A unified display proof theory for bunched logic

James Brotherston
Imperial College London

MFPS 2010
University of Ottawa, 9 May 2010

Substructural logics: an overview

Substructural logics restrict the structural principles of ordinary classical logic (weakening, contraction, associativity, exchange...).

Examples:

Substructural logics: an overview

Substructural logics restrict the structural principles of ordinary classical logic (weakening, contraction, associativity, exchange...).

Examples:

- Lambek calculus totally rejects weakening and contraction (commutativity and associativity are optional too);

Substructural logics: an overview

Substructural logics restrict the structural principles of ordinary classical logic (weakening, contraction, associativity, exchange...).

Examples:

- Lambek calculus totally rejects weakening and contraction (commutativity and associativity are optional too);
- Linear logic permits weakening and contraction only for formulas prefixed with "exponential" modalities;

Substructural logics: an overview

Substructural logics restrict the structural principles of ordinary classical logic (weakening, contraction, associativity, exchange...).

Examples:

- Lambek calculus totally rejects weakening and contraction (commutativity and associativity are optional too);
- Linear logic permits weakening and contraction only for formulas prefixed with "exponential" modalities;
- Relevant logic replaces some of the standard 'additive' connectives, which obey weakening and contraction, with 'multiplicative' variants which do not;

Substructural logics: an overview

Substructural logics restrict the structural principles of ordinary classical logic (weakening, contraction, associativity, exchange...).

Examples:

- Lambek calculus totally rejects weakening and contraction (commutativity and associativity are optional too);
- Linear logic permits weakening and contraction only for formulas prefixed with "exponential" modalities;
- Relevant logic replaces some of the standard 'additive' connectives, which obey weakening and contraction, with 'multiplicative' variants which do not;
- Bunched logic is like relevant logic, but retains the additive connectives which relevant logic throws away on philosophical grounds (e.g. \rightarrow).

Motivation for bunched logic

- So, bunched logics are essentially obtained by "splicing" an additive propositional logic with a multiplicative one.

Motivation for bunched logic

- So, bunched logics are essentially obtained by "splicing" an additive propositional logic with a multiplicative one.
- This gives a nice Kripke-style resource semantics: Additive connectives have their usual meaning, and multiplicatives denote resource composition properties:

$$
\begin{aligned}
r \models F_{1} \wedge F_{2} & \Leftrightarrow r \models F_{1} \text { and } r \models F_{2} \\
r \models F_{1} * F_{2} & \Leftrightarrow r=r_{1} \circ r_{2} \text { and } r_{1} \models F_{1} \text { and } r_{2} \models F_{2}
\end{aligned}
$$

(where \circ is a binary monoid operation).

Motivation for bunched logic

- So, bunched logics are essentially obtained by "splicing" an additive propositional logic with a multiplicative one.
- This gives a nice Kripke-style resource semantics: Additive connectives have their usual meaning, and multiplicatives denote resource composition properties:

$$
\begin{aligned}
r \models F_{1} \wedge F_{2} & \Leftrightarrow r \models F_{1} \text { and } r \models F_{2} \\
r \models F_{1} * F_{2} & \Leftrightarrow r=r_{1} \circ r_{2} \text { and } r_{1} \models F_{1} \text { and } r_{2} \models F_{2}
\end{aligned}
$$

(where \circ is a binary monoid operation).

- Taking particular models gives us separation logic and other spatial logics (used in program verification).

The bunched logic family

Additives / multiplicatives can be classical or intuitionistic:

CBI

(Boolean, de Morgan)
dMBI
(Heyting, de Morgan)

BBI

(Boolean, Lambek)

BI

(Heyting, Lambek)

- Subtitles (X,Y) indicate the underlying algebras.
- Arrows denote addition of classical negations \neg or \sim.

Bunched logics via elementary logics

$$
\begin{array}{lllllll}
\text { Additives: } & \top & \perp & \neg & \vee & \wedge & \rightarrow \\
\text { Multiplicatives: } & \top^{*} & \perp^{*} & \sim & ๒^{*} & * & \rightarrow
\end{array}
$$

- IL and CL are standard intuitionistic / classical logic over the additives;

Bunched logics via elementary logics

$$
\begin{array}{lllllll}
\text { Additives: } & \top & \perp & \neg & \vee & \wedge & \rightarrow \\
\text { Multiplicatives: } & \top^{*} & \perp^{*} & \sim & \vee^{*} & * & { }^{*}
\end{array}
$$

- IL and CL are standard intuitionistic / classical logic over the additives;
- LM and dMM are (commutative and associative) Lambek / de Morgan logic over the multiplicatives;

