Classical BI
 (A logic for reasoning about dualising resources)

James Brotherston* Cristiano Calcagno

Imperial College London
*Me
Logic seminar
Imperial College London, 13 Nov 2008

BI : the logic of bunched implications
 (O'Hearn and Pym '99)

- A substructural logic with natural resource interpretation.
- BI formula connectives:

Additive:	\top	\perp	\neg	\wedge	\vee	\rightarrow
Multiplicative:	\top^{*}			$*$		$\rightarrow *$

- Two flavours:
- BI (intuitionistic additives)
- Boolean BI (classical additives)
- Our main reference point: Boolean BI (BBI).
- Killer application of BBI: separation logic.

Our contribution: classical BI (CBI)

- Why aren't there multiplicative versions of \perp, \neg, \vee ?
- We obtain CBI by adding them to BBI:

and considering both families to behave classically.
- Are there non-trivial models of CBI?
- How do we interpret the new connectives?
- Is there a nice proof theory?

Part I

Model theory

Algebraic semantics of BBI

- Models of BBI are partial commutative monoids $\langle R, \circ, e\rangle$.
- $\langle R, \circ, e\rangle$ is understood as an abstract model of resource:

R: a set of resources
○: a way of (partially) combining resources
e: the distinguished empty resource

- E.g., separation logic model $\langle H, \sharp$, emp \rangle, where:
$\mathrm{H}: \quad$ the set of heaps $={ }_{\mathrm{def}} \operatorname{Var} \rightharpoonup_{\mathrm{fin}}$ Val
\sharp : domain-disjoint union of heaps
emp: the empty heap s.t. $\operatorname{emp}(x)$ undefined all $x \in \operatorname{Var}$

Interpreting the BBI connectives

- An environment for $M=\langle R, \circ, e\rangle$ is a map $\rho: \mathcal{V} \rightarrow R$.
- We have the satisfaction relation $r \neq F$:

$$
\begin{array}{rcl}
r \models P & \Leftrightarrow & r \in \rho(P) \\
& \vdots & \\
r \models F_{1} \wedge F_{2} & \Leftrightarrow & r \models F_{1} \text { and } r \models F_{2} \\
& \vdots & \\
r \models \top^{*} & \Leftrightarrow & r=e \\
r \models F_{1} * F_{2} & \Leftrightarrow & r=r_{1} \circ r_{2} \text { and } r_{1} \models F_{1} \text { and } r_{2} \models F_{2} \\
r \models F_{1} * F_{2} & \Leftrightarrow & \forall r^{\prime} . r \circ r^{\prime} \text { defined and } r^{\prime} \models F_{1} \text { implies } r \circ r^{\prime} \models F_{2}
\end{array}
$$

- A formula F is BBI-valid iff, in every BBI-model M, we have $r \models F$ for all $r \in R$ and all environments for M.

Dualising resource models of CBI

- A CBI-model is given by a tuple $\langle R, \circ, e,-, \infty\rangle$, where:
- $\langle R, \circ, e\rangle$ is a partial commutative monoid;
- $\infty \in R$ and $-: R \rightarrow R$;
- for all $r \in R,-r$ is the unique solution to $r \circ-r=\infty$.
- Natural interpretation: models of dualising resources.
- Clearly CBI-models are (special) BBI-models.
- Every Abelian group is a CBI-model (with $\infty=e$).

Interpreting the CBI connectives

- Main problem: we want $\sim \sim F \equiv F$ but also $F \rightarrow^{*} \equiv \sim F$.
- Temporarily define atomic formula \bowtie by:

$$
r \models \bowtie \Leftrightarrow r=\infty
$$

- Key observation:

$$
-r \models F \Leftrightarrow r \models \neg(F \rightarrow \neg \neg \bowtie)
$$

- Thus we interpret $\perp^{*}, \sim,^{*}$ as follows:

$$
\begin{array}{rll}
r \models \perp^{*} & \Leftrightarrow & r \neq \infty \\
r \models \sim F & \Leftrightarrow & -r \neq F \\
r \models F_{1} \uplus F_{2} & \Leftrightarrow & \forall r_{1}, r_{2} .-r \in r_{1} \circ r_{2} \text { implies }-r_{1} \models F_{1} \text { or }-r_{2} \models F_{2}
\end{array}
$$

- CBI-validity is as for BBI.

