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Cyclic pre-proofs

A cyclic pre-proof is a derivation tree with a backlink from each
open leaf (“bud”) to an identical “companion”:

•

• · · · •
(Rule)

•

(Axiom)
•

•
•

Cyclic proof = pre-proof P + soundness condition S(P).
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An invalid pre-proof

⊢ ⊥
(Weak)

⊢ ⊥,⊥
(Contr)

⊢ ⊥
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An invalid pre-proof

⊢ ⊥
(Weak)

⊢ ⊥,⊥
(Contr)

⊢ ⊥

• This is certainly a pre-proof, but obviously it cannot be
accepted as valid!

• Here, we formed a cycle but failed to make any appreciable
“progress”.
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The need for a soundness condition

• In any reasonable proof system the rules must be locally
sound: if all premises of the rule are valid then so is its
conclusion.
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The need for a soundness condition

• In any reasonable proof system the rules must be locally
sound: if all premises of the rule are valid then so is its
conclusion.

• When proofs are finite trees, this guarantees that any
provable judgement is valid: supposing not, then some
axiom in the tree must be invalid, contradiction.

• However, when proofs are cyclic graphs, local soundness
just says that if the root judgement is invalid then there is
an infinite path of invalid judgements in the tree.

• A soundness condition for cyclic proofs must therefore rule
out the existence of such paths.
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Infinite descent

Because the ordinary methods now in the books were

insufficient for demonstrating such difficult propositions, I

finally found a totally unique route for arriving at them

. . . which I called infinite descent . . .

If there were any integral right triangle that had an area

equal to a square, there would be another triangle less than

that one which would have the same property. . .

Now it is the case that, given a number, there are not

infinitely many numbers less than that one in descending

order . . .Whence one concludes that it is therefore

impossible that there be any right triangle of which the area

is a square. . .

Pierre de Fermat, Relation des nouvelles decouvertes en la

science des nombres, letter to Pierre de Carcavi, 1659

5/ 21



Infinite descent example

Theorem√
2 is not rational.

Proof.
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Theorem√
2 is not rational.

Proof.

Suppose for contradiction that
√
2 = x/y for x, y ∈ N. Then

x2 = 2y2. Consequently x(x− y) = y(2y − x), so that:

2y − x

x− y
=

x

y
=

√
2.

Define x′ = 2y − x and y′ = x− y. Then x′/y′ =
√
2.

Now observe that 1 < x2/y2 < 4, so y < x < 2y, and so
0 < y′ < y.
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Infinite descent example

Theorem√
2 is not rational.

Proof.

Suppose for contradiction that
√
2 = x/y for x, y ∈ N. Then

x2 = 2y2. Consequently x(x− y) = y(2y − x), so that:

2y − x

x− y
=

x

y
=

√
2.

Define x′ = 2y − x and y′ = x− y. Then x′/y′ =
√
2.

Now observe that 1 < x2/y2 < 4, so y < x < 2y, and so
0 < y′ < y. But then we have x′, y′ ∈ N such that

√
2 = x′/y′,

and y′ < y. This gives an infinite descent from y.
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Example: µ-calculus properties of processes

“Clock” process Cl repeatedly ticks:

Cl =def tick.Cl
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Soundness: two explanations

Suppose that Cl 6|= νX. 〈tick〉X. Then every judgement along
the single infinite path in the proof is invalid.
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Soundness: two explanations

Suppose that Cl 6|= νX. 〈tick〉X. Then every judgement along
the single infinite path in the proof is invalid.

1. By supposition there are no infinite tick sequences from Cl.
However, the infinite path does create such an infinite
sequence, since (〈tick〉) is applied infinitely often.

2. There must be some ordinal-indexed overapproximation of
the fixed point ναX. 〈tick〉X of which Cl is not a member.
Unfolding νX infinitely often (by (ν)) creates an infinite
descending chain of such ordinals, from α — but these are
well-founded.
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Hoare logic

Imperative program verification is classically based on Hoare
triples {P}C {Q} where C is a program and P,Q are formulas.
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Hoare logic

Imperative program verification is classically based on Hoare
triples {P}C {Q} where C is a program and P,Q are formulas.

