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Introduction

• In mathematical logic, there is usually a trade-off between
expressivity and complexity of a logical language:

• weaker languages cannot capture interesting properties, but
• richer languages have higher complexity, may lack sensible

proof theories and may be unavoidably incomplete (cf.
Gödel).

• Incompleteness manifests as a gap between two key
concepts:
• provability in some formal system for the logic

(which corresponds to validity in some class of models); and
• validity in a (class of) intended model(s) of the logic.
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Introduction (contd.)

• Thus, given a logical language L, and an intended class C of
models for that language, there are two natural questions:

1. Is the class C finitely axiomatisable, a.k.a. definable in L?
2. Is there a complete proof system for L w.r.t. validity in C?

(Note that these questions are not connected, in general.)

• Here, we examine these questions in the context of pure
separation logic, where
• the language is given by the logic Boolean BI (BBI);
• the intended models are given by separation theories, which

specify a collection of useful model properties.
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Outline

The rest of the talk goes as follows:

1. First, we recall the standard presentation of BBI.

2. We introduce separation theories, which describe
practically interesting classes of models, and show that
many such theories are not definable in BBI.

3. We then propose an extension of BBI based on hybrid
logic, which adds a theory of naming to BBI, and show
that these properties become definable to this extension.

4. We give proof systems for our hybrid logic that is
parametrically complete w.r.t. the axioms defining
separation theories.
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Part II

Boolean BI
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BBI: language and provability

• BBI extends standard classical logic with “multiplicative”
connectives ∗, −−∗ and I.

• Provability for the multiplicatives is given by

A ∗B ` B ∗A A ∗ (B ∗ C) ` (A ∗B) ∗ C

A ` A ∗ I A ∗ I ` A

A1 ` B1 A2 ` B2

A1 ∗A2 ` B1 ∗B2

A ∗B ` C

A ` B −−∗ C
A ` B −−∗ C

A ∗B ` C

7/ 26



BBI: language and provability

• BBI extends standard classical logic with “multiplicative”
connectives ∗, −−∗ and I.

• Provability for the multiplicatives is given by

A ∗B ` B ∗A A ∗ (B ∗ C) ` (A ∗B) ∗ C

A ` A ∗ I A ∗ I ` A

A1 ` B1 A2 ` B2

A1 ∗A2 ` B1 ∗B2

A ∗B ` C

A ` B −−∗ C
A ` B −−∗ C

A ∗B ` C

7/ 26



BBI: language and provability

• BBI extends standard classical logic with “multiplicative”
connectives ∗, −−∗ and I.

• Provability for the multiplicatives is given by

A ∗B ` B ∗A A ∗ (B ∗ C) ` (A ∗B) ∗ C

A ` A ∗ I A ∗ I ` A

A1 ` B1 A2 ` B2

A1 ∗A2 ` B1 ∗B2

A ∗B ` C

A ` B −−∗ C
A ` B −−∗ C

A ∗B ` C

7/ 26



BBI-models

A BBI-model is a relational commutative monoid, i.e. a tuple
〈W, ◦, E〉, where

• ◦ : W ×W → P(W ) is associative and commutative (we
extend ◦ pointwise to sets), and

• E ⊆W satisfies w ◦ E = {w} for all w ∈W (we call E the
set of units of ◦).

Typical example: heap models 〈H, ◦, {e}〉, where

• H is the set of heaps, i.e. finite partial maps from locations
to values,

• ◦ is union of domain-disjoint heaps, and

• e is the empty heap that is undefined everywhere.
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Semantics of BBI

Semantics of formula A wrt. BBI-model M = 〈W, ◦, E〉,
valuation ρ, and w ∈W given by relation M,w |=ρ A:

M,w |=ρ P ⇔ w ∈ ρ(P )
M,w |=ρ A1 ∧A2 ⇔ M,w |=ρ A1 and M,w |=ρ A2

...
M,w |=ρ I ⇔ w ∈ E

M,w |=ρ A1 ∗A2 ⇔ w ∈ w1 ◦ w2 and M,w1 |=ρ A1 and M,w2 |=ρ A2

M,w |=ρ A1 −−∗ A2 ⇔ ∀w′, w′′ ∈W. if w′′ ∈ w ◦ w′ and M,w′ |=ρ A1

then M,w′′ |=ρ A2

A is valid in M iff M,w |=ρ A for all ρ and w ∈W .

