
ρ(p2) = {{3m} | m ∈ N}
ρ(li) = {{δmi } | m ∈ N}

where δi is a fresh prime number for each propositional variable
l−2, l−1, l0, l1, . . .

Finally, we define:

ρ(b) =
⋃

〈Li, n1, n2〉⇓M
Jli ∗ p

n1

1
∗ pn2

2
Kρ

so ρ(b) is the set of interpretations of all terminating
configurations.
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Proof of Theorem 2

If κ(M) ∗ li ∗ p
n1

1
∗ pn2

2
∗ (I ∧ l0) ` b is valid in 〈D, ◦, {e0}〉

then:
Jκ(M) ∗ li ∗ p

n1

1
∗ pn2

2
∗ (I ∧ l0)Kρ ⊆ JbKρ
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Since e0 ∈ Jκ(M)Kρ we get:

Jli ∗ p
n1

1
∗ pn2

2
∗ (I ∧ l0)Kρ ⊆ J l0Kρ

Since e0 ∈ JI ∧ l0Kρ (because 〈L0, 0, 0〉⇓M), we get:

Jli ∗ p
n1

1
∗ pn2

2
Kρ ⊆ JbKρ
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Proof of Theorem 2

If κ(M) ∗ li ∗ p
n1

1
∗ pn2

2
∗ (I ∧ l0) ` b is valid in 〈D, ◦, {e0}〉

then:
Jκ(M) ∗ li ∗ p

n1

1
∗ pn2

2
∗ (I ∧ l0)Kρ ⊆ JbKρ

Since e0 ∈ Jκ(M)Kρ we get:

Jli ∗ p
n1

1
∗ pn2

2
∗ (I ∧ l0)Kρ ⊆ J l0Kρ

Since e0 ∈ JI ∧ l0Kρ (because 〈L0, 0, 0〉⇓M), we get:

Jli ∗ p
n1

1
∗ pn2

2
Kρ ⊆ JbKρ

Since Jli ∗ p
n1

1
∗ pn2

2
Kρ uniquely determines n1 and n2 we

conclude 〈Li, n1, n2〉⇓M from definition of ρ(b).
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Part III

Decidability: finite vs. infinite valuations
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Finite valuations

The quantifier-free fragment of a certain separation theory over
an infinite heap model is decidable (Calcagno et al., 2001).
WTF?

23/ 27



Finite valuations

The quantifier-free fragment of a certain separation theory over
an infinite heap model is decidable (Calcagno et al., 2001).
WTF?

There, valuations are constrained to be finite, whereas our
valuation ρ is necessarily infinite.

23/ 27



Finite valuations

The quantifier-free fragment of a certain separation theory over
an infinite heap model is decidable (Calcagno et al., 2001).
WTF?

There, valuations are constrained to be finite, whereas our
valuation ρ is necessarily infinite.

Theorem
There is a sequent of the form κ(M) ∗ li ∗ p

n1

1
∗ (I ∧ l0) ` b such

that, for any choice of heap-like model 〈H, ◦, E〉, the sequent is
invalid in the model, but valid under all finite valuations ρ.
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Finite valuations

The quantifier-free fragment of a certain separation theory over
an infinite heap model is decidable (Calcagno et al., 2001).
WTF?

There, valuations are constrained to be finite, whereas our
valuation ρ is necessarily infinite.

Theorem
There is a sequent of the form κ(M) ∗ li ∗ p

n1

1
∗ (I ∧ l0) ` b such

that, for any choice of heap-like model 〈H, ◦, E〉, the sequent is
invalid in the model, but valid under all finite valuations ρ.

So to obtain decidable fragments of separation logic, one should
either give up infinite valuations (Calcagno et al., 2001), or
restrict the formula language (Berdine et al., 2004).
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Part IV

Additional results
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Classical BI (Brotherston and Calcagno, 2009)

A CBI-model is a separation model 〈H, ◦, E〉 enriched with a
total involution ·−1 such that for all h ∈ H. h ◦ h−1 = e−1. (Cf.
effect algebras in quantum mechanics.)
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Classical BI (Brotherston and Calcagno, 2009)

A CBI-model is a separation model 〈H, ◦, E〉 enriched with a
total involution ·−1 such that for all h ∈ H. h ◦ h−1 = e−1. (Cf.
effect algebras in quantum mechanics.)

E.g., can take 〈D, ◦, {e0}, ·
−1〉 where D is now the class of finite

and cofinite subsets of N, ◦ is union of disjoint sets, e0 = ∅ and
·−1 is set complement.

CBI extends BBI with a multiplicative negation ∼ defined by:

h |=ρ ∼A ⇔ h−1 6|=ρ A
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Undecidability of CBI and related problems

M terminates from C

FM,C provable in minimal BBI

FM,C provable in CBI

FM,C provable in CBI+eW
FM,C valid in any

CBI-model

FM,C valid in any CBI-model
with indivisible units

FM,C valid in the
concrete model 〈D, ◦, {e0}, ·

−1〉

(Thm 1)(Thm 2)

Proof of Thm 2 now uses a slightly modified valuation ρ. All
problems above are again undecidable.
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