Classical BI
(A logic for reasoning about dualising resources)

James Brotherston* Cristiano Calcagno

Imperial College London

*Me

Logic seminar
Imperial College London, 13 Nov 2008
BI: the logic of bunched implications
(O’Hearn and Pym ’99)

• A substructural logic with natural resource interpretation.
• BI formula connectives:

 Additive: \(\top \quad \bot \quad \neg \quad \land \quad \lor \quad \to \)

 Multiplicative: \(\top^* \quad * \quad * \quad \times \)

• Two flavours:
 • BI (intuitionistic additives)
 • Boolean BI (classical additives)

• Our main reference point: Boolean BI (BBI).
• Killer application of BBI: separation logic.
Our contribution: classical BI (CBI)

• Why aren’t there multiplicative versions of \(\bot, \neg, \lor \)?
• We obtain CBI by adding them to BBI:

 \[
 \text{Additive:} \quad \top \quad \bot \quad \neg \quad \land \quad \lor \quad \rightarrow
 \]

 \[
 \text{Multiplicative:} \quad \top^* \quad \bot^* \quad \sim \quad \ast \quad \triangledown \quad \leftarrow
 \]

 and considering both families to behave classically.

• Are there non-trivial models of CBI?
• How do we interpret the new connectives?
• Is there a nice proof theory?
Part I

Model theory
Algebraic semantics of BBI

• Models of BBI are partial commutative monoids $\langle R, \circ, e \rangle$.
• $\langle R, \circ, e \rangle$ is understood as an abstract model of resource:
 - R: a set of resources
 - \circ: a way of (partially) combining resources
 - e: the distinguished empty resource

• E.g., separation logic model $\langle H, \#, \text{emp} \rangle$, where:
 - H: the set of heaps $=_{\text{def}} Var \rightarrow_{\text{fin}} Val$
 - $\#$: domain-disjoint union of heaps
 - emp: the empty heap s.t. $\text{emp}(x)$ undefined all $x \in Var$
Interpreting the BBI connectives

- An environment for $M = \langle R, \circ, e \rangle$ is a map $\rho: \mathcal{V} \rightarrow R$.
- We have the satisfaction relation $r \models F$:

\[
\begin{align*}
 r \models P & \iff r \in \rho(P) \\
 & \vdots \\
 r \models F_1 \land F_2 & \iff r \models F_1 \text{ and } r \models F_2 \\
 & \vdots \\
 r \models \top^* & \iff r = e \\
 r \models F_1 \ast F_2 & \iff r = r_1 \circ r_2 \text{ and } r_1 \models F_1 \text{ and } r_2 \models F_2 \\
 r \models F_1 \Rightarrow F_2 & \iff \forall r'. r \circ r' \text{ defined and } r' \models F_1 \text{ implies } r \circ r' \models F_2
\end{align*}
\]

- A formula F is BBI-valid iff, in every BBI-model M, we have $r \models F$ for all $r \in R$ and all environments for M.
A CBI-model is given by a tuple $\langle R, \circ, e, -, \infty \rangle$, where:

- $\langle R, \circ, e \rangle$ is a partial commutative monoid;
- $\infty \in R$ and $- : R \to R$;
- for all $r \in R$, $-r$ is the unique solution to $r \circ -r = \infty$.

Natural interpretation: models of dualising resources.

