Separation Logics for Pointer Programs

James Brotherston

Lorentz Center Workshop on Effective Verification of Pointer Programs

Monday 13th May, 2019

1/ 28

Part 1

Introduction to separation logic

2/ 28

Introduction

Verification of imperative programs is classically based on
Hoare triples:

{PyC{Q}
where C is a program and P, () are assertions in some logical
language.

These are read, roughly speaking, as
for any state o satisfying P, if C transforms state o to
o', then o' satisfies Q.

(with some wriggle room allowing us to deal with faulting or
non-termination in various ways.)

3/ 28

Classical failure of frame rule

The so-called rule of constancy in Hoare logic,

{P}C{Q}
{FANP}C{FAQ}

(FV(F)Nmod(C) = 0)

becomes unsound when we consider pointers.
E.g.,
{z — 0} [z] =2{x— 2}

{ym 0Nz — 0} [z] :=2{y— 0Ax+— 2}

is not valid (because y could alias x).

4/ 28

Assertions, informally

Separation logic lets us abstractly describe heap memory,
including data structures such as linked lists and trees.

E.g., binary trees with root pointer x can be defined by:

x =nil:emp = tree(x)
x #nil : = (y,2) *tree(y) x tree(z) = tree(x)

where
® emp denotes the empty heap;
® x — (y,2) denotes a single pointer to a pair of data cells;

® x means “and, separately in memory”.

5/ 28

Semantics of assertions

® Program states are stack-heap pairs (s, h), where .

® stacks map variables to values, s : Var — Val;
® heaps map finitely many locations to values,

h : Loc —g, Val.

® Heap composition hi o ho is defined to be hy U hy if their
domains are disjoint, and undefined otherwise.

¢ Clauses of the forcing relation s, h = A:

s, h = emp
sshiEz—t
s,h =AxB

=
=
54

dom(h) =0

dom(h) = {s(z)} and h(s(z)) = s(t)
th,hz. h = hl o hQ and S,h1 ': A
and s,he = B

6/ 28

Semantics of Hoare triples

® The small-step semantics of programs is given by a relation
~ between program-and-state configurations:

(07 S’ h) ~ (Cl’ S,’ h,)

® We take a fault-avoiding interpretation of Hoare triples:
{P} C{Q} is valid if, whenever s,h = P,
1. (C,s,h) ¥* fault (i.e. is memory-safe), and
2. if (C, s, h) ~* (€,s,h), then s, h E Q.

e [f we are interested in total correctness, simply replace
“safe” by “safe and terminating” in condition 1!

7/ 28

The frame rule

The frame rule of separation logic is:

{P}C{Q}
{FxP}C{F*Q}

(FV(F)Nmod(C) = 0)

In particular, e.g.,
{x — 0} [z] :=2{x— 2}
{y—= 0xx—0}[z] :=2{y— 0%z — 2}

is now fine; y cannot alias x because of separation.

8/ 28

Example: proof of recursive tree disposal

{tree(x)}
deltree(*x) {
if x=nil then return; {emp}
else { {z— (y,2)xtree(y) = tree(z)}
l,r := x.left,x.right;
{z — (I,r) * tree(l) = tree(r)}
deltree(l);
{z — (I,r) *x emp x tree(r)}
deltree(r);
{z + (I,7) * emp * emp}
free(x);
{emp x emp x emp}
} {emp}
b {emp}

9/ 28

Soundness of frame rule

Soundness of the frame rule depends on the following two
operational facts about the programming language:

Lemma (Safety monotonicity)
If (C,s,h) ~* fault and ho h' is defined then
(C,s,hoh') /* fault.

Lemma (Frame property)

*

h), and that (C, s, hy) ¥* fault.

Suppose (C,s,hy 0 hg) ~* (s,
(s,h') and h = h' o hy.

(s
Then 3" with (C, s, hy) ~*

Together, these lemmas imply the locality of all commands.

10/ 28

Concurrent separation logic (CSL)

® Concurrent separation logic (CSL) extends vanilla SL with
the following concurrent frame rule:

{A1} Ci{B1} {A2} C2{B2}
{141 *x /42}-(71 H (72 {f31 * 132}

(provided F'V (A1) Nmod(Cy) = FV(As) Nmod(Cy) = 0)

® The rule says that concurrent threads behave
compositionally when run on separate resources.

