Undecidability of propositional separation logic and its neighbours

James Brotherston

Computer Science Seminar
Institute of Cybernetics, Tallinn University of Technology
17 Nov 2011

Outline

1. An overview of propositional separation logic

Outline

1. An overview of propositional separation logic
2. Undecidability of separation logic

Outline

1. An overview of propositional separation logic
2. Undecidability of separation logic
3. Decidable fragments: finite vs. infinite valuations

Outline

1. An overview of propositional separation logic
2. Undecidability of separation logic
3. Decidable fragments: finite vs. infinite valuations
4. Additional results

Outline

1. An overview of propositional separation logic
2. Undecidability of separation logic
3. Decidable fragments: finite vs. infinite valuations
4. Additional results

This is joint work with Prof. Max Kanovich, Queen Mary University of London. This talk is based on the paper of the same name (in Proc. LICS'10).

Part I

Propositional separation logic

Separation models

Separation logic is well established as a formalism for expressing and reasoning about properties of memory.

Separation models

Separation logic is well established as a formalism for expressing and reasoning about properties of memory.

Definition

A separation model is a cancellative partial commutative $\operatorname{monoid}\langle H, \circ, E\rangle$.

Separation models

Separation logic is well established as a formalism for expressing and reasoning about properties of memory.

Definition

A separation model is a cancellative partial commutative monoid $\langle H, \circ, E\rangle$. We define:

$$
X \cdot Y==_{\text {def }}\{x \circ y \mid x \in X, y \in Y\}
$$

whence $E \subseteq H$ is a set of units such that $X \cdot E=X$.

Separation models

Separation logic is well established as a formalism for expressing and reasoning about properties of memory.

Definition

A separation model is a cancellative partial commutative monoid $\langle H, \circ, E\rangle$. We define:

$$
X \cdot Y==_{\text {def }}\{x \circ y \mid x \in X, y \in Y\}
$$

whence $E \subseteq H$ is a set of units such that $X \cdot E=X$.
Definition
$\langle H, \circ, E\rangle$ has indivisible units if $h_{1} \circ h_{2} \in E$ implies $h_{1}, h_{2} \in E$.
(NB. All models of practical interest have indivisible units!)

Practical examples of separation models (I)

- Heap models $\langle H, \circ,\{e\}\rangle$, where $H=L \rightharpoonup_{\text {fin }} R V$ is the set of heaps (L is infinite). e is the function with empty domain, and:

$$
h_{1} \circ h_{2}= \begin{cases}h_{1} \cup h_{2} & \text { if } \operatorname{dom}\left(h_{1}\right), \operatorname{dom}\left(h_{2}\right) \text { disjoint } \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Practical examples of separation models (I)

- Heap models $\langle H, \circ,\{e\}\rangle$, where $H=L \rightharpoonup_{\text {fin }} R V$ is the set of heaps (L is infinite). e is the function with empty domain, and:

$$
h_{1} \circ h_{2}= \begin{cases}h_{1} \cup h_{2} & \text { if dom }\left(h_{1}\right), \operatorname{dom}\left(h_{2}\right) \text { disjoint } \\ \text { undefined } & \text { otherwise }\end{cases}
$$

- A basic example of the above: the RAM-domain model $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$ where \mathcal{D} is the class of finite subsets of \mathbb{N}, the operation \circ is the union of disjoint sets, and the unit e_{0} is \emptyset.

Practical examples of separation models (II)

- Heap-with-permissions models $\langle H, \circ, E\rangle$, where $H=L \rightharpoonup_{\mathrm{fin}}(R V \times P)$ is a set of heaps with permissions. $h_{1} \circ h_{2}$ is defined as before, except that for heaps with the same value at overlapping locations, we add the permissions.

Practical examples of separation models (II)

- Heap-with-permissions models $\langle H, \circ, E\rangle$, where $H=L \rightharpoonup_{\mathrm{fin}}(R V \times P)$ is a set of heaps with permissions. $h_{1} \circ h_{2}$ is defined as before, except that for heaps with the same value at overlapping locations, we add the permissions.
- Stack-and-heap models $\langle S \times H, \circ, E\rangle$, where H is a set of heaps or heaps-with-permissions, $S=\mathrm{Var} \rightharpoonup_{\text {fin }} \mathrm{Val}$ is a set of stacks, and $\left\langle s_{1}, h_{1}\right\rangle \circ\left\langle s_{2}, h_{2}\right\rangle$ is defined when $s_{1}=s_{2}$ and $h_{1} \circ h_{2}$ is defined (as above).

Semantics (I)

Formulas extend standard propositional connectives with the "multiplicatives" I, * and $-*$.

Semantics (I)

Formulas extend standard propositional connectives with the "multiplicatives" I, * and $-*$.
A valuation for a separation model $\langle H, \circ, E\rangle$ is a function ρ from propositional variables to $\mathcal{P}(H)$.