Theorem (Galmiche and Larchey-Wendling 2006)

Provability in BBI coincides with validity in BBI-models.
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Part III

(Un)definable properties in BBI
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Separation theories

Applications of separation logic are typically based on
BBI-models satisfying some collection of algebraic properties
which we call a separation theory.

We consider the following:

Partial functionality: w,w′ ∈ w1 ◦ w2 implies w = w′;

Cancellativity: (w ◦ w1) ∩ (w ◦ w2) 6= ∅ implies w1 = w2;

Single unit: w,w′ ∈ E implies w = w′;

Indivisible units: (w ◦ w′) ∩ E 6= ∅ implies w ∈ E;

Disjointness: w ◦ w 6= ∅ implies w ∈ E;

Divisibility: for every w 6∈ E there are w1, w2 /∈ E such that
w ∈ w1 ◦ w2;

Cross-split property: whenever (a ◦ b) ∩ (c ◦ d) 6= ∅, there exist
ac, ad , bc, bd such that a ∈ ac ◦ ad , b ∈ bc ◦ bd ,
c ∈ ac ◦ bc and d ∈ ad ◦ bd .
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Definable properties

A property P of BBI-models is said to be L-definable if there
exists an L-formula A such that for all BBI-models M ,

A is valid in M ⇐⇒ M ∈ P.

Proposition

The following separation theory properties are BBI-definable:

Indivisible units: I ∧ (A ∗B) ` A
Divisibility: ¬I ` ¬I ∗ ¬I

Proof.

Just directly verify the needed biimplication.
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Undefinability via disjoint union

To show a property is not BBI-definable, we show it is not
preserved by some validity-preserving model construction.

Definition

If M1 = 〈W1, ◦1, E1〉 and M2 = 〈W2, ◦2, E2〉 are BBI-models and
W1,W2 are disjoint then their disjoint union is given by

M1 ]M2
def
= 〈W1 ∪W2, ◦1 ∪ ◦2, E1 ∪ E2〉

(where ◦1 ∪ ◦2 is lifted to W1 ∪W2 in the obvious way)

Proposition

If A is valid in M1 and in M2, and M1 ]M2 is defined, then it
is also valid in M1 ]M2.

Proof.

Structural induction on A.
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Undefinability of single-unit property

Lemma
Let P be a property of BBI-models, and suppose that there exist
BBI-models M1 and M2 such that M1,M2 ∈ P but
M1 ]M2 6∈ P. Then P is not BBI-definable.

Proof.

If P were definable via A say, then A would be true in M1 and
M2 but not in M1 ]M2, contradicting previous Proposition.

Theorem
The single unit property is not BBI-definable.

Proof.

The disjoint union of any two single-unit BBI-models (e.g. two
copies of N under addition) is not a single-unit model, so we are
done by the above Lemma.
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Undefinability via bounded morphisms

We adapt the notion of bounded morphism from modal logic to
BBI-models, and can show it is also validity-preserving.

Theorem
None of the following separation theory properties (or any
combination thereof) is BBI-definable:

• functionality;

• cancellativity;

• disjointness.

Proof.

E.g., for functionality, we build models M and M ′ such that
there is a bounded morphism from M to M ′, but M is
functional while M ′ is not. See paper for details.

15/ 26



Undefinability via bounded morphisms

We adapt the notion of bounded morphism from modal logic to
BBI-models, and can show it is also validity-preserving.

Theorem
None of the following separation theory properties (or any
combination thereof) is BBI-definable:

• functionality;

• cancellativity;

• disjointness.