Some semantic equivalences of CBI

$$
\begin{aligned}
\sim \top & \equiv \perp \\
\sim \top^{*} & \equiv \perp^{*} \\
\sim \sim F & \equiv F \\
F \rightarrow * \perp^{*} & \equiv \sim F \\
\neg \sim F & \equiv \sim \neg F \\
F * G & \equiv \sim(\sim F * \sim G) \\
F \rightarrow G & \equiv \sim F \stackrel{*}{*}^{*} G \\
F \rightarrow * G & \equiv \sim G * \sim F \\
F \stackrel{*}{*}^{*} \perp^{*} & \equiv F
\end{aligned}
$$

Example: Personal finance

- Let $\langle\mathbb{Z},+, 0,-\rangle$ be the Abelian group of integers.
- View $m \in \mathbb{Z}$ as money (£):
- $m>0$: credit
- $m<0$: debt
- $m \models F$ means " $£ m$ is enough to make F true".
- Let C be the formula "I've enough money to buy cigarettes $(£ 5) "$ and W be "I've enough to buy whisky (£20)". So:

$$
\begin{aligned}
m \models C & \Leftrightarrow m \geq 5 \\
m \models W & \Leftrightarrow m \geq 20
\end{aligned}
$$

Example contd.: Personal finance

- $\quad m \vDash C \wedge W \Leftrightarrow m \vDash C$ and $m \vDash W$

$$
\Leftrightarrow \quad m \geq 20
$$

"I have enough to buy cigarettes and also to buy whisky"

- $\quad m \models C * W \Leftrightarrow m=m_{1}+m_{2}$ and $m_{1} \models C$ and $m_{2} \models W$

$$
\Leftrightarrow \quad m \geq 25
$$

"I have enough to buy both cigarettes and whisky"

- $m \models C \rightarrow W \Leftrightarrow \forall m^{\prime} . m^{\prime} \models C$ implies $m+m^{\prime} \models W$

$$
\Leftrightarrow \quad m \geq 15
$$

"if I acquire enough money to buy cigarettes then, in total, I have enough to buy whisky"

Example contd.: Personal finance

- $\quad m \vDash \perp^{*} \Leftrightarrow m \neq 0$
"I am either in credit or in debt"

$$
m \vDash \sim C \quad \Leftrightarrow \quad-m \not \vDash C \Leftrightarrow m>-5
$$

"I owe less than the price of a pack of cigarettes"

- $m \vDash C \oplus$| $*$ |
| :---: |$\Leftrightarrow \quad \forall m_{1}, m_{2} .-m=m_{1}+m_{2}$ implies $-m_{1} \models C$ or $-m_{2} \models W$

$\Leftrightarrow \quad m \geq 24$

Note that $C * W \Leftrightarrow \sim C \rightarrow W \Leftrightarrow \sim W \rightarrow C$, i.e.: "if I spend less than the price of a pack of cigarettes, then I will still have enough money to buy whisky (and vice versa!)"

Part II

Proof theory

Bunches

- Bunches Γ are given by:

$$
\Gamma::=F|\emptyset| \varnothing|\Gamma ; \Gamma| \Gamma, \Gamma
$$

- Bunches represent formulas at the meta-level:

	Antecedent meaning
\emptyset	\top
\varnothing	T^{*}
$;$	\wedge
,	$*$

- ';' and ',' associative and commutative with units \emptyset resp. \varnothing.
- Weakening and contraction hold for ';' but not ','.
- $\Gamma(\Delta)$ is notation for: Δ is a sub-bunch occurring in Γ.

