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Introduction

• We investigate and compare two related styles of inductive
reasoning:

1. explicit rule induction over definitions;

2. infinite descent à la Fermat.

• We work in first-order logic with inductive definitions.

• We formulate and compare proof-theoretic foundations of
thes two styles of reasoning above, using Gentzen-style
sequent calculus proof systems.
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Part I

Inductive definitions in first-order logic
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• We extend standard first-order logic with a schema for
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• We extend standard first-order logic with a schema for
inductive definitions.

• Our inductive rules are each of the form:

P1(t1(x)) . . . Pm(tm(x)) ⇒ P (t(x))

where P,P1, . . . , Pm are predicate symbols.

• E.g., define N,E,O,R+ (natural nos; even/odd nos;
transitive closure of R) by rules

⇒ N0 ⇒ E0 Rxy ⇒ R+xy

Nx ⇒ Nsx Ox ⇒ Esx R+xy,R+yz ⇒ R+xz

Ex ⇒ Osx
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• The inductive rules determine a monotone operator ϕΦ on
any first-order structure M . E.g., for N :

ϕΦN
(X) = {0M} ∪ {sMx | x ∈ X}

• In standard models, PM is the least prefixed point of the
corresponding operator.

• This least prefixed point can be approached via a sequence
(ϕα

Φ) of approximants. E.g. for N we have:

ϕ0
ΦN

= ∅, ϕ1
ΦN

= {0M}, ϕ2
ΦN

= {0M , sM0M}, . . .

5/ 26



Henkin models of FOLID

• We can also give non-standard interpretations to the
inductive predicates of the language, in so-called Henkin
models.
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Henkin models of FOLID

• We can also give non-standard interpretations to the
inductive predicates of the language, in so-called Henkin
models.

• A class of sets H over a first order structure M is a Henkin
class if, roughly speaking, every first-order-definable
relation is interpretable inside it.

• (M,H) is a Henkin model if the least prefixed point of ϕΦ

exists inside H; we define PM to be this point.
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Part II

Sequent calculus for explicit induction
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LKID: a sequent calculus for induction in FOLID

Extend the usual sequent calculus LKe for classical first-order
logic with equality by adding rules for inductive predicates.
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LKID: a sequent calculus for induction in FOLID

Extend the usual sequent calculus LKe for classical first-order
logic with equality by adding rules for inductive predicates.
E.g., right-introduction rules for N are:

(NR1)
Γ ⊢ N0,∆

Γ ⊢ Nt,∆
(NR2)

Γ ⊢ Nst,∆

The left-introduction rule embodies rule induction:

Γ ⊢ F0,∆ Γ, Fx ⊢ Fsx,∆ Γ, F t ⊢ ∆
(x fresh) (Ind N)

Γ, Nt ⊢ ∆

NB. Mutual definitions give rise to mutual induction rules.
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Results about LKID

Proposition (Soundness)

Any LKID-provable sequent is valid in all Henkin models.

Theorem (Completeness)

Any sequent valid in all Henkin models is cut-free provable in
LKID.

• Supposing Γ ⊢ ∆ not provable, we use a uniform infinitary
search procedure to build an unprovable limit sequent
Γω ⊢ ∆ω.

• We then use this limit sequent to define a syntactic
countermodel for Γ ⊢ ∆.

• (We need to define a Henkin class and deal with inductive
predicates though.)
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Cut-elimination in LKID

Corollary

Any LKID-provable sequent is provable without cut.

This is contrary to the popular myth that cut-elimination is
impossible in the presence of induction. In fact, the real
limitation is that the subformula property is not achievable.

Proposition

The eliminability of cut in LKID implies the consistency of
Peano arithmetic.

Hence there is no elementary proof of cut-eliminability in LKID.
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Part III

Sequent calculus for infinite descent
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LKIDω: a proof system for infinite descent in FOLID

• Rules are as for LKID except the induction rules are
replaced by weaker case-split rules.
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LKIDω: a proof system for infinite descent in FOLID

• Rules are as for LKID except the induction rules are
replaced by weaker case-split rules. E.g. for N :

Γ, t = 0 ⊢ ∆ Γ, t = sx,Nx ⊢ ∆
(x fresh) (Case N)

Γ, Nt ⊢ ∆

• Pre-proofs are infinite (non-well-founded) derivation trees.

• For soundness we need to impose an additional condition
on pre-proofs.
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Traces

• A trace following a path in an LKIDω pre-proof tracks an
inductive predicate occurring on the left of the sequents on
the path.
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Traces

• A trace following a path in an LKIDω pre-proof tracks an
inductive predicate occurring on the left of the sequents on
the path.

• A trace progresses when the inductive predicate is unfolded
using its case-split rule.

• A pre-proof is a proof if, for every infinite path in it, there
is an infinitely progressing trace following some tail of the
path.
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A sample proof

(ER1)
⊢ E0, O0

(=L)
x0 = 0 ⊢Ex0, Ox0

(etc.)
...

