Disproving Inductive Entailments in
 Separation Logic via Base Pair Approximation

James Brotherston ${ }^{1}$ Nikos Gorogiannis ${ }^{2}$
${ }^{1} \mathrm{UCL}$
${ }^{2}$ Middlesex University
TABLEAUX'15, Wroclaw, 23 Sept 2015

Disproof, in general

- Disproof is the problem of showing that an entailment $A \vdash B$ (in some undecidable logic) is not valid.

Disproof, in general

- Disproof is the problem of showing that an entailment $A \vdash B$ (in some undecidable logic) is not valid.
- Application in proof search: backtrack from invalid subgoals.

Disproof, in general

- Disproof is the problem of showing that an entailment $A \vdash B$ (in some undecidable logic) is not valid.
- Application in proof search: backtrack from invalid subgoals.
- Application in lemma speculation and automated theory exploration: filter out invalid "lemmas".

Disproof, in general

- Disproof is the problem of showing that an entailment $A \vdash B$ (in some undecidable logic) is not valid.
- Application in proof search: backtrack from invalid subgoals.
- Application in lemma speculation and automated theory exploration: filter out invalid "lemmas".
- Precision usually costs.

Disproof, in general

- Disproof is the problem of showing that an entailment $A \vdash B$ (in some undecidable logic) is not valid.
- Application in proof search: backtrack from invalid subgoals.
- Application in lemma speculation and automated theory exploration: filter out invalid "lemmas".
- Precision usually costs.
- Our setting: symbolic-heap separation logic with inductive definitions, widely used in program verification.

Symbolic-heap separation logic

- Terms t are either variables $x, y, z \ldots$ or the constant nil.

Symbolic-heap separation logic

- Terms t are either variables $x, y, z \ldots$ or the constant nil.
- Spatial formulas F and pure formulas π given by:

$$
F::=\mathrm{emp}|x \mapsto \mathbf{t}| P \mathbf{t}|F * F \quad \pi::=t=t| t \neq t
$$

(where P a predicate symbol, \mathbf{t} a tuple of terms).

- \mapsto ("points-to") denotes an individual pointer to a record in the heap.
- * ("separating conjunction") demarks domain-disjoint heaps.

Symbolic-heap separation logic

- Terms t are either variables $x, y, z \ldots$ or the constant nil.
- Spatial formulas F and pure formulas π given by:

$$
F::=\operatorname{emp}|x \mapsto \mathbf{t}| P \mathbf{t}|F * F \quad \pi::=t=t| t \neq t
$$

(where P a predicate symbol, \mathbf{t} a tuple of terms).

- \mapsto ("points-to") denotes an individual pointer to a record in the heap.
- * ("separating conjunction") demarks domain-disjoint heaps.
- Symbolic heaps A given by $\exists \mathbf{x}$. Π : F, for Π a set of pure formulas.

Inductive definitions in separation logic

- Inductive predicates defined by a set of rules of form:

$$
A \Rightarrow P \mathrm{t}
$$

(We typically suppress the existential quantifiers in A.)

Inductive definitions in separation logic

- Inductive predicates defined by a set of rules of form:

$$
A \Rightarrow P \mathrm{t}
$$

(We typically suppress the existential quantifiers in A.)

- E.g., linked list segments with root x and tail element y given by:

$$
\begin{aligned}
\mathrm{emp} & \Rightarrow \text { Is } x x \\
x \neq \mathrm{nil}: x \mapsto z * \operatorname{ls} z y & \Rightarrow \text { Is } x y
\end{aligned}
$$

Inductive definitions in separation logic

- Inductive predicates defined by a set of rules of form:

$$
A \Rightarrow P \mathrm{t}
$$

(We typically suppress the existential quantifiers in A.)