® However, many interesting concurrent programs do share
resources between threads!

11/ 28

Fractional permissions

Fractional permissions are intended to allow the division of
memory into two or more “read-only copies”.

Standard example of a permissions algebra: rationals in the
open interval (0,1]. Heaps are now h : Loc —g, Val x Perm.

Composition of heaps-with-permissions: heaps must agree
on their values where they overlap; then one simply adds
the permissions at overlapping locations.

We can then annotate points-to formulas with permissions,
eg. x 22 d. Note that

0.5 0.5
r=dxr—d=xz—d.

12/ 28

Fractional permission proofs

We can then write program proofs with the following structure.

{z — d}

{x(l)—'igd*acoi—')sd}

{22 d} {x 23 a}
foo(); bar();
{x%)d*A} {x%’d*B}

{x%’d*x%’d*A*B}

{r — dx Ax B}

13/ 28

Selected references

@ S. Ishtiaq and P. O’Hearn.
BI as an assertion language for mutable data structures. In Proc.
POPL-28, 2001.
(Winner of Most Influential POPL Paper 2001 award.)

@ J.C. Reynolds.
Separation logic: A logic for shared mutable data structures. In Proc.
LICS-17, 2002.

@ S. Brookes.
A semantics for concurrent separation logic. In Theor. Comp. Sci. 375,
2007.
(Joint winner of 2016 Godel Prize.)

@ R. Bornat, C. Calcagno, P. O’Hearn and M. Parkinson.
Permission accounting in separation logic. In Proc. POPL-32, 2005.

14/ 28

Part 11

Logical problems in SL verification

15/ 28

A feast of fragments

® The difficulty of logical problems associated with
verification is heavily influenced by the precise choice of
assertion language.

® The main vectors influencing complexity include:
® Propositional structure; presence of A, —, = and — (adjoint
of) greatly complicates matters.

® Inductively defined predicates, needed to capture heap data
structures.

® Arithmetic in assertions, sometimes needed to capture data
constraints or to account for pointer arithmetic in programs.

® Quantifiers; alternation increases complexity as usual.

16/ 28

Symbolic heaps

A widely-used restricted form of SL formulas.

Terms ¢ are expressions built from variables z,y, z ... and
function / constant symbols.

Pure formulas 7, spatial formulas F' and symbolic heaps >:

n= t=t|t#t|...|TAT
2= emp|x—t|Pt|FxF
n= IX.m:F|YXVE

M T
[

(where P a predicate symbol, t a tuple of terms).

The predicate symbols might be hard-coded, or else
user-defined (possibly with restrictions).

17/ 28

Model checking

® Model checking problem: given formula A and state (s, h),
decide whether s, h = A.

® Use case: in dynamic verification. Namely,
® start with an assertion-annotated program;

® generate concrete memory states satisfying the precondition;

® run program and dynamically check current memory states
against assertions (model checking!).

18/ 28

Results on model checking

For symbolic heaps with user-defined predicates,
complexity ranges from PTIME to EXPTIME depending on
definition restrictions.

@ J. Brotherston, N. Gorogiannis, M. Kanovich and R. Rowe”,
Model checking for symbolic-heap separation logic with inductive
predicates. In Proc. POPL-43, 2016.

Status unknown (AFAIK) for larger fragments.

19/ 28

Satisfiability

e Satisfiability problem: given formula A, decide whether
there is a state (s,h) with s,h = A.

e Use cases: speeding up static verification in two ways,

1. assertions are often large disjunctions, and any unsatisfiable
disjunct can be eliminated (A V false = A);

2. because any Hoare triple of the form {false} C' {Q} is valid,

proof search can be terminated as soon as one generates an
unsatisfiable assertion.

20/ 28

Results on satisfiability

® For symbolic heaps with user-defined predicates,
complexity is EXPTIME-complete but can become easier
(PTIME) depending on definition restrictions.
@ J. Brotherston, C. Fuhs, N. Gorogiannis and J. Navarro Pérez”,

A decision procedure for satisfiability in separation logic with
inductive predicates. In Proc. CSL-LICS, 2014.

e If one adds Presburger arithmetic then satisfiability
becomes undecidable (one can encode Peano arithmetic).
But in a restricted form of arithmetic, still decidable.