Proof.

E.g., for functionality, we build models M and M ′ such that
there is a bounded morphism from M to M ′, but M is
functional while M ′ is not. See paper for details.

15/ 26



Undefinability via bounded morphisms

We adapt the notion of bounded morphism from modal logic to
BBI-models, and can show it is also validity-preserving.

Theorem
None of the following separation theory properties (or any
combination thereof) is BBI-definable:

• functionality;

• cancellativity;

• disjointness.

Proof.

E.g., for functionality, we build models M and M ′ such that
there is a bounded morphism from M to M ′, but M is
functional while M ′ is not. See paper for details.

15/ 26



Undefinability via bounded morphisms

We adapt the notion of bounded morphism from modal logic to
BBI-models, and can show it is also validity-preserving.

Theorem
None of the following separation theory properties (or any
combination thereof) is BBI-definable:

• functionality;

• cancellativity;

• disjointness.

Proof.

E.g., for functionality, we build models M and M ′ such that
there is a bounded morphism from M to M ′, but M is
functional while M ′ is not. See paper for details.

15/ 26



Undefinability via bounded morphisms

We adapt the notion of bounded morphism from modal logic to
BBI-models, and can show it is also validity-preserving.

Theorem
None of the following separation theory properties (or any
combination thereof) is BBI-definable:

• functionality;

• cancellativity;

• disjointness.

Proof.

E.g., for functionality, we build models M and M ′ such that
there is a bounded morphism from M to M ′, but M is
functional while M ′ is not. See paper for details.

15/ 26



Undefinability via bounded morphisms

We adapt the notion of bounded morphism from modal logic to
BBI-models, and can show it is also validity-preserving.

Theorem
None of the following separation theory properties (or any
combination thereof) is BBI-definable:

• functionality;

• cancellativity;

• disjointness.

Proof.

E.g., for functionality, we build models M and M ′ such that
there is a bounded morphism from M to M ′, but M is
functional while M ′ is not. See paper for details.

15/ 26



Part IV

Hybrid extensions of BBI

16/ 26



HyBBI: a hybrid extension of BBI

• We saw that BBI is not expressive enough to accurately
capture many separation theories.

• Idea: conservatively increase the expressivity of BBI, using
machinery of hybrid logic.

• HyBBI extends the language of BBI by: any nominal ` is a
formula, and so is any formula of the form @`A.

• Valuations interpret nominals as individual worlds in a
BBI-model.

• We extend the forcing relation by:

M,w |=ρ ` ⇔ w = ρ(`)
M,w |=ρ @`A ⇔ M,ρ(`) |=ρ A

Easy to see that HyBBI is a conservative extension of BBI.
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Definable properties in HyBBI

A formula is pure if it contains no propositional variables. Pure
formulas have particularly nice properties wrt. completeness.

Theorem
The following separation theory properties are HyBBI-definable,
using pure formulas:

Functionality: @`(j ∗ k) ∧@`′(j ∗ k) ` @``
′

Cancellativity: ` ∗ j ∧ ` ∗ k ` @jk
Single unit: @`1I ∧@`2I ` @`1`2
Disjointness: ` ∗ ` ` I ∧ `

Proof.

Easy verifications!
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A word about cross-split

We have brushed over the cross-split property:

(a ◦ b) ∩ (c ◦ d) 6= ∅, implies ∃ac, ad , bc, bd with
a ∈ ac ◦ ad, b ∈ bc ◦ bd, c ∈ ac ◦ bc, d ∈ ad ◦ bd.

a b ac
ad bd

bcc
d

We conjecture this is not definable in BBI or in HyBBI. If we
add the ↓ binder to HyBBI, defined by

M,w |=ρ ↓`. A ⇔ M,w |=ρ[`:=w] A

then cross-split is definable as the pure formula

(a ∗ b) ∧ (c ∗ d) ` @a(> ∗ ↓ac.@a(> ∗ ↓ad .@a(ac ∗ ad)