Semantics (I)

Formulas extend standard propositional connectives with the "multiplicatives" I, * and $-*$.
A valuation for a separation model $\langle H, \circ, E\rangle$ is a function ρ from propositional variables to $\mathcal{P}(H)$.
Given $h \in H$ and formula A we define the relation $h \models_{\rho} A$ by induction on A :

Semantics (I)

Formulas extend standard propositional connectives with the "multiplicatives" I, * and $-*$.
A valuation for a separation model $\langle H, \circ, E\rangle$ is a function ρ from propositional variables to $\mathcal{P}(H)$.
Given $h \in H$ and formula A we define the relation $h \models_{\rho} A$ by induction on A :

$$
\begin{array}{rll}
h \models_{\rho} P & \Leftrightarrow & h \in \rho(P) \\
h \models_{\rho} F_{1} \wedge F_{2} & \Leftrightarrow & h \models_{\rho} F_{1} \text { and } r \models_{\rho} F_{2} \\
& \vdots & \\
h \models_{\rho} \mathrm{I} & \Leftrightarrow & h=e \\
h \models_{\rho} F_{1} * F_{2} & \Leftrightarrow & h=h_{1} \circ h_{2} \text { and } h_{1} \models_{\rho} F_{1} \text { and } h_{2} \models_{\rho} F_{2} \\
h \models_{\rho} F_{1} * F_{2} & \Leftrightarrow & \forall h^{\prime} . h \circ h^{\prime} \text { defined and } h^{\prime} \models_{\rho} F_{1} \text { implies } h \circ h^{\prime} \models_{\rho} F_{2}
\end{array}
$$

Semantics (I)

Formulas extend standard propositional connectives with the "multiplicatives" I, * and $-*$.
A valuation for a separation model $\langle H, \circ, E\rangle$ is a function ρ from propositional variables to $\mathcal{P}(H)$.
Given $h \in H$ and formula A we define the relation $h \models_{\rho} A$ by induction on A :

$$
\begin{array}{rll}
h \models_{\rho} P & \Leftrightarrow & h \in \rho(P) \\
h \models_{\rho} F_{1} \wedge F_{2} & \Leftrightarrow & h \models_{\rho} F_{1} \text { and } r \models_{\rho} F_{2} \\
& \vdots & \\
h \models_{\rho} \mathrm{I} & \Leftrightarrow & h=e \\
h \models_{\rho} F_{1} * F_{2} & \Leftrightarrow & h=h_{1} \circ h_{2} \text { and } h_{1} \models_{\rho} F_{1} \text { and } h_{2} \models_{\rho} F_{2} \\
h \models_{\rho} F_{1} * F_{2} & \Leftrightarrow & \forall h^{\prime} . h \circ h^{\prime} \text { defined and } h^{\prime} \models_{\rho} F_{1} \text { implies } h \circ h^{\prime} \models_{\rho} F_{2}
\end{array}
$$

We define $\llbracket A \rrbracket_{\rho}={ }_{\operatorname{def}}\left\{h \mid h \models_{\rho} A\right\}$.

Semantics (I)

Formulas extend standard propositional connectives with the "multiplicatives" I, * and $-*$.
A valuation for a separation model $\langle H, \circ, E\rangle$ is a function ρ from propositional variables to $\mathcal{P}(H)$.
Given $h \in H$ and formula A we define the relation $h \models_{\rho} A$ by induction on A :

$$
\begin{array}{rll}
h \models_{\rho} P & \Leftrightarrow & h \in \rho(P) \\
h \models_{\rho} F_{1} \wedge F_{2} & \Leftrightarrow & h \models_{\rho} F_{1} \text { and } r \models_{\rho} F_{2} \\
& \vdots & \\
h \models_{\rho} \mathrm{I} & \Leftrightarrow & h=e \\
h \models_{\rho} F_{1} * F_{2} & \Leftrightarrow & h=h_{1} \circ h_{2} \text { and } h_{1} \models_{\rho} F_{1} \text { and } h_{2} \models_{\rho} F_{2} \\
h \models_{\rho} F_{1} * F_{2} & \Leftrightarrow & \forall h^{\prime} . h \circ h^{\prime} \text { defined and } h^{\prime} \models_{\rho} F_{1} \text { implies } h \circ h^{\prime} \models_{\rho} F_{2}
\end{array}
$$

We define $\llbracket A \rrbracket_{\rho}=_{\operatorname{def}}\left\{h \mid h \models_{\rho} A\right\}$.
A "sequent" $A \vdash B$ is valid in $\langle H, \circ, E\rangle$ if $\llbracket A \rrbracket_{\rho} \subseteq \llbracket B \rrbracket_{\rho}$ for all ρ.

