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Overview

• Our interest: inductive proof principles in the setting of
first-order logic with inductive definitions (FOLID).

• In this setting, the main proof techniques are:
1. explicit rule induction over definitions;
2. infinite descent à la Fermat.

• Our main goals are:
1. to give sequent calculus proof systems for these two styles of

reasoning,
2. to justify the canonicity of our proof systems via

appropriate completeness and cut-eliminability results;
3. to investigate the relationship between the two reasoning

styles.



First-order logic with inductive definitions (FOLID)

• we extend standard first-order logic with a schema for
inductive definitions;

• Our inductive definitions are given by a finite set Φ of
productions each of the form:

P1(t1(x)) . . . Pm(tm(x))

P (t(x))

where P, P1, . . . , Pm are predicate symbols of the language.

Example (Natural nos; even/odd nos; transitive closure)
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Standard models of FOLID

• The productions for Φ determine an n-ary monotone
operator ϕΦ. E.g. for N we have:

ϕΦN
(X) = {0M} ∪ {sMx | x ∈ X}

• the least prefixed point of ϕΦ can be approached via a
sequence (ϕαΦ) of approximants, obtained by iteratively
applying ϕΦ to the empty set. E.g. for N we have:

ϕ0
ΦN

= ∅, ϕ1
ΦN

= {0M}, ϕ2
ΦN

= {0M , sM0M}, . . .

• standard result:
⋃
α ϕ

α
Φ is the least prefixed point of ϕΦ.

Definition 2.1 (Standard model)
M is a standard model if for all inductive predicates Pi we have:

PMi = πni (
⋃
α

ϕαΦ) (= πni (ϕωΦ))



Henkin models of FOLID

• we can also give non-standard interpretations to the
inductive predicates of the language;

• in such models the least prefixed point of the operator for
the inductive predicates is taken with respect to a specified
Henkin class H of sets over the domain;

• Henkin classes must satisfy the property that every
first-order-definable relation is interpretable in the class.

Definition 2.10 (Henkin model)
(M,H) is a Henkin model if the least prefixed point of ϕΦ,
written µH.ϕΦ, exists inside H and for all inductive predicates
Pi we have

PMi = πni (µH.ϕΦ)

NB. Every standard model is also a Henkin model; but there
are non-standard Henkin models.



LKID: a sequent calculus for induction in FOLID

Extend the usual sequent calculus LKe for classical first-order
logic with equality by adding introduction rules for inductively
defined predicates. E.g. the right-introduction rules for N are:

(NR1)
Γ ` N0,∆

Γ ` Nt,∆
(NR2)

Γ ` Nst,∆
The left-introduction rules embody rule induction over
definitions, e.g. for N :

Γ ` F0,∆ Γ, Fx ` Fsx,∆ Γ, F t ` ∆
(Ind N)

Γ, Nt ` ∆

where x 6∈ FV (Γ ∪∆ ∪ {Nt}).
NB. Mutual definitions give rise to mutual induction rules.



Results about LKID

Proposition 3.5 (Henkin soundness)
If Γ ` ∆ is provable in LKID then Γ ` ∆ is valid with respect to
Henkin models.

Theorem 3.6 (Henkin completeness)
If Γ ` ∆ is valid with respect to Henkin models then Γ ` ∆ has
a cut-free proof in LKID.

Corollary 3.7 (Eliminability of cut)
If Γ ` ∆ is provable in LKID then it has a cut-free proof in
LKID.
Remark. Corollary 3.7 implies the consistency of Peano
arithmetic, and hence cannot itself be proven in Peano
arithmetic.



LKIDω: a proof system for infinite descent in FOLID

• Rules are as for LKID except the induction rules are
replaced by weaker case-split rules, e.g. for N :

Γ, t = 0 ` ∆ Γ, t = sx,Nx ` ∆
(Case N)

Γ, Nt ` ∆

where x 6∈ FV (Γ ∪∆ ∪ {Nt}). We call the formula Nx in
the right-hand premise a case-descendant of Nt;

• pre-proofs are infinite (non-well-founded) derivation trees;
• for soundness we need to impose a global trace condition

on pre-proofs.