We assume a programming language with an operational
semantics given by 〈C, σ〉 → 〈C ′, σ′〉, where σ, σ′ range over
program states. We also have a relation σ |= P between states
and formulas.

Then {P}C {Q} is valid when:

if σ |= P and 〈C, σ〉 →∗ 〈σ′〉 then σ′ |= Q .
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Example: Hoare logic

Let C be the program

while i>0 {if * then i--;};

where * is a nondeterministic condition.
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Soundness explanation

Suppose that {i ≥ 0}C {i = 0} is invalid.

I.e., there are states σ, σ′ with σ |= i ≥ 0 and 〈C, σ〉 →∗ 〈σ′〉 but
σ′ 6|= i = 0.

As usual, we get an infinite path of invalid triples through the
proof, which must traverse one or both cycles infinitely often.

But program commands are symbolically executed infinitely
often along this path. Thus the assumed execution from 〈C, σ〉
is in fact infinite: contradiction.
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A quick aside

One can draw a rough analogy between cyclic Hoare proofs and
abstract interpretation, also used to verify imperative code:
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A quick aside

One can draw a rough analogy between cyclic Hoare proofs and
abstract interpretation, also used to verify imperative code:

Abstract interpretation Cyclic Hoare proofs

abstract domain ∼ formula language
symbolic execution ∼ symbolic execution

widening ∼ generalisation
narrowing ∼ instantiation
invariance ∼ proof cycle
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Inductive definitions in first-order logic

Consider these inductive definitions of predicates N,E,O:

⇒ N0 ⇒ E0
Nx ⇒ Nsx Ex ⇒ Osx

Ox ⇒ Esx
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Inductive definitions in first-order logic

Consider these inductive definitions of predicates N,E,O:

⇒ N0 ⇒ E0
Nx ⇒ Nsx Ex ⇒ Osx

Ox ⇒ Esx

These definitions generate case-split rules, e.g., for N :

Γ, t = 0 ⊢ ∆ Γ, t = sx,Nx ⊢ ∆
(Case N)

Γ, Nt ⊢ ∆

(where x is fresh).
Note that Nx in the right-hand premise is obtained by
unfolding Nt in the conclusion.
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Example, inductive definitions

We’ll prove that every natural number is either even or odd, i.e.
Nx ⊢ Ex ∨Ox.
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We’ll prove that every natural number is either even or odd, i.e.
Nx ⊢ Ex ∨Ox.

(E)
⊢ E0, O0

(=)
x = 0 ⊢ Ex,Ox

Nx ⊢ Ox,Ex
(Subst)

Ny ⊢ Oy,Ey
(O)

Ny ⊢ Oy,Osy
(E)

Ny ⊢ Esy,Osy
(=)

x = sy,Ny ⊢ Ex,Ox
(Case N)

Nx ⊢ Ex,Ox
(∨)
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Example, inductive definitions

We’ll prove that every natural number is either even or odd, i.e.
Nx ⊢ Ex ∨Ox.

(E)
⊢ E0, O0

(=)
x = 0 ⊢ Ex,Ox

Nx ⊢ Ox,Ex
(Subst)

Ny ⊢ Oy,Ey
(O)

Ny ⊢ Oy,Osy
(E)

Ny ⊢ Esy,Osy
(=)

x = sy,Ny ⊢ Ex,Ox
(Case N)

Nx ⊢ Ex,Ox
(∨)

Nx ⊢ Ex ∨Ox

Note that here we examine formulas on the left of the turnstile!
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Explanation of soundness

Suppose that Nx ⊢ Ex ∨Ox is invalid, meaning that M |=ρ Nx
(for some structure M and valuation ρ) but M 6|=ρ Ex ∨Ox.

As usual, we have that every sequent on the infinite path is
invalid.
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Suppose that Nx ⊢ Ex ∨Ox is invalid, meaning that M |=ρ Nx
(for some structure M and valuation ρ) but M 6|=ρ Ex ∨Ox.