Semantics (II)

In any separation model $\langle H, \circ, E\rangle$ we have:

$$
\begin{aligned}
\llbracket I \rrbracket_{\rho} & =E \\
\llbracket A * B \rrbracket_{\rho} & =\llbracket A \rrbracket_{\rho} \cdot \llbracket B \rrbracket_{\rho} \\
\llbracket A \rightarrow * B \rrbracket_{\rho} & =\text { largest } Z \subseteq H . Z \cdot \llbracket A \rrbracket_{\rho} \subseteq \llbracket B \rrbracket_{\rho}
\end{aligned}
$$

Semantics (II)

In any separation model $\langle H, \circ, E\rangle$ we have:

$$
\begin{aligned}
\llbracket \mathrm{I} \rrbracket_{\rho} & =E \\
\llbracket A * B \rrbracket_{\rho} & =\llbracket A \rrbracket_{\rho} \cdot \llbracket B \rrbracket_{\rho} \\
\llbracket A * * B \rrbracket_{\rho} & =\text { largest } Z \subseteq H . Z \cdot \llbracket A \rrbracket_{\rho} \subseteq \llbracket B \rrbracket_{\rho}
\end{aligned}
$$

In particular this implies restricted $*$-contraction:

$$
\llbracket I \wedge A \rrbracket_{\rho}=\llbracket \mathrm{I} \wedge A \rrbracket_{\rho} \cdot \llbracket \mathrm{I} \wedge A \rrbracket_{\rho}=\llbracket(\mathrm{I} \wedge A) *(\mathrm{I} \wedge A) \rrbracket_{\rho}
$$

Semantics (II)

In any separation model $\langle H, \circ, E\rangle$ we have:

$$
\begin{aligned}
\llbracket \mathbb{I} \rrbracket_{\rho} & =E \\
\llbracket A * B \rrbracket_{\rho} & =\llbracket A \rrbracket_{\rho} \cdot \llbracket B \rrbracket_{\rho} \\
\llbracket A * B \rrbracket_{\rho} & =\text { largest } Z \subseteq H . Z \cdot \llbracket A \rrbracket_{\rho} \subseteq \llbracket B \rrbracket_{\rho}
\end{aligned}
$$

In particular this implies restricted $*$-contraction:

$$
\llbracket I \wedge A \rrbracket_{\rho}=\llbracket \mathrm{I} \wedge A \rrbracket_{\rho} \cdot \llbracket \mathrm{I} \wedge A \rrbracket_{\rho}=\llbracket(\mathrm{I} \wedge A) *(\mathrm{I} \wedge A) \rrbracket_{\rho}
$$

which doesn't hold in linear logic because, e.g.:

$$
\llbracket A * B \rrbracket_{\rho}=\mathrm{Cl}\left(\llbracket A \rrbracket_{\rho} \cdot \llbracket B \rrbracket_{\rho}\right)
$$

where Cl is a closure operator. This is less precise, and rules out finite valuations since, e.g., $\mathrm{Cl}(\emptyset)$ is infinite.

Possible axiomatisations of separation logic

- BI, obtained by extending intuitionistic logic with the standard MILL axioms and rules for $\mathrm{I}, *$ and $-*$;

Possible axiomatisations of separation logic

- BI, obtained by extending intuitionistic logic with the standard MILL axioms and rules for $\mathrm{I}, *$ and $-*$;
- BBI, obtained by extending classical logic with the standard MILL axioms and rules for $\mathrm{I}, *$ and \rightarrow;

Possible axiomatisations of separation logic

- BI, obtained by extending intuitionistic logic with the standard MILL axioms and rules for $\mathrm{I}, *$ and $-*$;
- BBI, obtained by extending classical logic with the standard MILL axioms and rules for $\mathrm{I}, *$ and \rightarrow;
- a minimal BBI with additives restricted to \wedge and \rightarrow, i.e. no negation and no falsum (see next slide);

Possible axiomatisations of separation logic

- BI, obtained by extending intuitionistic logic with the standard MILL axioms and rules for $\mathrm{I}, *$ and $-*$;
- BBI, obtained by extending classical logic with the standard MILL axioms and rules for $\mathrm{I}, *$ and \rightarrow;
- a minimal BBI with additives restricted to \wedge and \rightarrow, i.e. no negation and no falsum (see next slide);
- $\mathrm{BBI}+\mathrm{eW}$ where eW is the restricted $*$-weakening: $\mathrm{I} \wedge(A * B) \vdash \mathrm{I} \wedge A$, which holds in all models with indivisible units. Because of restricted $*$-contraction we have $\mathrm{I} \wedge(A * B) \equiv \mathrm{I} \wedge A \wedge B ;$

Possible axiomatisations of separation logic

- BI, obtained by extending intuitionistic logic with the standard MILL axioms and rules for $\mathrm{I}, *$ and \rightarrow;
- BBI, obtained by extending classical logic with the standard MILL axioms and rules for $\mathrm{I}, *$ and \rightarrow;
- a minimal BBI with additives restricted to \wedge and \rightarrow, i.e. no negation and no falsum (see next slide);
- $\mathrm{BBI}+\mathrm{eW}$ where eW is the restricted $*$-weakening: $\mathrm{I} \wedge(A * B) \vdash \mathrm{I} \wedge A$, which holds in all models with indivisible units. Because of restricted $*$-contraction we have $\mathrm{I} \wedge(A * B) \equiv \mathrm{I} \wedge A \wedge B$;
- $\mathrm{BBI}+\mathrm{W}$ where W is the full $*$-weakening: $A * B \vdash A$. This system collapses into classical logic!

