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Overview

e Our interest: inductive proof principles in the setting of
first-order logic with inductive definitions (FOLp).
e In this setting, the main proof techniques are:
1. explicit rule induction over definitions;
2. infinite descent a la Fermat.
e Our main goals are:
1. to give sequent calculus proof systems for these two styles of

reasoning,
2. to justify the canonicity of our proof systems via
appropriate completeness and cut-eliminability results;
3. to investigate the relationship between the two reasoning

styles.



First-order logic with inductive definitions (FOL,p)

e we extend standard first-order logic with a schema for
inductive definitions;

e Our inductive definitions are given by a finite set ® of
productions each of the form:

Pi(t1(x)) ... Pu(tm(x))
P(t(x))

where P, P, ..., P, are predicate symbols of the language.

Ezample (Natural nos; even/odd nos; transitive closure)

Nz Exr Ox Rxy RYtzy RTyz
NO Nszx E0 Osz Esx Rtzy Rtzz



Standard models of FOL,,

e The productions for ® determine an n-ary monotone
operator pg. E.g. for N we have:

oy (X) = {OM}U{SMIIZ' |z € X}

e the least prefixed point of g can be approached via a
sequence () of approximants, obtained by iteratively
applying 4 to the empty set. E.g. for N we have:

Pay =0, 05, = {0}, @5, = {0M,sM0M}, ..
e standard result: |J, ¢§ is the least prefixed point of pg.

Definition 2.1 (Standard model)

M is a standard model if for all inductive predicates P; we have:

PM=al(Jed)  (=m(e8)



Henkin models of FOL;,

e we can also give non-standard interpretations to the
inductive predicates of the language;

e in such models the least prefixed point of the operator for
the inductive predicates is taken with respect to a specified
Henkin class ‘H of sets over the domain;

e Henkin classes must satisfy the property that every
first-order-definable relation is interpretable in the class.

Definition 2.10 (Henkin model)
(M, H) is a Henkin model if the least prefized point of ps,
written pn.pa, erists inside H and for all inductive predicates
P; we have

PM =} (pr-pa)
NB. Every standard model is also a Henkin model; but there
are non-standard Henkin models.



LKID: a sequent calculus for induction in FOL,

Extend the usual sequent calculus LK, for classical first-order
logic with equality by adding introduction rules for inductively
defined predicates. E.g. the right-introduction rules for IV are:

' Nt, A
——— (NRy) ——— (NRy)
'k NO,A '+ Nst, A
The left-introduction rules embody rule induction over
definitions, e.g. for N:
'-FO0,A T,Fzk Fsx,A T,FtFA
INtE A

where x ¢ FV(I' UA U {Nt}).
NB. Mutual definitions give rise to mutual induction rules.

(Ind N)



Results about LKID

Proposition 3.5 (Henkin soundness)
If T'F A is provable in LKID then I' B A is valid with respect to
Henkin models.

Theorem 3.6 (Henkin completeness)

If T'F A is valid with respect to Henkin models then I' = A has
a cut-free proof in LKID.

Corollary 3.7 (Eliminability of cut)

If '+ A is provable in LKID then it has a cut-free proof in
LKID.

Remark. Corollary 3.7 implies the consistency of Peano
arithmetic, and hence cannot itself be proven in Peano
arithmetic.



LKID”: a proof system for infinite descent in FOL,,

e Rules are as for LKID except the induction rules are
replaced by weaker case-split rules, e.g. for IV:

It=0FA T,t=sx,Nz+ A
I'NtE A

(Case N)

where x ¢ FV(I' U AU {Nt}). We call the formula Nz in
the right-hand premise a case-descendant of Nt;

e pre-proofs are infinite (non-well-founded) derivation trees;

e for soundness we need to impose a global trace condition
on pre-proofs.



Traces

A trace following a path in an LKID* pre-proof follows an
inductive predicate occurring on the left of the sequents on the
path. The trace progresses when the inductive predicate is
unfolded using its case-split rule. (See Defn.4.4 in the paper for
a full definition.)

Definition 4.5 (LKID® proof)
An LKID” pre-proof D is a proof if for every infinite path in D

there is a trace following some tail of the path that progresses at
infinitely many points.



Example

(etc.)
' (Case N)
N:L'1 H Eml, O:L'l
(ORy)
Nz F Ozxq,0sx
——— (ER) (ER2)
F E0,00 (-L) Nz F Esxy,0szq (=L)
x9 =0+ Exg,Oxg B xo = sr1, No1 B Exg, Oxg B
(Case N)

N.’L'o H ELL’(), Ol’o

Continuing the expansion of the right branch, the sequence
(Nzog, Nx1,...,Nx1, Nxo,...) is a trace along this branch with
infinitely many progress points, so the pre-proof thus obtained
is indeed an LKIDY proof.



Results about LKID”

Proposition 4.8 (Standard soundness)

IfT'F A is provable in LKID” then I' = A is valid with respect
to standard models.

Theorem 4.9 (Standard completeness)

If T'F A is valid with respect to standard models then I' = A has
a cut-free proof in LKID”.

Corollary 4.10 (Eliminability of cut)
If T'F A is provable in LKID” then it has a cut-free proof in
LKID”.

Remark. Unlike in LKID, cut-free proofs in LKID® enjoy a
property akin to the subformula property, which seems close to
the spirit of Girard’s “purity of methods”.



CLKID”: a cyclic subsystem of LKID”

e The infinitary system LKID* is unsuitable for formal
reasoning — completeness with respect to standard models
implies that there is no complete enumeration of LKID¥
proofs.

e However, the restriction of LKID* to proofs given by
regular trees, which we call CLKIDY, is a natural one that
1s suitable for formal reasoning;

e in this restricted system, every proof can be represented as
a finite (cyclic) graph.



Ezample (1)

Nzt Oz, Ez (1)
(Subst)
Ny Oy, Ey
——— (OR)
Ny F Oy, Osy
——— (ERy) (ER)
F E0,00 Ny F Esy,Osy
NL)

NzF Ez Oz (1)

Any infinite path necessarily has a tail consisting of repetitions
of the loop indicated by (1), and there is a progressing trace on
this loop: (Nz, Ny, Ny, Ny, Nz). By concatenating copies of

this trace we obtain an infinitely progressing trace as required.



Results about CLKID”

Proposition 6.3 (Proof-checking decidability)
It is decidable whether a CLKID” pre-proof is a proof.

Theorem 6.4 (LKID = CLKID”)

If there is an LKID proof of I' = A then there is a CLKID”
proof of '+ A.

Conjecture 6.5 (LKID < CLKID”)

If there is a CLKID” proof of I' = A then there is an LKID
proof of I' = A.

Conjecture 6.5 can be seen as a formalised version of the
following assertion:

Proof by induction is equivalent to regqular proof by
infinite descent.



Future research

resolve the conjecture;

investigate other applications of non-well-founded proof
(cf. Alex’s joint LICS/Logic Colloquium talk, Saturday);

applications of cyclic proof to program verification (current
work with Cristiano Calcagno and Richard Bornat);
experimental implementations of cyclic proof;

extension of our systems and results to mixed inductive
and coinductive definitions.



