
Formalised Inductive Reasoning
in the Logic of Bunched Implications

James Brotherston
Dept. of Computing, Imperial College London

SAS-14, 22–24 August 2007
Kongens Lyngby, Denmark

Overview

• the logic of bunched implications, BI, offers a convenient
means of expressing properties of programs that access and
modify some shared resource;

• separation logic is obtained by taking a model of BI in
which the resources are heaps;

• program analysis based on separation logic, such as shape
analysis, typically relies on inductively defined predicates
to describe heap properties;

• inductive theorem proving based upon BI thus plays a key
role in many such analyses.

Our contributions

• we extend BI with a general framework for inductive
definitions;

• we give two proof systems in sequent calculus style for two
different inductive reasoning techniques in the extended
logic, BIID:

1. explicit rule induction over definitions;
2. cyclic proof embodying a notion of proof by infinite descent

for inductively defined relations.

• we argue that cyclic proof has potential advantages over
the standard approach to induction.

The logic of bunched implications (BI)

• our structures M contain a notion of resource, given by a
partial commutative monoid 〈R, ◦, e〉;

• BI has the usual first-order connectives plus the new
atomic formula I and binary connectives ∗ and —∗;

• satisfaction of a formula F is given by the relation
M, r |=ρ F , where r ∈ R is the “current resource state”:

M, r |=ρ I ⇔ r = e
M, r |=ρ Qt ⇔ QM (r, ρ(t))

M, r |=ρ F1 ∗ F2 ⇔ r = r1 ◦ r2 and M, r1 |=ρ F1

and M, r2 |=ρ F2 for some r1, r2 ∈ R
M, r |=ρ F1 —∗ F2 ⇔ M, r′ |=ρ F1 and r′ ◦ r defined

implies M, r′ ◦ r |=ρ F2 for all r′ ∈ R

BI with inductive definitions (BIID)

• two types of predicate symbol: ordinary Q1, Q2, . . . and
inductive P1, . . . , Pn;

• our inductive definitions are given by a finite set Φ of
productions which are rules of the form:

C(x)
i ∈ {1, . . . , n}

Pit(x)

C(x) ::= F̂ (x) | C(x) ∧ C(x) | C(x) ∗ C(x)
| F̂ (x)→ C(x) | F̂ (x) —∗ C(x) | ∀xC(x)

where F̂ (x) is any formula of BI not containing inductive
predicates;

Standard models of BIID

• A set Φ of productions determines an n-ary monotone
operator, ϕΦ;

• from the monotone operator ϕΦ we construct a sequence
(ϕαΦ)α≥0 of approximants by iteratively applying ϕΦ to
(∅, . . . , ∅);

• standard result:
⋃
α ϕ

α
Φ is the least prefixed point of ϕΦ.

Definition
M is a standard model if we have (PM1 , . . . , PMn) =

⋃
α ϕ

α
Φ.

Example: inductive definitions

>

N0

Nx

Nsx

ϕΦN
(X) = {(r, 0M) | r ∈ R} ∪ {(r, sMd) | (r, d) ∈ X}

(Intuitively, the predicate N represents the property of being a
natural number.)

I

lsxx

x 7→ x′ ∗ lsx′ y

lsx y

where 7→ is an ordinary predicate. (In separation logic, ls is a
predicate representing (possibly cyclic) list segments.)

ϕΦls(X) = {(e, (d, d)) | d ∈ D}
∪ {(r1 ◦ r2, (d, d′)) | (r1, (d, d′′)) ∈ 7→M

and (r2, (d′′, d′)) ∈ X}

Sequent calculus rules for BI

We write sequents Γ ` F where F is a formula and Γ is a bunch:

Γ ::= F | Γ; Γ | Γ,Γ

where ; is equivalent to ∧ and , is equivalent to ∗. The rules for
the multiplicative connectives ∗ and —∗ are:

∆ ` F1 Γ(F2) ` F
(—∗L)

Γ(∆, F1 —∗ F2) ` F

Γ(F1, F2) ` F
(∗L)

Γ(F1 ∗ F2) ` F

Γ, F1 ` F2
(—∗R)

Γ ` F1 —∗ F2

Γ ` F1 ∆ ` F2
(∗R)

Γ,∆ ` F1 ∗ F2

LBIID: a sequent calculus for induction in BIID

Extend sequent calculus for BI by adding introduction rules for
inductively defined predicates. The right-introduction rules are
simple unfolding rules, e.g. for ls:

Γ ` I
(lsR1)

Γ ` ls t t

Γ ` t1 7→ t ∗ ls t t2
(lsR2)

Γ ` ls t1 t2
The left-introduction rules embody rule induction over
definitions, e.g. for ls:

∆; I ` Hxx ∆;x 7→ x′ ∗Hx′y ` Hxy Γ(∆;Htu) ` F
(Ind ls)

Γ(∆; ls t u) ` F

where H is the induction hypothesis associated with ls and
x, x′, y are fresh.
(NB. mutual definitions give rise to mutual induction rules.)