Minimal BBI

$$
\begin{array}{ll}
(A * B) \vdash(B * A) & (A * \mathrm{I}) \vdash A \\
(A *(B * C)) \vdash((A * B) * C) & A \vdash(A * \mathrm{I}) \\
(A *(A * B)) \vdash B & \\
\frac{A \vdash B}{}(A * C) \vdash(B * C) & \frac{(A * B) \vdash C}{A \vdash(B * *)} \\
& \text { (a) Axioms and rules for } *, * \text { and } \mathrm{I} .
\end{array}
$$

Minimal BBI

$$
\begin{array}{cc}
(A * B) \vdash(B * A) & (A * \mathrm{I}) \vdash A \\
(A *(B * C)) \vdash((A * B) * C) & A \vdash(A * \mathrm{I}) \\
(A *(A * B)) \vdash B & \\
\frac{A \vdash B}{(A * C) \vdash(B * C)} & \frac{(A * B) \vdash C}{A \vdash(B-C)}
\end{array}
$$

(a) Axioms and rules for $*,-*$ and I.

$$
\begin{array}{ll}
A \vdash(B \rightarrow A) & A \vdash(B \rightarrow(A \wedge B)) \\
(A \rightarrow(B \rightarrow C)) \vdash((A \rightarrow B) \rightarrow(A \rightarrow C)) & (A \wedge B) \vdash A \\
((A \rightarrow B) \rightarrow A) \vdash A \quad(\text { Peirce's law }) & (A \wedge B) \vdash B \\
\frac{A \vdash B}{B} & \frac{A \vdash B) \vdash C}{A \vdash(B \rightarrow C)}
\end{array}
$$

(b) Axioms and rules for \rightarrow and \wedge.

Part II

Undecidability

Outline proof of undecidability

M terminates from C

Outline proof of undecidability

M terminates from C

(Thm 1)
$\mathcal{F}_{M, C}$ provable in minimal BBI

Outline proof of undecidability

(Thm 1)
$\mathcal{F}_{M, C}$ provable in minimal BBI

Outline proof of undecidability

(Thm 1)
$\mathcal{F}_{M, C}$ provable in minimal BBI
$\mathcal{F}_{M, C}$ valid in any separation model with indivisible units

$$
\mathcal{F}_{M, C} \text { provable in } \mathrm{BBI}
$$

Outline proof of undecidability

Outline proof of undecidability

Outline proof of undecidability

All problems above are undecidable. Undecidability of BBI also established by Larchey-Wendling and Galmiche 2010.

Minsky machines

A Minsky machine M with counters c_{1}, c_{2} is given by a finite set of labelled instructions of the following types, where $k \in\{1,2\}$:

$$
\begin{array}{ll}
L_{i}: c_{k}++; \text { goto } L_{j} ; & \text { "increment } c_{k} \text { (and jump)" } \\
L_{i}: c_{k}--; \text { goto } L_{j} ; & \text { "decrement } c_{k} \text { (and jump)" } \\
L_{i}: \text { if } c_{k}=0 \text { goto } L_{j} ; & \text { "zero-test } c_{k} \text { (and jump)" } \\
L_{i}: \text { goto } L_{j} ; & \text { "jump" }
\end{array}
$$

Minsky machines

A Minsky machine M with counters c_{1}, c_{2} is given by a finite set of labelled instructions of the following types, where $k \in\{1,2\}$:

$$
\begin{array}{ll}
L_{i}: c_{k}++; \text { goto } L_{j} ; & \text { "increment } c_{k} \text { (and jump)" } \\
L_{i}: c_{k}--; \text { goto } L_{j} ; & \text { "decrement } c_{k} \text { (and jump)" } \\
L_{i}: \text { if } c_{k}=0 \text { goto } L_{j} ; & \text { "zero-test } c_{k} \text { (and jump)" } \\
L_{i}: \text { goto } L_{j} ; & \text { "jump" }
\end{array}
$$

Configurations of M have the form $\left\langle L_{i}, n_{1}, n_{2}\right\rangle$. We write $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$ if $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \rightsquigarrow_{M}^{*}\left\langle L_{0}, 0,0\right\rangle$.

