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Part I

Motivation



Bunched logic

• A variety of substructural logic (but more like relevant
logic than linear logic);

• Obtained by combining an additive propositional logic with
a multiplicative one;

• Naive reading of additives leads to a natural resource
interpretation of formulas (used e.g. in separation logic);

• Original bunched logic is O’Hearn and Pym’s BI, which is
essentially IL + MILL;

• One can think of additive and multiplicative components as
each being either classical or intuitionistic.



The bunched logic family

BI

(Heyting, Lambek)

BBI

(Boolean, Lambek)

CBI

(Boolean, de Morgan)

dMBI

(Heyting, de Morgan)

¬∼

∼¬

• Subtitles (X,Y) indicate the underlying algebras.

• Arrows denote addition of classical negations ¬ or ∼.



LBI: the BI sequent calculus

• Formulas of BI are given by additive connectives
⊤,⊥,∨,∧,→ of IL plus multiplicative ⊤∗, ∗ and —∗;

• Sequents are Γ ⊢ F where F a formula and Γ a bunch:

Γ ::= F | ∅ | ∅ | Γ ; Γ | Γ , Γ

• Rules for —∗ are:

∆ ⊢ F1 Γ(F2) ⊢ F
(—∗L)

Γ(∆ , F1 —∗ F2) ⊢ F

Γ , F ⊢ G
(—∗R)

Γ ⊢ F —∗ G

where Γ(∆) is bunch Γ with sub-bunch ∆;

• LBI satisfies cut-elimination (Pym 02).



Extending the BI sequent calculus

• Consider BBI obtained by adding additive classical
negation ¬ to BI;

• We need multiple conclusions in some form to have cut-free
proofs of e.g. ¬¬F ⊢ F ;

• But the multiplicative rules do not behave well with
multiple conclusions, e.g.:

Γ ⊢ F Γ′ ⊢ G
(∗R)

Γ , Γ′ ⊢ F ∗ G

Γ ⊢ F ; ∆ Γ′ ⊢ G ; ∆
(?)

Γ , Γ′ ⊢ F ∗ G;∆

Sound Unsound!

• Similar remarks apply to dMBI and CBI.

• We take a different approach, based on display calculi.



Part II

From elementary logics to bunched logics



Elementary components of bunched logic

Additives: ⊤ ⊥ ¬ ∨ ∧ →
Multiplicatives: ⊤∗ ⊥∗ ∼ ∗∨ ∗ —∗

• IL and CL are standard intuitionistic / classical logic over
the additives;

• LM and dMM are Lambek / de Morgan logic over the
multiplicatives;

• Each of the above logics L given by a Hilbert-style proof
system HLL.

• Define “elementary logics” E = {IL,CL,LM,dMM}.



Hilbert presentations of LM and dMM

F ⊢ F F ∗ ⊤∗ ⊣⊢ F

F ∗ (G ∗ H) ⊣⊢ (F ∗ G) ∗ H F ∗ G ⊢ G ∗ F

F1 ⊢ G1 F2 ⊢ G2

F1 ∗ F2 ⊢ G1 ∗ G2

F ∗ G ⊢ H

F ⊢ G —∗ H

F ⊢ G —∗ H

F ∗ G ⊢ H

F ⊢ G G ⊢ H

F ⊢ H

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⊥∗ ⊣⊢ ∼⊤∗ F ∗∨ G ⊣⊢ ∼(∼F ∗ ∼G)

∼F ⊣⊢ F —∗ ⊥∗ ∼∼F ⊢ F

• The axioms below the line are present in HLdMM only.



Definition of bunched logics

• We define the bunched logics B = {BI,BBI,dMBI,CBI} in
terms of E as follows:

BI = IL + LM
BBI = CL + LM

dMBI = IL + dMM
CBI = CL + dMM

where + is interpreted as union of Hilbert presentations.

• These definitions are taken as the baseline for correctness -
no semantics in this approach!

• However, our definitions agree with others in the literature.



Part III

Display calculus fundamentals



Syntax of display calculi

• Structures are constructed from formulas using structural
connectives:

Additive Multiplicative Arity Antecedent Consequent
∅ ∅ 0 truth falsity
♯ ♭ 1 negation negation
; , 2 conjunction disjunction
⇒ ⊸ 2 − implication

• Consecutions are given by X ⊢ Y for X,Y structures.

