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Concurrent separation logic (CSL)

• Concurrent separation logic (CSL) is based upon the
following concurrency rule:

{A1}C1 {B1} {A2}C2 {B2}

{A1 ~A2}C1 ||C2 {B1 ~B2}

• This rule says that concurrent threads behave
compositionally with respect to separation (~) between
their respective memory resources.

• However, separation ~ typically allows some sharing of
read-only resources between threads, which can be
controlled using fractional permissions.
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Fractional permissions

• Fractional permissions are intended to allow the division of
memory into two or more “read-only copies”.

• Permissions can be represented e.g. as rationals in the
open interval (0, 1]. 1 is the write permission and values in
(0, 1) are read-only permissions.

• Heaps store a data value and permission at each location.
Heaps can be composed provided they agree where they
overlap; we add the permissions at overlapping locations.

• Separation ~ denotes the division of a heap using this
composition. E.g., we have

x
0.57→ d~ x

0.57→ d ≡ x 7→ d .
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Typical CSL proof structure

{x 7→ d}

{x 0.57→ d~ x
0.57→ d}

{x 0.57→ d} {x 0.57→ d}
foo(); bar();

{x 0.57→ d ∗A} {x 0.57→ d ∗B}

{x 0.57→ d~ x
0.57→ d~A~B}

{x 7→ d~A~B}

BUT. . . we hit problems when we use permissions to describe
regions of memory and not just pointers.
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The first difficulty

Suppose we define linked list segments using ~:

lsx y =def (x = y ∧ emp) ∨ (∃z. x 7→ z ~ ls z y) .

Now consider traversal procedure foo(x,y):

foo(x,y) { if x=y then return; else foo([x],y); }

This satisfies the following Hoare triple:{
(lsx y)0.5

}
foo(x,y);

{
(lsx y)0.5

}
.

However, we will have difficulties proving so!
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Failed proof attempt

{
(lsx y)0.5

}
foo(x,y) {
if x=y then return;

{
(lsx y)0.5

}

else

{
x 6= y ∧ (x 7→ z ~ ls z y)0.5

}{
x 6= y ∧ (x

0.57→ z ~ (ls z y)0.5)
}

foo([x],y);

{
x

0.57→ z ~ (ls z y)0.5
}

×{
(x 7→ z ~ ls z y)0.5

}{
(lsx y)0.5

}

}
{

(lsx y)0.5
}
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Reason for failure

• The highlighted inference step is not sound:

x
0.57→ z ~ (ls z y)0.5 6|= (x 7→ z ~ ls z y)0.5 .

• This is because the pointer and list segment can overlap on
the LHS, but not on the RHS. In general,

Aπ ~Bπ 6|= (A~B)π .

• But if we use strong separation ∗, which enforces
disjointness of heaps, to define our list segments, the proof
above goes through (since (A ∗B)π ≡ Aπ ∗Bπ).
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The second difficulty

The triple {lsx y} foo(x,y); || foo(x,y); {lsx y} is correct,
but again the proof fails:

{lsx y}{
(lsx y)0.5 ~ (lsx y)0.5

}

{
(lsx y)0.5

} {
(lsx y)0.5

}
foo(x,y); foo(x,y);{
(lsx y)0.5

} {
(lsx y)0.5

}

{
(lsx y)0.5 ~ (lsx y)0.5

}
× {lsx y}
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Reason for second failure

• The highlighted inference step is not sound:

(lsx y)0.5 ~ (lsx y)0.5 6|= lsx y .

• This is because the list segments on the LHS might be
(partially) non-overlapping. In general,

A0.5 ~A0.5 6|= A .

• When splitting the list segment lsx y, we lost the info that
the two formulas (lsx y)0.5 are copies of the same region.
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Proposed solution: nominal labels

• We introduce nominal labels (from hybrid logic), where a
nominal α is interpreted as denoting a unique heap.

• Any formula of the form α ∧A then obeys the principle

(α ∧A)σ ~ (α ∧A)π ≡ (α ∧A)σ⊕π

where ⊕ is addition on permissions.

• Thus we can repair the faulty CSL proof above by replacing
every instance of lsx y by α ∧ lsx y (and adding an initial
step in which we introduce the fresh label α).
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What’s in the paper?

• We define an assertion language including both weak ~ and
strong ∗ separating conjunctions, and nominal labels α.

• We also include hybrid logic’s jump modality @αA,
meaning A is true at α, which is useful in treating more
complex sharing examples.

• We formally establish the needed principles, including

(A ∗B)π ≡ Aπ ∗Bπ

(α ∧A)σ ~ (α ∧A)π ≡ (α ∧A)σ⊕π

• Finally we show how our assertion language can be used in
CSL to verify various concurrent programs with sharing.
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Directions for future work

• Implementation and automation

• Specification inference and biabduction

• Identify tractable fragments
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Thanks for listening!

James Brotherston, Diana Costa, Aquinas Hobor and John
Wickerson.
Reasoning over Permissions Regions in Concurrent
Separation Logic.
In Proc. CAV-2020.
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