
An Introduction to Cyclic Proofs (part II)

James Brotherston

University College London

PARIS workshop, FLoC, Oxford, 8th July 2018

1/ 13



Cyclic proofs

Cyclic pre-proofs are derivation trees with backlinks:

•

• · · · •
(Rule)

•

(Axiom)
•

•

•

Soundness condition: A pre-proof is a cyclic proof if, for every
infinite path in the proof, there is an infinitely progressing trace
along some tail of the path.

2/ 13



Failure of per-cycle soundness

Consider inductive definitions:

⇒ N0 ⇒ R0y ⇒ Rx0
Nx ⇒ Nsx R(ssx, y), R(x, ssy) ⇒ Rsxsy

Now Nx,Ny ⊢ Rxy is not valid. E.g. R(s0, ss0) fails. But:

(R)

Ny ⊢ Rx0

(R)

Nx
′
⊢ Rsx

′
0

Nx,Ny ⊢ Rxy

(Subst)

Nx
′
, Nssy

′
⊢ Rx

′
ssy

′

(Cut)

Nx
′
, Ny

′
⊢ Rx

′
ssy

′

Nx,Ny ⊢ Rxy

(Subst)

Nssx
′
, Ny

′
⊢ Rssx

′
y
′

(Cut)

Nx
′
, Ny

′
⊢ Rssx

′
y
′

(R)

Nx
′
, Ny

′
⊢ Rsx

′
sy

′

(Case Ny)

Nx
′
, Ny ⊢ Rsx

′
y

(Case Nx)

Nx,Ny ⊢ Rxy

3/ 13



The most common question

Infinite descent principle for N:

¬P (k) → (∃k′ < k ∈ N. ¬P (k′))
(k arbitrary)

∀n ∈ N. P (n)

Complete induction principle:

(∀k′ < k ∈ N. P (k′)) → P (k)
(k arbitrary)

∀n ∈ N. P (n)

These are obviously interderivable, so aren’t cyclic proof and
induction proof just the same thing?

4/ 13



The main difficulty is that

• cyclic proof encodes a relatively strong form of infinite
descent that is implicit in the structure of the proof (nested
cycles, etc.), while

• induction proof often uses a relatively weak form of
induction encoded explicitly as a local inference rule. E.g.,
for N :

⊢ F0 Fx ⊢ Fsx
(Ind N)

Nt ⊢ Ft

The equivalence of the two styles, for FOL with ind defns, was
a conjecture (Brotherston and Simpson, LICS 2007)

5/ 13



From cyclic to induction proof

Cyclic derivation of N -induction:

⊢ F0

Ny ⊢ Fy
(Subst)

Ny′ ⊢ Fy′

Fx ⊢ Fsx
(Subst)

Fy′ ⊢ Fsy′

(Cut)
Ny′ ⊢ Fsy′

(Case N)
Ny ⊢ Fy

(Subst)
Nt ⊢ Ft

This construction generalises to arbitrary inductive definitions.

Theorem
Any sequent provable by induction also has a cyclic proof.

6/ 13



Peano arithmetic using inductive defns

There is an embedding of Peano arithmetic (PA) into an
explicit-induction proof system:

• add the first six Peano axioms as closed formulas (on the
LHS);

• add formulas Nx for each free variable x;

• relativise all quantifiers over N ;

• the Peano induction axiom follows from the induction rule
for N .

This means we can formalise PA in a cyclic proof system as
well.

7/ 13



An aside on completeness

If we allow proofs to be arbitrary infinite trees rather than
cyclic graphs then the system becomes complete (Brotherston
and Simpson LICS 2007).

Since we can formalise PA using induction and thus cyclic
proof, this gives us a complete system for arithmetic.

However, since true arithmetic is not even semidecidable, there
can be no recursive enumeration of the proofs in this system!

8/ 13



Results on cyclic arithmetic

Theorem (Simpson, FoSSaCS 2017)

Cyclic arithmetic is equivalent to Peano arithmetic.

Proof is by formalising the soundness of cyclic arithmetic inside
ACA0 which is conservative over PA.

Theorem (Berardi and Tatsuta, LICS 2017)

Cyclic proof is equivalent to induction proof for any signature
that includes Peano arithmetic.

Proof is by explicit conversion, defining a notion of ¡ for all
predicates and formalising a version of Ramsay’s theorem using
explicit induction.

9/ 13



However. . .

Theorem (Berardi and Tasuta, FoSSaCS 2017)

There is a signature for which cyclic proof is not equivalent to
induction proof.

This is essentially because cyclic proof implicitly lets us do
things like infinite descent over the max or min of two numbers,
concepts which might not be explicitly formalisable in restricted
signatures.

10/ 13



Cyclist theorem prover

• A generic (logic-independent) theorem prover that supports
cyclic proof

• Lead developer Nikos Gorogiannis (Facebook & U.
Middlesex)

• Support for inductive definitions

• Automatic checking of cyclic soundness condition (using
the Büchi automata construction from yesterday)

• Open source:

github.com/ngorogiannis/cyclist

11/ 13

github.com/ngorogiannis/cyclist


Some Cyclist instantiations

• first-order logic with ind defns

• separation logic with ind defns

• Hoare logic for program termination with recursive
procedures (R. Rowe)

• Hoare logic for temporal program properties (G. Tellez
Espinosa)

12/ 13



Build your own Cyclist instantiation

To implement your favourite cyclic proof system in Cyclist
you need to provide the following (to Ocaml functors):

• a syntax for proof judgements;

• some proof rules for judgements;

• the (progressing) trace pairs associated with each proof
rule;

• a matching condition for backlinking;

• (optional) a preferred search strategy.

Why not try it?

13/ 13


