Sub-classical Boolean bunched logics and the meaning of par

James Brotherston (1) and Jules Villard (2)

(1) University College London
(2) Imperial College London /Facebook

CSL, TU Berlin, Sept 2015

Bunched logics

- Bunched logics extend classical or intuitionistic logic with various multiplicative connectives.

Bunched logics

- Bunched logics extend classical or intuitionistic logic with various multiplicative connectives.
- Formulas can be understood as sets of "worlds" (often "resources") in an underlying model.

Bunched logics

- Bunched logics extend classical or intuitionistic logic with various multiplicative connectives.
- Formulas can be understood as sets of "worlds" (often "resources") in an underlying model.
- The multiplicatives generally denote composition operations on these worlds.

Bunched logics

- Bunched logics extend classical or intuitionistic logic with various multiplicative connectives.
- Formulas can be understood as sets of "worlds" (often "resources") in an underlying model.
- The multiplicatives generally denote composition operations on these worlds.
- Bunched logics are closely related to relevant logics and can also be seen as (special) modal logics.

BBI, proof-theoretically

Provability in the bunched logic BBI is given by extending classical logic by

$$
\begin{array}{rc}
A * B \vdash B * A & A *(B * C) \vdash(A * B) * C \\
A \vdash A * \top^{*} & A * \top^{*} \vdash A \\
\frac{A_{1} \vdash B_{1} \quad A_{2} \vdash B_{2}}{A_{1} * A_{2} \vdash B_{1} * B_{2}} & \frac{A * B \vdash C}{A \vdash B-C}
\end{array}
$$

(i.e., multiplicative intuitionistic linear logic.)

BBI, semantically (1)

A BBI-model is given by $\langle W, \circ, E\rangle$, where

- W is a set (of "worlds"),

BBI, semantically (1)

A BBI-model is given by $\langle W, \circ, E\rangle$, where

- W is a set (of "worlds"),
- $\circ: W \times W \rightarrow \mathcal{P}(W)$ is associative and commutative (we extend \circ pointwise to sets), and

BBI, semantically (1)

A BBI-model is given by $\langle W, \circ, E\rangle$, where

- W is a set (of "worlds"),
- $\circ: W \times W \rightarrow \mathcal{P}(W)$ is associative and commutative (we extend \circ pointwise to sets), and
- the set of units $E \subseteq W$ satisfies $w \circ E=\{w\}$ for all $w \in W$.

BBI, semantically (1)

A BBI-model is given by $\langle W, \circ, E\rangle$, where

- W is a set (of "worlds"),
- $\circ: W \times W \rightarrow \mathcal{P}(W)$ is associative and commutative (we extend \circ pointwise to sets), and
- the set of units $E \subseteq W$ satisfies $w \circ E=\{w\}$ for all $w \in W$.

Separation logic is based on heap models, e.g. $\langle H, \circ,\{e\}\rangle$, where

BBI, semantically (1)

A BBI-model is given by $\langle W, \circ, E\rangle$, where

- W is a set (of "worlds"),
- $\circ: W \times W \rightarrow \mathcal{P}(W)$ is associative and commutative (we extend \circ pointwise to sets), and
- the set of units $E \subseteq W$ satisfies $w \circ E=\{w\}$ for all $w \in W$.

Separation logic is based on heap models, e.g. $\langle H, \circ,\{e\}\rangle$, where

- H is the set of heaps, i.e. finite partial maps Loc $\rightharpoonup_{\text {fin }}$ Val,

BBI, semantically (1)

A BBI-model is given by $\langle W, \circ, E\rangle$, where

- W is a set (of "worlds"),
- $\circ: W \times W \rightarrow \mathcal{P}(W)$ is associative and commutative (we extend \circ pointwise to sets), and
- the set of units $E \subseteq W$ satisfies $w \circ E=\{w\}$ for all $w \in W$.

Separation logic is based on heap models, e.g. $\langle H, \circ,\{e\}\rangle$, where

- H is the set of heaps, i.e. finite partial maps Loc $\rightharpoonup_{\text {fin }}$ Val,
- \circ is union of domain-disjoint heaps, and

BBI, semantically (1)

A BBI-model is given by $\langle W, \circ, E\rangle$, where

- W is a set (of "worlds"),
- $\circ: W \times W \rightarrow \mathcal{P}(W)$ is associative and commutative (we extend \circ pointwise to sets), and
- the set of units $E \subseteq W$ satisfies $w \circ E=\{w\}$ for all $w \in W$.

