A unified display proof theory for bunched logic

James Brotherston

Imperial College London

MFPS 2010 University of Ottawa, 9 May 2010

Substructural logics restrict the structural principles of ordinary classical logic (weakening, contraction, associativity, exchange...). Examples:

• Lambek calculus totally rejects weakening and contraction (commutativity and associativity are optional too);

- Lambek calculus totally rejects weakening and contraction (commutativity and associativity are optional too);
- Linear logic permits weakening and contraction only for formulas prefixed with "exponential" modalities;

- Lambek calculus totally rejects weakening and contraction (commutativity and associativity are optional too);
- Linear logic permits weakening and contraction only for formulas prefixed with "exponential" modalities;
- Relevant logic replaces some of the standard 'additive' connectives, which obey weakening and contraction, with 'multiplicative' variants which do not;

- Lambek calculus totally rejects weakening and contraction (commutativity and associativity are optional too);
- Linear logic permits weakening and contraction only for formulas prefixed with "exponential" modalities;
- Relevant logic replaces some of the standard 'additive' connectives, which obey weakening and contraction, with 'multiplicative' variants which do not;
- Bunched logic is like relevant logic, but retains the additive connectives which relevant logic throws away on philosophical grounds (e.g. \rightarrow).

Motivation for bunched logic

• So, bunched logics are essentially obtained by "splicing" an additive propositional logic with a multiplicative one.

Motivation for bunched logic

- So, bunched logics are essentially obtained by "splicing" an additive propositional logic with a multiplicative one.
- This gives a nice Kripke-style resource semantics: Additive connectives have their usual meaning, and multiplicatives denote resource composition properties:

$$\begin{array}{ll} r \models F_1 \land F_2 & \Leftrightarrow & r \models F_1 \text{ and } r \models F_2 \\ r \models F_1 * F_2 & \Leftrightarrow & r = r_1 \circ r_2 \text{ and } r_1 \models F_1 \text{ and } r_2 \models F_2 \end{array}$$

(where \circ is a binary monoid operation).

Motivation for bunched logic

- So, bunched logics are essentially obtained by "splicing" an additive propositional logic with a multiplicative one.
- This gives a nice Kripke-style resource semantics: Additive connectives have their usual meaning, and multiplicatives denote resource composition properties:

$$\begin{array}{ll} r \models F_1 \land F_2 & \Leftrightarrow & r \models F_1 \text{ and } r \models F_2 \\ r \models F_1 * F_2 & \Leftrightarrow & r = r_1 \circ r_2 \text{ and } r_1 \models F_1 \text{ and } r_2 \models F_2 \end{array}$$

(where \circ is a binary monoid operation).

• Taking particular models gives us separation logic and other spatial logics (used in program verification).

The bunched logic family

Additives / multiplicatives can be classical or intuitionistic:

CBI

(Boolean, de Morgan)

- Subtitles (X,Y) indicate the underlying algebras.
- Arrows denote addition of classical negations \neg or \sim .

Bunched logics via elementary logics

• IL and CL are standard intuitionistic / classical logic over the additives;

Bunched logics via elementary logics

- IL and CL are standard intuitionistic / classical logic over the additives;
- LM and dMM are (commutative and associative) Lambek / de Morgan logic over the multiplicatives;

Bunched logics via elementary logics

- IL and CL are standard intuitionistic / classical logic over the additives;
- LM and dMM are (commutative and associative) Lambek / de Morgan logic over the multiplicatives;
- Define:

BI	=	IL + LM
BBI	=	$\mathrm{CL} + \mathrm{LM}$
dMBI	=	IL + dMM
CBI	=	CL + dMM

where + is union of minimal proof systems for the logics.

LBI: the BI sequent calculus

• Sequents are $\Gamma \vdash F$ where F a formula and Γ a bunch:

 $\Gamma ::= F \mid \emptyset \mid \varnothing \mid \Gamma ; \Gamma \mid \Gamma , \Gamma$

LBI: the BI sequent calculus

• Sequents are $\Gamma \vdash F$ where F a formula and Γ a bunch:

$$\Gamma ::= F \mid \emptyset \mid \varnothing \mid \Gamma ; \Gamma \mid \Gamma , \Gamma$$

• Rules for -* are:

$$\frac{\Delta \vdash F_1 \quad \Gamma(F_2) \vdash F}{\Gamma(\Delta, F_1 \twoheadrightarrow F_2) \vdash F} (\twoheadrightarrow L) \qquad \frac{\Gamma, F \vdash G}{\Gamma \vdash F \twoheadrightarrow G} (\twoheadrightarrow R)$$

where $\Gamma(\Delta)$ is bunch Γ with sub-bunch Δ ;