Bunched logics via elementary logics

$$
\begin{array}{lllllll}
\text { Additives: } & \top & \perp & \neg & \vee & \wedge & \rightarrow \\
\text { Multiplicatives: } & \top^{*} & \perp^{*} & \sim & { }^{*} & * & { }^{*}
\end{array}
$$

- IL and CL are standard intuitionistic / classical logic over the additives;
- LM and dMM are (commutative and associative) Lambek / de Morgan logic over the multiplicatives;
- Define:

$$
\begin{aligned}
\mathrm{BI} & =\mathrm{IL}+\mathrm{LM} \\
\mathrm{BBI} & =\mathrm{CL}+\mathrm{LM} \\
\mathrm{dMBI} & =\mathrm{IL}+\mathrm{dMM} \\
\mathrm{CBI} & =\mathrm{CL}+\mathrm{dMM}
\end{aligned}
$$

where + is union of minimal proof systems for the logics.

LBI: the BI sequent calculus

- Sequents are $\Gamma \vdash F$ where F a formula and Γ a bunch:

$$
\Gamma::=F|\emptyset| \varnothing|\Gamma ; \Gamma| \Gamma, \Gamma
$$

LBI: the BI sequent calculus

- Sequents are $\Gamma \vdash F$ where F a formula and Γ a bunch:

$$
\Gamma::=F|\emptyset| \varnothing|\Gamma ; \Gamma| \Gamma, \Gamma
$$

- Rules for $-*$ are:

$$
\frac{\Delta \vdash F_{1} \quad \Gamma\left(F_{2}\right) \vdash F}{\Gamma\left(\Delta, F_{1} * * F_{2}\right) \vdash F}(* * \mathrm{~L}) \quad \frac{\Gamma, F \vdash G}{\Gamma \vdash F \rightarrow *}(-* \mathrm{R})
$$

where $\Gamma(\Delta)$ is bunch Γ with sub-bunch Δ;

LBI: the BI sequent calculus

- Sequents are $\Gamma \vdash F$ where F a formula and Γ a bunch:

$$
\Gamma::=F|\emptyset| \varnothing|\Gamma ; \Gamma| \Gamma, \Gamma
$$

- Rules for \rightarrow are:

$$
\frac{\Delta \vdash F_{1} \quad \Gamma\left(F_{2}\right) \vdash F}{\Gamma\left(\Delta, F_{1} * * F_{2}\right) \vdash F}(-* \mathrm{~L}) \quad \frac{\Gamma, F \vdash G}{\Gamma \vdash F \rightarrow *}(-* \mathrm{R})
$$

where $\Gamma(\Delta)$ is bunch Γ with sub-bunch Δ;

- LBI satisfies cut-elimination (Pym '02).
- Unfortunately cut-elimination breaks if we try to extend LBI to BBI, dMBI, CBI in the obvious way.

Display calculus: an overview

- Display calculi manipulate consecutions $X \vdash Y$, with leftand right-introduction rules for each logical connective.

Display calculus: an overview

- Display calculi manipulate consecutions $X \vdash Y$, with leftand right-introduction rules for each logical connective.
- Structures X and Y are built from formulas and structural connectives. Substructures of $X \vdash Y$ are classified as antecedent or consequent parts.

Display calculus: an overview

- Display calculi manipulate consecutions $X \vdash Y$, with leftand right-introduction rules for each logical connective.
- Structures X and Y are built from formulas and structural connectives. Substructures of $X \vdash Y$ are classified as antecedent or consequent parts.
- In display calculi, one can rearrange consecutions:

Definition
\equiv_{D} is a display-equivalence if for any antecedent (consequent) part Z of $X \vdash Y$ we have $X \vdash Y \equiv_{D} Z \vdash W \quad(W \vdash Z)$.

Display calculus: an overview

- Display calculi manipulate consecutions $X \vdash Y$, with leftand right-introduction rules for each logical connective.
- Structures X and Y are built from formulas and structural connectives. Substructures of $X \vdash Y$ are classified as antecedent or consequent parts.
- In display calculi, one can rearrange consecutions:

Definition
\equiv_{D} is a display-equivalence if for any antecedent (consequent) part Z of $X \vdash Y$ we have $X \vdash Y \equiv_{D} Z \vdash W \quad(W \vdash Z)$.

- Belnap ' 82 gives a set of syntactic conditions for display calculi which guarantee cut-elimination.

