Craig interpolation in displayable logics

James Brotherston ${ }^{1}$ and Rajeev Goré ${ }^{2}$

${ }^{1}$ Imperial College London
${ }^{2}$ ANU Canberra

TABLEAUX, Universität Bern, 7 Jul 2011

Craig interpolation

Definition

A (propositional) logic satisfies Craig interpolation iff for any provable $F \vdash G$ there exists an interpolant I s.t.:

$$
F \vdash I \text { provable and } I \vdash G \text { provable and } \mathcal{V}(I) \subseteq \mathcal{V}(F) \cap \mathcal{V}(G)
$$

$(\mathcal{V}(X)$ is the set of propositional variables occurring in $X)$

Craig interpolation

Definition

A (propositional) logic satisfies Craig interpolation iff for any provable $F \vdash G$ there exists an interpolant I s.t.:
$F \vdash I$ provable and $I \vdash G$ provable and $\mathcal{V}(I) \subseteq \mathcal{V}(F) \cap \mathcal{V}(G)$
$(\mathcal{V}(X)$ is the set of propositional variables occurring in $X)$
Applications in:

- logic: consistency; compactness; definability

Craig interpolation

Definition

A (propositional) logic satisfies Craig interpolation iff for any provable $F \vdash G$ there exists an interpolant I s.t.:
$F \vdash I$ provable and $I \vdash G$ provable and $\mathcal{V}(I) \subseteq \mathcal{V}(F) \cap \mathcal{V}(G)$
$(\mathcal{V}(X)$ is the set of propositional variables occurring in $X)$
Applications in:

- logic: consistency; compactness; definability
- computer science: invariant generation; type inference; model checking; ontology decomposition

Display calculi

- are consecution calculi à la Gentzen;

Display calculi

- are consecution calculi à la Gentzen;
- Characterisation: any part of a consecution can be "displayed" alone on one side of the \vdash;

Display calculi

- are consecution calculi à la Gentzen;
- Characterisation: any part of a consecution can be "displayed" alone on one side of the \vdash;
- Needs a richer consecution structure than simple sequents;

Display calculi

- are consecution calculi à la Gentzen;
- Characterisation: any part of a consecution can be "displayed" alone on one side of the \vdash;
- Needs a richer consecution structure than simple sequents;
- Cut-elimination is guaranteed when the proof rules satisfy some simple conditions;

Display calculi

- are consecution calculi à la Gentzen;
- Characterisation: any part of a consecution can be "displayed" alone on one side of the \vdash;
- Needs a richer consecution structure than simple sequents;
- Cut-elimination is guaranteed when the proof rules satisfy some simple conditions;
- But decidability, interpolation etc. don't follow directly as they often do in sequent calculi.

Display calculi

- are consecution calculi à la Gentzen;
- Characterisation: any part of a consecution can be "displayed" alone on one side of the \vdash;
- Needs a richer consecution structure than simple sequents;
- Cut-elimination is guaranteed when the proof rules satisfy some simple conditions;
- But decidability, interpolation etc. don't follow directly as they often do in sequent calculi.
- We show interpolation for a large class of display calculi.

Display calculus syntax

- Formulas given by:

$$
F::=P|\top| \perp|\neg F| F \& F|F \vee F| F \rightarrow F \mid \ldots
$$

Display calculus syntax

- Formulas given by:

$$
F::=P|\top| \perp|\neg F| F \& F|F \vee F| F \rightarrow F \mid \ldots
$$

- Structures given by:

$$
X::=F|\emptyset| \sharp X \mid X ; X
$$

Display calculus syntax

- Formulas given by:

$$
F::=P|\top| \perp|\neg F| F \& F|F \vee F| F \rightarrow F \mid \ldots
$$

- Structures given by:

$$
X::=F|\emptyset| \sharp X \mid X ; X
$$

- Consecutions are given by $X \vdash Y$ for X, Y structures.

Display calculus syntax

- Formulas given by:

$$
F::=P|\top| \perp|\neg F| F \& F|F \vee F| F \rightarrow F \mid \ldots
$$

- Structures given by:

$$
X::=F|\emptyset| \sharp X \mid X ; X
$$

- Consecutions are given by $X \vdash Y$ for X, Y structures.
- Substructures of $X \vdash Y$ are antecedent or consequent parts (similar to positive / negative occurrences in formulas).

