
Separation Logics for Pointer Programs

James Brotherston

Lorentz Center Workshop on Effective Verification of Pointer Programs

Monday 13th May, 2019

1/ 28

Part I

Introduction to separation logic

2/ 28

Introduction

Verification of imperative programs is classically based on
Hoare triples:

{P}C {Q}

where C is a program and P,Q are assertions in some logical
language.

These are read, roughly speaking, as

for any state σ satisfying P , if C transforms state σ to
σ′, then σ′ satisfies Q.

(with some wriggle room allowing us to deal with faulting or
non-termination in various ways.)

3/ 28

Classical failure of frame rule

The so-called rule of constancy in Hoare logic,

{P}C {Q}
(FV (F) ∩mod(C) = ∅)

{F ∧ P}C {F ∧Q}

becomes unsound when we consider pointers.
E.g.,

{x 7→ 0} [x] := 2 {x 7→ 2}

{y 7→ 0 ∧ x 7→ 0} [x] := 2 {y 7→ 0 ∧ x 7→ 2}
is not valid (because y could alias x).

4/ 28

Assertions, informally

Separation logic lets us abstractly describe heap memory,
including data structures such as linked lists and trees.

E.g., binary trees with root pointer x can be defined by:

x = nil : emp ⇒ tree(x)
x 6= nil : x 7→ (y, z) ∗ tree(y) ∗ tree(z) ⇒ tree(x)

where

• emp denotes the empty heap;

• x 7→ (y, z) denotes a single pointer to a pair of data cells;

• ∗ means “and, separately in memory”.

5/ 28

Semantics of assertions

• Program states are stack-heap pairs (s, h), where .
• stacks map variables to values, s : Var→ Val;
• heaps map finitely many locations to values,
h : Loc⇀fin Val.

• Heap composition h1 ◦ h2 is defined to be h1 ∪ h2 if their
domains are disjoint, and undefined otherwise.

• Clauses of the forcing relation s, h |= A:

s, h |= emp ⇔ dom(h) = ∅
s, h |= x 7→ t ⇔ dom(h) = {s(x)} and h(s(x)) = s(t)

s, h |= A ∗B ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |= A

and s, h2 |= B

6/ 28

Semantics of Hoare triples

• The small-step semantics of programs is given by a relation
 between program-and-state configurations:

(C, s, h) (C ′, s′, h′)

• We take a fault-avoiding interpretation of Hoare triples:
{P}C {Q} is valid if, whenever s, h |= P ,

1. (C, s, h) 6 ∗ fault (i.e. is memory-safe), and
2. if (C, s, h) ∗ (ε, s, h), then s, h |= Q.

• If we are interested in total correctness, simply replace
“safe” by “safe and terminating” in condition 1!

7/ 28

The frame rule

The frame rule of separation logic is:

{P}C {Q}
(FV (F) ∩mod(C) = ∅)

{F ∗ P}C {F ∗Q}

In particular, e.g.,

{x 7→ 0} [x] := 2 {x 7→ 2}

{y 7→ 0 ∗ x 7→ 0} [x] := 2 {y 7→ 0 ∗ x 7→ 2}

is now fine; y cannot alias x because of separation.

8/ 28

Example: proof of recursive tree disposal

{tree(x)}
deltree(*x) {

if x=nil then return; {emp}
else { {x 7→ (y, z) ∗ tree(y) ∗ tree(z)}

l,r := x.left,x.right;

{x 7→ (l, r) ∗ tree(l) ∗ tree(r)}
deltree(l);

{x 7→ (l, r) ∗ emp ∗ tree(r)}
deltree(r);

{x 7→ (l, r) ∗ emp ∗ emp}
free(x);

{emp ∗ emp ∗ emp}
} {emp}

} {emp}
9/ 28

Soundness of frame rule

Soundness of the frame rule depends on the following two
operational facts about the programming language:

Lemma (Safety monotonicity)

If (C, s, h) 6 ∗ fault and h ◦ h′ is defined then
(C, s, h ◦ h′) 6 ∗ fault.

Lemma (Frame property)

Suppose (C, s, h1 ◦ h2) ∗ 〈s, h〉, and that (C, s, h1) 6 ∗ fault.
Then ∃h′ with (C, s, h1) ∗ 〈s, h′〉 and h = h′ ◦ h2.

Together, these lemmas imply the locality of all commands.

10/ 28

Concurrent separation logic (CSL)

• Concurrent separation logic (CSL) extends vanilla SL with
the following concurrent frame rule:

{A1}C1 {B1} {A2}C2 {B2}

{A1 ∗A2}C1 ||C2 {B1 ∗B2}

(provided FV (A1) ∩mod(C2) = FV (A2) ∩mod(C1) = ∅)

• The rule says that concurrent threads behave
compositionally when run on separate resources.