• We classify substructures of X ⊢ Y as antecedent or
consequent parts (similar to positive / negative occurrences
in formulas).



Display-equivalence

Display calculi are characterised by the availability of a
display-equivalence on consecutions:

Definition

The least congruence ≡D generated by a set of display
postulates of the form X ⊢ Y <>D X ′ ⊢ Y ′ is a
display-equivalence iff:

• for any antecedent part Z of X ⊢ Y there is a W s.t.
X ⊢ Y ≡D Z ⊢ W ;

• for any consequent part Z of X ⊢ Y there is a W s.t.
X ⊢ Y ≡D WZ.



Specifying display calculi

A display calculus DLL for a logic L is specified by:

• A set each of antecedent and consequent structural
connectives;

• Display postulates generating a display-equivalence;

• Logical rules for the logical connectives;

• Structural rules for the structural connectives.

• Standard rules:

(Id)
P ⊢ P

X ⊢ F F ⊢ Y
(Cut)

X ⊢ Y

X ′ ⊢ Y ′

X ⊢ Y ≡D X ′ ⊢ Y ′ (D≡)
X ⊢ Y

Belnap ’82 gives a set of syntactic conditions over proof rules
which guarantee cut-elimination for any display calculus.



Part IV

Display calculi for bunched logics



DLIL: a display calculus for IL

Antecedent structure connectives: ∅ ;
Consequent structure connectives: ⇒

Display postulates: X ; Y ⊢ Z <>D X ⊢ Y ⇒ Z <>D Y ; X ⊢ Z

Logical rules:

(⊥L)
⊥ ⊢ X

∅ ⊢ X

(⊤L)
⊤ ⊢ X

(⊤R)
X ⊢ ⊤

F ; G ⊢ X

(∧L)
F ∧ G ⊢ X

F ⊢ X G ⊢ X

(∨L)
F ∨ G ⊢ X

X ⊢ F G ⊢ Y
(→L)

X ; F → G ⊢ Y

X ⊢ F X ⊢ G
(∧R)

X ⊢ F ∧ G

X ⊢ Fi

i ∈ {1, 2} (∨R)
X ⊢ F1 ∨ F2

X ; F ⊢ G
(→R)

X ⊢ F → G

Structural rules:

∅ ; X ⊢ Y
======= (∅L)

X ⊢ Y

W ; (X ; Y ) ⊢ Z

============= (AAL)
(W ; X) ; Y ⊢ Z

X ⊢ Z

(WkL)
X ; Y ⊢ Z

X ; X ⊢ Y
(CtrL)

X ⊢ Y



DLdMM: a display calculus for dMM

Antecedent structure connectives: ∅ ♭ ,

Consequent structure connectives: ∅ ♭ ,

Display postulates: X , Y ⊢ Z <>D X ⊢ ♭Y , Z <>D Y , X ⊢ Z

X ⊢ Y , Z <>D X , ♭Y ⊢ Z <>D X ⊢ Y , Z
X ⊢ Y <>D ♭Y ⊢ ♭X <>D ♭♭X ⊢ Y

Logical rules:

∅ ⊢ X

(⊤∗L)
⊤∗ ⊢ X

(⊤∗R)
∅ ⊢ ⊤∗

(⊥∗L)
⊥∗ ⊢ ∅

X ⊢ ∅

(⊥∗R)
X ⊢ ⊥∗

F , G ⊢ X
(∗L)

F ∗ G ⊢ X

X ⊢ F Y ⊢ G
(∗R)

X , Y ⊢ F ∗ G

F ⊢ X G ⊢ Y
(∗∨L)

F ∗∨ G ⊢ X , Y

X ⊢ F , G
(∗∨R)

X ⊢ F ∗∨ G

♭F ⊢ X
(∼ L)

∼F ⊢ X

X ⊢ ♭F
(∼ R)

X ⊢ ∼F

X ⊢ F G ⊢ Y
(—∗L)

X , F —∗ G ⊢ Y

X , F ⊢ G
(—∗R)

