Classical BI
(A logic for reasoning about dualising resources)

James Brotherston* Cristiano Calcagno

Imperial College London

*Me

POPL, Savannah, Georgia
23 Jan 2009
Boolean BI
(*O’Hearn and Pym ’99*)

- A substructural logic with natural resource interpretation.
- Formula connectives:

 Additive: \(\top, \bot, \neg, \land, \lor, \rightarrow \)

 Multiplicative: \(\top^*, \ast, \ast \)

- Additives are interpreted *classically.*
Resource models of BBI

• Models of BBI are relational commutative monoids $\langle R, \circ, e \rangle$ (we assume \circ a partial function), where:

 R: a set of resources
 \circ: a way of (partially) combining resources
 e: the distinguished empty resource

• Separation logic is based on a BBI-model of heaps.

• Multiplicative formulas talk about resources $r \in R$:

 $r \models \top^*$ \iff $r = e$
 $r \models F_1 \ast F_2$ \iff $r = r_1 \circ r_2$ and $r_1 \models F_1$ and $r_2 \models F_2$
 $r \models F_1 \rightarrow^* F_2$ \iff $\forall r'. r \circ r'$ defined and $r' \models F_1$ implies $r \circ r' \models F_2$
Our contribution: classical BI (CBI)

- Why aren’t there multiplicative versions of \(\bot, \neg, \lor\)?
- We obtain CBI by adding them to BBI:

 \[
 \text{Additive:} \quad \top \quad \bot \quad \neg \quad \land \quad \lor \quad \rightarrow \\
 \text{Multiplicative:} \quad \top^* \quad \bot^* \quad \sim \quad * \quad \not\lor \quad \not\rightarrow \\
 \]

 and considering multiplicatives to behave classically.
Problems

- Does a logic like CBI even make any sense?
- How do we interpret the new connectives?
- Is there a nice proof theory?
- What are the potential applications?
A CBI-model is given by a tuple $\langle R, \circ, e, -, \infty \rangle$, where:

- $\langle R, \circ, e \rangle$ is a BBI-model;
- $\infty \in R$ and $- : R \to R$;
- for all $r \in R$, $-r$ is the unique solution to $r \circ -r = \infty$.

Natural interpretation: models of dualising resources.
Every Abelian group is a CBI-model (with $\infty = e$).

We interpret \bot^*, \sim, $\check{\sim}$ as follows:

$$
\begin{align*}
 r \models \bot^* & \iff r \neq \infty \\
 r \models \sim F & \iff -r \nmid F \\
 r \models F_1 \check{\sim} F_2 & \iff r \models \sim(F_1 \ast F_2)
\end{align*}
$$
Example: Personal finance

- Let $\langle \mathbb{Z}, +, 0, - \rangle$ be the Abelian group of integers (money):
- $m \models F$ means “£m is enough to make F true”.
- Let C / W be the formulas “I’ve enough money to buy cigarettes / whisky”.

\[
m \models C * W \iff \text{“£}m\text{ is enough to buy both cigarettes and whisky”}
\]
\[
m \models \sim C \iff \text{“I owe less than the price of a pack of cigarettes”}
\]
\[
m \models C \triangledown W \iff \text{“so long as I don’t spend more than the price of cigarettes, I can definitely still buy whisky”}
\]
Proof theory

- We give a display calculus proof system, DL_{CBI}, for CBI.
- Display calculi are essentially generalised sequent calculi, with an enriched meta-level.
- Main technical results about DL_{CBI}:

 Theorem (Cut-elimination)
 Any DL_{CBI} proof can be transformed into a cut-free proof.

 Theorem (Soundness)
 Any DL_{CBI}-derivable proof judgement is valid.

 Theorem (Completeness)
 Any valid proof judgement is DL_{CBI}-derivable.
Applications of CBI: what cannot be done

Proposition

CBI is a non-conservative extension of BBI. That is, there are formulas of BBI that are valid wrt. CBI but not BBI.

- Separation logic heap model does not extend to a CBI-model.
- Consequence: we cannot (directly) apply CBI reasoning principles such as $F \mathbin{\star} G \equiv \sim F \mathbin{\uparrow} G$ to the heap model.
- Look for applications where resources are naturally dualising.
A CBI-model of financial portfolios

• Let ID be an infinite set of identifiers.
• Let P be the set of portfolios: functions $p : ID \rightarrow \mathbb{Z}$ s.t. $p(x) \neq 0$ for only finitely many $x \in ID$.
• Define composition $+$, involution $-$ and empty portfolio e:

 $$(p_1 + p_2)(x) = p_1(x) + p_2(x)$$
 $$(-p)(x) = -p(x)$$
 $$e(x) = 0$$

• $\langle P, +, e, - \rangle$ is an Abelian group, thus also a CBI-model.
Credit crunch solved!

Let $A(x)$ represent a portfolio consisting of asset x. Then $\sim \neg A(x)$ represents a portfolio consisting of liability x.
Summary of CBI

Model theory: based on involutive commutative monoids
- multiplicatives are classical
- a non-conservative extension of BBI

Proof theory: a display calculus gives us:
- cut-elimination
- soundness
- completeness

Applications: reasoning about dualising resources, e.g.:
- money;
- permissions;
- bi-abduction.