As usual, we have that every sequent on the infinite path is
invalid. We can either notice:

1. that [[N ]]M is a well-founded set and we have an infinite
descent in these “numerals”, from ρ(x), because of the
infinite unfolding of Nx; or

2. that if ρ(x) ∈ [[N ]]M that it is a member of some
underapproximation [[N ]]αM , and we have an infinite descent
in these approximant ordinals, again because of the infinite
unfolding of N .
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Example (2), inductive definitions

Here’s a proof of the converse statement, Ex ∨Ox ⊢ Nx.
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(N)
⊢ N0

(=)
x = 0 ⊢ Nx

Ox ⊢ Nx
(Subst)
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(N)

Oy ⊢ Nsy
(=)

x = sy,Oy ⊢ Nx
(Case E)

Ex ⊢ Nx

Ex ⊢ Nx
(Subst)

Ey ⊢ Ny
(N)

Ey ⊢ Nsy
(=)

x = sy,Ey ⊢ Nx
(Case O)

Ox ⊢ Nx
(∨)

Ex ∨Ox ⊢ Nx

Soundness justification is as before.
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Remark on soundness

Our soundness justifications often rely on reasoning of the form
“this formula instance in the proof is a fixed point unfolding of
that one”.

Some proof rules can complicate this reasoning.

17/ 21



Remark on soundness

Our soundness justifications often rely on reasoning of the form
“this formula instance in the proof is a fixed point unfolding of
that one”.

Some proof rules can complicate this reasoning. Some instances:

A ⊢ B
(Weak)

A,Px ⊢ B

Py ⊢ B
(=)

Px, x = y ⊢ B

Px ⊢ F F ⊢ B
(Cut)

Px ⊢ B

Px ⊢ Fx
(Subst)

Pz ⊢ Fz

x = sy,Ey ⊢ B
(Case O)

Ox ⊢ B

17/ 21



Remark on soundness

Our soundness justifications often rely on reasoning of the form
“this formula instance in the proof is a fixed point unfolding of
that one”.

Some proof rules can complicate this reasoning. Some instances:

A ⊢ B
(Weak)

A,Px ⊢ B

Py ⊢ B
(=)

Px, x = y ⊢ B

Px ⊢ F F ⊢ B
(Cut)

Px ⊢ B

Px ⊢ Fx
(Subst)

Pz ⊢ Fz

x = sy,Ey ⊢ B
(Case O)

Ox ⊢ B

Dealing with this is essentially a matter of book-keeping. And
it might not be necessary if there are no tricky rules.
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Traces

• In a rule instance, a pair of “related” formula occurrences
(or other proof annotations) (A,B) in the conclusion and
some premise respectively is called a trace pair.
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Traces

• In a rule instance, a pair of “related” formula occurrences
(or other proof annotations) (A,B) in the conclusion and
some premise respectively is called a trace pair.

• A trace pair is called progressing if B is actually obtained
by unfolding A (and not just “the same” formula).

• A trace along a path in a pre-proof is obtained by chaining
trace pairs together in the obvious way.

• A trace is infinitely progressing if it contains infinitely
many progressing trace pairs.
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A general soundness condition

Given some appropriate1 notion of “trace pairs” for a cyclic
proof system, one can then state a general soundness condition:

1This is a formalisable concept.
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A general soundness condition

Given some appropriate1 notion of “trace pairs” for a cyclic
proof system, one can then state a general soundness condition:

A pre-proof is a cyclic proof if, for every infinite path

in the proof, there is an infinitely progressing trace

along some tail of the path.

Virtually all the cyclic systems I know use a condition of this
form, or which can be rewritten as such.

1This is a formalisable concept.
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Two relevant facts
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Two relevant facts

Given the soundness condition of the previous form,

1. Cyclic proofs then become sound. If not, then there is an
infinite path of invalid judgements in the proof. There is an
infinitely progressing trace following this path. This can be
used to realise an infinite descending chain of values in a
well-founded set: contradiction.

2. It is decidable whether a pre-proof P is a cyclic proof or
not. Build two Büchi automata: B1 accepting all infinite
paths in P; and B2 accepting all paths with an infinitely
progressing trace on some tail. The soundness condition
amounts to checking L(B1) ⊆ L(B2).
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Some logics with cyclic proof systems

• µ-calculus (modal, first-order, process verification)

• temporal logic (CTL, LTL,. . . )

• first-order logic with ind. defns

• separation logic with ind. defns

• Hoare logic and variants (e.g. termination)

• linear logic with fixed points

• modal logic (of certain kinds)

• Kleene algebra

• combinations of the above

This is by no means a complete list!
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