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Cyclic pre-proofs

A cyclic pre-proof is a derivation tree with a backlink from each
open leaf (“bud”) to an identical “companion”:

Cyclic proof = pre-proof P + soundness condition S(P).
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An invalid pre-proof
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An invalid pre-proof
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e This is certainly a pre-proof, but obviously it cannot be
accepted as valid!
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An invalid pre-proof

R -l

/ (Weak)
! F1, L

) (Contr)
o » B L

e This is certainly a pre-proof, but obviously it cannot be
accepted as valid!

® Here, we formed a cycle but failed to make any appreciable
“progress”.
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The need for a soundness condition

® In any reasonable proof system the rules must be locally
sound: if all premises of the rule are valid then so is its
conclusion.
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The need for a soundness condition

In any reasonable proof system the rules must be locally
sound: if all premises of the rule are valid then so is its
conclusion.

When proofs are finite trees, this guarantees that any
provable judgement is valid: supposing not, then some
axiom in the tree must be invalid, contradiction.

However, when proofs are cyclic graphs, local soundness
just says that if the root judgement is invalid then there is
an infinite path of invalid judgements in the tree.

A soundness condition for cyclic proofs must therefore rule
out the existence of such paths.
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Infinite descent

Because the ordinary methods now in the books were insuf-
ficient for demonstrating such difficult propositions, I finally
found a totally unique route for arriving at them ...which I

called infinite descent . ..
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Infinite descent

Because the ordinary methods now in the books were insuf-
ficient for demonstrating such difficult propositions, I finally
found a totally unique route for arriving at them ...which I
called infinite descent . ..

If there were any integral right triangle that had an area equal
to a square, there would be another triangle less than that one
which would have the same property. ..

Now 1t is the case that, given a number, there are not in-
finitely many numbers less than that one in descending order
... Whence one concludes that it is therefore impossible that
there be any right triangle of which the area is a square. ..

Pierre de Fermat, Relation des nouvelles d’ecouvertes en la
science des nombres, letter to Pierre de Carcavi, 1659
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Infinite descent example

Theorem
V2 is not rational.

Proof.
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V2 is not rational.

Proof.
Suppose for contradiction that /2 = z/y for 2,y € N. Then
2?2 = 292, Consequently z(z —y) = y(2y — z), so that:
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Define 2/ = 2y — x and 3y’ = = — 5. Then 2 /y’ = V2.
Now observe that 1 < 22/y? < 4, so y < x < 2y, and so
0<y <uy.
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Infinite descent example

Theorem
V2 is not rational.

Proof.
Suppose for contradiction that /2 = z/y for 2,y € N. Then
2?2 = 292, Consequently z(z —y) = y(2y — z), so that:

2y—x_a:_\/§
r—y oy ‘

Define 2/ = 2y — x and 3y’ = = — 5. Then 2 /y’ = V2.

Now observe that 1 < 22/y? < 4, so y < x < 2y, and so

0 <y’ < y. But then we have 2,y € N such that v/2 = 2’ /y/,
and y’ < y. This gives an infinite descent from y. U
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Example: p-calculus properties of processes

“Clock” process Cl repeatedly ticks:

Cl =def tick.Cl
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FExample: p-calculus properties of processes

“Clock” process Cl repeatedly ticks:
Cl =—def tick.Cl

The p-calculus formula v X. (tick) X means “the action ‘tick’
can be performed infinitely often”.

ClFvX. (tick)X
((tick))
tick.Cl & (tick)vX. (tick) X o
ClF (tick)vX. (tick) X
ClFvX. (tick)X
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FExample: p-calculus properties of processes

“Clock” process Cl repeatedly ticks:
Cl =—def tick.Cl

The p-calculus formula v X. (tick) X means “the action ‘tick’
can be performed infinitely often”.

pmmmmm ClFvX. (tick)X
/ ((tick))
v tick.Cl & (tick)v X. (tick) X ©
! CLF (tick)vX. (tick)X

\ 1%
Teo--- » Ol vX. (tick) X
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Soundness: two explanations

Suppose that Cl | vX. (tick)X. Then every judgement along
the single infinite path in the proof is invalid.
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Soundness: two explanations

Suppose that Cl | vX. (tick)X. Then every judgement along
the single infinite path in the proof is invalid.

1. By supposition there are no infinite tick sequences from C'.

However, the infinite path does create such an infinite
sequence, since ((tick)) is applied infinitely often.