- E.g., linked list segments with root x and tail element y given by:

$$
\begin{aligned}
\mathrm{emp} & \Rightarrow \text { Is } x x \\
x \neq \mathrm{nil}: x \mapsto z * \operatorname{ls} z y & \Rightarrow \text { Is } x y
\end{aligned}
$$

- E.g., binary trees with root x given by:

$$
\begin{aligned}
x=\mathrm{nil}: \mathrm{emp} & \Rightarrow \text { bt } x \\
x \neq \text { nil }: x \mapsto(y, z) * \text { bt } y * \text { bt } z & \Rightarrow \text { bt } x
\end{aligned}
$$

Semantics

- Models are stacks $s:$ Var \rightarrow Val paired with heaps $h:$ Loc $\rightharpoonup_{\text {fin }}$ Val. \circ is union of domain-disjoint heaps; e is the empty heap; nil is a non-allocable value.

Semantics

- Models are stacks $s: \operatorname{Var} \rightarrow$ Val paired with heaps $h:$ Loc $\rightharpoonup_{\text {fin }}$ Val. \circ is union of domain-disjoint heaps; e is the empty heap; nil is a non-allocable value.
- Forcing relation $s, h \models A$ given by

$$
\begin{array}{lll}
s, h \not \models_{\Phi} t_{1}=(\neq) t_{2} & \Leftrightarrow & s\left(t_{1}\right)=(\neq) s\left(t_{2}\right) \\
s, h \not \models_{\Phi} \mathrm{emp} & \Leftrightarrow & h=e \\
s, h \not \models_{\Phi} x \mapsto \mathbf{t} & \Leftrightarrow & \operatorname{dom}(h)=\{s(x)\} \text { and } h(s(x))=s(\mathbf{t}) \\
s, h \not \models_{\Phi} P_{i} \mathbf{t} & \Leftrightarrow & (s(\mathbf{t}), h) \in \llbracket P_{i} \rrbracket^{\Phi} \\
s, h \not \models_{\Phi} F_{1} * F_{2} & \Leftrightarrow & \exists h_{1}, h_{2} \cdot h=h_{1} \circ h_{2} \text { and } s, h_{1} \models_{\Phi} F_{1} \\
& & \text { and } s, h_{2} \models_{\Phi} F_{2} \\
s, h \not \models_{\Phi} \exists \mathbf{z} \cdot \Pi: F & \Leftrightarrow & \exists \mathbf{v} \in \operatorname{Val}^{|\mathbf{z}|} \cdot s[\mathbf{z} \mapsto \mathbf{v}], h \models_{\Phi} \pi \text { for all } \\
& & \pi \in \Pi \text { and } s[\mathbf{z} \mapsto \mathbf{v}], h \models_{\Phi} F
\end{array}
$$

Disproof in our logic

- Entailment is here undecidable [Antoupoulos et al., FOSSACS'14], although satisfiability is decidable [Brotherston et al., CSL-LICS'14].

Disproof in our logic

- Entailment is here undecidable [Antoupoulos et al., FOSSACS'14], although satisfiability is decidable [Brotherston et al., CSL-LICS'14].
- To disprove $A \vdash B$, we need a countermodel (s, h) s.t. $s, h \models_{\Phi} A$ but $s, h \not \models_{\Phi} B$.

Disproof in our logic

- Entailment is here undecidable [Antoupoulos et al., FOSSACS'14], although satisfiability is decidable [Brotherston et al., CSL-LICS'14].
- To disprove $A \vdash B$, we need a countermodel (s, h) s.t. $s, h \models_{\Phi} A$ but $s, h \not \models_{\Phi} B$.
- Model checking has only very recently been shown decidable, in fact EXPTIME-complete [Brotherston et al., submitted, 2015].

Disproof in our logic

- Entailment is here undecidable [Antoupoulos et al., FOSSACS'14], although satisfiability is decidable [Brotherston et al., CSL-LICS'14].
- To disprove $A \vdash B$, we need a countermodel (s, h) s.t. $s, h \models_{\Phi} A$ but $s, h \not \models_{\Phi} B$.
- Model checking has only very recently been shown decidable, in fact EXPTIME-complete [Brotherston et al., submitted, 2015].
- Enumerating and checking all possible counter-models is complete, but complicated and, I suspect, ridiculously expensive.

