
Classical BI
(A logic for reasoning about dualising resources)

James Brotherston∗ Cristiano Calcagno

Imperial College London

∗Me

Logic seminar
Imperial College London, 13 Nov 2008



BI: the logic of bunched implications
(O’Hearn and Pym ’99)

• A substructural logic with natural resource interpretation.
• BI formula connectives:

Additive: > ⊥ ¬ ∧ ∨ →
Multiplicative: >∗ ∗ —∗

• Two flavours:
• BI (intuitionistic additives)
• Boolean BI (classical additives)

• Our main reference point: Boolean BI (BBI).
• Killer application of BBI: separation logic.



Our contribution: classical BI (CBI)

• Why aren’t there multiplicative versions of ⊥,¬,∨?
• We obtain CBI by adding them to BBI:

Additive: > ⊥ ¬ ∧ ∨ →
Multiplicative: >∗ ⊥∗ ∼ ∗ ∗∨ —∗

and considering both families to behave classically.
• Are there non-trivial models of CBI?
• How do we interpret the new connectives?
• Is there a nice proof theory?



Part I

Model theory



Algebraic semantics of BBI

• Models of BBI are partial commutative monoids 〈R, ◦, e〉.
• 〈R, ◦, e〉 is understood as an abstract model of resource:

R: a set of resources
◦: a way of (partially) combining resources
e: the distinguished empty resource

• E.g., separation logic model 〈H, ], emp〉, where:

H: the set of heaps =def V ar ⇀fin V al
]: domain-disjoint union of heaps

emp: the empty heap s.t. emp(x) undefined all x ∈ V ar



Interpreting the BBI connectives

• An environment for M = 〈R, ◦, e〉 is a map ρ : V → R.
• We have the satisfaction relation r |= F :

r |= P ⇔ r ∈ ρ(P )
...

r |= F1 ∧ F2 ⇔ r |= F1 and r |= F2

...
r |= >∗ ⇔ r = e

r |= F1 ∗ F2 ⇔ r = r1 ◦ r2 and r1 |= F1 and r2 |= F2

r |= F1 —∗ F2 ⇔ ∀r′. r ◦ r′ defined and r′ |= F1 implies r ◦ r′ |= F2

• A formula F is BBI-valid iff, in every BBI-model M , we
have r |= F for all r ∈ R and all environments for M .



Dualising resource models of CBI

• A CBI-model is given by a tuple 〈R, ◦, e,−,∞〉, where:
• 〈R, ◦, e〉 is a partial commutative monoid;
• ∞ ∈ R and − : R→ R;
• for all r ∈ R, −r is the unique solution to r ◦ −r =∞.

• Natural interpretation: models of dualising resources.
• Clearly CBI-models are (special) BBI-models.
• Every Abelian group is a CBI-model (with ∞ = e).



Interpreting the CBI connectives

• Main problem: we want ∼∼F ≡ F but also F —∗ ⊥∗ ≡ ∼F .
• Temporarily define atomic formula ./ by:

r |= ./ ⇔ r =∞

• Key observation:

−r |= F ⇔ r |= ¬(F —∗ ¬./)

• Thus we interpret ⊥∗,∼, ∗∨ as follows:
r |= ⊥∗ ⇔ r 6=∞
r |= ∼F ⇔ −r 6|= F

r |= F1
∗∨F2 ⇔ ∀r1, r2. −r ∈ r1 ◦ r2 implies −r1 |= F1 or −r2 |= F2

• CBI-validity is as for BBI.