Minsky machines

A Minsky machine M with counters c_{1}, c_{2} is given by a finite set of labelled instructions of the following types, where $k \in\{1,2\}$:

$$
\begin{array}{ll}
L_{i}: c_{k}++; \text { goto } L_{j} ; & \text { "increment } c_{k} \text { (and jump)" } \\
L_{i}: c_{k}--; \text { goto } L_{j} ; & \text { "decrement } c_{k} \text { (and jump)" } \\
L_{i}: \text { if } c_{k}=0 \text { goto } L_{j} ; & \text { "zero-test } c_{k} \text { (and jump)" } \\
L_{i}: \text { goto } L_{j} ; & \text { "jump" }
\end{array}
$$

Configurations of M have the form $\left\langle L_{i}, n_{1}, n_{2}\right\rangle$. We write $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$ if $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \rightsquigarrow_{M}^{*}\left\langle L_{0}, 0,0\right\rangle$.
We introduce special labels L_{-1}, L_{-2} with instructions:

$$
\begin{array}{ll}
L_{-1}: c_{2}--; \text { goto } L_{-1} ; & L_{-1}: \text { goto } L_{0} ; \\
L_{-2}: c_{1}--; \text { goto } L_{-2} ; & L_{-2}: \text { goto } L_{0} ;
\end{array}
$$

whence $\left\langle L_{-k}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$ iff $n_{k}=0$.

Encoding configurations in minimal BBI

For each label L_{i} we have a propositional variable l_{i}. We also pick two propositional variables p_{1}, p_{2} to represent counters c_{1}, c_{2}.

Encoding configurations in minimal BBI

For each label L_{i} we have a propositional variable l_{i}. We also pick two propositional variables p_{1}, p_{2} to represent counters c_{1}, c_{2}. A configuration $\left\langle L_{i}, n_{1}, n_{2}\right\rangle$ will be represented as:

$$
l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}}
$$

where p_{k}^{n} denotes the formula $\underbrace{p_{k} * p_{k} \text { times }} * p_{k}$, with $p_{k}^{0}=\mathrm{I}$.

Encoding configurations in minimal BBI

For each label L_{i} we have a propositional variable l_{i}. We also pick two propositional variables p_{1}, p_{2} to represent counters c_{1}, c_{2}. A configuration $\left\langle L_{i}, n_{1}, n_{2}\right\rangle$ will be represented as:

$$
l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}}
$$

where p_{k}^{n} denotes the formula $\underbrace{p_{k} * \stackrel{n}{p} \text { times }} * \cdots * p_{k}$, with $p_{k}^{0}=\mathrm{I}$.
Also pick propositional variable b and write

$$
-A=\operatorname{def} A \rightarrow b
$$

b will be interpreted as "all terminating configurations". \rightarrow corresponds to replacement of parts of configurations.

Encoding machines in minimal BBI

We code each instruction γ of a machine M as a formula $\kappa(\gamma)$ of minimal BBI :

$$
\begin{array}{ll}
L_{i}: c_{k}++; \text { goto } L_{j} ; & \Rightarrow\left(-\left(l_{j} * p_{k}\right)-*-l_{i}\right) \\
L_{i}: c_{k}--; \text { goto } L_{j} ; & \Rightarrow\left(-l_{j} *-\left(l_{i} * p_{k}\right)\right) \\
L_{i}: \text { if } c_{k}=0 \text { goto } L_{j} ; & \Rightarrow\left(-\left(l_{j} \vee l_{-k}\right)--l_{i}\right) \\
L_{i}: \text { goto } L_{j} ; & \Rightarrow\left(-l_{j} *-l_{i}\right)
\end{array}
$$

Encoding machines in minimal BBI

We code each instruction γ of a machine M as a formula $\kappa(\gamma)$ of minimal BBI :

$$
\begin{array}{ll}
L_{i}: c_{k}++; \text { goto } L_{j} ; & \Rightarrow\left(-\left(l_{j} * p_{k}\right)-*-l_{i}\right) \\
L_{i}: c_{k}--; \text { goto } L_{j} ; & \Rightarrow\left(-l_{j} *-\left(l_{i} * p_{k}\right)\right) \\
L_{i}: \text { if } c_{k}=0 \text { goto } L_{j} ; & \Rightarrow\left(-\left(l_{j} \vee l_{-k}\right)--l_{i}\right) \\
L_{i}: \text { goto } L_{j} ; & \Rightarrow\left(-l_{j} *-l_{i}\right)
\end{array}
$$

We code a whole machine $M=\left\{\gamma_{1}, \ldots, \gamma_{t}\right\}$ as:

$$
\kappa(M)=\mathrm{I} \wedge \bigwedge_{i=1}^{t} \kappa\left(\gamma_{i}\right)
$$

We'll use restricted $*$-contraction to duplicate instructions as needed!

First main theorem

Theorem
Suppose $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$. Then the following sequent is derivable in minimal BBI :

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

First main theorem

Theorem

Suppose $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$. Then the following sequent is derivable in minimal BBI :

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

Proof relies heavily on "quasi-negation" properties of - (e.g. - $A \equiv \mathbf{- -} A$) and the restricted $*$-contraction:

$$
\mathrm{I} \wedge A \vdash(\mathrm{I} \wedge A) *(\mathrm{I} \wedge A)
$$

which is derivable in minimal BBI .