2. There must be some ordinal-indexed overapproximation of
the fixed point v*X. (tick) X of which CI is not a member.
Unfolding v X infinitely often (by (v)) creates an infinite
descending chain of such ordinals, from a — but these are
well-founded.
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Hoare logic

Imperative program verification is classically based on Hoare
triples {P} C {Q} where C is a program and P, @ are formulas.
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Hoare logic

Imperative program verification is classically based on Hoare
triples {P} C {Q} where C is a program and P, @ are formulas.

We assume a programming language with an operational
semantics given by (C, o) — (C’,0’), where 0,0’ range over
program states. We also have a relation o = P between states
and formulas.

Then {P} C {Q} is valid when:

if o E P and (C,0) =" (¢/) then o/ = Q .
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Ezxample: Hoare logic

Let C be the program
while i>0 {if * then i--;};

where * is a nondeterministic condition.
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while i>0 {if * then i--;};
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{i >0}C {i =0}

if)

{i>0}C{i=0} {i >0}C {i =0}
i>0,i%0Fi=0 {i>0}i-—;C{i =0} i>0pc{i=0}
{i>0,i%0}efi=0} ‘ {i > 0}if * then i--;C {i =0}
(while)
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Ezxample: Hoare logic

Let C be the program

while i>0 {if * then i--;};

where * is a nondeterministic condition. Let’s show

{i >0}C {i =0}

————————————————————— {i>0}C{i=0} {i>0}C{i=0} --~,
_ }_ \

i>0,i#0Fi=0 {i>0}i—-;C{i:0}( ) {i>0}C{i=0} (.) :
{i>0,i#0}e{i =0} . {i > 0} if * then i--;C{i =0} (1f):
(while)

———————————————— > {i>0}C{i=0} ¢-m-mmmmmmomom oo
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Soundness explanation

Suppose that {i > 0} C' {i = 0} is invalid.
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Soundness explanation

Suppose that {i > 0} C' {i = 0} is invalid.

Le., there are states 0,0’ with ¢ =7 > 0 and (C,0) —* (¢/) but
o Ei=0.

As usual, we get an infinite path of invalid triples through the
proof, which must traverse one or both cycles infinitely often.

But program commands are symbolically executed infinitely
often along this path. Thus the assumed execution from (C, o)
is in fact infinite: contradiction.
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Inductive definitions in first-order logic

Consider these inductive definitions of predicates N, E, O:

= NO = E0
Nz = Nsz Fx = Osx
Or = FEsx
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Inductive definitions in first-order logic

Consider these inductive definitions of predicates N, E, O:

= NO = E0
Nz = Nsz Fx = Osx
Or = FEsx

These definitions generate case-split rules, e.g., for N:
t=0FA Ijt=sx,NokF A
I'Nt- A

(Case N)

(where z is fresh).
Note that Nz in the right-hand premise is obtained by
unfolding Nt in the conclusion.
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FExample, inductive definitions

We'll prove that every natural number is either even or odd, i.e.
Nzt EzV Ox.
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Example, inductive definitions

We'll prove that every natural number is either even or odd, i.e.
Nzt EzV Ox.

Nx + Oz, Ex
———— (Subst)
Nyt Oy, Ey
—(0)
Ny F Oy, Osy

— (B) —(£)

F E0,00 Nyt Esy,Osy

r=0F Ex,Ox xz=sy, Nyt Ex,Ox -
(Case N)
Nz + Ez,Ox

— (V)
Nzt ExV Ox
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Example, inductive definitions

We'll prove that every natural number is either even or odd, i.e.
Nzt EzV Ox.

NxkOx,Ex -----=-=-=---~ N
(Subst) \
Nyt Oy, Ey !
—(0) \
Ny F Oy, Osy !
— (E) —— () |
F E0,00 Nyt Esy,Osy !
r=0F Ex,Ox - xz=sy, Nyt Ex,Ox - !
(Case N) -
Nx b Ex,Or ¢€-=-=-----=-===-=-----~
— (V)
Nx + ExV Ox

Note that here we examine formulas on the left of the turnstile!
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Ezplanation of soundness

Suppose that Nz = Ex V Oz is invalid, meaning that M =, Nz
(for some structure M and valuation p) but M =, Ex V Ox.

As usual, we have that every sequent on the infinite path is
invalid.
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Ezplanation of soundness

Suppose that Nz = Ex V Oz is invalid, meaning that M =, Nz
(for some structure M and valuation p) but M =, Ex V Ox.

As usual, we have that every sequent on the infinite path is
invalid. We can either notice:

1. that [N is a well-founded set and we have an infinite
descent in these “numerals”, from p(x), because of the
infinite unfolding of Nx; or

2. that if p(x) € [N]ar that it is a member of some
underapproximation [N]},, and we have an infinite descent

in these approximant ordinals, again because of the infinite
unfolding of N.
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Ezxample (2), inductive definitions

Here’s a proof of the converse statement, Ez vV Ox - Nz.
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Ezxample (2), inductive definitions

Here’s a proof of the converse statement, Ez vV Ox - Nz.