Separation logic is based on heap models, e.g. $\langle H, \circ,\{e\}\rangle$, where

- H is the set of heaps, i.e. finite partial maps Loc $\rightharpoonup_{\text {fin }}$ Val,
- \circ is union of domain-disjoint heaps, and
- e is the empty map.

BBI, semantically (2)

Semantics of formula A w.r.t. BBI-model $M=\langle W, \circ, E\rangle$, valuation ρ, and $w \in W$ given by forcing relation $w \models \rho A$:

BBI, semantically (2)

Semantics of formula A w.r.t. BBI-model $M=\langle W, \circ, E\rangle$, valuation ρ, and $w \in W$ given by forcing relation $w \vDash{ }_{\rho} A$:

$$
w \models_{\rho} P \Leftrightarrow w \in \rho(P)
$$

BBI, semantically (2)

Semantics of formula A w.r.t. BBI-model $M=\langle W, \circ, E\rangle$, valuation ρ, and $w \in W$ given by forcing relation $w \models \rho A$:

$$
\begin{aligned}
w \models_{\rho} P & \Leftrightarrow w \in \rho(P) \\
\vdots & \\
w \models_{\rho} \mathrm{T}^{*} & \Leftrightarrow w \in E
\end{aligned}
$$

BBI, semantically (2)

Semantics of formula A w.r.t. BBI-model $M=\langle W, \circ, E\rangle$, valuation ρ, and $w \in W$ given by forcing relation $w \vDash{ }_{\rho} A$:

$$
\begin{aligned}
w \models_{\rho} P & \Leftrightarrow w \in \rho(P) \\
\vdots & \\
w \models_{\rho} \top^{*} & \Leftrightarrow w \in E \\
w \models_{\rho} A_{1} * A_{2} & \Leftrightarrow w \in w_{1} \circ w_{2} \text { and } w_{1} \models_{\rho} A_{1} \text { and } w_{2} \models_{\rho} A_{2}
\end{aligned}
$$

BBI, semantically (2)

Semantics of formula A w.r.t. BBI-model $M=\langle W, \circ, E\rangle$, valuation ρ, and $w \in W$ given by forcing relation $w \vDash{ }_{\rho} A$:

$$
\begin{aligned}
w \models{ }_{\rho} P & \Leftrightarrow w \in \rho(P) \\
\vdots & \\
w \models{ }_{\rho} \top^{*} & \Leftrightarrow w \in E \\
w \models{ }_{\rho} A_{1} * A_{2} \Leftrightarrow & \Leftrightarrow w \in w_{1} \circ w_{2} \text { and } w_{1} \models \rho A_{1} \text { and } w_{2} \models_{\rho} A_{2} \\
w \models \rho A_{1} * A_{2} \Leftrightarrow & \forall w^{\prime}, w^{\prime \prime} \in W . \text { if } w^{\prime \prime} \in w \circ w^{\prime} \text { and } w^{\prime} \models_{\rho} A_{1} \\
& \text { then } w^{\prime \prime} \models_{\rho} A_{2}
\end{aligned}
$$

BBI, semantically (2)

Semantics of formula A w.r.t. BBI-model $M=\langle W, \circ, E\rangle$, valuation ρ, and $w \in W$ given by forcing relation $w \vDash{ }_{\rho} A$:

$$
\begin{aligned}
w \models{ }_{\rho} P & \Leftrightarrow w \in \rho(P) \\
\vdots & \\
w \models{ }_{\rho} \top^{*} & \Leftrightarrow w \in E \\
w \models{ }_{\rho} A_{1} * A_{2} \Leftrightarrow & \Leftrightarrow w \in w_{1} \circ w_{2} \text { and } w_{1} \models \rho A_{1} \text { and } w_{2} \models_{\rho} A_{2} \\
w \models \rho A_{1} * A_{2} \Leftrightarrow & \forall w^{\prime}, w^{\prime \prime} \in W . \text { if } w^{\prime \prime} \in w \circ w^{\prime} \text { and } w^{\prime} \models_{\rho} A_{1} \\
& \text { then } w^{\prime \prime} \models_{\rho} A_{2}
\end{aligned}
$$

A is valid in M iff $w \models_{\rho} A$ for all ρ and $w \in W$.