Second main theorem

Theorem

$\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$ whenever the following sequent is valid in some concrete heap-like model used in practice (recall examples):

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

Second main theorem

Theorem

$\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$ whenever the following sequent is valid in some concrete heap-like model used in practice (recall examples):

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

Proof outline. Consider for simplicity the RAM-domain model $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$ based on subsets of \mathbb{N}. We have for any ρ :

$$
\llbracket \kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \rrbracket_{\rho} \subseteq \llbracket b \rrbracket_{\rho}
$$

Second main theorem

Theorem

$\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$ whenever the following sequent is valid in some concrete heap-like model used in practice (recall examples):

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

Proof outline. Consider for simplicity the RAM-domain model $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$ based on subsets of \mathbb{N}. We have for any ρ :

$$
\llbracket \kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \rrbracket_{\rho} \subseteq \llbracket b \rrbracket_{\rho}
$$

We want to pick ρ with $e_{0} \in \llbracket \kappa(M) \rrbracket_{\rho}$ and $e_{0} \in \llbracket I \wedge-l_{0} \rrbracket_{\rho}$ to get:

$$
\llbracket l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} \rrbracket_{\rho} \subseteq \llbracket b \rrbracket_{\rho}
$$

and infer $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$.

$e_{0} \in \llbracket \kappa(M) \rrbracket_{\rho}:$ The edge of disaster

To check $e_{0} \in \llbracket \kappa(M) \rrbracket_{\rho}$ we check $e_{0} \in \llbracket \kappa(\gamma) \rrbracket_{\rho}$ for each instruction γ.

$e_{0} \in \llbracket \kappa(M) \rrbracket_{\rho}:$ The edge of disaster

To check $e_{0} \in \llbracket \kappa(M) \rrbracket_{\rho}$ we check $e_{0} \in \llbracket \kappa(\gamma) \rrbracket_{\rho}$ for each instruction γ.
Why do we encode, e.g., $L_{i}: c_{k}++$; goto L_{j}; as

$$
\left(-\left(l_{j} * p_{k}\right) *-l_{i}\right) \text { and not } l_{i} *\left(l_{j} * p_{k}\right) ?
$$

$e_{0} \in \llbracket \kappa(M) \rrbracket_{\rho}:$ The edge of disaster

To check $e_{0} \in \llbracket \kappa(M) \rrbracket_{\rho}$ we check $e_{0} \in \llbracket \kappa(\gamma) \rrbracket_{\rho}$ for each instruction γ.
Why do we encode, e.g., $L_{i}: c_{k}++$; goto L_{j}; as

$$
\left(-\left(l_{j} * p_{k}\right)-*-l_{i}\right) \text { and not } l_{i} *\left(l_{j} * p_{k}\right) ?
$$

Let's try to check: $e_{0} \in \llbracket l_{i} *\left(l_{j} * p_{k}\right) \rrbracket_{\rho}$, i.e. $\llbracket l_{i} \rrbracket_{\rho} \subseteq \llbracket l_{j} * p_{k} \rrbracket_{\rho}$.

$e_{0} \in \llbracket \kappa(M) \rrbracket_{\rho}:$ The edge of disaster

To check $e_{0} \in \llbracket \kappa(M) \rrbracket \rrbracket_{\rho}$ we check $e_{0} \in \llbracket \kappa(\gamma) \rrbracket_{\rho}$ for each instruction γ.
Why do we encode, e.g., $L_{i}: c_{k}++$; goto L_{j}; as

$$
\left(-\left(l_{j} * p_{k}\right) *-l_{i}\right) \text { and not } l_{i} *\left(l_{j} * p_{k}\right) ?
$$

Let's try to check: $e_{0} \in \llbracket l_{i} *\left(l_{j} * p_{k}\right) \rrbracket_{\rho}$, i.e. $\llbracket l_{i} \rrbracket_{\rho} \subseteq \llbracket l_{j} * p_{k} \rrbracket_{\rho}$.
But suppose $L_{i}=L_{j}$. In separation models this means:

$$
\llbracket l_{i} \rrbracket_{\rho} \subseteq \llbracket l_{i} \rrbracket_{\rho} \cdot \llbracket p_{k} \rrbracket_{\rho} \subseteq \llbracket l_{i} \rrbracket_{\rho} \cdot \llbracket p_{k} \rrbracket_{\rho} \cdot \llbracket p_{k} \rrbracket_{\rho} \subseteq \ldots
$$

i.e., any heap can be split into arbitrarily many pieces! (Not a problem in linear logic.)

$$
\llbracket p_{k}^{n} \rrbracket_{\rho}: \text { The (second) edge of disaster }
$$

We intend that $\llbracket l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} \rrbracket_{\rho}$ should encode configuration $\left\langle L_{i}, n_{1}, n_{2}\right\rangle$. Thus $\llbracket p_{k}^{n_{k}} \rrbracket_{\rho}$ should determine the number n_{k}.