• However, many interesting concurrent programs do share
resources between threads!

11/ 28

Fractional permissions

• Fractional permissions are intended to allow the division of
memory into two or more “read-only copies”.

• Standard example of a permissions algebra: rationals in the
open interval (0, 1]. Heaps are now h : Loc⇀fin Val×Perm.

• Composition of heaps-with-permissions: heaps must agree
on their values where they overlap; then one simply adds
the permissions at overlapping locations.

• We can then annotate points-to formulas with permissions,

e.g. x
0.57→ d. Note that

x
0.57→ d ∗ x 0.57→ d ≡ x 7→ d .

12/ 28

Fractional permission proofs

We can then write program proofs with the following structure.

{x 7→ d}

{x 0.57→ d ∗ x 0.57→ d}

{x 0.57→ d} {x 0.57→ d}
foo(); bar();

{x 0.57→ d ∗A} {x 0.57→ d ∗B}

{x 0.57→ d ∗ x 0.57→ d ∗A ∗B}
{x 7→ d ∗A ∗B}

13/ 28

Selected references

S. Ishtiaq and P. O’Hearn.
BI as an assertion language for mutable data structures. In Proc.
POPL-28, 2001.
(Winner of Most Influential POPL Paper 2001 award.)

J.C. Reynolds.
Separation logic: A logic for shared mutable data structures. In Proc.
LICS-17, 2002.

S. Brookes.
A semantics for concurrent separation logic. In Theor. Comp. Sci. 375,
2007.
(Joint winner of 2016 Gödel Prize.)

R. Bornat, C. Calcagno, P. O’Hearn and M. Parkinson.
Permission accounting in separation logic. In Proc. POPL-32, 2005.

14/ 28

Part II

Logical problems in SL verification

15/ 28

A feast of fragments

• The difficulty of logical problems associated with
verification is heavily influenced by the precise choice of
assertion language.

• The main vectors influencing complexity include:
• Propositional structure; presence of ∧, →, ¬ and —∗ (adjoint

of ∗) greatly complicates matters.

• Inductively defined predicates, needed to capture heap data
structures.

• Arithmetic in assertions, sometimes needed to capture data
constraints or to account for pointer arithmetic in programs.

• Quantifiers; alternation increases complexity as usual.

16/ 28

Symbolic heaps

• A widely-used restricted form of SL formulas.

• Terms t are expressions built from variables x, y, z . . . and
function / constant symbols.

• Pure formulas π, spatial formulas F and symbolic heaps Σ:

π ::= t = t | t 6= t | . . . | π ∧ π
F ::= emp | x 7→ t | P t | F ∗ F
Σ ::= ∃x. π : F | Σ ∨ Σ

(where P a predicate symbol, t a tuple of terms).

• The predicate symbols might be hard-coded, or else
user-defined (possibly with restrictions).

17/ 28

Model checking

• Model checking problem: given formula A and state (s, h),
decide whether s, h |= A.

• Use case: in dynamic verification. Namely,
• start with an assertion-annotated program;

• generate concrete memory states satisfying the precondition;

• run program and dynamically check current memory states
against assertions (model checking!).

18/ 28

Results on model checking

• For symbolic heaps with user-defined predicates,
complexity ranges from PTIME to EXPTIME depending on
definition restrictions.

J. Brotherston, N. Gorogiannis, M. Kanovich and R. Rowe”,
Model checking for symbolic-heap separation logic with inductive
predicates. In Proc. POPL-43, 2016.

• Status unknown (AFAIK) for larger fragments.

19/ 28

Satisfiability

• Satisfiability problem: given formula A, decide whether
there is a state (s, h) with s, h |= A.

• Use cases: speeding up static verification in two ways,

1. assertions are often large disjunctions, and any unsatisfiable
disjunct can be eliminated (A ∨ false ≡ A);

2. because any Hoare triple of the form {false}C {Q} is valid,
proof search can be terminated as soon as one generates an
unsatisfiable assertion.

20/ 28

Results on satisfiability

• For symbolic heaps with user-defined predicates,
complexity is EXPTIME-complete but can become easier
(PTIME) depending on definition restrictions.

J. Brotherston, C. Fuhs, N. Gorogiannis and J. Navarro Pérez”,
A decision procedure for satisfiability in separation logic with
inductive predicates. In Proc. CSL-LICS, 2014.

• If one adds Presburger arithmetic then satisfiability
becomes undecidable (one can encode Peano arithmetic).
But in a restricted form of arithmetic, still decidable.