- Clearly CBI-models are (special) BBI-models.
- Every Abelian group is a CBI-model (with $\infty = e$).
Interpreting the CBI connectives

- **Main problem:** we want $\neg\neg F \equiv F$ but also $F \not\rightarrow \bot * \equiv \neg F$.
- Temporarily define atomic formula \bowtie by:

 $$r \models \bowtie \iff r = \infty$$

- **Key observation:**

 $$\neg r \models F \iff r \models \neg (F \not\rightarrow \neg \bowtie)$$

- Thus we interpret \bot^*, \sim, \checkmark as follows:

 $$r \models \bot^* \iff r \neq \infty$$

 $$r \models \sim F \iff \neg r \not\models F$$

 $$r \models F_1 \checkmark F_2 \iff \forall r_1, r_2. \neg r \in r_1 \circ r_2 \text{ implies } \neg r_1 \models F_1 \text{ or } \neg r_2 \models F_2$$

- **CBI-validity** is as for BBI.
Some semantic equivalences of CBI

\[\neg \top \equiv \bot \]
\[\neg \bot^* \equiv \bot^* \]
\[\neg \neg F \equiv F \]
\[F \neg* \bot^* \equiv \neg F \]
\[\neg \neg F \equiv \neg \neg F \]
\[F \backwardsvee G \equiv \neg (\neg F \neg* \neg G) \]
\[F \neg* G \equiv \neg F \backwardsvee G \]
\[F \neg* G \equiv \neg G \neg* \neg F \]
\[F \backwardsvee \bot^* \equiv F \]
Example: Personal finance

- Let \(\langle \mathbb{Z}, +, 0, - \rangle \) be the Abelian group of integers.
- View \(m \in \mathbb{Z} \) as money (£):
 - \(m > 0 \): credit
 - \(m < 0 \): debt
- \(m \models F \) means “£\(m \) is enough to make \(F \) true”.
- Let \(C \) be the formula “I’ve enough money to buy cigarettes (£5)” and \(W \) be “I’ve enough to buy whisky (£20)”. So:
 \[
 m \models C \iff m \geq 5 \\
 m \models W \iff m \geq 20
 \]
Example contd.: Personal finance

- \(m \models C \land W \iff m \models C \text{ and } m \models W \iff m \geq 20 \)
 \text{ ”I have enough to buy cigarettes and also to buy whisky”}

- \(m \models C \ast W \iff m = m_1 + m_2 \text{ and } m_1 \models C \text{ and } m_2 \models W \iff m \geq 25 \)
 \text{ ”I have enough to buy both cigarettes and whisky”}

- \(m \models C \rightarrow W \iff \forall m'. m' \models C \text{ implies } m + m' \models W \iff m \geq 15 \)
 \text{ ”if I acquire enough money to buy cigarettes then, in total, I have enough to buy whisky”}
Example contd.: Personal finance

• $m \models \bot^* \iff m \neq 0$
 “I am either in credit or in debt”

• $m \models \neg C \iff -m \not\models C \iff m > -5$
 “I owe less than the price of a pack of cigarettes”

• $m \models C \uparrow W \iff \forall m_1, m_2. -m = m_1 + m_2$
 implies $-m_1 \models C$ or $-m_2 \models W$
 $\iff m \geq 24$

Note that $C \uparrow W \iff \neg C \dashv W \iff \neg W \dashv C$, i.e.:
“if I spend less than the price of a pack of cigarettes,
then I will still have enough money to buy whisky
(and vice versa!)”
Part II

Proof theory
Bunches

- Bunches Γ are given by:

$$\Gamma ::= F \mid \emptyset \mid \emptyset \mid \Gamma; \Gamma \mid \Gamma, \Gamma$$

- Bunches represent formulas at the meta-level:

<table>
<thead>
<tr>
<th></th>
<th>Antecedent meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\top</td>
</tr>
<tr>
<td>\emptyset</td>
<td>\bot^*</td>
</tr>
<tr>
<td>;</td>
<td>\land</td>
</tr>
<tr>
<td>,</td>
<td>$*$</td>
</tr>
</tbody>
</table>

- ‘;’ and ‘,’ associative and commutative with units \emptyset resp. \emptyset.
- Weakening and contraction hold for ‘;’ but not ‘,’.
- $\Gamma(\Delta)$ is notation for: Δ is a sub-bunch occurring in Γ.

