
Disproving Inductive Entailments in
Separation Logic via Base Pair Approximation

James Brotherston1 Nikos Gorogiannis2

1UCL

2Middlesex University

TABLEAUX’15, Wroclaw, 23 Sept 2015

1/ 16



Disproof, in general

• Disproof is the problem of showing that an entailment
A ` B (in some undecidable logic) is not valid.

• Application in proof search: backtrack from invalid
subgoals.

• Application in lemma speculation and automated theory
exploration: filter out invalid “lemmas”.

• Precision usually costs.

• Our setting: symbolic-heap separation logic with inductive
definitions, widely used in program verification.

2/ 16



Disproof, in general

• Disproof is the problem of showing that an entailment
A ` B (in some undecidable logic) is not valid.

• Application in proof search: backtrack from invalid
subgoals.

• Application in lemma speculation and automated theory
exploration: filter out invalid “lemmas”.

• Precision usually costs.

• Our setting: symbolic-heap separation logic with inductive
definitions, widely used in program verification.

2/ 16



Disproof, in general

• Disproof is the problem of showing that an entailment
A ` B (in some undecidable logic) is not valid.

• Application in proof search: backtrack from invalid
subgoals.

• Application in lemma speculation and automated theory
exploration: filter out invalid “lemmas”.

• Precision usually costs.

• Our setting: symbolic-heap separation logic with inductive
definitions, widely used in program verification.

2/ 16



Disproof, in general

• Disproof is the problem of showing that an entailment
A ` B (in some undecidable logic) is not valid.

• Application in proof search: backtrack from invalid
subgoals.

• Application in lemma speculation and automated theory
exploration: filter out invalid “lemmas”.

• Precision usually costs.

• Our setting: symbolic-heap separation logic with inductive
definitions, widely used in program verification.

2/ 16



Disproof, in general

• Disproof is the problem of showing that an entailment
A ` B (in some undecidable logic) is not valid.

• Application in proof search: backtrack from invalid
subgoals.

• Application in lemma speculation and automated theory
exploration: filter out invalid “lemmas”.

• Precision usually costs.

• Our setting: symbolic-heap separation logic with inductive
definitions, widely used in program verification.

2/ 16



Symbolic-heap separation logic

• Terms t are either variables x, y, z . . . or the constant nil.

• Spatial formulas F and pure formulas π given by:

F ::= emp | x 7→ t | P t | F ∗ F π ::= t = t | t 6= t

(where P a predicate symbol, t a tuple of terms).

• 7→ (“points-to”) denotes an individual pointer to a record
in the heap.

• ∗ (“separating conjunction”) demarks domain-disjoint
heaps.

• Symbolic heaps A given by ∃x. Π : F , for Π a set of pure
formulas.

3/ 16



Symbolic-heap separation logic

• Terms t are either variables x, y, z . . . or the constant nil.

• Spatial formulas F and pure formulas π given by:

F ::= emp | x 7→ t | P t | F ∗ F π ::= t = t | t 6= t

(where P a predicate symbol, t a tuple of terms).

• 7→ (“points-to”) denotes an individual pointer to a record
in the heap.

• ∗ (“separating conjunction”) demarks domain-disjoint
heaps.

• Symbolic heaps A given by ∃x. Π : F , for Π a set of pure
formulas.

3/ 16



Symbolic-heap separation logic

• Terms t are either variables x, y, z . . . or the constant nil.

• Spatial formulas F and pure formulas π given by:

F ::= emp | x 7→ t | P t | F ∗ F π ::= t = t | t 6= t

(where P a predicate symbol, t a tuple of terms).

• 7→ (“points-to”) denotes an individual pointer to a record
in the heap.

• ∗ (“separating conjunction”) demarks domain-disjoint
heaps.

• Symbolic heaps A given by ∃x. Π : F , for Π a set of pure
formulas.

3/ 16



Inductive definitions in separation logic

• Inductive predicates defined by a set of rules of form:

A⇒ P t

(We typically suppress the existential quantifiers in A.)

• E.g., linked list segments with root x and tail element y
given by:

emp ⇒ lsxx
x 6= nil : x 7→ z ∗ ls z y ⇒ lsx y

• E.g., binary trees with root x given by:

x = nil : emp ⇒ btx
x 6= nil : x 7→ (y, z) ∗ bt y ∗ bt z ⇒ btx

4/ 16



Inductive definitions in separation logic

• Inductive predicates defined by a set of rules of form:

A⇒ P t

(We typically suppress the existential quantifiers in A.)