Q.L. Le, M. Tatsuta, J. Sun and W-N. Chin.
A decidable fragment in separation logic with inductive
predicates and arithmetic. In Proc. CAV, 2017.

21/ 28

Entailment

• Entailment problem: given formulas A and B, decide
whether A |= B, meaning s, h |= A⇒ s, h |= B.

• Use cases: in the course of verification proofs, e.g.

1. to transform an assertion into a form suitable for symbolic
execution, e.g.,

{tree(x)} deltree(x) {emp} x 7→ (nil, z) ∗ tree(z) |= tree(x)
(|=)

{x 7→ (nil, z) ∗ tree(z)} deltree(x) {emp}

2. to establish loop invariants, e.g. by

{B ∧ P}C {Q} Q |= P
(|=)

{B ∧ P}C {P}
(while)

{P} whileB doC {¬B ∧ P}
22/ 28

Results on entailment

• For symbolic heaps with user-defined predicates, the
problem is undecidable (one can encode CFG inclusion).

T. Antonopoulos, N. Gorogiannis, C. Haase, M. Kanovich and J.
Ouaknine.
Foundations for decision problems in separation logic with
general inductive predicates. In Proc. FoSSaCS-17, 2014.

• Hard-coded linked lists, and arrays with arithmetic, are
decidable (PTIME resp. ΠP

2 -hard):

B. Cook, C. Haase, J. Ouaknine, M. Parkinson and J. Worrell.
Tractable reasoning in a fragment of separation logic. In Proc.
CONCUR, 2011.

James Brotherston, Nikos Gorogiannis and Max Kanovich.
Biabduction (and related problems) in array separation logic. In
Proc. CADE-26, 2017.

23/ 28

More results on entailment

• Various classes of inductively defined predicates for which
entailment is decidable have also been identified:

Radu Iosif and Adam Rogalewicz and Jiri Simacek.
The tree width of separation logic with recursive definitions. In
Proc. CADE-24, 2013.

M. Tatsuta and D. Kimura.
Separation logic with monadic inductive definitions and implicit
existentials. In Proc. APLAS-13, 2015.

X. Gu, T. Chen and Z. Wu.
A complete decision procedure for linearly compositional
separation logic with data constraints. In Proc. IJCAR, 2016.

• For anything more complicated, one generally has to use
theorem proving.

24/ 28

Example: cyclic entailment proof

Define list segment predicate ls by

x = y : emp ⇒ lsx y
x 7→ x′ ∗ lsx′ y ⇒ lsx y

Cyclic proof of lsx y ∗ ls y z ` lsx z:

(Id)
lsx z ` lsx z

(emp)
emp ∗ lsx z ` lsx z

(†) lsx y ∗ ls y z ` lsx z
(Subst)

lsx′ y ∗ ls y z ` lsx′ z
(∗/ 7→)

x 7→ x′ ∗ lsx′ y ∗ ls y z ` x 7→ x′ ∗ lsx′ z
(ls)

x 7→ x′ ∗ lsx′ y ∗ ls y z ` lsx z
(Cases)

(†) lsx y ∗ ls y z ` lsx z

25/ 28

Biabduction

• Biabduction problem: given formulas A and B, find
formulas X and Y with

A ∗X |= B ∗ Y , and A ∗X is satisfiable.

• Use case: Given specs {A′}C1 {A} and {B}C2 {B′}, we
can infer a spec for C1;C2:

{A′}C1 {A}
(Frame)

{A′ ∗X}C1 {A ∗X}
(|=)

{A′ ∗X}C1 {B ∗ Y }

{B}C2 {B′}
(Frame)

{B ∗ Y }C2 {B′ ∗ Y }
(;)

{A′ ∗X}C1;C2 {B′ ∗ Y }

26/ 28

Results on biabduction

• For lists, biabduction is harder than entailment
(NP-complete vs. PTIME):

N. Gorogiannis, M. Kanovich and P. O’Hearn.
The complexity of abduction for separated heap abstractions. In
Proc. SAS-18, 2011.

• For arrays with arithmetic, biabduction is easier than
entailment (NP-complete vs. ΠP

2 -hard):

James Brotherston, Nikos Gorogiannis and Max Kanovich.
Biabduction (and related problems) in array separation logic. In
Proc. CADE-26, 2017.

• For other fragments, a theorem-proving approach is
generally taken (based on matching “missing” parts of
entailments). Note that solution quality is an important
consideration.

27/ 28

Thanks for listening!

28/ 28

	Introduction to separation logic
	Logical problems in SL verification