LBI: the BI sequent calculus

• Sequents are $\Gamma \vdash F$ where F a formula and Γ a bunch:

$$\Gamma ::= F \mid \emptyset \mid \varnothing \mid \Gamma ; \Gamma \mid \Gamma , \Gamma$$

• Rules for -* are:

$$\frac{\Delta \vdash F_1 \quad \Gamma(F_2) \vdash F}{\Gamma(\Delta, F_1 \twoheadrightarrow F_2) \vdash F} (\twoheadrightarrow L) \qquad \frac{\Gamma, F \vdash G}{\Gamma \vdash F \twoheadrightarrow G} (\twoheadrightarrow R)$$

where $\Gamma(\Delta)$ is bunch Γ with sub-bunch Δ ;

- LBI satisfies cut-elimination (Pym '02).
- Unfortunately cut-elimination breaks if we try to extend LBI to BBI, dMBI, CBI in the obvious way.

• Display calculi manipulate consecutions $X \vdash Y$, with leftand right-introduction rules for each logical connective.

- Display calculi manipulate consecutions $X \vdash Y$, with leftand right-introduction rules for each logical connective.
- Structures X and Y are built from formulas and structural connectives. Substructures of $X \vdash Y$ are classified as antecedent or consequent parts.

- Display calculi manipulate consecutions $X \vdash Y$, with leftand right-introduction rules for each logical connective.
- Structures X and Y are built from formulas and structural connectives. Substructures of $X \vdash Y$ are classified as antecedent or consequent parts.
- In display calculi, one can rearrange consecutions:

Definition

 $\equiv_D \text{ is a display-equivalence if for any antecedent (consequent)}$ part Z of $X \vdash Y$ we have $X \vdash Y \equiv_D Z \vdash W \quad (W \vdash Z).$

- Display calculi manipulate consecutions $X \vdash Y$, with leftand right-introduction rules for each logical connective.
- Structures X and Y are built from formulas and structural connectives. Substructures of $X \vdash Y$ are classified as antecedent or consequent parts.
- In display calculi, one can rearrange consecutions:

Definition

 $\equiv_D \text{ is a display-equivalence if for any antecedent (consequent)}$ part Z of $X \vdash Y$ we have $X \vdash Y \equiv_D Z \vdash W \quad (W \vdash Z).$

• Belnap '82 gives a set of syntactic conditions for display calculi which guarantee cut-elimination.

Display calculus: syntax

• Structures are constructed from formulas and structural connectives:

Additive	Multiplicative	Arity	Antecedent	Consequent
Ø	Ø	0	truth	falsity
#	þ	1	negation	negation
;	,	2	conjunction	disjunction
\Rightarrow	—o	2	—	implication

• Antecedent / consequent parts of consecutions $X \vdash Y$ are similar to positive / negative occurrences in formulas.

Display calculus: syntax

• Structures are constructed from formulas and structural connectives:

Additive	Multiplicative	Arity	Antecedent	Consequent
Ø	Ø	0	truth	falsity
#	þ	1	negation	negation
;	,	2	conjunction	disjunction
\Rightarrow	—o	2	—	implication

- Antecedent / consequent parts of consecutions $X \vdash Y$ are similar to positive / negative occurrences in formulas.
- We give display calculi for IL, CL, LM and dMM. Form of antecedent and consequent parts is restricted in each case.

DL_{CL}: a display calculus for CL

Logical rules:

$$\frac{F \vdash X \quad G \vdash X}{F \lor G \vdash X} (\lor L) \quad \frac{X \vdash F_1 ; F_2}{X \vdash F_1 \lor F_2} (\lor R) \quad (etc.)$$

Structural rules:

$$\underbrace{ \underbrace{\emptyset \; ; \; X \vdash Y}_{X \vdash Y} \; (\emptyset L) \quad \frac{X \vdash Z}{X \; ; \; Y \vdash Z} \; (WkL) \quad (etc.) }$$

DL_{LM}: a display calculus for LM

Logical rules:

$$\frac{X \vdash F \quad G \vdash Y}{F \twoheadrightarrow G \vdash X \multimap Y} (-*L) \quad \frac{X \vdash F \multimap G}{X \vdash F \twoheadrightarrow G} (-*R) \quad (\text{etc.})$$

Structural rules:

$$\underbrace{ \overset{\varnothing}{=} , X \vdash Y}_{X \vdash Y} (\varnothing L) \quad \underbrace{ \overset{W}{=} , (X, Y) \vdash Z}_{(W, X), Y \vdash Z} (MAL)$$