Display-equivalence

We have the following display postulates:

$$
\begin{array}{ccccc}
X ; Y \vdash Z & <>_{D} & X \vdash \sharp Y ; Z & <>_{D} & Y ; X \vdash Z \\
X \vdash Y ; Z & <>_{D} & X ; \sharp Y \vdash Z & <>_{D} & X \vdash Z ; Y \\
X \vdash Y & <>_{D} & \sharp Y \vdash \sharp X & <>_{D} & \sharp \sharp X \vdash Y
\end{array}
$$

Display-equivalence

We have the following display postulates:

$$
\begin{array}{ccccc}
X ; Y \vdash Z & <>_{D} & X \vdash \sharp Y ; Z & <>_{D} & Y ; X \vdash Z \\
X \vdash Y ; Z & <>_{D} & X ; \sharp Y \vdash Z & <>_{D} & X \vdash Z ; Y \\
X \vdash Y & <>_{D} & \sharp Y \vdash \sharp X & <>_{D} & \sharp \sharp X \vdash Y
\end{array}
$$

Display-equivalence \equiv_{D} given by transitive closure of $<>_{D}$.

Display-equivalence

We have the following display postulates:

$$
\begin{array}{ccccc}
X ; Y \vdash Z & <>_{D} & X \vdash \sharp Y ; Z & <>_{D} & Y ; X \vdash Z \\
X \vdash Y ; Z & <>_{D} & X ; \sharp Y \vdash Z & <>_{D} & X \vdash Z ; Y \\
X \vdash Y & <>_{D} & \sharp Y \vdash \sharp X & <>_{D} & \sharp \sharp X \vdash Y
\end{array}
$$

Display-equivalence \equiv_{D} given by transitive closure of $<>_{D}$.
Proposition (Display property)
For any antecedent part Z of $X \vdash Y$ there is a W s.t.

$$
X \vdash Y \equiv_{D} Z \vdash W
$$

(and similarly for consequent parts).

Some proof rules

Identity rules:

$$
\frac{X^{\prime} \vdash Y^{\prime}}{P \vdash P}(\mathrm{Id}) \quad\left(X \vdash Y \equiv_{D} X^{\prime} \vdash Y^{\prime}\right)\left(\equiv_{D}\right)
$$

Some proof rules

Identity rules:

$$
\frac{X^{\prime} \vdash Y^{\prime}}{P \vdash P}(\mathrm{Id}) \quad\left(X \vdash Y \equiv_{D} X^{\prime} \vdash Y^{\prime}\right)\left(\equiv_{D}\right)
$$

Logical rules:

$$
\frac{F ; G \vdash X}{F \& G \vdash X}(\& \mathrm{~L}) \quad \frac{X \vdash F \quad Y \vdash G}{X ; Y \vdash F \& G}(\& \mathrm{R}) \quad \ldots
$$

Some proof rules

Identity rules:

$$
\frac{X^{\prime} \vdash Y^{\prime}}{P \vdash P}(\mathrm{Id}) \quad\left(X \vdash Y \equiv_{D} X^{\prime} \vdash Y^{\prime}\right)\left(\equiv_{D}\right)
$$

Logical rules:

$$
\frac{F ; G \vdash X}{F \& G \vdash X}(\& \mathrm{~L}) \quad \frac{X \vdash F \quad Y \vdash G}{X ; Y \vdash F \& G}(\& \mathrm{R}) \quad \ldots
$$

Structural rules:

$$
\begin{array}{cc}
\frac{W ;(X ; Y) \vdash Z}{(W ; X) ; Y \vdash Z}(\alpha) & \frac{\emptyset ; X \vdash Y}{X \vdash Y}\left(\emptyset \mathrm{C}_{\mathrm{L}}\right) \\
\frac{X \vdash Z}{X ; Y \vdash Z}(\mathrm{~W}) & \frac{X ; X \vdash Y}{X \vdash Y}(\mathrm{C})
\end{array}
$$

Interpolation: our approach

- Proof-theoretic strategy: given a cut-free proof of $X \vdash Y$, we construct its interpolant I.