Base pairs [Brotherston et al., CSL-LICS'14]

- For any symbolic heap A, we can compute an overapproximation, base ${ }^{\Phi}(A)$.

Base pairs [Brotherston et al., CSL-LICS'14]

- For any symbolic heap A, we can compute an overapproximation, base ${ }^{\Phi}(A)$. Each "base pair" records, for each possible way of constructing a model of A,

1. the variables in $F V(A)$ that must be allocated, and
2. the (dis) equalities over $F V(A) \cup\{$ nil $\}$ that must hold.

Base pairs [Brotherston et al., CSL-LICS'14]

- For any symbolic heap A, we can compute an overapproximation, base ${ }^{\Phi}(A)$. Each "base pair" records, for each possible way of constructing a model of A,

1. the variables in $F V(A)$ that must be allocated, and
2. the (dis) equalities over $F V(A) \cup\{$ nil $\}$ that must hold.

- E.g., recall linked list segment predicate ls:

$$
\begin{aligned}
\mathrm{emp} & \Rightarrow \text { |s } x x \\
x \neq \mathrm{nil}: x \mapsto z * \operatorname{ls} z y & \Rightarrow \text { Is } x y
\end{aligned}
$$

Base pairs [Brotherston et al., CSL-LICS'14]

- For any symbolic heap A, we can compute an overapproximation, base ${ }^{\Phi}(A)$. Each "base pair" records, for each possible way of constructing a model of A,

1. the variables in $F V(A)$ that must be allocated, and
2. the (dis) equalities over $F V(A) \cup\{$ nil $\}$ that must hold.

- E.g., recall linked list segment predicate ls:

$$
\begin{aligned}
\mathrm{emp} & \Rightarrow \text { Is } x x \\
x \neq \mathrm{nil}: x \mapsto z * \operatorname{ls} z y & \Rightarrow \operatorname{ls} x y
\end{aligned}
$$

We obtain two base pairs:

$$
\begin{aligned}
\text { base }^{\Phi}(\operatorname{ls} x y)= & \{(\emptyset,\{x=y\}) \\
& (\{x\},\{x \neq \text { nil }\})\}
\end{aligned}
$$

Connecting base pairs and models

- Base pairs are formally related to models as follows.

Connecting base pairs and models

- Base pairs are formally related to models as follows.

Lemma (1)
Given $(V, \Pi) \in$ base $^{\Phi}(A)$, a stack s s.t. $s=\Pi$, and finite set $W \subset \operatorname{Loc} \backslash s(V)$, then $\exists h . s, h \models_{\Phi} A$ and $W \cap \operatorname{dom}(h)=\emptyset$.

Connecting base pairs and models

- Base pairs are formally related to models as follows.

Lemma (1)
Given $(V, \Pi) \in$ base $^{\Phi}(A)$, a stack s s.t. $s \models \Pi$, and finite set $W \subset \operatorname{Loc} \backslash s(V)$, then $\exists h . s, h \models_{\Phi} A$ and $W \cap \operatorname{dom}(h)=\emptyset$.

Lemma (2)
If $s, h \models_{\Phi} B$, there is a base pair $(V, \Pi) \in$ base $^{\Phi}(B)$ such that $s(V) \subseteq \operatorname{dom}(h)$ and $s=\Pi$.

Connecting base pairs and models

- Base pairs are formally related to models as follows.

Lemma (1)
Given $(V, \Pi) \in$ base $^{\Phi}(A)$, a stack s s.t. $s=\Pi$, and finite set $W \subset \operatorname{Loc} \backslash s(V)$, then $\exists h . s, h \models_{\Phi} A$ and $W \cap \operatorname{dom}(h)=\emptyset$.

Lemma (2)
If $s, h \not \models_{\Phi} B$, there is a base pair $(V, \Pi) \in$ base $^{\Phi}(B)$ such that $s(V) \subseteq \operatorname{dom}(h)$ and $s=\Pi$.