• E.g., linked list segments with root x and tail element y
given by:

emp ⇒ lsxx
x 6= nil : x 7→ z ∗ ls z y ⇒ lsx y

• E.g., binary trees with root x given by:

x = nil : emp ⇒ btx
x 6= nil : x 7→ (y, z) ∗ bt y ∗ bt z ⇒ btx

4/ 16



Inductive definitions in separation logic

• Inductive predicates defined by a set of rules of form:

A⇒ P t

(We typically suppress the existential quantifiers in A.)

• E.g., linked list segments with root x and tail element y
given by:

emp ⇒ lsxx
x 6= nil : x 7→ z ∗ ls z y ⇒ lsx y

• E.g., binary trees with root x given by:

x = nil : emp ⇒ btx
x 6= nil : x 7→ (y, z) ∗ bt y ∗ bt z ⇒ btx

4/ 16



Semantics

• Models are stacks s : Var→ Val paired with heaps
h : Loc⇀fin Val. ◦ is union of domain-disjoint heaps; e is
the empty heap; nil is a non-allocable value.

• Forcing relation s, h |= A given by

s, h |=Φ t1 = ( 6=)t2 ⇔ s(t1) = (6=)s(t2)

s, h |=Φ emp ⇔ h = e

s, h |=Φ x 7→ t ⇔ dom(h) = {s(x)} and h(s(x)) = s(t)

s, h |=Φ Pit ⇔ (s(t), h) ∈ JPiKΦ

s, h |=Φ F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |=Φ F1

and s, h2 |=Φ F2

s, h |=Φ ∃z. Π : F ⇔ ∃v ∈ Val|z|. s[z 7→ v], h |=Φ π for all

π ∈ Π and s[z 7→ v], h |=Φ F

5/ 16



Semantics

• Models are stacks s : Var→ Val paired with heaps
h : Loc⇀fin Val. ◦ is union of domain-disjoint heaps; e is
the empty heap; nil is a non-allocable value.

• Forcing relation s, h |= A given by

s, h |=Φ t1 = ( 6=)t2 ⇔ s(t1) = (6=)s(t2)

s, h |=Φ emp ⇔ h = e

s, h |=Φ x 7→ t ⇔ dom(h) = {s(x)} and h(s(x)) = s(t)

s, h |=Φ Pit ⇔ (s(t), h) ∈ JPiKΦ

s, h |=Φ F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |=Φ F1

and s, h2 |=Φ F2

s, h |=Φ ∃z. Π : F ⇔ ∃v ∈ Val|z|. s[z 7→ v], h |=Φ π for all

π ∈ Π and s[z 7→ v], h |=Φ F

5/ 16



Disproof in our logic

• Entailment is here undecidable [Antoupoulos et al.,
FOSSACS’14], although satisfiability is decidable
[Brotherston et al., CSL-LICS’14].

• To disprove A ` B, we need a countermodel (s, h) s.t.
s, h |=Φ A but s, h 6|=Φ B.

• Model checking has only very recently been shown
decidable, in fact EXPTIME-complete [Brotherston et al.,
submitted, 2015].

• Enumerating and checking all possible counter-models is
complete, but complicated and, I suspect, ridiculously
expensive.

6/ 16



Disproof in our logic

• Entailment is here undecidable [Antoupoulos et al.,
FOSSACS’14], although satisfiability is decidable
[Brotherston et al., CSL-LICS’14].

• To disprove A ` B, we need a countermodel (s, h) s.t.
s, h |=Φ A but s, h 6|=Φ B.

• Model checking has only very recently been shown
decidable, in fact EXPTIME-complete [Brotherston et al.,
submitted, 2015].

• Enumerating and checking all possible counter-models is
complete, but complicated and, I suspect, ridiculously
expensive.

6/ 16



Disproof in our logic

• Entailment is here undecidable [Antoupoulos et al.,
FOSSACS’14], although satisfiability is decidable
[Brotherston et al., CSL-LICS’14].

• To disprove A ` B, we need a countermodel (s, h) s.t.
s, h |=Φ A but s, h 6|=Φ B.

• Model checking has only very recently been shown
decidable, in fact EXPTIME-complete [Brotherston et al.,
submitted, 2015].

• Enumerating and checking all possible counter-models is
complete, but complicated and, I suspect, ridiculously
expensive.

6/ 16



Disproof in our logic

• Entailment is here undecidable [Antoupoulos et al.,
FOSSACS’14], although satisfiability is decidable
[Brotherston et al., CSL-LICS’14].

