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• Separating conjunction F ∗ G defined by:

h |=ρ F1 ∗ F2 ⇔ h = h1 ◦ h2 and h1 |=ρ F1 and h2 |=ρ F2

• Archetypal heap models are 〈H, ◦, {e}〉, where
H = L ⇀fin RV is a set of heaps, e is the empty heap, and
◦ is (partial) union of disjoint heaps.
(Variations: stacks-and-heaps, heaps with permissions)
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• F is valid in 〈H, ◦, E〉 if h |=ρ F for all h ∈ H and for all
valuations ρ of propositional variables.

• Applications of separation logic are typically based on a
fixed, heap-like model.

• Validity in such a model is a subtler problem than validity
in classes of models:

• Normally, to show a property Q given that F is valid in a
class of models C, one chooses some model M ∈ C such that
(F valid in M) → Q;

• but, when M is given in advance, we have no such freedom!
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• BI, which is intuitionistic logic plus the MILL axioms and
rules for I, ∗ and —∗;

• BBI, which is BI plus ¬¬A ⊢ A;

• BBI+eW where eW is I ∧ (A ∗ B) ⊢ I ∧ A, which says
“you can’t split the empty heap into two non-empty heaps”;

• BBI+W where W is A ∗ B ⊢ A. This system collapses into
classical logic!

NB.

1. BI ⊂ BBI ⊂ BBI+eW ⊂ BBI+W, and both BI, BBI+W
are decidable;

2. BBI, BBI+eW are (obviously) incomplete wrt. validity in
particular concrete models.
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Theorem
There is a sequent FM,C such that, for any heap-like model M:

• FM,C is not valid in M , but;

• FM,C is valid in M under every finite valuation!

So, to obtain decidable fragments of separation logic, one could:

1. give up infinite valuations (Calcagno et al., FSTTCS’01);

2. restrict the formula language (Berdine et al., FSTTCS’04).
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Summary

For the purely propositional fragment of separation logic, we
have the following new results:

• validity in any given heap-like model is undecidable;

• validity in such a model cannot be approximated by finite
valuations for propositional variables (which imposes
restrictions on decidable fragments);

• validity in various classes of models is undecidable;

• and provability in various axiomatisations (BBI, BBI+eW,
CBI, CBI+eW,. . . ) is undecidable too.



Separation logic vs. linear logic

Separation logic obeys two principles which are highly
unorthodox from the perspective of linear logic:

1. The usual distributivity law

A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)

2. The exact equality

JA ∗ BK = JAK · JBK

(In linear logic we typically have JA ∗ BK 6⊆ JAK · JBK.)

These two facts are entirely responsible for the undecidability of
separation logic!


