Bunched Logics Displayed

James Brotherston

Imperial College London

CISA seminar University of Edinburgh, 28 Oct 2009

Part I

Motivation

Bunched logic

- A variety of substructural logic (but more like relevant logic than linear logic);
- Obtained by combining an additive propositional logic with a multiplicative one;
- Naive reading of additives leads to a natural resource interpretation of formulas (used e.g. in separation logic);
- Original bunched logic is O'Hearn and Pym's BI, which is essentially IL + MILL;
- One can think of additive and multiplicative components as each being either classical or intuitionistic.

- Subtitles (X,Y) indicate the underlying algebras.
- Arrows denote addition of classical negations \neg or \sim .

LBI: the BI sequent calculus

- Formulas of BI are given by additive connectives $\top, \bot, \lor, \land, \rightarrow$ of IL plus multiplicative \top^* , * and -*;
- Sequents are $\Gamma \vdash F$ where F a formula and Γ a bunch:

 $\Gamma ::= F \mid \emptyset \mid \varnothing \mid \Gamma ; \Gamma \mid \Gamma , \Gamma$

• Rules for -* are:

$$\frac{\Delta \vdash F_1 \quad \Gamma(F_2) \vdash F}{\Gamma(\Delta, F_1 \twoheadrightarrow F_2) \vdash F} (\twoheadrightarrow L) \qquad \frac{\Gamma, F \vdash G}{\Gamma \vdash F \twoheadrightarrow G} (\twoheadrightarrow R)$$

where $\Gamma(\Delta)$ is bunch Γ with sub-bunch Δ ;

• LBI satisfies cut-elimination (Pym 02).

Extending the BI sequent calculus

- Consider BBI obtained by adding additive classical negation ¬ to BI;
- We need multiple conclusions in some form to have cut-free proofs of e.g. $\neg \neg F \vdash F$;
- But the multiplicative rules do not behave well with multiple conclusions, e.g.:

$$\frac{\Gamma \vdash F \quad \Gamma' \vdash G}{\Gamma, \Gamma' \vdash F * G} (*R) \qquad \frac{\Gamma \vdash F; \Delta \quad \Gamma' \vdash G; \Delta}{\Gamma, \Gamma' \vdash F * G; \Delta} (?)$$

Sound

Unsound!

- Similar remarks apply to dMBI and CBI.
- We take a different approach, based on display calculi.

Part II

From elementary logics to bunched logics

Elementary components of bunched logic

- IL and CL are standard intuitionistic / classical logic over the additives;
- LM and dMM are Lambek / de Morgan logic over the multiplicatives;
- Each of the above logics \mathcal{L} given by a Hilbert-style proof system $\operatorname{HL}_{\mathcal{L}}$.
- Define "elementary logics" $\mathcal{E} = \{IL, CL, LM, dMM\}.$

Hilbert presentations of LM and dMM

$$F \vdash F \qquad F \ast \top^{\ast} \dashv \vdash F$$

$$F \ast (G \ast H) \dashv \vdash (F \ast G) \ast H \qquad F \ast G \vdash G \ast F$$

$$\frac{F_{1} \vdash G_{1} \quad F_{2} \vdash G_{2}}{F_{1} \ast F_{2} \vdash G_{1} \ast G_{2}} \qquad \frac{F \ast G \vdash H}{F \vdash G \twoheadrightarrow H} \qquad \frac{F \vdash G \multimap H}{F \ast G \vdash H} \qquad \frac{F \vdash G \quad G \vdash H}{F \vdash H}$$

$$\dots$$

$$\bot^{\ast} \dashv \vdash \sim \top^{\ast} \qquad F \checkmark^{\ast} G \dashv \vdash \sim (\sim F \ast \sim G)$$

$$\sim F \dashv \vdash F \twoheadrightarrow \bot^{\ast} \qquad \sim \sim F \vdash F$$

 $\bullet\,$ The axioms below the line are present in $\mathrm{HL}_{\mathrm{dMM}}$ only.

Definition of bunched logics

• We define the bunched logics $\mathcal{B} = \{BI, BBI, dMBI, CBI\}$ in terms of \mathcal{E} as follows:

BI	=	IL + LM
BBI	=	$\mathrm{CL} + \mathrm{LM}$
dMBI	=	IL + dMM
CBI	=	CL + dMM

where + is interpreted as union of Hilbert presentations.

- These definitions are taken as the baseline for correctness no semantics in this approach!
- However, our definitions agree with others in the literature.

Part III

Display calculus fundamentals

Syntax of display calculi

• Structures are constructed from formulas using structural connectives:

Additive	Multiplicative	Arity	Antecedent	Consequent
Ø	Ø	0	truth	falsity
#	þ	1	negation	negation
;	,	2	conjunction	disjunction
\Rightarrow	—o	2	—	implication

- Consecutions are given by $X \vdash Y$ for X, Y structures.
- We classify substructures of $X \vdash Y$ as antecedent or consequent parts (similar to positive / negative occurrences in formulas).