• To disprove A ` B, we need a countermodel (s, h) s.t.
s, h |=Φ A but s, h 6|=Φ B.

• Model checking has only very recently been shown
decidable, in fact EXPTIME-complete [Brotherston et al.,
submitted, 2015].

• Enumerating and checking all possible counter-models is
complete, but complicated and, I suspect, ridiculously
expensive.

6/ 16



Base pairs [Brotherston et al., CSL-LICS’14]

• For any symbolic heap A, we can compute an
overapproximation, baseΦ(A).

Each “base pair” records,
for each possible way of constructing a model of A,

1. the variables in FV (A) that must be allocated, and
2. the (dis)equalities over FV (A) ∪ {nil} that must hold.

• E.g., recall linked list segment predicate ls:

emp ⇒ lsxx
x 6= nil : x 7→ z ∗ ls z y ⇒ lsx y

We obtain two base pairs:

baseΦ(lsx y) = {(∅, {x = y}),
({x}, {x 6= nil})}

7/ 16



Base pairs [Brotherston et al., CSL-LICS’14]

• For any symbolic heap A, we can compute an
overapproximation, baseΦ(A). Each “base pair” records,
for each possible way of constructing a model of A,

1. the variables in FV (A) that must be allocated, and
2. the (dis)equalities over FV (A) ∪ {nil} that must hold.

• E.g., recall linked list segment predicate ls:

emp ⇒ lsxx
x 6= nil : x 7→ z ∗ ls z y ⇒ lsx y

We obtain two base pairs:

baseΦ(lsx y) = {(∅, {x = y}),
({x}, {x 6= nil})}

7/ 16



Base pairs [Brotherston et al., CSL-LICS’14]

• For any symbolic heap A, we can compute an
overapproximation, baseΦ(A). Each “base pair” records,
for each possible way of constructing a model of A,

1. the variables in FV (A) that must be allocated, and
2. the (dis)equalities over FV (A) ∪ {nil} that must hold.

• E.g., recall linked list segment predicate ls:

emp ⇒ lsxx
x 6= nil : x 7→ z ∗ ls z y ⇒ lsx y

We obtain two base pairs:

baseΦ(lsx y) = {(∅, {x = y}),
({x}, {x 6= nil})}

7/ 16



Base pairs [Brotherston et al., CSL-LICS’14]

• For any symbolic heap A, we can compute an
overapproximation, baseΦ(A). Each “base pair” records,
for each possible way of constructing a model of A,

1. the variables in FV (A) that must be allocated, and
2. the (dis)equalities over FV (A) ∪ {nil} that must hold.

• E.g., recall linked list segment predicate ls:

emp ⇒ lsxx
x 6= nil : x 7→ z ∗ ls z y ⇒ lsx y

We obtain two base pairs:

baseΦ(lsx y) = {(∅, {x = y}),
({x}, {x 6= nil})}

7/ 16



Connecting base pairs and models

• Base pairs are formally related to models as follows.

Lemma (1)

Given (V,Π) ∈ baseΦ(A), a stack s s.t. s |= Π, and finite set
W ⊂ Loc \ s(V ), then ∃h. s, h |=Φ A and W ∩ dom(h) = ∅.

Lemma (2)

If s, h |=Φ B, there is a base pair (V,Π) ∈ baseΦ(B) such that
s(V ) ⊆ dom(h) and s |= Π.

• Consequently, we can use Lemma 1 to construct a model of
A and then Lemma 2 to show it cannot be a model of B.

8/ 16



Connecting base pairs and models

• Base pairs are formally related to models as follows.

Lemma (1)

Given (V,Π) ∈ baseΦ(A), a stack s s.t. s |= Π, and finite set
W ⊂ Loc \ s(V ), then ∃h. s, h |=Φ A and W ∩ dom(h) = ∅.

Lemma (2)

If s, h |=Φ B, there is a base pair (V,Π) ∈ baseΦ(B) such that
s(V ) ⊆ dom(h) and s |= Π.

• Consequently, we can use Lemma 1 to construct a model of
A and then Lemma 2 to show it cannot be a model of B.

8/ 16



Connecting base pairs and models

• Base pairs are formally related to models as follows.

Lemma (1)

Given (V,Π) ∈ baseΦ(A), a stack s s.t. s |= Π, and finite set
W ⊂ Loc \ s(V ), then ∃h. s, h |=Φ A and W ∩ dom(h) = ∅.