- Consequently, we can use Lemma 1 to construct a model of A and then Lemma 2 to show it cannot be a model of B.

Disproof "game"

Game (1)

- Given $A \vdash B$. a move by Player 1 is a choice of:
- a base pair $(X, \Pi) \in$ base $^{\Phi}(A)$;
- a stack s such that $s \models \Pi$; and
- a finite set $W \subset \operatorname{Loc} \backslash s(X)$.

Disproof "game"

Game (1)

- Given $A \vdash B$. a move by Player 1 is a choice of:
- a base pair $(X, \Pi) \in$ base $^{\Phi}(A)$;
- a stack s such that $s \models \Pi$; and
- a finite set $W \subset \operatorname{Loc} \backslash s(X)$.
- A response by Player 2 is a base pair $(Y, \Theta) \in \operatorname{base}^{\Phi}(B)$ such that $s \models \Theta$ and $W \cap s(Y)=\emptyset$.

Disproof"game"

Game (1)

- Given $A \vdash B$. a move by Player 1 is a choice of:
- a base pair $(X, \Pi) \in$ base $^{\Phi}(A)$;
- a stack s such that $s \models \Pi$; and
- a finite set $W \subset \operatorname{Loc} \backslash s(X)$.
- A response by Player 2 is a base pair $(Y, \Theta) \in \operatorname{base}^{\Phi}(B)$ such that $s \models \Theta$ and $W \cap s(Y)=\emptyset$.
- A move is winning if there is no possible response.

Disproof"game"

Game (1)

- Given $A \vdash B$. a move by Player 1 is a choice of:
- a base pair $(X, \Pi) \in$ base $^{\Phi}(A)$;
- a stack s such that $s \models \Pi$; and
- a finite set $W \subset \operatorname{Loc} \backslash s(X)$.
- A response by Player 2 is a base pair $(Y, \Theta) \in \operatorname{base}^{\Phi}(B)$ such that $s \models \Theta$ and $W \cap s(Y)=\emptyset$.
- A move is winning if there is no possible response.

Proposition
If Player 1 has a winning move for $A \vdash B$ then it is invalid.

Refined disproof "game"

Game (2)

- Given $A \vdash B$, a move by Player 1 is a choice of:
- a base pair $(X, \Pi) \in$ base $^{\Phi}(A)$, and
- a partition σ of $F V(A) \cup F V(B) \cup\{$ nil $\}$ s.t. $\sigma \models \Pi$.

Refined disproof "game"

Game (2)

- Given $A \vdash B$, a move by Player 1 is a choice of:
- a base pair $(X, \Pi) \in$ base $^{\Phi}(A)$, and
- a partition σ of $F V(A) \cup F V(B) \cup\{$ nil $\}$ s.t. $\sigma \models \Pi$.
- A response by Player 2 is a base pair $(Y, \Theta) \in \operatorname{base}^{\Phi}(B)$ such that $\sigma \models \Theta$ and $\forall y \in Y \backslash X . \exists x \in X . y \equiv{ }_{\sigma} x$.

Refined disproof "game"

Game (2)

- Given $A \vdash B$, a move by Player 1 is a choice of:
- a base pair $(X, \Pi) \in$ base $^{\Phi}(A)$, and
- a partition σ of $F V(A) \cup F V(B) \cup\{$ nil $\}$ s.t. $\sigma \models \Pi$.
- A response by Player 2 is a base pair $(Y, \Theta) \in \operatorname{base}^{\Phi}(B)$ such that $\sigma \models \Theta$ and $\forall y \in Y \backslash X . \exists x \in X . y \equiv{ }_{\sigma} x$.
- A winning move is (still) a move with no response.