Display-equivalence

Display calculi are characterised by the availability of a display-equivalence on consecutions:

Definition

The least congruence \equiv_D generated by a set of display postulates of the form $X \vdash Y \ll X' \vdash Y'$ is a display-equivalence iff:

- for any antecedent part Z of $X \vdash Y$ there is a W s.t. $X \vdash Y \equiv_D Z \vdash W;$
- for any consequent part Z of $X \vdash Y$ there is a W s.t. $X \vdash Y \equiv_D WZ$.

Specifying display calculi

A display calculus $\mathrm{DL}_\mathcal{L}$ for a logic \mathcal{L} is specified by:

- A set each of antecedent and consequent structural connectives;
- Display postulates generating a display-equivalence;
- Logical rules for the logical connectives;
- Structural rules for the structural connectives.
- Standard rules:

$$\frac{1}{P \vdash P} (\mathrm{Id}) \quad \frac{X \vdash F \quad F \vdash Y}{X \vdash Y} (\mathrm{Cut}) \quad \frac{X' \vdash Y'}{X \vdash Y} X \vdash Y \equiv_D X' \vdash Y' (\mathrm{D} \equiv)$$

Belnap '82 gives a set of syntactic conditions over proof rules which guarantee cut-elimination for any display calculus.

Part IV

Display calculi for bunched logics

DL_{IL}: a display calculus for IL

Structural rules:

$$\underbrace{ \emptyset ; X \vdash Y }_{X \vdash Y} (\emptyset L) \quad \underbrace{ W ; (X ; Y) \vdash Z }_{(W ; X) ; Y \vdash Z} (AAL) \quad \underbrace{ X \vdash Z }_{X ; Y \vdash Z} (WkL) \quad \underbrace{ X ; X \vdash Y }_{X \vdash Y} (CtrL)$$

DL_{dMM}: a display calculus for dMM

Logical rules:

$$\begin{array}{ccc} \overrightarrow{\varnothing} \vdash X \\ \overrightarrow{\top^* \vdash X} (\top^* \mathbf{L}) & \overrightarrow{\varnothing} \vdash \overrightarrow{\top^*} (\top^* \mathbf{R}) & \overrightarrow{\bot^* \vdash \varnothing} (\bot^* \mathbf{L}) & \overrightarrow{X \vdash \varnothing} (\bot^* \mathbf{R}) \\ \hline F, G \vdash X \\ \overrightarrow{F * G \vdash X} (* \mathbf{L}) & \overrightarrow{X \vdash F \ Y \vdash G} \\ \overrightarrow{K}, Y \vdash F * G (* \mathbf{R}) & \overrightarrow{F \vdash X \ G \vdash Y} \\ \hline F & \overleftarrow{\forall} G \vdash X , Y (\overset{\bullet}{\nabla} \mathbf{L}) & \overrightarrow{X \vdash F \ & \overleftarrow{\sigma}} (\overset{\bullet}{\nabla} \mathbf{R}) \\ \hline \overrightarrow{\psi} F \vdash X \\ \overrightarrow{\sim} F \vdash X (\sim \mathbf{L}) & \overrightarrow{X \vdash \varphi} (\sim \mathbf{R}) & \overrightarrow{X \vdash F \ & G \vdash Y} \\ \hline X, F \rightarrow G \vdash Y \\ \overrightarrow{K} \vdash \overrightarrow{\varphi} (-* \mathbf{L}) & \overrightarrow{X \vdash F \ & -* G} (-* \mathbf{R}) \end{array}$$

Structural rules:

$$\overbrace{X \vdash Y}^{\varnothing, X \vdash Y} (\varnothing L) \qquad \underbrace{W, (X, Y) \vdash Z}_{(W, X), Y \vdash Z} (MAL) \qquad \underbrace{X \vdash Y, \varnothing}_{X \vdash Y} (\varnothing R) \qquad \underbrace{W \vdash (X, Y), Z}_{W \vdash X, (Y, Z)} (MAR)$$

Display calculi for bunched logics

We obtain display calculi $DL_{\mathcal{L}}$ for each $\mathcal{L} \in \mathcal{B}$ by setting for $\mathcal{L}_1, \mathcal{L}_2 \in \mathcal{E}$:

 $\mathrm{DL}_{\mathcal{L}_1 + \mathcal{L}_2} = \mathrm{DL}_{\mathcal{L}_1} + \mathrm{DL}_{\mathcal{L}_2}$

where + is component-wise union of display calculus specifications.

Lemma

For all $\mathcal{L} \in \mathcal{E} \cup \mathcal{B}$ the least congruence induced by the display postulates of $DL_{\mathcal{L}}$ is a display-equivalence for $DL_{\mathcal{L}}$.