[} Q.L. Le, M. Tatsuta, J. Sun and W-N. Chin.

A decidable fragment in separation logic with inductive
predicates and arithmetic. In Proc. CAV, 2017.

21/ 28

Entailment

e Entailment problem: given formulas A and B, decide
whether A = B, meaning s,h = A = s,h = B.

e Use cases: in the course of verification proofs, e.g.

1. to transform an assertion into a form suitable for symbolic
execution, e.g.,

{tree(z)} deltree(x) {emp} =+ (nil, 2) *x tree(z) = tree(x)

{x > (nil, 2) * tree(z) } deltree(x) {emp}
2. to establish loop invariants, e.g. by
(BAPYC{Q} QEP
(BAP}C (P}
{P}while BdoC {-B A P}

22/ 28

(F)
(while)

Results on entailment

e For symbolic heaps with user-defined predicates, the
problem is undecidable (one can encode CFG inclusion).

[

T. Antonopoulos, N. Gorogiannis, C. Haase, M. Kanovich and J.
Ouaknine.

Foundations for decision problems in separation logic with
general inductive predicates. In Proc. FoSSaCS-17, 2014.

® Hard-coded linked lists, and arrays with arithmetic, are
decidable (PTIME resp. I1-hard):

B

B

B. Cook, C. Haase, J. Ouaknine, M. Parkinson and J. Worrell.
Tractable reasoning in a fragment of separation logic. In Proc.
CONCUR, 2011.

James Brotherston, Nikos Gorogiannis and Max Kanovich.
Biabduction (and related problems) in array separation logic. In
Proc. CADE-26, 2017.

23/ 28

More results on entailment

® Various classes of inductively defined predicates for which
entailment is decidable have also been identified:

@ Radu losif and Adam Rogalewicz and Jiri Simacek.
The tree width of separation logic with recursive definitions. In
Proc. CADE-24, 2013.

@ M. Tatsuta and D. Kimura.
Separation logic with monadic inductive definitions and implicit
existentials. In Proc. APLAS-13, 2015.

@ X. Gu, T. Chen and Z. Wu.
A complete decision procedure for linearly compositional
separation logic with data constraints. In Proc. IJCAR, 2016.

e For anything more complicated, one generally has to use
theorem proving.

24/ 28

Example: cyclic entailment proof

Define list segment predicate Is by

r=y:emp = lIszy
x— o' xls’y = lIszy

Cyclic proof of Isxy xIsy z F Isx z:
(1) Iszyxlsyzklszz

(Subst)
Isz’y*lsyzFlsz' z
(1d) — —(+/)
lsxzklszz r— T xlsz yxlsyzkFax—a xlsx’ 2z
(emp) — (1)
empxlszxzhlszz r—x xlsx yxlsyzblsxz
(Cases)

(1) Iszyxlsyztlszz

25/ 28

Biabduction

e Biabduction problem: given formulas A and B, find
formulas X and Y with

Ax X EB=xY , and A= X is satisfiable.

e Use case: Given specs {A'} C1 {A} and {B} Cy {B'}, we

can infer a spec for Cy; Cs:

AT G A (Frame)
{A+ X} CL{Ax X} {B}Cy{B'} .
{A'+X}C1{B*Y} {B+xY}Cy{B *Y} (. rame)

bl

{A"« X} C1;Co{B' xY}

26/ 28

Results on biabduction

® For lists, biabduction is harder than entailment
(NP-complete vs. PTIME):

@ N. Gorogiannis, M. Kanovich and P. O’Hearn.
The complexity of abduction for separated heap abstractions. In
Proc. SAS-18, 2011.

® For arrays with arithmetic, biabduction is easier than
entailment (NP-complete vs. I1-hard):
@ James Brotherston, Nikos Gorogiannis and Max Kanovich.

Biabduction (and related problems) in array separation logic. In
Proc. CADE-26, 2017.

® For other fragments, a theorem-proving approach is
generally taken (based on matching “missing” parts of
entailments). Note that solution quality is an important

consideration.
27/ 28

Thanks for listening!

	Introduction to separation logic
	Logical problems in SL verification