Traces

A trace following a path in an LKIDω pre-proof follows an
inductive predicate occurring on the left of the sequents on the
path. The trace progresses when the inductive predicate is
unfolded using its case-split rule. (See Defn. 4.4 in the paper for
a full definition.)

Definition 4.5 (LKIDω proof)
An LKIDω pre-proof D is a proof if for every infinite path in D
there is a trace following some tail of the path that progresses at
infinitely many points.



Example

(ER1)
` E0, O0

(=L)
x0 = 0 `Ex0, Ox0

(etc.)
...

(Case N)
Nx1 ` Ex1, Ox1

(OR1)
Nx1 ` Ox1, Osx1

(ER2)
Nx1` Esx1, Osx1

(=L)
x0 = sx1, Nx1 ` Ex0, Ox0

(Case N)
Nx0 ` Ex0, Ox0

Continuing the expansion of the right branch, the sequence
(Nx0, Nx1, . . . , Nx1, Nx2, . . .) is a trace along this branch with
infinitely many progress points, so the pre-proof thus obtained
is indeed an LKIDω proof.



Results about LKIDω

Proposition 4.8 (Standard soundness)
If Γ ` ∆ is provable in LKIDω then Γ ` ∆ is valid with respect
to standard models.

Theorem 4.9 (Standard completeness)
If Γ ` ∆ is valid with respect to standard models then Γ ` ∆ has
a cut-free proof in LKIDω.

Corollary 4.10 (Eliminability of cut)
If Γ ` ∆ is provable in LKIDω then it has a cut-free proof in
LKIDω.
Remark. Unlike in LKID, cut-free proofs in LKIDω enjoy a
property akin to the subformula property, which seems close to
the spirit of Girard’s “purity of methods”.



CLKIDω: a cyclic subsystem of LKIDω

• The infinitary system LKIDω is unsuitable for formal
reasoning — completeness with respect to standard models
implies that there is no complete enumeration of LKIDω

proofs.
• However, the restriction of LKIDω to proofs given by

regular trees, which we call CLKIDω, is a natural one that
is suitable for formal reasoning;

• in this restricted system, every proof can be represented as
a finite (cyclic) graph.



Example (1)

(ER1)
` E0, O0

Nz ` Oz,Ez (†)
(Subst)

Ny ` Oy,Ey
(OR1)

Ny ` Oy,Osy
(ER2)

Ny ` Esy,Osy
(NL)

Nz ` Ez,Oz (†)

Any infinite path necessarily has a tail consisting of repetitions
of the loop indicated by (†), and there is a progressing trace on
this loop: (Nz,Ny,Ny,Ny,Nz). By concatenating copies of
this trace we obtain an infinitely progressing trace as required.



Results about CLKIDω

Proposition 6.3 (Proof-checking decidability)
It is decidable whether a CLKIDω pre-proof is a proof.

Theorem 6.4 (LKID⇒ CLKIDω)
If there is an LKID proof of Γ ` ∆ then there is a CLKIDω

proof of Γ ` ∆.

Conjecture 6.5 (LKID⇐ CLKIDω)
If there is a CLKIDω proof of Γ ` ∆ then there is an LKID
proof of Γ ` ∆.
Conjecture 6.5 can be seen as a formalised version of the
following assertion:

Proof by induction is equivalent to regular proof by
infinite descent.



Future research

• resolve the conjecture;
• investigate other applications of non-well-founded proof

(cf. Alex’s joint LICS/Logic Colloquium talk, Saturday);
• applications of cyclic proof to program verification (current

work with Cristiano Calcagno and Richard Bornat);
• experimental implementations of cyclic proof;
• extension of our systems and results to mixed inductive

and coinductive definitions.