Sequent calculus rules for (B)BI

$$
\begin{array}{cc}
\frac{\Gamma\left(F_{1} ; F_{2}\right) \vdash F}{\Gamma\left(F_{1} \wedge F_{2}\right) \vdash F}(\wedge \mathrm{~L}) & \frac{\Gamma \vdash F \quad \Gamma \vdash G}{\Gamma \vdash F \wedge G}(\wedge \mathrm{R}) \\
\frac{\Gamma\left(F_{1}, F_{2}\right) \vdash F}{\Gamma\left(F_{1} * F_{2}\right) \vdash F}(* \mathrm{~L}) & \frac{\Gamma \vdash F_{1} \Delta \vdash F_{2}}{\Gamma, \Delta \vdash F_{1} * F_{2}}(* \mathrm{R}) \\
\frac{\Delta \vdash F_{1} \quad \Gamma\left(\Delta ; F_{2}\right) \vdash F}{\Gamma\left(\Delta ; F_{1} \rightarrow F_{2}\right) \vdash F}(\rightarrow \mathrm{~L}) & \frac{\Gamma ; F_{1} \vdash F_{2}}{\Gamma \vdash F_{1} \rightarrow F_{2}}(\rightarrow \mathrm{R})
\end{array}
$$

- Cut-elimination holds for BI sequent calculus (Pym 2002).
- For BBI, need to add a rule like:

$$
\frac{\Gamma \vdash \neg \neg F}{\Gamma \vdash F}(\mathrm{RAA})
$$

Sequent calculus for CBI

- Obvious approach for CBI: write two-sided sequents $\Gamma \vdash \Delta$ where Γ, Δ are bunches.
- Natural rules for the negations:

$$
\begin{array}{ll}
\frac{\Gamma \vdash F ; \Delta}{\Gamma ; \neg F \vdash \Delta}(\neg \mathrm{~L}) & \frac{\Gamma ; F \vdash \Delta}{\Gamma \vdash \neg F ; \Delta}(\neg \mathrm{R}) \\
\frac{\Gamma \vdash F, \Delta}{\Gamma, \sim F \vdash \Delta}(\sim \mathrm{~L}) & \frac{\Gamma, F \vdash \Delta}{\Gamma \vdash \sim F, \Delta}(\sim \mathrm{R})
\end{array}
$$

- But there are no cut-free proofs of e.g.

$$
\begin{gathered}
A,(B ; \neg B) \vdash C \\
\sim \neg F \vdash \neg \sim F
\end{gathered}
$$

- Alternative formulation of rules for negation?

$\mathrm{DL}_{\mathrm{CBI}}$: a display calculus proof system for CBI

- We give a display calculus á la Belnap for CBI.
- Write consecutions $X \vdash Y$, where X, Y are structures:

$$
X::=F|\emptyset| \varnothing|\sharp X| b X|X ; X| X, X
$$

- Here the negations are represented at the meta-level:

	Antecedent meaning	Consequent meaning
\emptyset	\top	\perp
\varnothing	T^{*}	\perp^{*}
$\#$	\neg	\neg
b	\sim	\sim
$;$	\wedge	\vee
,	$*$	\Downarrow^{*}

Proof rules for $\mathrm{DL}_{\mathrm{CBI}}$

Three types of proof rules:

1. display postulates allowing structures to be shuffled:
$\xlongequal[X \vdash \sharp Y ; Z]{X ; Y \vdash Z} \quad \underset{\sharp Y \vdash \sharp X}{X \vdash Y}$
2. left- and right-introduction rules for each logical connective:

$$
\frac{X \vdash F \quad G \vdash Y}{F-* \vdash b X, Y}(* * \mathrm{~L}) \quad \frac{X, F \vdash G}{X \vdash F \rightarrow G}(* * \mathrm{R})
$$

3. structural rules governing the structural connectives:
$\frac{W ;(X ; Y) \vdash Z}{(W ; X) ; Y \vdash Z}(\mathrm{AAL}) \quad \frac{X \vdash Z}{X \vdash Y ; Z}(\mathrm{WkR}) \quad \frac{X \vdash Y, \varnothing}{X \vdash Y}(\mathrm{MIR})$

Results about $\mathrm{DL}_{\mathrm{CBI}}$

Easy consequence of the fact that $\mathrm{DL}_{\mathrm{CBI}}$ is a display calculus: Theorem (Cut-elimination)
Any $\mathrm{DL}_{\mathrm{CBI}}$ proof of $X \vdash Y$ can be transformed into a cut-free proof of $X \vdash Y$.

