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Craig interpolation

Definition
A (propositional) logic satisfies Craig interpolation iff for any
provable F ` G there exists an interpolant I s.t.:

F ` I provable and I ` G provable and V(I) ⊆ V(F ) ∩ V(G)

(V(X) is the set of propositional variables occurring in X)

2/ 14



Craig interpolation

Definition
A (propositional) logic satisfies Craig interpolation iff for any
provable F ` G there exists an interpolant I s.t.:

F ` I provable and I ` G provable and V(I) ⊆ V(F ) ∩ V(G)

(V(X) is the set of propositional variables occurring in X)

Applications in:

I logic: consistency; compactness; definability

2/ 14



Craig interpolation

Definition
A (propositional) logic satisfies Craig interpolation iff for any
provable F ` G there exists an interpolant I s.t.:

F ` I provable and I ` G provable and V(I) ⊆ V(F ) ∩ V(G)

(V(X) is the set of propositional variables occurring in X)

Applications in:

I logic: consistency; compactness; definability

I computer science: invariant generation; type inference;
model checking; ontology decomposition
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I Characterisation: any part of a consecution can be
“displayed” alone on one side of the `;

I Needs a richer consecution structure than simple sequents;

I Cut-elimination is guaranteed when the proof rules satisfy
some simple conditions;

3/ 14



Display calculi

I are consecution calculi à la Gentzen;

I Characterisation: any part of a consecution can be
“displayed” alone on one side of the `;

I Needs a richer consecution structure than simple sequents;

I Cut-elimination is guaranteed when the proof rules satisfy
some simple conditions;

I But decidability, interpolation etc. don’t follow directly as
they often do in sequent calculi.

3/ 14



Display calculi

I are consecution calculi à la Gentzen;

I Characterisation: any part of a consecution can be
“displayed” alone on one side of the `;

I Needs a richer consecution structure than simple sequents;

I Cut-elimination is guaranteed when the proof rules satisfy
some simple conditions;

I But decidability, interpolation etc. don’t follow directly as
they often do in sequent calculi.

I We show interpolation for a large class of display calculi.
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Display calculus syntax

I Formulas given by:

F ::= P | > | ⊥ | ¬F | F&F | F ∨ F | F → F | . . .

I Structures given by:

X ::= F | ∅ | ]X | X ; X

I Consecutions are given by X ` Y for X,Y structures.

I Substructures of X ` Y are antecedent or consequent parts
(similar to positive / negative occurrences in formulas).
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Display-equivalence

We have the following display postulates:

X ; Y ` Z <>D X ` ]Y ; Z <>D Y ; X ` Z
X ` Y ; Z <>D X ; ]Y ` Z <>D X ` Z ; Y

X ` Y <>D ]Y ` ]X <>D ]]X ` Y
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Display-equivalence

We have the following display postulates:

X ; Y ` Z <>D X ` ]Y ; Z <>D Y ; X ` Z
X ` Y ; Z <>D X ; ]Y ` Z <>D X ` Z ; Y

X ` Y <>D ]Y ` ]X <>D ]]X ` Y

Display-equivalence ≡D given by transitive closure of <>D.

Proposition (Display property)

For any antecedent part Z of X ` Y there is a W s.t.

X ` Y ≡D Z ` W

(and similarly for consequent parts).
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Some proof rules

Identity rules:

(Id)
P ` P

X ′ ` Y ′

(X ` Y ≡D X ′ ` Y ′) (≡D)
X ` Y
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(Id)
P ` P

X ′ ` Y ′

(X ` Y ≡D X ′ ` Y ′) (≡D)
X ` Y

Logical rules:

F ; G ` X
(&L)

F&G ` X

X ` F Y ` G
(&R)

X ; Y ` F&G
. . .

Structural rules:

W ; (X ; Y ) ` Z
(α)

(W ; X) ; Y ` Z

∅ ; X ` Y
(∅CL)

X ` Y

X ` Z
(W)

X ; Y ` Z

X ; X ` Y
(C)

X ` Y
. . .
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Interpolation: our approach

I Proof-theoretic strategy: given a cut-free proof of X ` Y ,
we construct its interpolant I.
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Interpolation: our approach

I Proof-theoretic strategy: given a cut-free proof of X ` Y ,
we construct its interpolant I.

I Induction on proofs: from interpolants for the premises of a
rule, construct an interpolant for its conclusion.

I But not enough info to do this for display steps, e.g.:

X ; Y ` Z
(≡D)

X ` ]Y ; Z
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Local AD-interpolation (LADI) property

Let ≡AD be the least equivalence closed under ≡D and
applications of associativity (α) (if present).
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Local AD-interpolation (LADI) property

Let ≡AD be the least equivalence closed under ≡D and
applications of associativity (α) (if present).

Definition
A proof rule with conclusion C has the LADI property if, given
that for each premise of the rule Ci we have interpolants for all
C′

i
≡AD Ci, we can construct interpolants for all C′ ≡AD C.

Proposition

If the proof rules of a display calculus D all have the LADI
property then D enjoys Craig interpolation.
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LADI: (&R)

X ` F Y ` G
(&R)

X ; Y ` F&G

Need interpolant for arbitrary W ` Z ≡AD X;Y ` F&G.

Case: F&G occurs in Z.

Subcase: W built entirely from parts of X (W C X).

By a LEMMA ∃U. X ` F ≡AD W ` U .

Claim: interpolant I for W ` U is an interpolant for W ` Z.

Main issue: show I ` Z provable given I ` U provable.
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LADI: contraction

Consider the following instance of contraction:

(X1;X2); (X1;X2) ` Y
(C)

X1;X2 ` Y

In particular we need an interpolant for X1 ` ]X2;Y .

If we have associativity the premise rearranges to

X1;X1 ` ](X2;X2);Y

whose interpolant will work for X1 ` ]X2;Y as well.

If not, about the best we can do is:

X1 ` ]X2; (](X1;X2);Y )

whose interpolant is far too weak to work for X1 ` ]X2;Y .
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Summary of results

D
(+)
0

(α)(∅CL)

(∅CR) (∅WL) (∅WR) (C)(W)

LADI of the proof rule(s) at a node holds in a calculus with all
of the proof rules at its ancestor nodes. Thus:
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Summary of results

D
(+)
0

(α)(∅CL)

(∅CR) (∅WL) (∅WR) (C)(W)

LADI of the proof rule(s) at a node holds in a calculus with all
of the proof rules at its ancestor nodes. Thus:

Theorem
Any display calculus satisfying the constraints in the above
diagram has Craig interpolation.
(This includes MLL, MALL and classical logic.)
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Future work

1. Machine formalisation of results; an Isabelle mechanisation,
led by Jeremy Dawson (ANU), is currently under way.
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1. Machine formalisation of results; an Isabelle mechanisation,
led by Jeremy Dawson (ANU), is currently under way.

2. More logics:
I non-commutative logics;

I multiple-family display calculi (bunched & relevant logics);

I modalities, quantifiers, linear exponentials . . .
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