Lemma (2)

If s, h |=Φ B, there is a base pair (V,Π) ∈ baseΦ(B) such that
s(V ) ⊆ dom(h) and s |= Π.

• Consequently, we can use Lemma 1 to construct a model of
A and then Lemma 2 to show it cannot be a model of B.

8/ 16



Connecting base pairs and models

• Base pairs are formally related to models as follows.

Lemma (1)

Given (V,Π) ∈ baseΦ(A), a stack s s.t. s |= Π, and finite set
W ⊂ Loc \ s(V ), then ∃h. s, h |=Φ A and W ∩ dom(h) = ∅.

Lemma (2)

If s, h |=Φ B, there is a base pair (V,Π) ∈ baseΦ(B) such that
s(V ) ⊆ dom(h) and s |= Π.

• Consequently, we can use Lemma 1 to construct a model of
A and then Lemma 2 to show it cannot be a model of B.

8/ 16



Disproof “game”

Game (1)

• Given A ` B. a move by Player 1 is a choice of:
• a base pair (X,Π) ∈ baseΦ(A);
• a stack s such that s |= Π; and
• a finite set W ⊂ Loc \ s(X).

• A response by Player 2 is a base pair (Y,Θ) ∈ baseΦ(B)
such that s |= Θ and W ∩ s(Y ) = ∅.

• A move is winning if there is no possible response.

Proposition

If Player 1 has a winning move for A ` B then it is invalid.

9/ 16



Disproof “game”

Game (1)

• Given A ` B. a move by Player 1 is a choice of:
• a base pair (X,Π) ∈ baseΦ(A);
• a stack s such that s |= Π; and
• a finite set W ⊂ Loc \ s(X).

• A response by Player 2 is a base pair (Y,Θ) ∈ baseΦ(B)
such that s |= Θ and W ∩ s(Y ) = ∅.

• A move is winning if there is no possible response.

Proposition

If Player 1 has a winning move for A ` B then it is invalid.

9/ 16



Disproof “game”

Game (1)

• Given A ` B. a move by Player 1 is a choice of:
• a base pair (X,Π) ∈ baseΦ(A);
• a stack s such that s |= Π; and
• a finite set W ⊂ Loc \ s(X).

• A response by Player 2 is a base pair (Y,Θ) ∈ baseΦ(B)
such that s |= Θ and W ∩ s(Y ) = ∅.

• A move is winning if there is no possible response.

Proposition

If Player 1 has a winning move for A ` B then it is invalid.

9/ 16



Disproof “game”

Game (1)

• Given A ` B. a move by Player 1 is a choice of:
• a base pair (X,Π) ∈ baseΦ(A);
• a stack s such that s |= Π; and
• a finite set W ⊂ Loc \ s(X).

• A response by Player 2 is a base pair (Y,Θ) ∈ baseΦ(B)
such that s |= Θ and W ∩ s(Y ) = ∅.

• A move is winning if there is no possible response.

Proposition

If Player 1 has a winning move for A ` B then it is invalid.

9/ 16



Refined disproof “game”

Game (2)

• Given A ` B, a move by Player 1 is a choice of:
• a base pair (X,Π) ∈ baseΦ(A), and
• a partition σ of FV (A) ∪ FV (B) ∪ {nil} s.t. σ |= Π.

• A response by Player 2 is a base pair (Y,Θ) ∈ baseΦ(B)
such that σ |= Θ and ∀y ∈ Y \X. ∃x ∈ X. y ≡σ x.

• A winning move is (still) a move with no response.

Theorem
Games 1 and 2 are equivalent, and decidable.

10/ 16



Refined disproof “game”

Game (2)

• Given A ` B, a move by Player 1 is a choice of:
• a base pair (X,Π) ∈ baseΦ(A), and
• a partition σ of FV (A) ∪ FV (B) ∪ {nil} s.t. σ |= Π.

• A response by Player 2 is a base pair (Y,Θ) ∈ baseΦ(B)
such that σ |= Θ and ∀y ∈ Y \X. ∃x ∈ X. y ≡σ x.

• A winning move is (still) a move with no response.

Theorem
Games 1 and 2 are equivalent, and decidable.

10/ 16



Refined disproof “game”

Game (2)

• Given A ` B, a move by Player 1 is a choice of:
• a base pair (X,Π) ∈ baseΦ(A), and
• a partition σ of FV (A) ∪ FV (B) ∪ {nil} s.t. σ |= Π.