Main technical results:
(NB. Validity for formulas extends easily to consecutions.)
Theorem (Soundness)
Any $\mathrm{DL}_{\mathrm{CBI}}$-derivable consecution is valid.
Theorem (Completeness)
Any valid consecution is $\mathrm{DL}_{\mathrm{CBI}}-$ derivable.

Part III

Applications

What can be done in theory?

Proposition
CBI is a non-conservative extension of BBI. That is, there are formulas of BBI that are CBI-valid but not BBI-valid.

Basic reason: in CBI-models $\langle R, \circ, e,-, \infty\rangle$ we have:

$$
r \vDash \neg \mathrm{~T}^{*} \rightarrow \perp \Rightarrow r=\infty
$$

whereas in BBI-models there can be more than one such r.

Consequence: we cannot (directly) apply CBI reasoning principles such as $F \rightarrow G \equiv \sim F \stackrel{*}{*}^{*}$ to BBI models (e.g. separation logic heap model).

A CBI-model of financial portfolios

- Let $I D$ be an infinite set of identifers.
- Let P be the set of portfolios: functions $p: I D \rightarrow \mathbb{Z}$ s.t. $p(x) \neq 0$ for only finitely many $x \in I D$.
- Define composition + , involution - and empty portfolio e :

$$
\begin{aligned}
\left(p_{1}+p_{2}\right)(x) & =p_{1}(x)+p_{2}(x) \\
(-p)(x) & =-p(x) \\
e(x) & =0
\end{aligned}
$$

- $\langle P,+, e,-\rangle$ is an Abelian group, thus also a CBI-model.

Elementary assets and liabilities

- Let $\operatorname{dom}(p)=\{x \in I D \mid p(x) \neq 0\}$.
- Define atomic formula $A(x)$ by:

$$
p \models A(x) \Leftrightarrow \operatorname{dom}(p)=\{x\} \text { and } p(x)>0
$$

i.e. $A(x)$ holds of portfolios containing only an asset x.

- Then we have:

$$
\begin{aligned}
p \models \sim \neg A(x) & \Leftrightarrow-p \models A(x) \\
& \Leftrightarrow \operatorname{dom}(p)=\{x\} \text { and } p(x)<0
\end{aligned}
$$

i.e. $\sim \neg A(x)$ holds of portfolios having only a liability x.

Representing financial derivatives

- Put option: the right to sell asset x for price y :

$$
A(x)-* A(y)
$$

- Call option: the right to buy asset x for price y.

$$
A(y) \rightarrow A(x)
$$

- Credit default swap: premium y for a payout of x in the event of a default D

$$
\sim \neg A(y) *(D \rightarrow A(x))
$$

Hoare logic for finance?

Consider writing Hoare triples $\left\{P_{1}\right\} T\left\{P_{2}\right\}$ where P_{1}, P_{2} are "symbolic portfolios" and T is a structured trade.

Verification problem: given P_{1}, T, P_{2}, check that $\left\{P_{1}\right\} T\left\{P_{2}\right\}$.
Planning problem: given P_{1}, P_{2}, find T s.t. $\left\{P_{1}\right\} T\left\{P_{2}\right\}$.
Weakest precondition problem: given T, P_{2}, find the weakest P_{1} s.t. $\left\{P_{1}\right\} T\left\{P_{2}\right\}$.

Strongest postcondition problem: given P_{1}, T, find the strongest P_{2} s.t. $\left\{P_{1}\right\} T\left\{P_{2}\right\}$.

Summary of CBI

Model theory: based on involutive commutative monoids

- multiplicatives are classical
- a non-conservative extension of BBI

Proof theory: display logic gives us:

- cut-elimination
- soundness
- completeness

Applications: reasoning about dualising resources, e.g.:

- money;
- permissions;
- bi-abduction.

