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BI: the logic of bunched implications
(O’Hearn and Pym ’99)

A substructural logic with natural resource interpretation.

BI formula connectives:

Additive: T 1L = A VvV -
Multiplicative: — T* * —%

Two flavours:
o BI (intuitionistic additives)
e Boolean BI (classical additives)

Our main reference point: Boolean BI (BBI).

Killer application of BBI: separation logic.



Our contribution: classical BI (CBI)

Why aren’t there multiplicative versions of |, =, V?
We obtain CBI by adding them to BBI:

Additive: T L = AV —
Multiplicative: — T* 1% ~ % ¥V —
and considering both families to behave classically.
Are there non-trivial models of CBI?
How do we interpret the new connectives?

Is there a nice proof theory?



Part I

Model theory



Algebraic semantics of BBI

e Models of BBI are partial commutative monoids (R, o, e).
e (R,0,e) is understood as an abstract model of resource:
R: a set of resources

o: a way of (partially) combining resources
e: the distinguished empty resource

e E.g., separation logic model (H, f, emp), where:

H: the set of heaps =g4¢f Var —g, Val
f:  domain-disjoint union of heaps
emp: the empty heap s.t. emp(x) undefined all € Var



Interpreting the BBI connectives

e An environment for M = (R, 0,¢e) isamap p:V — R.
e We have the satisfaction relation r = F":
r=P & repP)

rEF1AF & rEFRandriEFR

reET" & r=e
r = Fix Fy r=riory and r1 = F1 and 2 = F
rEF —~«F, & Vr'.ror defined and r' = Fy implies ror’ = I

¢

e A formula F' is BBI-valid iff, in every BBI-model M, we
have r |= F for all » € R and all environments for M.



Dualising resource models of CBI

A CBI-model is given by a tuple (R, o, e, —, c0), where:
e (R,o,e) is a partial commutative monoid;
e o€ Rand —: R — R;
e for all r € R, —r is the unique solution to r o —r = co.

Natural interpretation: models of dualising resources.
Clearly CBI-models are (special) BBI-models.
Every Abelian group is a CBI-model (with co = e).



Interpreting the CBI connectives
Main problem: we want ~~F = F but also F' — 1* =~
Temporarily define atomic formula > by:
rEMX S r=o0
Key observation:
—rEF & rEa(F —-x)
Thus we interpret 1*, ~, ¥ as follows:
r=1l" & r#oc

re~F & —rpF
rERYE, &  Vri,re. —r €riors implies —r | Fyoor —1ro |

CBI-validity is as for BBI.



Some semantic equivalences of CBI

~T = L

~T* = 1F

~~F = F
F—1" = ~F

-~F = ~=F

FVG = ~(~Fx*~Q)

F+«G = ~FVG
F—-+G = ~G—=~F
FV1* = F



FExample: Personal finance

Let (Z,+,0,—) be the Abelian group of integers.
View m € Z as money (£):

e m > 0: credit
e m < 0: debt

m = F means “£m is enough to make F' true”.

Let C be the formula “I’ve enough money to buy cigarettes
(£5)” and W be “I've enough to buy whisky (£20)”. So:

mEC & m>5
mEW < m>20



Erample contd.: Personal finance

e mECAW & mECandmpEW
< m > 20
“I have enough to buy cigarettes and also to buy whisky”

e mEC«W & m=mi+mgandm; EC and mg W
& m>25
“I have enough to buy both cigarettes and whisky”

e mEC W & Vm'.m' = C impliesm+m' W
< m>15
“if I acquire enough money to buy cigarettes then, in total,
I have enough to buy whisky”



Erample contd.: Personal finance

° m ): 1 e m#0
“I am either in credit or in debt”

o mE~C & —mpEC & m>-=5H
“I owe less than the price of a pack of cigarettes”

e mECVW & VYmy,mgo. —m=mq+my
implies —m; = C or —mg =W
S m>24

Note that C VW & ~C W & ~W = C, ie.
“if I spend less than the price of a pack of cigarettes,
then I will still have enough money to buy whisky
(and vice versa!)”



Part 11

Proof theory



Bunches

Bunches I" are given by:
r .= F|0|o|;T|T,T

Bunches represent formulas at the meta-level:

‘ Antecedent meaning
0 T
16/ T*

Y

s *

“7and ¢, associative and commutative with units () resp. @.
Weakening and contraction hold for ‘;” but not *,’.

I'(A) is notation for: A is a sub-bunch occurring in T'.