∧@b(> ∗ ↓bc.@b(> ∗ ↓bd .@b(bc ∗ bd)

∧@c(ac ∗ bc) ∧@d(ad ∗ bd)))))
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(a ◦ b) ∩ (c ◦ d) 6= ∅, implies ∃ac, ad , bc, bd with
a ∈ ac ◦ ad, b ∈ bc ◦ bd, c ∈ ac ◦ bc, d ∈ ad ◦ bd.

a b ac
ad bd

bcc
d

We conjecture this is not definable in BBI or in HyBBI. If we
add the ↓ binder to HyBBI, defined by

M,w |=ρ ↓`. A ⇔ M,w |=ρ[`:=w] A

then cross-split is definable as the pure formula

(a ∗ b) ∧ (c ∗ d) ` @a(> ∗ ↓ac.@a(> ∗ ↓ad .@a(ac ∗ ad)
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Part V

Parametric completeness for

HyBBI(↓)
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Axiomatic proof systems for HyBBI(↓)

Our axiom system KHyBBI(↓) is chosen to make the
completeness proof as clean as possible.

Some example axioms and rules:

(K@) @`(A→ B) ` @`A→ @`B
(@-intro) ` ∧A ` @`A
(Bridge ∗) @`(k ∗ k′) ∧@kA ∧@k′B ` @`(A ∗B)
(Bind ↓. ) ` @j(↓`. B ↔ B[j/`])

@`(k ∗ k′) ∧@kA ∧@k′B ` C k, k′ not in A, B, C or {`}
(Paste ∗)@`(A ∗B) ` C

Proposition (Soundness)

Any KHyBBI(↓)-provable sequent is valid in all BBI-models.
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Completeness

Standard modal logic approach to completeness via maximal
consistent sets (MCSs):

1. Show that any consistent set of formulas can be extended
to an MCS (known as the Lindenbaum construction);

2. Define a canonical model whose worlds are MCSs, and a
valuation s.t. proposition P is true at Γ iff P ∈ Γ.

3. Truth Lemma: A is true at Γ iff A ∈ Γ for any formula A.

4. Now, if A is unprovable, {¬A} is consistent so there is an
MCS Γ ⊃ {¬A}. Then A is false at Γ in the canonical
model, hence invalid.

(In our case, we also have to show that the canonical model is
really a BBI-model.)
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Parametric completeness

• Call a BBI-model M = 〈W, ◦, E〉 named by ρ iff for all
w ∈W there is a nominal ` with ρ(`) = w.

Lemma
Let M be named by ρ and let A be a pure formula. If
M,w |=ρ A[θ] for any nominal substitution θ and w ∈W , then
A is valid in M .

• So, for an extension of KHyBBI(↓) + Ax with pure axioms
Ax, we build a canonical model M named by our valuation.

• By the above Lemma + MCS properties, the Ax are valid
in M .

• That is, KHyBBI(↓) + Ax is complete for the models s.t. Ax!
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Statement of completeness

Following the above approach (non-trivial; details in paper) we
obtain the following, for any set of pure axioms Ax:

Theorem (Parametric completeness)

If A is valid in the class of BBI-models satisfying Ax, then it is
provable in KHyBBI(↓) + Ax.

Corollary

By a suitable choice of axioms, we have a sound and complete
axiomatic proof system for any given separation theory from our
collection.
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Conclusions and future work

• BBI is insufficiently expressive to capture the classes of
models of typical practical interest.

• One way to gain this expressivity is to incorporate naming
machinery from hybrid logic.

• We have parametric completeness for any set of axioms
expressed as pure formulas.

• In particular, this yields complete proof systems for any
separation theory from those we consider.

• Future work on our hybrid logics could include

• identification of decidable fragments;
• search for nice structural proof theories;
• investigate possible applications to program analysis.
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Thanks for listening!

Prelim version of paper available from authors’ webpages:

J. Brotherston and J. Villard.
Parametric completeness for separation theories.
To appear at POPL’14.
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