Refined disproof "game"

Game (2)

- Given $A \vdash B$, a move by Player 1 is a choice of:
- a base pair $(X, \Pi) \in$ base $^{\Phi}(A)$, and
- a partition σ of $F V(A) \cup F V(B) \cup\{$ nil $\}$ s.t. $\sigma \models \Pi$.
- A response by Player 2 is a base pair $(Y, \Theta) \in \operatorname{base}^{\Phi}(B)$ such that $\sigma \models \Theta$ and $\forall y \in Y \backslash X . \exists x \in X . y \equiv{ }_{\sigma} x$.
- A winning move is (still) a move with no response.

Theorem

Games 1 and 2 are equivalent, and decidable.

An example

- Consider bt $x \vdash$ Is $x y$ (invalid).

An example

- Consider bt $x \vdash \operatorname{ls} x y$ (invalid).
- We have base pair approximations:

$$
\begin{aligned}
\operatorname{base}^{\Phi}(\text { bt } x) & =\{(\emptyset,\{x=\text { nil }\}),(\{x\},\{x \neq \text { nil }\})\} \\
\operatorname{base}^{\Phi}(\operatorname{ls} x y) & =\{(\emptyset,\{x=y\}),(\{x\},\{x \neq \text { nil }\})\}
\end{aligned}
$$

An example

- Consider bt $x \vdash \operatorname{ls} x y$ (invalid).
- We have base pair approximations:

$$
\begin{aligned}
\text { base }^{\Phi}(\text { bt } x) & =\{(\emptyset,\{x=\text { nil }\}),(\{x\},\{x \neq \text { nil }\})\} \\
\text { base }^{\Phi}(\operatorname{ls} x y) & =\{(\emptyset,\{x=y\}),(\{x\},\{x \neq \text { nil }\})\}
\end{aligned}
$$

- Winning move: choose base pair $(\emptyset,\{x=$ nil $\}$) and any partition σ s.t. $x \equiv_{\sigma}$ nil and $x \not \equiv_{\sigma} y$.

An example

- Consider bt $x \vdash \operatorname{ls} x y$ (invalid).
- We have base pair approximations:

$$
\begin{aligned}
\operatorname{base}^{\Phi}(\text { bt } x) & =\{(\emptyset,\{x=\text { nil }\}),(\{x\},\{x \neq \text { nil }\})\} \\
\operatorname{base}^{\Phi}(\operatorname{ls} x y) & =\{(\emptyset,\{x=y\}),(\{x\},\{x \neq \text { nil }\})\}
\end{aligned}
$$

- Winning move: choose base pair $(\emptyset,\{x=$ nil $\}$) and any partition σ s.t. $x \equiv_{\sigma}$ nil and $x \not \equiv_{\sigma} y$.
- Now consider Is $x y \vdash$ bt x (also invalid).

An example

- Consider bt $x \vdash \operatorname{ls} x y$ (invalid).
- We have base pair approximations:

$$
\begin{aligned}
\operatorname{base}^{\Phi}(\text { bt } x) & =\{(\emptyset,\{x=\text { nil }\}),(\{x\},\{x \neq \text { nil }\})\} \\
\operatorname{base}^{\Phi}(\operatorname{ls} x y) & =\{(\emptyset,\{x=y\}),(\{x\},\{x \neq \text { nil }\})\}
\end{aligned}
$$

- Winning move: choose base pair ($\emptyset,\{x=$ nil $\}$) and any partition σ s.t. $x \equiv_{\sigma}$ nil and $x \not \equiv_{\sigma} y$.
- Now consider Is $x y \vdash$ bt x (also invalid).
- Winning move: choose base pair $(\emptyset,\{x=y\})$ and any partition σ s.t. $x \equiv_{\sigma} y$ and $x \not \equiv_{\sigma}$ nil.

Limitations

- Our method is terminating and therefore incomplete.

Limitations

- Our method is terminating and therefore incomplete.
- Most importantly, our base pair overapproximations are essentially projections onto the free variables of entailments.