Display calculus: syntax

- Structures are constructed from formulas and structural connectives:

Additive	Multiplicative	Arity	Antecedent	Consequent
\emptyset	\varnothing	0	truth	falsity
\sharp	b	1	negation	negation
$;$,	2	conjunction	disjunction
\Rightarrow	-	2	-	implication

- Antecedent / consequent parts of consecutions $X \vdash Y$ are similar to positive / negative occurrences in formulas.

Display calculus: syntax

- Structures are constructed from formulas and structural connectives:

Additive	Multiplicative	Arity	Antecedent	Consequent
\emptyset	\varnothing	0	truth	falsity
$\#$	b	1	negation	negation
$;$,	2	conjunction	disjunction
\Rightarrow	-	2	-	implication

- Antecedent / consequent parts of consecutions $X \vdash Y$ are similar to positive / negative occurrences in formulas.
- We give display calculi for IL, CL, LM and dMM. Form of antecedent and consequent parts is restricted in each case.

$\mathrm{DL}_{\mathrm{CL}}$: a display calculus for CL

Antecedent connectives: \emptyset
Consequent connectives: \emptyset
Display postulates: $X ; Y \vdash Z<>_{D} X \vdash \sharp Y ; Z<>_{D} Y ; X \vdash Z$

$$
X \vdash Y ; Z<>_{D} \quad X ; \sharp Y \vdash Z<>_{D} \quad X \vdash Z ; Y
$$

$$
X \vdash Y<>_{D} \quad \sharp Y \vdash \sharp X \quad<>_{D} \quad \sharp \sharp X \vdash Y
$$

Logical rules:

$$
\frac{F \vdash X \quad G \vdash X}{F \vee G \vdash X}(\vee \mathrm{~L}) \quad \frac{X \vdash F_{1} ; F_{2}}{X \vdash F_{1} \vee F_{2}}(\vee \mathrm{R}) \quad \text { (etc.) }
$$

Structural rules:

$$
\left.\xlongequal[X \vdash Y]{\emptyset ; X \vdash Y}(\emptyset \mathrm{~L}) \frac{X \vdash Z}{X ; Y \vdash Z}(\mathrm{WkL}) \quad \text { (etc. }\right)
$$

$\mathrm{DL}_{\mathrm{LM}}$: a display calculus for LM

Antecedent connectives: \varnothing
Consequent connectives: \multimap
Display postulates: $X, Y \vdash Z<>_{D} \quad X \vdash Y \multimap Z<>_{D} Y, X \vdash Z$
Logical rules:

$$
\left.\frac{X \vdash F \quad G \vdash Y}{F \multimap G \vdash X \multimap Y}(-* \mathrm{~L}) \frac{X \vdash F \multimap G}{X \vdash F \multimap G}(* \mathrm{R}) \quad \text { (etc. }\right)
$$

Structural rules:

$$
\frac{\varnothing, X \vdash Y}{X \vdash Y}(\varnothing \mathrm{~L}) \frac{W,(X, Y) \vdash Z}{(W, X), Y \vdash Z}(\mathrm{MAL})
$$

Display calculi for bunched logics

We obtain display calculi $\mathrm{DL}_{\mathcal{L}}$ for $\mathcal{L} \in\{\mathrm{BI}, \mathrm{BBI}, \mathrm{dMBI}, \mathrm{CBI}\}$ by:

$$
\mathrm{DL}_{\mathcal{L}_{1}+\mathcal{L}_{2}}=\mathrm{DL}_{\mathcal{L}_{1}}+\mathrm{DL}_{\mathcal{L}_{2}}
$$

where + is component-wise union of specifications.
The following hold for all our calculi:

Display calculi for bunched logics

We obtain display calculi $\mathrm{DL}_{\mathcal{L}}$ for $\mathcal{L} \in\{\mathrm{BI}, \mathrm{BBI}, \mathrm{dMBI}, \mathrm{CBI}\}$ by:

$$
\mathrm{DL}_{\mathcal{L}_{1}+\mathcal{L}_{2}}=\mathrm{DL}_{\mathcal{L}_{1}}+\mathrm{DL}_{\mathcal{L}_{2}}
$$

where + is component-wise union of specifications.
The following hold for all our calculi:
Proposition (Display)
\equiv_{D}, given by the display postulates of $\mathrm{DL}_{\mathcal{L}}$, is indeed a display-equivalence for $\mathrm{DL}_{\mathcal{L}}$.