Some semantic equivalences of CBI

∼> ≡ ⊥
∼>∗ ≡ ⊥∗
∼∼F ≡ F

F —∗ ⊥∗ ≡ ∼F
¬∼F ≡ ∼¬F
F ∗∨ G ≡ ∼(∼F ∗ ∼G)
F —∗ G ≡ ∼F ∗∨ G
F —∗ G ≡ ∼G —∗ ∼F
F ∗∨ ⊥∗ ≡ F



Example: Personal finance

• Let 〈Z,+, 0,−〉 be the Abelian group of integers.
• View m ∈ Z as money (£):

• m > 0: credit
• m < 0: debt

• m |= F means “£m is enough to make F true”.
• Let C be the formula “I’ve enough money to buy cigarettes

(£5)” and W be “I’ve enough to buy whisky (£20)”. So:

m |= C ⇔ m ≥ 5
m |= W ⇔ m ≥ 20



Example contd.: Personal finance

• m |= C ∧W ⇔ m |= C and m |= W
⇔ m ≥ 20

“I have enough to buy cigarettes and also to buy whisky”

• m |= C ∗W ⇔ m = m1 +m2 and m1 |= C and m2 |= W
⇔ m ≥ 25

“I have enough to buy both cigarettes and whisky”

• m |= C —∗W ⇔ ∀m′. m′ |= C implies m+m′ |= W
⇔ m ≥ 15

“if I acquire enough money to buy cigarettes then, in total,
I have enough to buy whisky”



Example contd.: Personal finance

• m |= ⊥∗ ⇔ m 6= 0
“I am either in credit or in debt”

• m |= ∼C ⇔ −m 6|= C ⇔ m > −5
“I owe less than the price of a pack of cigarettes”

• m |= C ∗∨W ⇔ ∀m1,m2. −m = m1 +m2

implies −m1 |= C or −m2 |= W
⇔ m ≥ 24

Note that C ∗∨W ⇔ ∼C —∗W ⇔ ∼W —∗ C, i.e.:
“if I spend less than the price of a pack of cigarettes,
then I will still have enough money to buy whisky
(and vice versa!)”



Part II

Proof theory



Bunches

• Bunches Γ are given by:

Γ ::= F | ∅ | ∅ | Γ; Γ | Γ,Γ

• Bunches represent formulas at the meta-level:

Antecedent meaning
∅ >
∅ >∗
; ∧
, ∗

• ‘;’ and ‘,’ associative and commutative with units ∅ resp. ∅.
• Weakening and contraction hold for ‘;’ but not ‘,’.
• Γ(∆) is notation for: ∆ is a sub-bunch occurring in Γ.



Sequent calculus rules for (B)BI

Γ(F1;F2) ` F
(∧L)

Γ(F1 ∧ F2) ` F

Γ ` F Γ ` G
(∧R)

Γ ` F ∧G

Γ(F1, F2) ` F
(∗L)

Γ(F1 ∗ F2) ` F

Γ ` F1 ∆ ` F2
(∗R)

Γ,∆ ` F1 ∗ F2

∆ ` F1 Γ(∆;F2) ` F
(→L)

Γ(∆;F1 → F2) ` F

Γ;F1 ` F2
(→R)

Γ ` F1 → F2

• Cut-elimination holds for BI sequent calculus (Pym 2002).
• For BBI, need to add a rule like:

Γ ` ¬¬F
(RAA)

Γ ` F



Sequent calculus for CBI

• Obvious approach for CBI: write two-sided sequents Γ ` ∆
where Γ,∆ are bunches.

• Natural rules for the negations:

Γ ` F ; ∆
(¬L)

Γ;¬F ` ∆

Γ;F ` ∆
(¬R)

Γ ` ¬F ; ∆

Γ ` F,∆
(∼ L)

Γ,∼F ` ∆

Γ, F ` ∆
(∼ R)

Γ ` ∼F,∆

• But there are no cut-free proofs of e.g.

A, (B;¬B) ` C

∼¬F ` ¬∼F
• Alternative formulation of rules for negation?