 $\begin{array}{l} Display \ calculi \ for \ bunched \ logics\\ We \ obtain \ display \ calculi \ DL_{\mathcal{L}} \ for \ \mathcal{L} \in \{BI, BBI, dMBI, CBI\} \ by: \end{array}$

 $\mathrm{DL}_{\mathcal{L}_1 + \mathcal{L}_2} = \mathrm{DL}_{\mathcal{L}_1} + \mathrm{DL}_{\mathcal{L}_2}$

where + is component-wise union of specifications. The following hold for all our calculi:

$\begin{aligned} & Display \ calculi \ for \ bunched \ logics \\ & We \ obtain \ display \ calculi \ DL_{\mathcal{L}} \ for \ \mathcal{L} \in \{BI, BBI, dMBI, CBI\} \ by: \end{aligned}$

$\mathrm{DL}_{\mathcal{L}_1 + \mathcal{L}_2} = \mathrm{DL}_{\mathcal{L}_1} + \mathrm{DL}_{\mathcal{L}_2}$

where + is component-wise union of specifications. The following hold for all our calculi:

Proposition (Display)

 \equiv_D , given by the display postulates of $DL_{\mathcal{L}}$, is indeed a display-equivalence for $DL_{\mathcal{L}}$.

$\begin{aligned} & Display \ calculi \ for \ bunched \ logics \\ & We \ obtain \ display \ calculi \ DL_{\mathcal{L}} \ for \ \mathcal{L} \in \{BI, BBI, dMBI, CBI\} \ by: \end{aligned}$

$\mathrm{DL}_{\mathcal{L}_1 + \mathcal{L}_2} = \mathrm{DL}_{\mathcal{L}_1} + \mathrm{DL}_{\mathcal{L}_2}$

where + is component-wise union of specifications. The following hold for all our calculi:

Proposition (Display)

 \equiv_D , given by the display postulates of $DL_{\mathcal{L}}$, is indeed a display-equivalence for $DL_{\mathcal{L}}$.

Theorem (Soundness / Completeness)

 $X \vdash Y$ is $DL_{\mathcal{L}}$ -provable iff its formula translation is provable in the minimal proof system for \mathcal{L} .

$\begin{array}{l} Display \ calculi \ for \ bunched \ logics\\ We \ obtain \ display \ calculi \ DL_{\mathcal{L}} \ for \ \mathcal{L} \in \{BI, BBI, dMBI, CBI\} \ by: \end{array}$

$\mathrm{DL}_{\mathcal{L}_1 + \mathcal{L}_2} = \mathrm{DL}_{\mathcal{L}_1} + \mathrm{DL}_{\mathcal{L}_2}$

where + is component-wise union of specifications. The following hold for all our calculi:

Proposition (Display)

 \equiv_D , given by the display postulates of $DL_{\mathcal{L}}$, is indeed a display-equivalence for $DL_{\mathcal{L}}$.

Theorem (Soundness / Completeness)

 $X \vdash Y$ is $DL_{\mathcal{L}}$ -provable iff its formula translation is provable in the minimal proof system for \mathcal{L} .

Theorem (Cut-elimination)

Any $DL_{\mathcal{L}}$ proof of $X \vdash Y$ can be algorithmically transformed into a cut-free $DL_{\mathcal{L}}$ proof of $X \vdash Y$.

Translating LBI into DL_{BI}

Recall the LBI rules for -*:

$$\frac{\Delta \vdash F_1 \quad \Gamma(F_2) \vdash F}{\Gamma(\Delta, F_1 \twoheadrightarrow F_2) \vdash F} (\twoheadrightarrow L) \qquad \frac{\Gamma, F \vdash G}{\Gamma \vdash F \twoheadrightarrow G} (\twoheadrightarrow R)$$

(-*R) has a direct equivalent in $\rm DL_{BI},$ while (-*L) can be derived in $\rm DL_{BI}$ as follows:

Translating LBI into DL_{BI}

Recall the LBI rules for -*:

$$\frac{\Delta \vdash F_1 \quad \Gamma(F_2) \vdash F}{\Gamma(\Delta, F_1 \twoheadrightarrow F_2) \vdash F} (\twoheadrightarrow L) \qquad \frac{\Gamma, F \vdash G}{\Gamma \vdash F \twoheadrightarrow G} (\twoheadrightarrow R)$$

(-*R) has a direct equivalent in DL_{BI} , while (-*L) can be derived in DL_{BI} as follows:

$$\frac{\Delta \vdash F_1}{\Delta, F_1 \twoheadrightarrow F_2 \vdash X} (D\equiv)$$

$$\frac{\Delta \vdash F_1}{\Delta, F_1 \twoheadrightarrow F_2 \vdash X} (-*L)$$

$$\Gamma(\Delta, F_1 \twoheadrightarrow F_2) \vdash F (D\equiv)$$

Translation preserves cut-freeness of proofs.