Display calculi for bunched logics

We obtain display calculi $\mathrm{DL}_{\mathcal{L}}$ for $\mathcal{L} \in\{\mathrm{BI}, \mathrm{BBI}, \mathrm{dMBI}, \mathrm{CBI}\}$ by:

$$
\mathrm{DL}_{\mathcal{L}_{1}+\mathcal{L}_{2}}=\mathrm{DL}_{\mathcal{L}_{1}}+\mathrm{DL}_{\mathcal{L}_{2}}
$$

where + is component-wise union of specifications.
The following hold for all our calculi:
Proposition (Display)
\equiv_{D}, given by the display postulates of $\mathrm{DL}_{\mathcal{L}}$, is indeed a display-equivalence for $\mathrm{DL}_{\mathcal{L}}$.

Theorem (Soundness / Completeness)
$X \vdash Y$ is $\mathrm{DL}_{\mathcal{L}}$-provable iff its formula translation is provable in the minimal proof system for \mathcal{L}.

Display calculi for bunched logics

We obtain display calculi $\mathrm{DL}_{\mathcal{L}}$ for $\mathcal{L} \in\{\mathrm{BI}, \mathrm{BBI}, \mathrm{dMBI}, \mathrm{CBI}\}$ by:

$$
\mathrm{DL}_{\mathcal{L}_{1}+\mathcal{L}_{2}}=\mathrm{DL}_{\mathcal{L}_{1}}+\mathrm{DL}_{\mathcal{L}_{2}}
$$

where + is component-wise union of specifications.
The following hold for all our calculi:
Proposition (Display)
\equiv_{D}, given by the display postulates of $\mathrm{DL}_{\mathcal{L}}$, is indeed a display-equivalence for $\mathrm{DL}_{\mathcal{L}}$.

Theorem (Soundness / Completeness)
$X \vdash Y$ is $\mathrm{DL}_{\mathcal{L}}$-provable iff its formula translation is provable in the minimal proof system for \mathcal{L}.

Theorem (Cut-elimination)
Any $\mathrm{DL}_{\mathcal{L}}$ proof of $X \vdash Y$ can be algorithmically transformed into a cut-free $\mathrm{DL}_{\mathcal{L}}$ proof of $X \vdash Y$.

Translating LBI into $\mathrm{DL}_{\mathrm{BI}}$

Recall the LBI rules for $-*$:

$$
\frac{\Delta \vdash F_{1} \quad \Gamma\left(F_{2}\right) \vdash F}{\Gamma\left(\Delta, F_{1} * * F_{2}\right) \vdash F}(-* \mathrm{~L}) \quad \frac{\Gamma, F \vdash G}{\Gamma \vdash F \rightarrow *}(-* \mathrm{R})
$$

$(-* \mathrm{R})$ has a direct equivalent in $\mathrm{DL}_{\mathrm{BI}}$, while $(-* \mathrm{~L})$ can be derived in $\mathrm{DL}_{\mathrm{BI}}$ as follows:

Translating LBI into $\mathrm{DL}_{\mathrm{BI}}$

Recall the LBI rules for $-*$:

$$
\frac{\Delta \vdash F_{1} \quad \Gamma\left(F_{2}\right) \vdash F}{\Gamma\left(\Delta, F_{1} * * F_{2}\right) \vdash F}(-* \mathrm{~L}) \quad \frac{\Gamma, F \vdash G}{\Gamma \vdash F \rightarrow *}(-* \mathrm{R})
$$

$(-* \mathrm{R})$ has a direct equivalent in $\mathrm{DL}_{\mathrm{BI}}$, while $(* * \mathrm{~L})$ can be derived in $\mathrm{DL}_{\mathrm{BI}}$ as follows:

$$
\begin{gathered}
\frac{\Gamma\left(F_{2}\right) \vdash F}{F_{2} \vdash X}(\mathrm{D} \equiv) \\
\frac{\left.\Delta, F_{1}\right)}{\Gamma\left(\Delta, F_{1} * F_{2} \vdash X\right.}(* \mathrm{~F}) \\
(\mathrm{L} \equiv)
\end{gathered}
$$

Translation preserves cut-freeness of proofs.

Translating $\mathrm{DL}_{\mathrm{BI}}$ into LBI

For any $\mathrm{DL}_{\mathrm{BI}}$ consecution $X \vdash Y$ define $\ulcorner X \vdash Y\urcorner$ as the result of maximally applying transformations:

$$
\begin{array}{lll}
X \vdash Y \Rightarrow Z & \mapsto & X ; Y \vdash Z \\
X \vdash Y \multimap Z & \mapsto & X, Y \vdash Z
\end{array}
$$

Note $\ulcorner X \vdash Y\urcorner$ is always an LBI sequent.