• A response by Player 2 is a base pair (Y,Θ) ∈ baseΦ(B)
such that σ |= Θ and ∀y ∈ Y \X. ∃x ∈ X. y ≡σ x.

• A winning move is (still) a move with no response.

Theorem
Games 1 and 2 are equivalent, and decidable.

10/ 16



Refined disproof “game”

Game (2)

• Given A ` B, a move by Player 1 is a choice of:
• a base pair (X,Π) ∈ baseΦ(A), and
• a partition σ of FV (A) ∪ FV (B) ∪ {nil} s.t. σ |= Π.

• A response by Player 2 is a base pair (Y,Θ) ∈ baseΦ(B)
such that σ |= Θ and ∀y ∈ Y \X. ∃x ∈ X. y ≡σ x.

• A winning move is (still) a move with no response.

Theorem
Games 1 and 2 are equivalent, and decidable.

10/ 16



An example

• Consider btx ` lsx y (invalid).

• We have base pair approximations:

baseΦ(btx) = {(∅, {x = nil}), ({x}, {x 6= nil})}
baseΦ(lsx y) = {(∅, {x = y}), ({x}, {x 6= nil})}

• Winning move: choose base pair (∅, {x = nil}) and any
partition σ s.t. x ≡σ nil and x 6≡σ y.

• Now consider lsx y ` btx (also invalid).

• Winning move: choose base pair (∅, {x = y}) and any
partition σ s.t. x ≡σ y and x 6≡σ nil.

11/ 16



An example

• Consider btx ` lsx y (invalid).

• We have base pair approximations:

baseΦ(btx) = {(∅, {x = nil}), ({x}, {x 6= nil})}
baseΦ(lsx y) = {(∅, {x = y}), ({x}, {x 6= nil})}

• Winning move: choose base pair (∅, {x = nil}) and any
partition σ s.t. x ≡σ nil and x 6≡σ y.

• Now consider lsx y ` btx (also invalid).

• Winning move: choose base pair (∅, {x = y}) and any
partition σ s.t. x ≡σ y and x 6≡σ nil.

11/ 16



An example

• Consider btx ` lsx y (invalid).

• We have base pair approximations:

baseΦ(btx) = {(∅, {x = nil}), ({x}, {x 6= nil})}
baseΦ(lsx y) = {(∅, {x = y}), ({x}, {x 6= nil})}

• Winning move: choose base pair (∅, {x = nil}) and any
partition σ s.t. x ≡σ nil and x 6≡σ y.

• Now consider lsx y ` btx (also invalid).

• Winning move: choose base pair (∅, {x = y}) and any
partition σ s.t. x ≡σ y and x 6≡σ nil.

11/ 16



An example

• Consider btx ` lsx y (invalid).

• We have base pair approximations:

baseΦ(btx) = {(∅, {x = nil}), ({x}, {x 6= nil})}
baseΦ(lsx y) = {(∅, {x = y}), ({x}, {x 6= nil})}

• Winning move: choose base pair (∅, {x = nil}) and any
partition σ s.t. x ≡σ nil and x 6≡σ y.

• Now consider lsx y ` btx (also invalid).

• Winning move: choose base pair (∅, {x = y}) and any
partition σ s.t. x ≡σ y and x 6≡σ nil.

11/ 16



An example

• Consider btx ` lsx y (invalid).

• We have base pair approximations:

baseΦ(btx) = {(∅, {x = nil}), ({x}, {x 6= nil})}
baseΦ(lsx y) = {(∅, {x = y}), ({x}, {x 6= nil})}

• Winning move: choose base pair (∅, {x = nil}) and any
partition σ s.t. x ≡σ nil and x 6≡σ y.

• Now consider lsx y ` btx (also invalid).

• Winning move: choose base pair (∅, {x = y}) and any
partition σ s.t. x ≡σ y and x 6≡σ nil.

11/ 16



Limitations

• Our method is terminating and therefore incomplete.

• Most importantly, our base pair overapproximations are
essentially projections onto the free variables of
entailments.

• E.g., the entailment x 7→ nil ` emp is invalid, while
x 7→ nil ` ∃y. y 7→ nil is valid but, since neither RHS has
any free variables,

baseΦ(emp) = baseΦ(∃y. y 7→ nil) = {(∅, ∅)}

so we can’t distinguish the two entailments.

12/ 16



Limitations

• Our method is terminating and therefore incomplete.

• Most importantly, our base pair overapproximations are
essentially projections onto the free variables of
entailments.