Translating DL_{BI} into LBI

For any DL_{BI} consecution $X \vdash Y$ define $\lceil X \vdash Y \rceil$ as the result of maximally applying transformations:

$$\begin{array}{rccc} X \vdash Y \Rightarrow Z & \mapsto & X \; ; Y \vdash Z \\ X \vdash Y \multimap Z & \mapsto & X \; , Y \vdash Z \end{array}$$

Note $\[X \vdash Y \]$ is always an LBI sequent.

Translating DL_{BI} into LBI

For any DL_{BI} consecution $X \vdash Y$ define $\lceil X \vdash Y \rceil$ as the result of maximally applying transformations:

$$\begin{array}{rccc} X \vdash Y \Rightarrow Z & \mapsto & X \; ; \; Y \vdash Z \\ X \vdash Y \multimap Z & \mapsto & X \; , \; Y \vdash Z \end{array}$$

Note $\[X \vdash Y \]$ is always an LBI sequent.

Then the rules of DL_{BI} are LBI-derivable under \neg , e.g.:

	_	$X \vdash F \Gamma(G) \vdash H$
$\ulcorner X \ , F \twoheadrightarrow G \vdash Y \urcorner$	_	$\overline{\Gamma(X, F \twoheadrightarrow G) \vdash H}$

Translation again preserves cut-freeness of proofs.

Display calculi vs. sequent calculi

• By the two previous translations we have:

Proposition

There is a one-to-many correspondence between cut-free proofs in LBI and cut-free proofs in DL_{BI} .

So LBI can be seen as an optimised DL_{BI} .

Display calculi vs. sequent calculi

• By the two previous translations we have:

Proposition

There is a one-to-many correspondence between cut-free proofs in LBI and cut-free proofs in DL_{BI} .

So LBI can be seen as an optimised DL_{BI} .

• However, display proofs for BBI, dMBI, CBI do not easily translate to sequent proofs in the same way. E.g., it is not obvious how to translate the DL_{BBI} consecution $F, \ \#G \vdash H$ into a sequent without the unary #.

Display calculi vs. sequent calculi

• By the two previous translations we have:

Proposition

There is a one-to-many correspondence between cut-free proofs in LBI and cut-free proofs in DL_{BI} .

So LBI can be seen as an optimised DL_{BI} .

- However, display proofs for BBI, dMBI, CBI do not easily translate to sequent proofs in the same way. E.g., it is not obvious how to translate the DL_{BBI} consecution F, $\#G \vdash H$ into a sequent without the unary #.
- Thus we claim that our display calculi really are canonical proof systems for the bunched logics.

• Cut-free proof search is still very difficult (display rules, structural rules).

- Cut-free proof search is still very difficult (display rules, structural rules).
- In general, for both display and sequent calculi: cut-elimination ≠ (semi)decidability (cf. linear logic, relevant logic, arithmetic ...)

- Cut-free proof search is still very difficult (display rules, structural rules).
- In general, for both display and sequent calculi: cut-elimination ⇒ (semi)decidability (cf. linear logic, relevant logic, arithmetic ...)
- Indeed, while BI is known decidable (Galmiche et al. '05), BBI and CBI are known undecidable (Brotherston and Kanovich '10, Larchey-Wendling and Galmiche '10).

- Cut-free proof search is still very difficult (display rules, structural rules).
- In general, for both display and sequent calculi: cut-elimination ≠ (semi)decidability (cf. linear logic, relevant logic, arithmetic ...)
- Indeed, while BI is known decidable (Galmiche et al. '05), BBI and CBI are known undecidable (Brotherston and Kanovich '10, Larchey-Wendling and Galmiche '10).
- Cut-elimination provides structure and removes infinite branching points from the proof search space.

- Cut-free proof search is still very difficult (display rules, structural rules).
- In general, for both display and sequent calculi: cut-elimination ≠ (semi)decidability (cf. linear logic, relevant logic, arithmetic ...)
- Indeed, while BI is known decidable (Galmiche et al. '05), BBI and CBI are known undecidable (Brotherston and Kanovich '10, Larchey-Wendling and Galmiche '10).
- Cut-elimination provides structure and removes infinite branching points from the proof search space.
- Our calculi could be potentially be used in interactive theorem proving tools (proof-by-pointing) or to define partial search strategies.