$\llbracket p_{k}^{n} \rrbracket_{\rho}$: The (second) edge of disaster

We intend that $\llbracket l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} \rrbracket_{\rho}$ should encode configuration $\left\langle L_{i}, n_{1}, n_{2}\right\rangle$. Thus $\llbracket p_{k}^{n_{k}} \rrbracket_{\rho}$ should determine the number n_{k}. But composition of heaps is disjoint so that, e.g., if we take $\rho\left(p_{k}\right)=\{h\}$ for a nonempty heap h, then $\rho\left(p_{k}^{2}\right)=\rho\left(p_{k} * p_{k}\right)$ is empty!

$$
\llbracket p_{k}^{n} \rrbracket_{\rho}: \text { The (second) edge of disaster }
$$

We intend that $\llbracket l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} \rrbracket_{\rho}$ should encode configuration $\left\langle L_{i}, n_{1}, n_{2}\right\rangle$. Thus $\llbracket p_{k}^{n_{k}} \rrbracket_{\rho}$ should determine the number n_{k}.

But composition of heaps is disjoint so that, e.g., if we take $\rho\left(p_{k}\right)=\{h\}$ for a nonempty heap h, then $\rho\left(p_{k}^{2}\right)=\rho\left(p_{k} * p_{k}\right)$ is empty!

In general, whenever $\rho\left(p_{k}\right)$ is finite we must have:

$$
\llbracket p_{k}^{n} \rrbracket_{\rho}=\llbracket p_{k}^{m} \rrbracket_{\rho}
$$

for sufficiently large n and m, which obstructs us in uniquely representing the number n_{k} by the formula p_{k}^{n}.
(We discuss decidability consequences shortly.)

Choosing a valuation

We choose a valuation ρ for $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$ as follows:

$$
\begin{aligned}
\rho\left(p_{1}\right) & =\left\{\left\{2^{m}\right\} \mid m \in \mathbb{N}\right\} \\
\rho\left(p_{2}\right) & =\left\{\left\{3^{m}\right\} \mid m \in \mathbb{N}\right\} \\
\rho\left(l_{i}\right) & =\left\{\left\{\delta_{i}^{m}\right\} \mid m \in \mathbb{N}\right\}
\end{aligned}
$$

where δ_{i} is a fresh prime number for each propositional variable $l_{-2}, l_{-1}, l_{0}, l_{1}, \ldots$

Choosing a valuation

We choose a valuation ρ for $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$ as follows:

$$
\begin{aligned}
\rho\left(p_{1}\right) & =\left\{\left\{2^{m}\right\} \mid m \in \mathbb{N}\right\} \\
\rho\left(p_{2}\right) & =\left\{\left\{3^{m}\right\} \mid m \in \mathbb{N}\right\} \\
\rho\left(l_{i}\right) & =\left\{\left\{\delta_{i}^{m}\right\} \mid m \in \mathbb{N}\right\}
\end{aligned}
$$

where δ_{i} is a fresh prime number for each propositional variable $l_{-2}, l_{-1}, l_{0}, l_{1}, \ldots$
Finally, we define:

$$
\rho(b)=\bigcup_{\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}} \llbracket l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} \rrbracket_{\rho}
$$

so $\rho(b)$ is the set of interpretations of all terminating configurations.

Proof of Theorem 2

If $\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \vdash b$ is valid in $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$ then:

$$
\llbracket \kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \rrbracket_{\rho} \subseteq \llbracket b \rrbracket_{\rho}
$$

Proof of Theorem 2

If $\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \vdash b$ is valid in $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$ then:

$$
\llbracket \kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \rrbracket_{\rho} \subseteq \llbracket b \rrbracket_{\rho}
$$

Since $e_{0} \in \llbracket \kappa(M) \rrbracket_{\rho}$ we get:

$$
\llbracket l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \rrbracket_{\rho} \subseteq \llbracket--l_{0} \rrbracket_{\rho}
$$

Proof of Theorem 2

If $\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \vdash b$ is valid in $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$ then:

$$
\llbracket \kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \rrbracket_{\rho} \subseteq \llbracket b \rrbracket_{\rho}
$$

Since $e_{0} \in \llbracket \kappa(M) \rrbracket_{\rho}$ we get:

$$
\llbracket l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \rrbracket_{\rho} \subseteq \llbracket--l_{0} \rrbracket_{\rho}
$$

Since $e_{0} \in \llbracket \mathrm{I} \wedge-l_{0} \rrbracket_{\rho}$ (because $\left\langle L_{0}, 0,0\right\rangle \Downarrow_{M}$), we get:

$$
\llbracket l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} \rrbracket_{\rho} \subseteq \llbracket b \rrbracket_{\rho}
$$

Proof of Theorem 2

If $\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \vdash b$ is valid in $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$ then:

$$
\llbracket \kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \rrbracket_{\rho} \subseteq \llbracket b \rrbracket_{\rho}
$$