A sample LBIID proof
We want to prove ls t1 t2 ∗ ls t2 t3 ` ls t1 t3. After (∗L), apply
the induction rule (Ind ls) to ls t1 t2 with induction variables
z1, z2 and induction hypothesis ls z2 t3 —∗ ls z1 t3:

I ` ls x t3 —∗ ls x t3 x 7→ x
′∗(ls y t3 —∗ls x

′
t3) ` ls y t3 —∗ls x t3 ls t2 t3 —∗ ls t1 t3, ls t2 t3 ` ls t1 t3

== (Ind ls)

ls t1 t2, ls t2 t3 ` ls t1 t3

Only the second premise (induction step case) is non-trivial:

(Id)

ls y t3 ` ls y t3

(Id)

x 7→ x
′ ` x 7→ x

′
(Id)

ls x
′
t3 ` ls x

′
t3

(∗R)

x 7→ x
′
, ls x

′
t3 ` x 7→ x

′ ∗ ls x
′
t3

(lsR2)

x 7→ x
′
, ls x

′
t3 ` ls x t3

(—∗L)

x 7→ x
′
, (ls y t3 —∗ ls x

′
t3), ls y t3 ` ls x t3

(∗L)

x 7→ x
′ ∗ (ls y t3 —∗ ls x

′
t3), ls y t3 ` ls x t3

(—∗R)

x 7→ x
′ ∗ (ls y t3 —∗ ls x

′
t3) ` ls y t3 —∗ ls x t3

CLBIωID: a cyclic proof system for BIID

• Rules are as for LBIID except the induction rules are
replaced by weaker case-split rules, e.g. for ls:

Γ(t1 = t2; I) ` F Γ(t1 7→ x, lsx t2) ` F
(Case ls)

Γ(ls t1 t2) ` F

where x is fresh.
• pre-proofs are finite derivation trees in which every bud

(node to which no proof rule is applied) is assigned a
companion (an identically labelled interior node);

• by identifying buds with their companions, pre-proofs can
be understood as cyclic graphs.

Traces

(†) F ` G
(Weak)

F ;F ` G
(ContrL)

(†) F ` G

• for soundness we need to impose some global condition on
CLBIωID pre-proofs;

• a trace following a path in an CLBIωID pre-proof follows a
formula occurring on the left of the sequents on the path;

• the trace progresses when the formula is an inductive
predicate which is unfolded using its case-split rule;

• see Defn. 4.5 in the paper for a full definition!

Definition
An CLBIωID pre-proof P is a proof if for every infinite path in P
there is a trace following some tail of the path that progresses
infinitely often.

A sample CLBIωID proof

(Id)
lsx y ` lsx y

(≡)
I, lsx y ` lsx y

(=L)
(x′ = x; I), lsx′ y ` lsx y

(Id)
x 7→ z ` x 7→ z

(†) lsxx′, lsx′ y ` lsx y
(Subst)

ls z x′, lsx′ y ` ls z y
(∗R)

x 7→ z, ls z x′, lsx′ y ` x 7→ z ∗ ls z y
(lsR2)

x 7→ z, ls z x′, lsx′ y ` lsx y
(∗L)

x 7→ z ∗ ls z x′, lsx′ y ` lsx y
(Case ls)

(†) lsxx′, lsx′ y ` lsx y
(∗L)

lsxx′ ∗ lsx′ y ` lsx y

A progressing trace following the cycle given by (†) is
highlighted. One can build an infinitely progressing trace on the
only infinite path by concatenating copies of this trace. So this
pre-proof is a proof.

LBIID versus CLBIωID

Proposition
It is decidable whether a CLBIωID pre-proof is a proof.

Proposition
Both LBIID and CLBIωID are sound: any provable sequent is
true in all standard models.

• some cyclic proofs seem to avoid the need for generalisation
in inductive proof;

• for first-order logic with inductive definitions, cyclic proof
subsumes proof by induction, with the equivalence of the
two styles conjectured but not proven;

• our current work with Calcagno and Bornat develops a
cyclic proof system employing separation logic to prove
termination of imperative programs.

Further reading

J. Brotherston, C. Calcagno and R. Bornat.
Cyclic proofs of program termination in separation logic.
Submitted; available from the first author’s homepage.

J. Brotherston and A. Simpson.
Complete sequent calculi for induction and infinite descent.
In Proceedings of LICS 2007.

J. Brotherston.
Sequent calculus proof systems for inductive definitions.
PhD thesis, University of Edinburgh, November 2006.

J. Brotherston.
Cyclic proofs for first-order logic with inductive definitions.
In Proceedings of TABLEAUX 2005.