Oz + Nz Exzt+ Nz
——— (Subst) ——— (Subst)
Oy Ny FEyk Ny
—(N) 7 " (N 7
F NO Oy Nsy Eyt Nsy
r=0F Nz r=sy,Oyk Nx r=sy,Fyk- Nx
(Case E) ——— (Case O)
Ex+ Nz Oz + Nz

(V)
ExVvOxt Nz
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' Oz Nx --—=""777---- Ext Nz

: (Subst) (Subst)

I Oyt Ny Eyt Ny

1 —(N)

! F NO Oy Nsy FEyt Nsy

i z=0F Nz r=sy,Oyk Nx r=sy,Fyk- Nx

\ (Case £) ——— — (Case O) ,

Temmeeo-- *Ex - Nz Oz b Nat-----=-=---~
(V)

FExV Oxt Nx

Ezxample (2), inductive definitions

Here’s a proof of the converse statement, Ez vV Ox - Nz.

Soundness justification is as before.
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Remark on soundness

Our soundness justifications often rely on reasoning of the form
“this formula instance in the proof is a fixed point unfolding of
that one”.

Some proof rules can complicate this reasoning.
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“this formula instance in the proof is a fixed point unfolding of
that one”.

Some proof rules can complicate this reasoning. Some instances:

AFB Pyt B Px+F FFB
—— (Weak) — (=) —— (Cut)
A, Pr+ B Pr,x=y+ B Pz + B

Px+ Fx r=sy,Fy+ B
—— (Subst) —— (Case O)

PzF Fz Oz + B
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Remark on soundness

Our soundness justifications often rely on reasoning of the form
“this formula instance in the proof is a fixed point unfolding of
that one”.

Some proof rules can complicate this reasoning. Some instances:

AFB Py+ B Px+-F F+B
L (Weak) ———(5) — T (cw)
A, Px+ B Px,x=y+ B Px+ B

Px+ Fx r=sy,Fy+ B
—— (Subst) —— (Case O)
PzF Fz Ox+ B

Dealing with this is essentially a matter of book-keeping. And
it might not be necessary if there are no tricky rules.
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Traces

® In a rule instance, a pair of “related” formula occurrences
(or other proof annotations) (A, B) in the conclusion and
some premise respectively is called a trace pair.
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Traces

In a rule instance, a pair of “related” formula occurrences
(or other proof annotations) (A, B) in the conclusion and
some premise respectively is called a trace pair.

A trace pair is called progressing if B is actually obtained
by unfolding A (and not just “the same” formula).

A trace along a path in a pre-proof is obtained by chaining
trace pairs together in the obvious way.

A trace is infinitely progressing if it contains infinitely
many progressing trace pairs.

17/ 32



A general soundness condition

Given some appropriate! notion of “trace pairs” for a cyclic
proof system, one can then state a general soundness condition:
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A general soundness condition

Given some appropriate! notion of “trace pairs” for a cyclic
proof system, one can then state a general soundness condition:
A pre-proof is a cyclic proof if, for every infinite path in
the proof, there is an infinitely progressing trace along

some tail of the path.

Virtually all the cyclic systems I know use a condition of this
form, or which can be rewritten as such.

1 .. . 18/ 32
This is a formalisable concept.



Two relevant facts

Given the soundness condition of the previous form,

1. Cyclic proofs then become sound.
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Two relevant facts

Given the soundness condition of the previous form,

1. Cyclic proofs then become sound. If not, then there is an
infinite path of invalid judgements in the proof. There is an
infinitely progressing trace following this path. This can be
used to realise an infinite descending chain of values in a
well-founded set: contradiction.

2. It is decidable whether a pre-proof P is a cyclic proof or
not. Build two Biichi automata: B; accepting all infinite
paths in P; and By accepting all paths with an infinitely
progressing trace on some tail. The soundness condition
amounts to checking £(By) C L(Bs).
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Some logics with cyclic proof systems

p-calculus (modal, first-order, process verification)
temporal logic (CTL, LTL,...)

first-order logic with ind. defns

separation logic with ind. defns

Hoare logic and variants (e.g. termination)

linear logic with fixed points

modal logic (of certain kinds)

Kleene algebra

combinations of the above

This is by no means a complete list!
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Thanks!
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N

Failure of per-cycle soundness

Consider inductive definitions:

= NO = R0y = Rxz0
Nz = Nszx R(ssz,y), R(x,ssy) = Rsxsy

Now Nz, Ny F Rxy is not valid. E.g. R(s0, ss0) fails. But:

""""""""""" Nz, Ny - Rzy Nz, Ny - Rzy TTT T TS
— (Subst) (Subst) \
1
Nz', Nssy/ = R:E,ssyl Nssz', Ny’ + Rs.sa:,y, 1
—— (Cut) (Cut) :
le, Ny/ = Rzlssy, N:r/, N'y/ = R,ss:v,yl 1
(R) (R) X
Nz’ + Rsz’0 le, Ny/ = Rsx,syl 1
(R) (Case Ny) X
Ny + Rz0 Nz,, Ny + Rsz/y !
1
(Case Nz) ’
Semmm s - = > No,Nyk Rpy S~~~ =~ == == == - - - - mmm - m mmmmmmm - —— === ’



The most common question

Infinite descent principle for N:

-P(k) = (3K’ < k € N. =P(K'))
Vn € N. P(n)

(k arbitrary)

Complete induction principle:

(VK' < k € N. P(K')) — P(k)
Vn € N. P(n)

(k arbitrary)

These are obviously interderivable, so aren’t cyclic proof and
induction proof just the same thing?
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The main difficulty is that
e cyclic proof encodes a relatively strong form of infinite
descent that is implicit in the structure of the proof (nested
cycles, etc.), while

¢ induction proof often uses a relatively weak form of
induction encoded explicitly as a local inference rule. E.g.,
for NV:
FFO FztF Fsx

NtF Ft

The equivalence of the two styles, for FOL with ind defns, was
a conjecture (Brotherston and Simpson, LICS 2007)

(Ind N)
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From cyclic to induction proof

Cyeclic derivation of N-induction:

i Nytk Fy Fz+ Fsx
' ( t) (Subst)
: Ny + Fy Fy' - Fsy
! (Cut)
. FFO Ny + Fsy
N (Case N)
Se-mm--- > Ny Fy
(Subst)
Ntk Ft

This construction generalises to arbitrary inductive definitions.

Theorem
Any sequent provable by induction also has a cyclic proof.
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Peano arithmetic using inductive defns

There is an embedding of Peano arithmetic (PA) into an
explicit-induction proof system:

¢ add the first six Peano axioms as closed formulas (on the
LHS);

® add formulas Nz for each free variable x;
® relativise all quantifiers over N;

® the Peano induction axiom follows from the induction rule
for N.

This means we can formalise PA in a cyclic proof system as
well.
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An aside on completeness

If we allow proofs to be arbitrary infinite trees rather than
cyclic graphs then the system becomes complete (Brotherston
and Simpson LICS 2007).

Since we can formalise PA using induction and thus cyclic
proof, this gives us a complete system for arithmetic.

However, since true arithmetic is not even semidecidable, there
can be no recursive enumeration of the proofs in this system!
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Results on cyclic arithmetic

Theorem (Simpson, FoSSaCS 2017)
Cyclic arithmetic is equivalent to Peano arithmetic.

Proof is by formalising the soundness of cyclic arithmetic inside
AC Ap which is conservative over PA.

Theorem (Berardi and Tatsuta, LICS 2017)

Cyclic proof is equivalent to induction proof for any signature
that includes Peano arithmetic.

Proof is by explicit conversion, defining a notion of j for all
predicates and formalising a version of Ramsay’s theorem using
explicit induction.
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Howewver. . .

Theorem (Berardi and Tasuta, FoSSaCS 2017)

There is a signature for which cyclic proof is not equivalent to
induction proof.

This is essentially because cyclic proof implicitly lets us do
things like infinite descent over the max or min of two numbers,
concepts which might not be explicitly formalisable in restricted

signatures.
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CycCLIST theorem prover

A generic (logic-independent) theorem prover that supports
cyclic proof

Lead developer Nikos Gorogiannis (Facebook & U.
Middlesex)

Support for inductive definitions

Automatic checking of cyclic soundness condition (using
the Biichi automata construction from yesterday)

Open source:

github.com/ngorogiannis/cyclist
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github.com/ngorogiannis/cyclist

Some CYCLIST instantiations

first-order logic with ind defns
separation logic with ind defns

Hoare logic for program termination with recursive
procedures (R. Rowe)

Hoare logic for temporal program properties (G. Tellez
Espinosa)
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Build your own CYCLIST instantiation

To implement your favourite cyclic proof system in CYCLIST
you need to provide the following (to Ocaml functors):

® a syntax for proof judgements;
® some proof rules for judgements;

e the (progressing) trace pairs associated with each proof
rule;

a matching condition for backlinking;

¢ (optional) a preferred search strategy.
Why not try it?
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