Since $e_{0} \in \llbracket \kappa(M) \rrbracket_{\rho}$ we get:

$$
\llbracket l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \rrbracket_{\rho} \subseteq \llbracket--l_{0} \rrbracket_{\rho}
$$

Since $e_{0} \in \llbracket \mathrm{I} \wedge-l_{0} \rrbracket_{\rho}$ (because $\left\langle L_{0}, 0,0\right\rangle \Downarrow_{M}$), we get:

$$
\llbracket l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} \rrbracket_{\rho} \subseteq \llbracket b \rrbracket_{\rho}
$$

Since $\llbracket l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} \rrbracket_{\rho}$ uniquely determines n_{1} and n_{2} we conclude $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$ from definition of $\rho(b)$.

Part III

Decidability: finite vs. infinite valuations

Finite valuations

The quantifier-free fragment of a certain separation theory over an infinite heap model is decidable (Calcagno et al., 2001). WTF?

Finite valuations

The quantifier-free fragment of a certain separation theory over an infinite heap model is decidable (Calcagno et al., 2001). WTF?

There, valuations are constrained to be finite, whereas our valuation ρ is necessarily infinite.

Finite valuations

The quantifier-free fragment of a certain separation theory over an infinite heap model is decidable (Calcagno et al., 2001). WTF?

There, valuations are constrained to be finite, whereas our valuation ρ is necessarily infinite.

Theorem
There is a sequent of the form $\kappa(M) * l_{i} * p_{1}^{n_{1}} *\left(\mathrm{I} \wedge-l_{0}\right) \vdash b$ such that, for any choice of heap-like model $\langle H, \circ, E\rangle$, the sequent is invalid in the model, but valid under all finite valuations ρ.

Finite valuations

The quantifier-free fragment of a certain separation theory over an infinite heap model is decidable (Calcagno et al., 2001). WTF?

There, valuations are constrained to be finite, whereas our valuation ρ is necessarily infinite.

Theorem
There is a sequent of the form $\kappa(M) * l_{i} * p_{1}^{n_{1}} *\left(\mathrm{I} \wedge-l_{0}\right) \vdash b$ such that, for any choice of heap-like model $\langle H, \circ, E\rangle$, the sequent is invalid in the model, but valid under all finite valuations ρ.
So to obtain decidable fragments of separation logic, one should either give up infinite valuations (Calcagno et al., 2001), or restrict the formula language (Berdine et al., 2004).

Part IV

Additional results

Classical BI (Brotherston and Calcagno, 2009)

A CBI-model is a separation model $\langle H, \circ, E\rangle$ enriched with a total involution.$^{-1}$ such that for all $h \in H . h \circ h^{-1}=e^{-1}$. (Cf. effect algebras in quantum mechanics.)

Classical BI (Brotherston and Calcagno, 2009)

A CBI-model is a separation model $\langle H, \circ, E\rangle$ enriched with a total involution.$^{-1}$ such that for all $h \in H . h \circ h^{-1}=e^{-1}$. (Cf. effect algebras in quantum mechanics.)
E.g., can take $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}, \cdot^{-1}\right\rangle$ where \mathcal{D} is now the class of finite and cofinite subsets of \mathbb{N}, \circ is union of disjoint sets, $e_{0}=\emptyset$ and .$^{-1}$ is set complement.

Classical BI (Brotherston and Calcagno, 2009)

A CBI-model is a separation model $\langle H, \circ, E\rangle$ enriched with a total involution.$^{-1}$ such that for all $h \in H . h \circ h^{-1}=e^{-1}$. (Cf. effect algebras in quantum mechanics.)
E.g., can take $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}, .^{-1}\right\rangle$ where \mathcal{D} is now the class of finite and cofinite subsets of \mathbb{N}, \circ is union of disjoint sets, $e_{0}=\emptyset$ and .$^{-1}$ is set complement.

CBI extends BBI with a multiplicative negation \sim defined by:

$$
h \models_{\rho} \sim A \Leftrightarrow h^{-1} \not \models_{\rho} A
$$

Undecidability of CBI and related problems

Proof of Thm 2 now uses a slightly modified valuation ρ. All problems above are again undecidable.

Some references

J. Berdine, C. Calcagno and P. O'Hearn.

A decidable fragment of separation logic.
In Proceedings of FSTTCS, 2004.
家
J. Brotherston and C. Calcagno.

Classical BI (a logic for reasoning about dualising resources).
In Proceedings of POPL, 2009.
Ti C. Calcagno, P. O'Hearn and H. Yang.
Computability and complexity results for a spatial assertion language for data structures.
In Proceedings of FSTTCS, 2001.
D D. Larchey-Wendling and D. Galmiche.
Undecidability of Boolean BI through phase semantics.
In Proceedings of LICS, 2010.
T J.C. Reynolds.
Separation logic: a logic for shared mutable data structures.
In Proceedings of LICS, 2002.