Interpolation: our approach

- Proof-theoretic strategy: given a cut-free proof of $X \vdash Y$, we construct its interpolant I.
- Induction on proofs: from interpolants for the premises of a rule, construct an interpolant for its conclusion.

Interpolation: our approach

- Proof-theoretic strategy: given a cut-free proof of $X \vdash Y$, we construct its interpolant I.
- Induction on proofs: from interpolants for the premises of a rule, construct an interpolant for its conclusion.
- But not enough info to do this for display steps, e.g.:

$$
\frac{X ; Y \vdash Z}{X \vdash \sharp Y ; Z}\left(\equiv_{D}\right)
$$

Local AD-interpolation (LADI) property

Let $\equiv_{A D}$ be the least equivalence closed under \equiv_{D} and applications of associativity (α) (if present).

Local AD-interpolation (LADI) property

Let $\equiv_{A D}$ be the least equivalence closed under \equiv_{D} and applications of associativity (α) (if present).

Definition
A proof rule with conclusion \mathcal{C} has the LADI property if, given that for each premise of the rule \mathcal{C}_{i} we have interpolants for all $\mathcal{C}_{i}^{\prime} \equiv{ }_{A D} \mathcal{C}_{i}$, we can construct interpolants for all $\mathcal{C}^{\prime} \equiv_{A D} \mathcal{C}$.

Local AD-interpolation (LADI) property

Let $\equiv_{A D}$ be the least equivalence closed under \equiv_{D} and applications of associativity (α) (if present).

Definition

A proof rule with conclusion \mathcal{C} has the LADI property if, given that for each premise of the rule \mathcal{C}_{i} we have interpolants for all $\mathcal{C}_{i}^{\prime} \equiv{ }_{A D} \mathcal{C}_{i}$, we can construct interpolants for all $\mathcal{C}^{\prime} \equiv_{A D} \mathcal{C}$.

Proposition
If the proof rules of a display calculus \mathcal{D} all have the LADI property then \mathcal{D} enjoys Craig interpolation.

LADI: (\&R)

$$
\frac{X \vdash F \quad Y \vdash G}{X ; Y \vdash F \& G}(\& \mathrm{R})
$$

LADI: (\&R)

$$
\frac{X \vdash F \quad Y \vdash G}{X ; Y \vdash F \& G}(\& \mathrm{R})
$$

Need interpolant for arbitrary $W \vdash Z \equiv_{A D} X ; Y \vdash F \& G$.

LADI: (\&R)

$$
\frac{X \vdash F \quad Y \vdash G}{X ; Y \vdash F \& G}(\& \mathrm{R})
$$

Need interpolant for arbitrary $W \vdash Z \equiv_{A D} X ; Y \vdash F \& G$.
Case: $F \& G$ occurs in Z.

LADI: (\&R)

$$
\frac{X \vdash F \quad Y \vdash G}{X ; Y \vdash F \& G}(\& \mathrm{R})
$$

Need interpolant for arbitrary $W \vdash Z \equiv_{A D} X ; Y \vdash F \& G$.
Case: $F \& G$ occurs in Z.
Subcase: W built entirely from parts of $X(W \triangleleft X)$.

LADI: (\&R)

$$
\frac{X \vdash F \quad Y \vdash G}{X ; Y \vdash F \& G}(\& \mathrm{R})
$$

Need interpolant for arbitrary $W \vdash Z \equiv_{A D} X ; Y \vdash F \& G$.
Case: $F \& G$ occurs in Z.
Subcase: W built entirely from parts of $X(W \triangleleft X)$.
By a LEMMA $\exists U . X \vdash F \equiv_{A D} W \vdash U$.

LADI: (\&R)

$$
\frac{X \vdash F \quad Y \vdash G}{X ; Y \vdash F \& G}(\& \mathrm{R})
$$

Need interpolant for arbitrary $W \vdash Z \equiv_{A D} X ; Y \vdash F \& G$.
Case: $F \& G$ occurs in Z.
Subcase: W built entirely from parts of $X(W \triangleleft X)$.
By a LEMMA $\exists U . X \vdash F \equiv_{A D} W \vdash U$.
Claim: interpolant I for $W \vdash U$ is an interpolant for $W \vdash Z$.