• E.g., the entailment x 7→ nil ` emp is invalid, while
x 7→ nil ` ∃y. y 7→ nil is valid but, since neither RHS has
any free variables,

baseΦ(emp) = baseΦ(∃y. y 7→ nil) = {(∅, ∅)}

so we can’t distinguish the two entailments.

12/ 16



Limitations

• Our method is terminating and therefore incomplete.

• Most importantly, our base pair overapproximations are
essentially projections onto the free variables of
entailments.

• E.g., the entailment x 7→ nil ` emp is invalid, while
x 7→ nil ` ∃y. y 7→ nil is valid but, since neither RHS has
any free variables,

baseΦ(emp) = baseΦ(∃y. y 7→ nil) = {(∅, ∅)}

so we can’t distinguish the two entailments.

12/ 16



Experimental evaluation (1)

• We generated entailments of the form Px ` Qy, where
• P and Q are inductive predicates taken from pre-existing

benchmarks in SL-COMP competition (63 predicates total);
• x is a tuple of distinct variables;
• all variables in y appear in x.

• This is typical of automated theory exploration. We get
818988 entailments; most will be invalid.

• Our technique disproves > 97% of the entailments in the
test set, taking at most 30ms for each.

• Of the remainder, we could prove about 250 valid.

13/ 16



Experimental evaluation (1)

• We generated entailments of the form Px ` Qy, where
• P and Q are inductive predicates taken from pre-existing

benchmarks in SL-COMP competition (63 predicates total);
• x is a tuple of distinct variables;
• all variables in y appear in x.

• This is typical of automated theory exploration. We get
818988 entailments; most will be invalid.

• Our technique disproves > 97% of the entailments in the
test set, taking at most 30ms for each.

• Of the remainder, we could prove about 250 valid.

13/ 16



Experimental evaluation (1)

• We generated entailments of the form Px ` Qy, where
• P and Q are inductive predicates taken from pre-existing

benchmarks in SL-COMP competition (63 predicates total);
• x is a tuple of distinct variables;
• all variables in y appear in x.

• This is typical of automated theory exploration. We get
818988 entailments; most will be invalid.

• Our technique disproves > 97% of the entailments in the
test set, taking at most 30ms for each.

• Of the remainder, we could prove about 250 valid.

13/ 16



Experimental evaluation (1)

• We generated entailments of the form Px ` Qy, where
• P and Q are inductive predicates taken from pre-existing

benchmarks in SL-COMP competition (63 predicates total);
• x is a tuple of distinct variables;
• all variables in y appear in x.

• This is typical of automated theory exploration. We get
818988 entailments; most will be invalid.

• Our technique disproves > 97% of the entailments in the
test set, taking at most 30ms for each.

• Of the remainder, we could prove about 250 valid.

13/ 16



Experimental evaluation (2)

• SLL test suite (from SL-COMP competition) considers
entailments over acyclic list segments only:

emp ⇒ alsxx
x 6= nil, x 6= y : x 7→ z ∗ als z y ⇒ alsx y

• Here, of 120 invalid sequents, we disprove only about 24%.

• So we do (much) better in some situations than others.

• In fact this sub-fragment is polynomially decidable anyway.

14/ 16



Experimental evaluation (2)

• SLL test suite (from SL-COMP competition) considers
entailments over acyclic list segments only:

emp ⇒ alsxx
x 6= nil, x 6= y : x 7→ z ∗ als z y ⇒ alsx y

• Here, of 120 invalid sequents, we disprove only about 24%.

• So we do (much) better in some situations than others.

• In fact this sub-fragment is polynomially decidable anyway.

14/ 16



Experimental evaluation (2)

• SLL test suite (from SL-COMP competition) considers
entailments over acyclic list segments only:

emp ⇒ alsxx
x 6= nil, x 6= y : x 7→ z ∗ als z y ⇒ alsx y

• Here, of 120 invalid sequents, we disprove only about 24%.

• So we do (much) better in some situations than others.

• In fact this sub-fragment is polynomially decidable anyway.

14/ 16



Conclusions / future work

• We give a method for entailment disproof in separation
logic with user-defined inductive predicates.

• Our method is incomplete, but terminating, and pretty
cheeeap.

• Therefore, potentially useful for proof search and
automated theory exploration.

• Future work: develop more precise disproving techniques
(e.g., by direct countermodel generation).

15/ 16



Thanks for listening!

Try our techniques within the Cyclist distribution:

github.com/ngorogiannis/cyclist

16/ 16