BBI, semantically (2)

Semantics of formula A w.r.t. BBI-model $M=\langle W, \circ, E\rangle$, valuation ρ, and $w \in W$ given by forcing relation $w \vDash{ }_{\rho} A$:

$$
\begin{aligned}
w \models{ }_{\rho} P & \Leftrightarrow w \in \rho(P) \\
\vdots & \\
w \neq \rho \top^{*} & \Leftrightarrow w \in E \\
w \models{ }_{\rho} A_{1} * A_{2} \Leftrightarrow & \Leftrightarrow w \in w_{1} \circ w_{2} \text { and } w_{1} \models{ }_{\rho} A_{1} \text { and } w_{2} \models_{\rho} A_{2} \\
w \models \rho A_{1} * A_{2} \Leftrightarrow & \forall w^{\prime}, w^{\prime \prime} \in W . \text { if } w^{\prime \prime} \in w \circ w^{\prime} \text { and } w^{\prime} \models_{\rho} A_{1} \\
& \text { then } w^{\prime \prime} \models_{\rho} A_{2}
\end{aligned}
$$

A is valid in M iff $w \models_{\rho} A$ for all ρ and $w \in W$.
Theorem (Galmiche and Larchey-Wendling, 2006)
A formula is BBI-provable iff it is valid in all BBI-models.

Motivating question

- $*$ is understood as a resource-sensitive version of conjunction (with $*$ its adjoint implication).

Motivating question

- $*$ is understood as a resource-sensitive version of conjunction (with $*$ its adjoint implication).
- Might there be a resource-sensitive version of disjunction?

Motivating question

- $*$ is understood as a resource-sensitive version of conjunction (with $*$ its adjoint implication).
- Might there be a resource-sensitive version of disjunction?
- If so, then
- how should we interpret it?

Motivating question

- $*$ is understood as a resource-sensitive version of conjunction (with $*$ its adjoint implication).
- Might there be a resource-sensitive version of disjunction?
- If so, then
- how should we interpret it?
- what logical properties ought it to have? and

Motivating question

- $*$ is understood as a resource-sensitive version of conjunction (with $*$ its adjoint implication).
- Might there be a resource-sensitive version of disjunction?
- If so, then
- how should we interpret it?
- what logical properties ought it to have? and
- can we find natural models in which it makes sense?

First answer: Classical BI

- Classical BI (CBI) is classical logic plus classical multiplicative linear logic.

First answer: Classical BI

- Classical BI (CBI) is classical logic plus classical multiplicative linear logic.
- CBI-models are given by $\langle W, \circ, E, U\rangle$, where $\langle W, \circ, E\rangle$ is a BBI-model, and $U \subseteq W$ satisfies:

First answer: Classical BI

- Classical BI (CBI) is classical logic plus classical multiplicative linear logic.
- CBI-models are given by $\langle W, \circ, E, U\rangle$, where $\langle W, \circ, E\rangle$ is a BBI-model, and $U \subseteq W$ satisfies:

$$
\forall w \in W . \exists \text { unique }-w \in W .(w \circ-w) \cap U \neq \emptyset
$$

First answer: Classical BI

- Classical BI (CBI) is classical logic plus classical multiplicative linear logic.
- CBI-models are given by $\langle W, \circ, E, U\rangle$, where $\langle W, \circ, E\rangle$ is a BBI-model, and $U \subseteq W$ satisfies:

$$
\forall w \in W . \exists \text { unique }-w \in W .(w \circ-w) \cap U \neq \emptyset
$$

- That is, every world w has a unique "dual" $-w$. Models include Abelian groups, bit arrays, regular languages, etc.

First answer: Classical BI

- Classical BI (CBI) is classical logic plus classical multiplicative linear logic.
- CBI-models are given by $\langle W, \circ, E, U\rangle$, where $\langle W, \circ, E\rangle$ is a BBI-model, and $U \subseteq W$ satisfies:

$$
\forall w \in W . \exists \text { unique }-w \in W .(w \circ-w) \cap U \neq \emptyset
$$

- That is, every world w has a unique "dual" $-w$. Models include Abelian groups, bit arrays, regular languages, etc.
- Negation defined by $w \neq \sim A \Leftrightarrow-w \not \vDash A$.

First answer: Classical BI

- Classical BI (CBI) is classical logic plus classical multiplicative linear logic.
- CBI-models are given by $\langle W, \circ, E, U\rangle$, where $\langle W, \circ, E\rangle$ is a BBI-model, and $U \subseteq W$ satisfies:

$$
\forall w \in W . \exists \text { unique }-w \in W .(w \circ-w) \cap U \neq \emptyset
$$

- That is, every world w has a unique "dual" $-w$. Models include Abelian groups, bit arrays, regular languages, etc.
- Negation defined by $w \models \sim A \Leftrightarrow-w \not \vDash A$.
- We have $\sim \sim A \equiv A$ and $A *^{*} B=_{\text {def }} \sim(\sim A * \sim B)$.