LADI: (\&R)

$$
\frac{X \vdash F \quad Y \vdash G}{X ; Y \vdash F \& G}(\& \mathrm{R})
$$

Need interpolant for arbitrary $W \vdash Z \equiv_{A D} X ; Y \vdash F \& G$.
Case: $F \& G$ occurs in Z.
Subcase: W built entirely from parts of $X(W \triangleleft X)$.
By a LEMMA $\exists U . X \vdash F \equiv_{A D} W \vdash U$.
Claim: interpolant I for $W \vdash U$ is an interpolant for $W \vdash Z$.
Main issue: show $I \vdash Z$ provable given $I \vdash U$ provable.

LADI: (\&R)

By display property we have $I \vdash U \equiv_{D} V \vdash F$.

LADI: (\&R)

By display property we have $I \vdash U \equiv_{D} V \vdash F$.
Next, we have:

$$
W \vdash Z \quad \equiv_{A D} \quad X \vdash \sharp Y ; F \& G
$$

LADI: (\&R)

By display property we have $I \vdash U \equiv_{D} V \vdash F$.
Next, we have:

$$
\begin{array}{rll}
W \vdash Z & \equiv_{A D} & \\
& X \vdash \sharp Y ; F \& G \\
& = & X \vdash F[(\sharp Y ; F \& G) / F]
\end{array}
$$

LADI: (\&R)

By display property we have $I \vdash U \equiv_{D} V \vdash F$.
Next, we have:

$$
\begin{array}{rll}
W \vdash Z & \equiv_{A D} & X \vdash \sharp Y ; F \& G \\
& = & X \vdash F[(\sharp Y ; F \& G) / F] \\
& \equiv_{A D} & W \vdash U[(\sharp Y ; F \& G) / F]
\end{array}
$$

by an easy LEMMA

LADI: (\&R)

By display property we have $I \vdash U \equiv_{D} V \vdash F$.
Next, we have:

$$
\begin{array}{rll}
W \vdash Z & \equiv{ }_{A D} & \\
& X \vdash \sharp Y ; F \& G \\
& = & X \vdash F[(\sharp Y ; F \& G) / F]
\end{array}
$$

$$
\equiv_{A D} \quad W \vdash U[(\sharp Y ; F \& G) / F] \quad \text { by an easy LEMMA }
$$

Thus by a substitutivity LEMMA we obtain:

$$
I \vdash Z \quad \equiv_{A D} \quad I \vdash U[(\sharp Y ; F \& G) / F]
$$

LADI: (\&R)

By display property we have $I \vdash U \equiv_{D} V \vdash F$.
Next, we have:

$$
\begin{array}{rll}
W \vdash Z & \equiv A D & X \vdash \sharp Y ; F \& G \\
& = & X \vdash F[(\sharp Y ; F \& G) / F] \\
& \equiv A D & W \vdash U[(\sharp Y ; F \& G) / F]
\end{array}
$$

by an easy LEMMA

Thus by a substitutivity LEMMA we obtain:

$$
\begin{array}{rll}
I \vdash Z & \equiv_{A D} & I \vdash U[(\sharp Y ; F \& G) / F] \\
& \equiv_{A D} & V \vdash F[(\sharp Y ; F \& G) / F]
\end{array}
$$

LADI: (\&R)

By display property we have $I \vdash U \equiv_{D} V \vdash F$.
Next, we have:

$$
\begin{array}{rll}
W \vdash Z & \equiv A D & X \vdash \sharp Y ; F \& G \\
& = & X \vdash F[(\sharp Y ; F \& G) / F] \\
& \equiv A D & W \vdash U[(\sharp Y ; F \& G) / F]
\end{array}
$$

by an easy LEMMA

Thus by a substitutivity LEMMA we obtain:

$$
\begin{array}{rlrl}
I \vdash Z & \equiv A D & I \vdash U[(\sharp Y ; F \& G) / F] \\
& \equiv A D & V \vdash F[(\sharp Y ; F \& G) / F] \\
& \equiv A D & V ; Y \vdash F \& G
\end{array}
$$

LADI: contraction

Consider the following instance of contraction:

$$
\frac{\left(X_{1} ; X_{2}\right) ;\left(X_{1} ; X_{2}\right) \vdash Y}{X_{1} ; X_{2} \vdash Y}(\mathrm{C})
$$

LADI: contraction

Consider the following instance of contraction:

$$
\frac{\left(X_{1} ; X_{2}\right) ;\left(X_{1} ; X_{2}\right) \vdash Y}{X_{1} ; X_{2} \vdash Y}(\mathrm{C})
$$

In particular we need an interpolant for $X_{1} \vdash \sharp X_{2} ; Y$.