Limitations

- Our method is terminating and therefore incomplete.
- Most importantly, our base pair overapproximations are essentially projections onto the free variables of entailments.
- E.g., the entailment $x \mapsto$ nil \vdash emp is invalid, while $x \mapsto$ nil $\vdash \exists y . y \mapsto$ nil is valid but, since neither RHS has any free variables,

$$
\operatorname{base}^{\Phi}(\mathrm{emp})=\operatorname{base}^{\Phi}(\exists y . y \mapsto \mathrm{nil})=\{(\emptyset, \emptyset)\}
$$

so we can't distinguish the two entailments.

Experimental evaluation (1)

- We generated entailments of the form $P \mathbf{x} \vdash Q \mathbf{y}$, where
- P and Q are inductive predicates taken from pre-existing benchmarks in SL-COMP competition (63 predicates total);
- x is a tuple of distinct variables;
- all variables in \mathbf{y} appear in \mathbf{x}.

Experimental evaluation (1)

- We generated entailments of the form $P \mathbf{x} \vdash Q \mathbf{y}$, where
- P and Q are inductive predicates taken from pre-existing benchmarks in SL-COMP competition (63 predicates total);
- x is a tuple of distinct variables;
- all variables in \mathbf{y} appear in \mathbf{x}.
- This is typical of automated theory exploration. We get 818988 entailments; most will be invalid.

Experimental evaluation (1)

- We generated entailments of the form $P \mathbf{x} \vdash Q \mathbf{y}$, where
- P and Q are inductive predicates taken from pre-existing benchmarks in SL-COMP competition (63 predicates total);
- x is a tuple of distinct variables;
- all variables in \mathbf{y} appear in \mathbf{x}.
- This is typical of automated theory exploration. We get 818988 entailments; most will be invalid.
- Our technique disproves $>97 \%$ of the entailments in the test set, taking at most 30 ms for each.

Experimental evaluation (1)

- We generated entailments of the form $P \mathbf{x} \vdash Q \mathbf{y}$, where
- P and Q are inductive predicates taken from pre-existing benchmarks in SL-COMP competition (63 predicates total);
- x is a tuple of distinct variables;
- all variables in \mathbf{y} appear in \mathbf{x}.
- This is typical of automated theory exploration. We get 818988 entailments; most will be invalid.
- Our technique disproves $>97 \%$ of the entailments in the test set, taking at most 30 ms for each.
- Of the remainder, we could prove about 250 valid.

Experimental evaluation (2)

- SLL test suite (from SL-COMP competition) considers entailments over acyclic list segments only:

$$
\begin{aligned}
\text { emp } & \Rightarrow \text { als } x x \\
x \neq \mathrm{nil}, x \neq y: x \mapsto z * \text { als } z y & \Rightarrow \text { als } x y
\end{aligned}
$$

Experimental evaluation (2)

- SLL test suite (from SL-COMP competition) considers entailments over acyclic list segments only:

$$
\begin{aligned}
\text { emp } & \Rightarrow \text { als } x x \\
x \neq \mathrm{nil}, x \neq y: x \mapsto z * \text { als } z y & \Rightarrow \text { als } x y
\end{aligned}
$$

- Here, of 120 invalid sequents, we disprove only about 24%.

Experimental evaluation (2)

- SLL test suite (from SL-COMP competition) considers entailments over acyclic list segments only:

$$
\begin{aligned}
\text { emp } & \Rightarrow \text { als } x x \\
x \neq \mathrm{nil}, x \neq y: x \mapsto z * \text { als } z y & \Rightarrow \text { als } x y
\end{aligned}
$$

- Here, of 120 invalid sequents, we disprove only about 24%.
- So we do (much) better in some situations than others.
- In fact this sub-fragment is polynomially decidable anyway.

Conclusions / future work

- We give a method for entailment disproof in separation logic with user-defined inductive predicates.
- Our method is incomplete, but terminating, and pretty cheeeap.
- Therefore, potentially useful for proof search and automated theory exploration.
- Future work: develop more precise disproving techniques (e.g., by direct countermodel generation).

Thanks for listening!

Try our techniques within the Cyclist distribution:
github.com/ngorogiannis/cyclist