Sequent calculus

—FFF (AL
[(FyAFy) - F
[(F,F)FF
—————— (1)
F(Fl * Fg) HE
AFF, T(AR)FF

—

rules for (B)BI

'rF T'HFG
———— (\R)
'-FAG
'R AFFy
————— (R)
F,A"Fl*Fg

F;Fl H F2
——— (=R
r |_F1 — F2

e Cut-elimination holds for BI sequent calculus (Pym 2002).
e For BBI, need to add a rule like:

T+ —-F

(RAA)

'-F



Sequent calculus for CBI

Obvious approach for CBI: write two-sided sequents I' - A
where I', A are bunches.

Natural rules for the negations:

I'F;A IFEA
——(°L) —— (-R)
Ii=FFA I'--F;A
T'HFA ILEEA
(v (~R)
I~FFA '-~F A

But there are no cut-free proofs of e.g.
A, (B, —|B) [ C

Alternative formulation of rules for negation?



DLcgr: a display calculus proof system for CBI

e We give a display calculus a la Belnap for CBI.

e Write consecutions X Y, where X, Y are structures:
X:=F|0|oX [»X | X;X | X, X
e Here the negations are represented at the meta-level:

Antecedent meaning | Consequent meaning
T €
T* J_*

—_

* > 2
<x < 2 J




Proof rules for DLcpy
Three types of proof rules:

1. display postulates allowing structures to be shuffled:
X:YFZ XFY
XY 7 Y FEX

2. left- and right-introduction rules for each logical connective:

XFF GrY X,FFG
—— (L) — (—+R)
F+xGFMX)Y XFHF %G

3. structural rules governing the structural connectives:

W (X;Y)FZ X2z X+Y,2
———~ (AAL) ——— (WkR) ——— (MIR)
W;X):Y + Z XFY:Z XFY



Results about DLcpp

Easy consequence of the fact that DLcpy is a display calculus:
Theorem (Cut-elimination)

Any DLggr proof of X B'Y can be transformed into a cut-free
proof of X Y.

Main technical results:
(NB. Validity for formulas extends easily to consecutions.)

Theorem (Soundness)

Any DLggr-derivable consecution is valid.

Theorem (Completeness)

Any wvalid consecution is DLcpr-derivable.



Part 111

Applications



What can be done in theory?

Proposition

CBI is a non-conservative extension of BBI. That is, there are
formulas of BBI that are CBlI-valid but not BBI-valid.

Basic reason: in CBI-models (R, o, e, —, 00) we have:
rE-T"+1 = r=o00

whereas in BBI-models there can be more than one such r.

Consequence: we cannot (directly) apply CBI reasoning
principles such as F'— G = ~F ¥ G to BBI models (e.g.
separation logic heap model).



A CBI-model of financial portfolios

Let ID be an infinite set of identifers.
Let P be the set of portfolios: functions p : ID — 7Z s.t.

p(z) # 0 for only finitely many x € ID.

Define composition +, involution — and empty portfolio e:

(1 +p2)(x) = pi(z) + p2(x)
(—p)(@) = —p(z)
e(zr) = 0

(P, +,e,—) is an Abelian group, thus also a CBI-model.



Elementary assets and liabilities

o Let dom(p) = {z € ID | p(x) # 0}.

e Define atomic formula A(x) by:
pE Ax) < dom(p) = {z} and p(z) >0

i.e. A(x) holds of portfolios containing only an asset x.

e Then we have:

pE~Al) & —pE A
< dom(p) = {z} and p(z) <0

i.e. ~=A(x) holds of portfolios having only a liability .



Representing financial derivatives

e Put option: the right to sell asset = for price y:
A(z) —~ Ay)

e Call option: the right to buy asset = for price y.
Aly) = A(x)

e Credit default swap: premium y for a payout of x in the
event of a default D

~=A(y) * (D — A(z)



Hoare logic for finance?

Consider writing Hoare triples {P; }T{P,} where P;, P, are
“symbolic portfolios” and T is a structured trade.

Verification problem: given Py, T, Py, check that {P;}T{P,}.

Planning problem: given Pi, P, find T s.t. { P, }T{P}.

Weakest precondition problem: given T, P5, find the weakest P;
S.t.{Pl}T{PQ}.

Strongest postcondition problem: given Py, T, find the strongest
Py S.t.{Pl}T{PQ}.



Summary of CBI

Model theory: based on involutive commutative monoids

e multiplicatives are classical
e a non-conservative extension of BBI

Proof theory: display logic gives us:
e cut-elimination
e soundness
e completeness

Applications: reasoning about dualising resources, e.g.:
e money;
e permissions;
e bi-abduction.
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