(Case N)
Nx1 ⊢ Ex1, Ox1

(OR1)
Nx1 ⊢ Ox1, Osx1

(ER2)
Nx1⊢ Esx1, Osx1

(=L)
x0 = sx1, Nx1 ⊢ Ex0, Ox0

(Case N)
Nx0 ⊢ Ex0, Ox0
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A sample proof

(ER1)
⊢ E0, O0

(=L)
x0 = 0 ⊢Ex0, Ox0

(etc.)
...

(Case N)
Nx1 ⊢ Ex1, Ox1

(OR1)
Nx1 ⊢ Ox1, Osx1

(ER2)
Nx1⊢ Esx1, Osx1

(=L)
x0 = sx1, Nx1 ⊢ Ex0, Ox0

(Case N)
Nx0 ⊢ Ex0, Ox0

Continuing the expansion of the right branch, the formulas in
red form an infinitely progressing trace, so the pre-proof thus
obtained is indeed an LKIDω proof.
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LKIDω: soundness

Proposition

Any LKIDω-provable sequent is valid in all standard models.

Roughly:

• Suppose Γ ⊢ ∆ is not valid. Since rules are locally sound,
there must be an infinite path in the pre-proof consisting of
invalid sequents.

• By the soundness condition, there is an infinitely
progressing trace of this path following some predicate P

say.

• But then we can construct an infinite descending chain of
ordinals based on the approximants of P , contradiction.
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Completeness of LKIDω

Theorem
Any sequent valid in all standard models has a cut-free proof in
LKIDω.

• Given Γ ⊢ ∆ (not provable), we construct an infinite
derivation tree corresponding to an exhaustive search for a
proof of it.

• Either the tree gets stuck at some node which we call
Γω ⊢ ∆ω, or else some branch fails the trace condition, in
which case Γω ⊢ ∆ω is the “limit union” of the sequents
along this branch.

• Either way, we show Γω ⊢ ∆ω is not provable (this uses the
trace condition).

• Thus we can use Γω ⊢ ∆ω to construct a syntactic
counter-model (the inductive predicate case also uses the
trace condition). 16/ 26



Eliminability of cut

Corollary

Any LKIDω-provable sequent also has a cut-free LKIDω proof.
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Eliminability of cut

Corollary

Any LKIDω-provable sequent also has a cut-free LKIDω proof.

Unlike in LKID, cut-free proofs in LKIDω enjoy a property akin
to the subformula property, which seems close to the spirit of
Girard’s “purity of methods”.
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Part IV

Cyclic proofs by infinite descent
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CLKIDω: a cyclic subsystem of LKIDω

• The infinitary system LKIDω is clearly unsuitable for
formal reasoning!
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CLKIDω: a cyclic subsystem of LKIDω

• The infinitary system LKIDω is clearly unsuitable for
formal reasoning!

• Indeed, completeness for standard validity implies that
there is no complete enumeration of LKIDω proofs.

• However, the restriction of LKIDω to proofs given by
regular trees, which we call CLKIDω, is a natural one that
is suitable for formal reasoning.

• In this restricted system, every proof can be represented as
a finite (cyclic) graph.
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Cyclic proofs

•

• • · · · •
(Inference)

•

(Axiom)
•

•

•
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A cyclic proof

(ER1)
⊢ E0, O0

Nz ⊢ Oz,Ez (†)
(Subst)

Ny ⊢ Oy,Ey
(OR1)

Ny ⊢ Oy,Osy
(ER2)

Ny ⊢ Esy,Osy
(NL)

Nz ⊢ Ez,Oz (†)
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A cyclic proof

(ER1)
⊢ E0, O0

Nz ⊢ Oz,Ez (†)
(Subst)

Ny ⊢ Oy,Ey
(OR1)

Ny ⊢ Oy,Osy
(ER2)

Ny ⊢ Esy,Osy
(NL)

Nz ⊢ Ez,Oz (†)

Any infinite path has a tail consisting of repetitions of the loop
indicated by (†), and there is a progressing trace on this loop.
By concatenating copies of this trace we obtain an infinitely
progressing trace as required.
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Results about CLKIDω

Proposition (Proof-checking decidability)

It is decidable whether a CLKIDω pre-proof is a proof.
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Results about CLKIDω

Proposition (Proof-checking decidability)

It is decidable whether a CLKIDω pre-proof is a proof.

Theorem
Any LKID proof can be transformed into a CLKIDω proof.

(Proof: We show how to derive any induction rule in CLKIDω.)

Conjecture

Any CLKIDω-provable sequent is also LKID-provable.

This conjecture can be seen as a formalised version of:

Proof by induction is equivalent to regular proof by
infinite descent.
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Part V

Summary
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Summary

standard validity

Henkin validity

cut-free provability
in LKIDω

cut-free provability
in LKID

provability
in CLKIDω

inclusion

completeness

soundness

soundness completeness

subsystem
+ cut-elim

transformation

conjecture

24/ 26



Some more recent developments

• Cyclic proof has started to see use in automatic theorem
proving and in program verification tools.
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Some more recent developments

• Cyclic proof has started to see use in automatic theorem
proving and in program verification tools.

• Cyclic systems have been developed for various other logics
with inductive definitions or fixed point operators.

• Attempts at solving the conjecture. . .
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