Sequent calculus rules for (B)BI

\[
\frac{\Gamma(F_1; F_2) \vdash F}{\Gamma(F_1 \land F_2) \vdash F} \quad (\land L)
\]

\[
\frac{\Gamma \vdash F \quad \Gamma \vdash G}{\Gamma \vdash F \land G} \quad (\land R)
\]

\[
\frac{\Gamma(F_1, F_2) \vdash F}{\Gamma(F_1 * F_2) \vdash F} \quad (*L)
\]

\[
\frac{\Gamma \vdash F_1 \quad \Delta \vdash F_2}{\Gamma, \Delta \vdash F_1 * F_2} \quad (*R)
\]

\[
\frac{\Delta \vdash F_1 \quad \Gamma(\Delta; F_2) \vdash F}{\Gamma(\Delta; F_1 \rightarrow F_2) \vdash F} \quad (\rightarrow L)
\]

\[
\frac{\Gamma \vdash F_1 \quad \Gamma \vdash F_2}{\Gamma \vdash F_1 \rightarrow F_2} \quad (\rightarrow R)
\]

- **Cut-elimination** holds for BI sequent calculus (Pym 2002).
- For BBI, need to add a rule like:

\[
\frac{\Gamma \vdash \neg\neg F}{\Gamma \vdash F} \quad \text{(RAA)}
\]
Sequent calculus for CBI

- **Obvious approach for CBI:** write two-sided sequents $\Gamma \vdash \Delta$ where Γ, Δ are bunches.
- **Natural rules** for the negations:

 \[
 \frac{\Gamma \vdash F; \Delta}{\Gamma; \neg F \vdash \Delta} (\neg L) \quad \frac{\Gamma; F \vdash \Delta}{\Gamma \vdash \neg F; \Delta} (\neg R) \\
 \frac{\Gamma \vdash F, \Delta}{\Gamma, \neg F \vdash \Delta} (\sim L) \quad \frac{\Gamma, F \vdash \Delta}{\Gamma \vdash \neg F, \Delta} (\sim R)
 \]

- **But there are no cut-free proofs** of e.g.

 \[A, (B; \neg B) \vdash C\]

 \[\neg \neg F \vdash \neg \neg F\]

- **Alternative formulation** of rules for negation?
DL_{CBI}: a display calculus proof system for CBI

- We give a display calculus à la Belnap for CBI.
- Write consecutions $X \vdash Y$, where X, Y are structures:

 $$X ::= F \mid \emptyset \mid \emptyset \mid \#X \mid \flat X \mid X; X \mid X, X$$

- Here the negations are represented at the meta-level:

<table>
<thead>
<tr>
<th></th>
<th>Antecedent meaning</th>
<th>Consequent meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\top</td>
<td>\bot</td>
</tr>
<tr>
<td>\emptyset</td>
<td>\top^*</td>
<td>\bot^*</td>
</tr>
<tr>
<td>$#X$</td>
<td>\neg</td>
<td>\neg</td>
</tr>
<tr>
<td>$\flat X$</td>
<td>\sim</td>
<td>\sim</td>
</tr>
<tr>
<td>$X; X$</td>
<td>\wedge</td>
<td>\vee</td>
</tr>
<tr>
<td>X, X</td>
<td>\ast</td>
<td>\ast</td>
</tr>
</tbody>
</table>
Proof rules for DL_{CBI}

Three types of proof rules:

1. **display postulates** allowing structures to be shuffled:

 \[
 X; Y \vdash Z \quad \vdash Y \Rightarrow X \quad Y \vdash \#X
 \]

2. **left- and right-introduction** rules for each logical connective:

 \[
 X \vdash F \quad G \vdash Y \quad (\rightarrow L) \\
 F \rightarrow G \vdash bX, Y \quad X, F \vdash G \quad (\rightarrow R)
 \]

3. **structural rules** governing the structural connectives:

 \[
 W; (X; Y) \vdash Z \quad (AAL) \\
 (W; X); Y \vdash Z \quad X \vdash Z \quad (WkR) \\
 X \vdash Y, \emptyset \quad X \vdash Y \quad (MIR)
 \]
Results about DL_{CBI}

Easy consequence of the fact that DL_{CBI} is a display calculus:

Theorem (Cut-elimination)

Any DL_{CBI} proof of $X \vdash Y$ can be transformed into a cut-free proof of $X \vdash Y$.