DLCBI: a display calculus proof system for CBI

• We give a display calculus á la Belnap for CBI.
• Write consecutions X ` Y , where X,Y are structures:

X ::= F | ∅ | ∅ | ]X | [X | X;X | X,X

• Here the negations are represented at the meta-level:

Antecedent meaning Consequent meaning
∅ > ⊥
∅ >∗ ⊥∗
] ¬ ¬
[ ∼ ∼
; ∧ ∨
, ∗ ∗∨



Proof rules for DLCBI
Three types of proof rules:

1. display postulates allowing structures to be shuffled:

X;Y ` Z
========
X ` ]Y ;Z

X ` Y
======
]Y ` ]X

2. left- and right-introduction rules for each logical connective:

X ` F G ` Y
(—∗L)

F —∗ G ` [X, Y

X,F ` G
(—∗R)

X ` F —∗ G

3. structural rules governing the structural connectives:

W ; (X;Y ) ` Z
=========== (AAL)
(W ;X);Y ` Z

X ` Z
(WkR)

X ` Y ;Z

X ` Y,∅
======= (MIR)
X ` Y



Results about DLCBI

Easy consequence of the fact that DLCBI is a display calculus:

Theorem (Cut-elimination)
Any DLCBI proof of X ` Y can be transformed into a cut-free
proof of X ` Y .

Main technical results:
(NB. Validity for formulas extends easily to consecutions.)

Theorem (Soundness)
Any DLCBI-derivable consecution is valid.

Theorem (Completeness)
Any valid consecution is DLCBI-derivable.



Part III

Applications



What can be done in theory?

Proposition
CBI is a non-conservative extension of BBI. That is, there are
formulas of BBI that are CBI-valid but not BBI-valid.

Basic reason: in CBI-models 〈R, ◦, e,−,∞〉 we have:

r |= ¬>∗ —∗ ⊥ ⇒ r =∞

whereas in BBI-models there can be more than one such r.

Consequence: we cannot (directly) apply CBI reasoning
principles such as F —∗ G ≡ ∼F ∗∨ G to BBI models (e.g.
separation logic heap model).



A CBI-model of financial portfolios

• Let ID be an infinite set of identifers.
• Let P be the set of portfolios: functions p : ID → Z s.t.
p(x) 6= 0 for only finitely many x ∈ ID.

• Define composition +, involution − and empty portfolio e:

(p1 + p2)(x) = p1(x) + p2(x)
(−p)(x) = −p(x)

e(x) = 0

• 〈P,+, e,−〉 is an Abelian group, thus also a CBI-model.



Elementary assets and liabilities

• Let dom(p) = {x ∈ ID | p(x) 6= 0}.
• Define atomic formula A(x) by:

p |= A(x) ⇔ dom(p) = {x} and p(x) > 0

i.e. A(x) holds of portfolios containing only an asset x.
• Then we have:

p |= ∼¬A(x) ⇔ −p |= A(x)
⇔ dom(p) = {x} and p(x) < 0

i.e. ∼¬A(x) holds of portfolios having only a liability x.



Representing financial derivatives

• Put option: the right to sell asset x for price y:

A(x) —∗ A(y)

• Call option: the right to buy asset x for price y.

A(y) —∗ A(x)

• Credit default swap: premium y for a payout of x in the
event of a default D

∼¬A(y) ∗ (D → A(x))



Hoare logic for finance?

Consider writing Hoare triples {P1}T{P2} where P1, P2 are
“symbolic portfolios” and T is a structured trade.

Verification problem: given P1, T , P2, check that {P1}T{P2}.

Planning problem: given P1, P2, find T s.t. {P1}T{P2}.

Weakest precondition problem: given T , P2, find the weakest P1

s.t.{P1}T{P2}.

Strongest postcondition problem: given P1, T , find the strongest
P2 s.t.{P1}T{P2}.



Summary of CBI

Model theory: based on involutive commutative monoids

• multiplicatives are classical
• a non-conservative extension of BBI

Proof theory: display logic gives us:
• cut-elimination
• soundness
• completeness

Applications: reasoning about dualising resources, e.g.:
• money;
• permissions;
• bi-abduction.
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