Translating $\mathrm{DL}_{\mathrm{BI}}$ into LBI

For any $\mathrm{DL}_{\mathrm{BI}}$ consecution $X \vdash Y$ define $\ulcorner X \vdash Y\urcorner$ as the result of maximally applying transformations:

$$
\begin{array}{lll}
X \vdash Y \Rightarrow Z & \mapsto & X ; Y \vdash Z \\
X \vdash Y \multimap Z & \mapsto & X, Y \vdash Z
\end{array}
$$

Note $\ulcorner X \vdash Y\urcorner$ is always an LBI sequent.
Then the rules of $\mathrm{DL}_{\mathrm{BI}}$ are LBI-derivable under $\ulcorner-\urcorner$, e.g.:

$$
\frac{\ulcorner X \vdash F\urcorner\ulcorner G \vdash Y\urcorner}{\ulcorner X, F \rightarrow * \vdash Y\urcorner}=\frac{X \vdash F \quad \Gamma(G) \vdash H}{\Gamma(X, F \backsim * G) \vdash H}
$$

Translation again preserves cut-freeness of proofs.

Display calculi vs. sequent calculi

- By the two previous translations we have:

Proposition
There is a one-to-many correspondence between cut-free proofs in LBI and cut-free proofs in $\mathrm{DL}_{\mathrm{BI}}$.

So LBI can be seen as an optimised $\mathrm{DL}_{\mathrm{BI}}$.

Display calculi vs. sequent calculi

- By the two previous translations we have:

Proposition

There is a one-to-many correspondence between cut-free proofs in LBI and cut-free proofs in $\mathrm{DL}_{\mathrm{BI}}$.

So LBI can be seen as an optimised $\mathrm{DL}_{\mathrm{BI}}$.

- However, display proofs for BBI, dMBI, CBI do not easily translate to sequent proofs in the same way. E.g., it is not obvious how to translate the $\mathrm{DL}_{\mathrm{BBI}}$ consecution $F, \sharp G \vdash H$ into a sequent without the unary \sharp.

Display calculi vs. sequent calculi

- By the two previous translations we have:

Proposition

There is a one-to-many correspondence between cut-free proofs in LBI and cut-free proofs in $\mathrm{DL}_{\mathrm{BI}}$.

So LBI can be seen as an optimised $\mathrm{DL}_{\mathrm{BI}}$.

- However, display proofs for BBI, dMBI, CBI do not easily translate to sequent proofs in the same way. E.g., it is not obvious how to translate the $\mathrm{DL}_{\mathrm{BBI}}$ consecution $F, \sharp G \vdash H$ into a sequent without the unary \sharp.
- Thus we claim that our display calculi really are canonical proof systems for the bunched logics.

Applications

- Cut-free proof search is still very difficult (display rules, structural rules).

Applications

- Cut-free proof search is still very difficult (display rules, structural rules).
- In general, for both display and sequent calculi: cut-elimination \nRightarrow (semi)decidability (cf. linear logic, relevant logic, arithmetic ...)

Applications

- Cut-free proof search is still very difficult (display rules, structural rules).
- In general, for both display and sequent calculi:
cut-elimination \nRightarrow (semi)decidability
(cf. linear logic, relevant logic, arithmetic ...)
- Indeed, while BI is known decidable (Galmiche et al. '05), BBI and CBI are known undecidable (Brotherston and Kanovich '10, Larchey-Wendling and Galmiche '10).

Applications

- Cut-free proof search is still very difficult (display rules, structural rules).
- In general, for both display and sequent calculi:
cut-elimination \nRightarrow (semi)decidability (cf. linear logic, relevant logic, arithmetic ...)
- Indeed, while BI is known decidable (Galmiche et al. '05), BBI and CBI are known undecidable (Brotherston and Kanovich '10, Larchey-Wendling and Galmiche '10).
- Cut-elimination provides structure and removes infinite branching points from the proof search space.

Applications

- Cut-free proof search is still very difficult (display rules, structural rules).
- In general, for both display and sequent calculi:

> cut-elimination $\nRightarrow($ semi $)$ decidability
> $(c f$. linear logic, relevant logic, arithmetic ...)

- Indeed, while BI is known decidable (Galmiche et al. '05), BBI and CBI are known undecidable (Brotherston and Kanovich '10, Larchey-Wendling and Galmiche '10).
- Cut-elimination provides structure and removes infinite branching points from the proof search space.
- Our calculi could be potentially be used in interactive theorem proving tools (proof-by-pointing) or to define partial search strategies.