Proof.

Easy verification for each $\mathcal{L} \in \mathcal{E}$. The result then follows for each $\mathcal{L} \in \mathcal{B}$.

Principal results

Theorem (Cut-elimination)

For all $\mathcal{L} \in \mathcal{E} \cup \mathcal{B}$, any $DL_{\mathcal{L}}$ proof of $X \vdash Y$ can be transformed into a (Cut)-free proof of $X \vdash Y$.

Proof.

Verify that Belnap's conditions C1–C8 hold of $DL_{\mathcal{L}}$ for each $\mathcal{L} \in \mathcal{E}$, whence it follows that the same conditions must hold also for each $\mathcal{L} \in \mathcal{B}$.

Theorem (Soundness / Completeness)

For all $\mathcal{L} \in \mathcal{E} \cup \mathcal{B}$, $X \vdash Y$ is $DL_{\mathcal{L}}$ -provable just in case it is valid wrt. the Hilbert presentation of \mathcal{L} .

Proof.

Straightforward verification for each $\mathcal{L} \in \mathcal{E}$, whence the result follows directly for each $\mathcal{L} \in \mathcal{B}$.

Part V

Consequences

Translating LBI into DL_{BI}

Recall the LBI rules for -*:

$$\frac{\Delta \vdash F_1 \quad \Gamma(F_2) \vdash F}{\Gamma(\Delta, F_1 \twoheadrightarrow F_2) \vdash F} (\twoheadrightarrow L) \qquad \frac{\Gamma, F \vdash G}{\Gamma \vdash F \twoheadrightarrow G} (\twoheadrightarrow R)$$

(-*R) has a direct equivalent in DL_{BI} , while (-*L) can be derived in DL_{BI} as follows:

$$\frac{\Delta \vdash F_1}{\Delta, F_1 \twoheadrightarrow F_2 \vdash X} (D\equiv)$$

$$\frac{\Delta \vdash F_1}{\Delta, F_1 \twoheadrightarrow F_2 \vdash X} (-*L)$$

$$\Gamma(\Delta, F_1 \twoheadrightarrow F_2) \vdash F (D\equiv)$$

Translation preserves cut-freeness of proofs.

Translating DL_{BI} into LBI

For any consecution $X \vdash Y$ define its display-normal form $\lceil X \vdash Y \rceil$ as the result of iteratively applying transformations:

$$\begin{array}{rrrr} X \vdash Y \Rightarrow Z & \mapsto & X \; ; Y \vdash Z \\ X \vdash Y \multimap Z & \mapsto & X \; , Y \vdash Z \end{array}$$

Then $\lceil X \vdash Y \rceil$ is always an LBI sequent and the rules of DL_{BI} are LBI-derivable under translation $\lceil -\rceil$, e.g.:

	$\vdash F \urcorner \ \ulcorner G \vdash Y \urcorner $	$X \vdash F \Gamma(G) \vdash H$
$\ulcorner X , F \twoheadrightarrow G \vdash Y \urcorner$	_	$\overline{\Gamma(X, F \twoheadrightarrow G)} \vdash H$

Translation again preserves cut-freeness of proofs, so we have:

Proposition

Cut-elimination in LBI \Leftrightarrow cut-elimination in DL_{BI}.

Failure of general sequent translation

- So, LBI can be seen as an optimised version of DL_{BI};
- However, the display calculi for the other bunched logics do not optimise in the same way due to their use of structural negations # and b.
- E.g., in the case of BBI, how do we define the display-normal form $\lceil F \rangle$, $\sharp G \vdash H \urcorner$?
- We suggest that there is really no sensible way of defining a "bunched sequent" representation of such consecutions.
- Thus we argue that our display calculi are really canonical proof systems for the bunched logics.

- Relevant logic connection: dMBI can now be seen to be a conservative extension of RW.
- Restall's decidability techniques for display calculi seem certain to apply to both dMBI and BI.

Summary

- All four bunched logics now have a sound, complete and cut-eliminating proof theory.
- Our development aims to maximally exploit the symmetries and common elements of the setting.
- We argue that our display calculi are really canonical proof systems for the bunched logics.
- In particular, our display calculus for BI is really a simple reformulation of the BI sequent calculus.

Further reading

Nuel D. Belnap, Jr. Display Logic. In Journal of Philosophical Logic, vol. 11, 1982.

Greg Restall.

Displaying and Deciding Substructural Logics 1: Logics with Contraposition.

In Journal of Philosophical Logic, vol. 27, 1998.

P.W. O'Hearn and D.J. Pym. The logic of bunched implications. In Bulletin of Symbolic Logic, vol. 5-2, 1999.

James Brotherston.

A Unified Display Proof Theory for Bunched Logic Submitted, 2009; available from my home page.