Main technical results:
(NB. Validity for formulas extends easily to consecutions.)

Theorem (Soundness)

Any DL_{CBI}-derivable consecution is valid.

Theorem (Completeness)

Any valid consecution is DL_{CBI}-derivable.
Part III

Applications
Proposition

CBI is a non-conservative extension of BBI. That is, there are formulas of BBI that are CBI-valid but not BBI-valid.

Basic reason: in CBI-models \(\langle R, \circ, e, -, \infty \rangle \) we have:

\[
 r \models \neg \top^* \neg^* \bot \Rightarrow r = \infty
\]

whereas in BBI-models there can be more than one such \(r \).

Consequence: we cannot (directly) apply CBI reasoning principles such as \(F \neg^* G \equiv \neg F \nabla G \) to BBI models (e.g. separation logic heap model).
A CBI-model of financial portfolios

- Let ID be an infinite set of identifiers.
- Let P be the set of portfolios: functions $p : ID \to \mathbb{Z}$ s.t. $p(x) \neq 0$ for only finitely many $x \in ID$.
- Define composition $+$, involution $-$ and empty portfolio e:
 \[
 (p_1 + p_2)(x) = p_1(x) + p_2(x) \\
 (-p)(x) = -p(x) \\
 e(x) = 0
 \]
- $\langle P, +, e, - \rangle$ is an Abelian group, thus also a CBI-model.
Elementary assets and liabilities

• Let \(\text{dom}(p) = \{ x \in ID \mid p(x) \neq 0 \} \).

• Define atomic formula \(A(x) \) by:

\[
p \models A(x) \iff \text{dom}(p) = \{ x \} \text{ and } p(x) > 0
\]

i.e. \(A(x) \) holds of portfolios containing only an asset \(x \).

• Then we have:

\[
p \models \sim \neg A(x) \iff \neg p \models A(x)
\]

\[
\iff \text{dom}(p) = \{ x \} \text{ and } p(x) < 0
\]

i.e. \(\sim \neg A(x) \) holds of portfolios having only a liability \(x \).
Representing financial derivatives

- **Put option**: the right to sell asset \(x \) for price \(y \):
 \[
 A(x) \rightarrow* A(y)
 \]

- **Call option**: the right to buy asset \(x \) for price \(y \).
 \[
 A(y) \rightarrow* A(x)
 \]

- **Credit default swap**: premium \(y \) for a payout of \(x \) in the event of a default \(D \)
 \[
 \sim \neg A(y) \ast (D \rightarrow A(x))
 \]
Consider writing Hoare triples $\{P_1\}T\{P_2\}$ where P_1, P_2 are “symbolic portfolios” and T is a structured trade.

Verification problem: given P_1, T, P_2, check that $\{P_1\}T\{P_2\}$.

Planning problem: given P_1, P_2, find T s.t. $\{P_1\}T\{P_2\}$.

Weakest precondition problem: given T, P_2, find the weakest P_1 s.t. $\{P_1\}T\{P_2\}$.

Strongest postcondition problem: given P_1, T, find the strongest P_2 s.t. $\{P_1\}T\{P_2\}$.
Summary of CBI

Model theory: based on involutive commutative monoids
- multiplicatives are classical
- a non-conservative extension of BBI

Proof theory: display logic gives us:
- cut-elimination
- soundness
- completeness

Applications: reasoning about dualising resources, e.g.:
- money;
- permissions;
- bi-abduction.