LADI: contraction

Consider the following instance of contraction:

$$
\frac{\left(X_{1} ; X_{2}\right) ;\left(X_{1} ; X_{2}\right) \vdash Y}{X_{1} ; X_{2} \vdash Y}(\mathrm{C})
$$

In particular we need an interpolant for $X_{1} \vdash \sharp X_{2} ; Y$.
If we have associativity the premise rearranges to

$$
X_{1} ; X_{1} \vdash \sharp\left(X_{2} ; X_{2}\right) ; Y
$$

whose interpolant will work for $X_{1} \vdash \sharp X_{2} ; Y$ as well.

LADI: contraction

Consider the following instance of contraction:

$$
\frac{\left(X_{1} ; X_{2}\right) ;\left(X_{1} ; X_{2}\right) \vdash Y}{X_{1} ; X_{2} \vdash Y}(\mathrm{C})
$$

In particular we need an interpolant for $X_{1} \vdash \sharp X_{2} ; Y$.
If we have associativity the premise rearranges to

$$
X_{1} ; X_{1} \vdash \sharp\left(X_{2} ; X_{2}\right) ; Y
$$

whose interpolant will work for $X_{1} \vdash \sharp X_{2} ; Y$ as well.
If not, about the best we can do is:

$$
X_{1} \vdash \sharp X_{2} ;\left(\sharp\left(X_{1} ; X_{2}\right) ; Y\right)
$$

whose interpolant is far too weak to work for $X_{1} \vdash \sharp X_{2} ; Y$.

Summary of results

LADI of the proof rule(s) at a node holds in a calculus with all of the proof rules at its ancestor nodes. Thus:

Summary of results

$(\mathrm{W}) \leftarrow\left(\emptyset \mathrm{C}_{\mathrm{R}}\right)$
$\left(\emptyset \mathrm{C}_{\mathrm{L}}\right) \longleftrightarrow\left(\emptyset \mathrm{W}_{\mathrm{L}}\right)$
\uparrow

LADI of the proof rule(s) at a node holds in a calculus with all of the proof rules at its ancestor nodes. Thus:

Theorem

Any display calculus satisfying the constraints in the above diagram has Craig interpolation.
(This includes MLL, MALL and classical logic.)

Future work

1. Machine formalisation of results; an Isabelle mechanisation, led by Jeremy Dawson (ANU), is currently under way.

Future work

1. Machine formalisation of results; an Isabelle mechanisation, led by Jeremy Dawson (ANU), is currently under way.
2. More logics:

Future work

1. Machine formalisation of results; an Isabelle mechanisation, led by Jeremy Dawson (ANU), is currently under way.
2. More logics:

- non-commutative logics;

Future work

1. Machine formalisation of results; an Isabelle mechanisation, led by Jeremy Dawson (ANU), is currently under way.
2. More logics:

- non-commutative logics;
- multiple-family display calculi (bunched \& relevant logics);

Future work

1. Machine formalisation of results; an Isabelle mechanisation, led by Jeremy Dawson (ANU), is currently under way.
2. More logics:

- non-commutative logics;
- multiple-family display calculi (bunched \& relevant logics);
- modalities, quantifiers, linear exponentials ...

Further reading

固 Nuel D．Belnap，Jr．
Display logic．
In Journal of Philosophical Logic，vol．11， 1982.
圊 Greg Restall．
Displaying and deciding substructural logics 1：Logics with contraposition．
In Journal of Philosophical Logic，vol．27， 1998.
圊 Dirk Roorda．
Interpolation in fragments of classical linear logic．
In Journal of Symbolic Logic 59（2）， 1994.

