Classical BI (A logic for reasoning about dualising resources)

James Brotherston* Cristiano Calcagno

Imperial College London

 $^{*}Me$

POPL, Savannah, Georgia 23 Jan 2009

Boolean BI (O'Hearn and Pym '99)

- A substructural logic with natural resource interpretation.
- Formula connectives:

Additive:	Т	\perp	\wedge	\vee	\rightarrow
Multiplicative:	\top^*		*		-*

• Additives are interpreted classically.

Resource models of BBI

- Models of BBI are relational commutative monoids $\langle R, \circ, e \rangle$ (we assume \circ a partial function), where:
 - R: a set of resources
 - o: a way of (partially) combining resources
 - e: the distinguished empty resource
- Separation logic is based on a BBI-model of heaps.
- Multiplicative formulas talk about resources $r \in R$:

$$\begin{array}{cccc} r \models \top^* & \Leftrightarrow & r = e \\ r \models F_1 * F_2 & \Leftrightarrow & r = r_1 \circ r_2 \text{ and } r_1 \models F_1 \text{ and } r_2 \models F_2 \\ r \models F_1 \twoheadrightarrow F_2 & \Leftrightarrow & \forall r'. r \circ r' \text{ defined and } r' \models F_1 \text{ implies } r \circ r' \models F_2 \end{array}$$

Our contribution: classical BI (CBI)

- Why aren't there multiplicative versions of \bot, \neg, \lor ?
- We obtain CBI by adding them to BBI:

Additive:	Т	\perp	_	\wedge	\vee	\rightarrow
Multiplicative:	\top^*	\perp^*	\sim	*	*	-*

and considering multiplicatives to behave classically.

Problems

• Does a logic like CBI even make any sense?

- How do we interpret the new connectives?
- Is there a nice proof theory?
- What are the potential applications?

Dualising resource models of CBI

- A CBI-model is given by a tuple $\langle R, \circ, e, -, \infty \rangle$, where:
 - $\langle R, \circ, e \rangle$ is a BBI-model;
 - $\infty \in R$ and $-: R \to R$;
 - for all $r \in R$, -r is the unique solution to $r \circ -r = \infty$.
- Natural interpretation: models of dualising resources.
- Every Abelian group is a CBI-model (with $\infty = e$).
- We interpret $\perp^*, \sim, \checkmark$ as follows:

$$\begin{array}{cccc} r \models \bot^* & \Leftrightarrow & r \neq \infty \\ r \models \sim F & \Leftrightarrow & -r \not\models F \\ r \models F_1 ^{\dagger} F_2 & \Leftrightarrow & r \models \sim (\sim F_1 * \sim F_2) \end{array}$$

Example: Personal finance

- Let $\langle \mathbb{Z}, +, 0, \rangle$ be the Abelian group of integers (money):
- $m \models F$ means " $\pounds m$ is enough to make F true".
- Let C / W be the formulas "I've enough money to buy cigarettes / whisky".

$$m \models C * W \Leftrightarrow$$
 "£m is enough to buy both cigarettes and whisky"

 $m \models \sim C \iff$ "I owe less than the price of a pack of cigarettes"

Proof theory

- We give a display calculus proof system, DL_{CBI}, for CBI.
- Display calculi are essentially generalised sequent calculi, with an enriched meta-level.
- Main technical results about DL_{CBI}:

Theorem (Cut-elimination)

Any $\mathrm{DL}_{\mathrm{CBI}}$ proof can be transformed into a cut-free proof.

Theorem (Soundness)

Any DL_{CBI}-derivable proof judgement is valid.

Theorem (Completeness)

Any valid proof judgement is DL_{CBI} -derivable.

Applications of CBI: what cannot be done

Proposition

CBI is a non-conservative extension of BBI. That is, there are formulas of BBI that are valid wrt. CBI but not BBI.

- Separation logic heap model does not extend to a CBI-model.
- Consequence: we cannot (directly) apply CBI reasoning principles such as $F \twoheadrightarrow G \equiv \sim F \checkmark G$ to the heap model.
- Look for applications where resources are naturally dualising.

A CBI-model of financial portfolios

- Let *ID* be an infinite set of identifiers.
- Let P be the set of portfolios: functions $p: ID \to \mathbb{Z}$ s.t. $p(x) \neq 0$ for only finitely many $x \in ID$.
- Define composition +, involution and empty portfolio e:

$$(p_1 + p_2)(x) = p_1(x) + p_2(x)$$

 $(-p)(x) = -p(x)$
 $e(x) = 0$

• $\langle P, +, e, - \rangle$ is an Abelian group, thus also a CBI-model.

Credit crunch solved!

Let A(x) represent a portfolio consisting of asset x. Then $\sim \neg A(x)$ represents a portfolio consisting of liability x.

Summary of CBI

Model theory: based on involutive commutative monoids

- multiplicatives are classical
- a non-conservative extension of BBI

Proof theory: a display calculus gives us:

- cut-elimination
- soundness
- completeness

Applications: reasoning about dualising resources, e.g.:

- money;
- permissions;
- bi-abduction.