X ⊢ F —∗ G

Structural rules:

∅ , X ⊢ Y

======== (∅L)
X ⊢ Y

W , (X , Y ) ⊢ Z
============= (MAL)
(W , X) , Y ⊢ Z

X ⊢ Y , ∅

======== (∅R)
X ⊢ Y

W ⊢ (X , Y ) , Z
============= (MAR)
W ⊢ X , (Y , Z)



Display calculi for bunched logics

We obtain display calculi DLL for each L ∈ B by setting for
L1,L2 ∈ E :

DLL1+L2
= DLL1

+ DLL2

where + is component-wise union of display calculus
specifications.

Lemma
For all L ∈ E ∪ B the least congruence induced by the display
postulates of DLL is a display-equivalence for DLL.

Proof.

Easy verification for each L ∈ E . The result then follows for
each L ∈ B.



Principal results

Theorem (Cut-elimination)

For all L ∈ E ∪ B, any DLL proof of X ⊢ Y can be transformed
into a (Cut)-free proof of X ⊢ Y .

Proof.

Verify that Belnap’s conditions C1–C8 hold of DLL for each
L ∈ E , whence it follows that the same conditions must hold
also for each L ∈ B.

Theorem (Soundness / Completeness)

For all L ∈ E ∪ B, X ⊢ Y is DLL-provable just in case it is valid
wrt. the Hilbert presentation of L.

Proof.

Straightforward verification for each L ∈ E , whence the result
follows directly for each L ∈ B.



Part V

Consequences



Translating LBI into DLBI

Recall the LBI rules for —∗:

∆ ⊢ F1 Γ(F2) ⊢ F
(—∗L)

Γ(∆ , F1 —∗ F2) ⊢ F

Γ , F ⊢ G
(—∗R)

Γ ⊢ F —∗ G

(—∗R) has a direct equivalent in DLBI, while (—∗L) can be
derived in DLBI as follows:

∆ ⊢ F1

Γ(F2) ⊢ F
(D≡)

F2 ⊢ X
(—∗L)

∆ , F1 —∗ F2 ⊢ X
(D≡)

Γ(∆ , F1 —∗ F2) ⊢ F

Translation preserves cut-freeness of proofs.



Translating DLBI into LBI

For any consecution X ⊢ Y define its display-normal form
pX ⊢ Y q as the result of iteratively applying transformations:

X ⊢ Y ⇒ Z 7→ X ; Y ⊢ Z

X ⊢ Y ⊸ Z 7→ X , Y ⊢ Z

Then pX ⊢ Y q is always an LBI sequent and the rules of DLBI

are LBI-derivable under translation p−q, e.g.:

pX ⊢ Fq pG ⊢ Y q

pX , F —∗ G ⊢ Y q
=

X ⊢ F Γ(G) ⊢ H

Γ(X , F —∗ G) ⊢ H

Translation again preserves cut-freeness of proofs, so we have:

Proposition

Cut-elimination in LBI ⇔ cut-elimination in DLBI.



Failure of general sequent translation

• So, LBI can be seen as an optimised version of DLBI;

• However, the display calculi for the other bunched logics do
not optimise in the same way due to their use of structural
negations ♯ and ♭.

• E.g., in the case of BBI, how do we define the
display-normal form pF , ♯G ⊢ Hq?

• We suggest that there is really no sensible way of defining a
“bunched sequent” representation of such consecutions.

• Thus we argue that our display calculi are really canonical
proof systems for the bunched logics.



Summary

BI

(Heyting, Lambek)

BBI

(Boolean, Lambek)

CBI

(Boolean, de Morgan)

dMBI

(Heyting, de Morgan)

¬∼

∼¬

• Relevant logic connection: dMBI can now be seen to be a
conservative extension of RW.

• Restall’s decidability techniques for display calculi seem
certain to apply to both dMBI and BI.



Summary

• All four bunched logics now have a sound, complete and
cut-eliminating proof theory.

• Our development aims to maximally exploit the
symmetries and common elements of the setting.

• We argue that our display calculi are really canonical proof
systems for the bunched logics.

• In particular, our display calculus for BI is really a simple
reformulation of the BI sequent calculus.
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