CBI is (often) too strong

- Many BBI-models cannot be made into CBI-models, because worlds in those models don't have natural duals.

CBI is (often) too strong

- Many BBI-models cannot be made into CBI-models, because worlds in those models don't have natural duals.
- There is no $U \subseteq \mathbb{N}$ such that $\langle\mathbb{N},+,\{0\}, U\rangle$ is a CBI-model.

CBI is (often) too strong

- Many BBI-models cannot be made into CBI-models, because worlds in those models don't have natural duals.
- There is no $U \subseteq \mathbb{N}$ such that $\langle\mathbb{N},+,\{0\}, U\rangle$ is a CBI-model.
- Similarly, for the heap model, there is no $U \subseteq H$ such that $\langle H, \circ,\{e\}, U\rangle$ is a CBI-model.

BiBBI: Sub-classical BBI

We add multiplicative disjunction ${ }^{*}$, coimplication \downarrow^{*} and (maybe) falsum \perp^{*} to BBI via the following rules:

BiBBI: Sub-classical BBI

We add multiplicative disjunction \star^{*}, coimplication \downarrow^{*} and (maybe) falsum \perp^{*} to BBI via the following rules:

$$
\begin{array}{ccc}
\text { Monotonicity: } & \text { Residuation: } & \text { Commutativity: } \\
\frac{A_{1} \vdash B_{1} \quad A_{2} \vdash B_{2}}{A_{1} \vee_{2} A_{2} \vdash B_{1} \vee_{2}} & \stackrel{A \vdash B \star C}{\overline{A \vdash^{*} B \vdash C}} & A \star^{*} B \vdash B * A
\end{array}
$$

(Other principles are considered optional!)

Semantics of BiBBI

A basic BiBBI-model is given by $\langle W, \circ, E, \nabla, U\rangle$, where

- $\langle W, \circ, E\rangle$ is a BBI-model,

Semantics of BiBBI

A basic BiBBI-model is given by $\langle W, \circ, E, \nabla, U\rangle$, where

- $\langle W, \circ, E\rangle$ is a BBI-model,
- $\nabla: W \times W \rightarrow \mathcal{P}(W)$ (extended pointwise to sets), and

Semantics of BiBBI

A basic BiBBI-model is given by $\langle W, \circ, E, \nabla, U\rangle$, where

- $\langle W, \circ, E\rangle$ is a BBI-model,
- $\nabla: W \times W \rightarrow \mathcal{P}(W)$ (extended pointwise to sets), and
- $U \subseteq W$.

Semantics of BiBBI

A basic BiBBI-model is given by $\langle W, \circ, E, \nabla, U\rangle$, where

- $\langle W, \circ, E\rangle$ is a BBI-model,
- $\nabla: W \times W \rightarrow \mathcal{P}(W)$ (extended pointwise to sets), and
- $U \subseteq W$.

Forcing relation for new connectives:

$$
\begin{aligned}
w \models_{\rho} A * B \Leftrightarrow & \forall w_{1}, w_{2} \in W . w \in w_{1} \nabla w_{2} \text { implies } \\
& w_{1}=_{\rho} A \text { or } w_{2} \models_{\rho} B
\end{aligned}
$$

Semantics of BiBBI

A basic BiBBI-model is given by $\langle W, \circ, E, \nabla, U\rangle$, where

- $\langle W, \circ, E\rangle$ is a BBI-model,
- $\nabla: W \times W \rightarrow \mathcal{P}(W)$ (extended pointwise to sets), and
- $U \subseteq W$.

Forcing relation for new connectives:

$$
\begin{aligned}
w \not \models_{\rho} A \vee^{*} B \Leftrightarrow & \forall w_{1}, w_{2} \in W \cdot w \in w_{1} \nabla w_{2} \text { implies } \\
& w_{1} \models_{\rho} A \text { or } w_{2} \models_{\rho} B \\
w \models{ }_{\rho} A \vdash^{*} B \Leftrightarrow & w^{\prime \prime} \in w^{\prime} \nabla w \text { and } w^{\prime \prime} \models_{\rho} A \text { and } w^{\prime} \not \vDash_{\rho} B
\end{aligned}
$$

Semantics of BiBBI

A basic BiBBI-model is given by $\langle W, \circ, E, \nabla, U\rangle$, where

- $\langle W, \circ, E\rangle$ is a BBI-model,
- $\nabla: W \times W \rightarrow \mathcal{P}(W)$ (extended pointwise to sets), and
- $U \subseteq W$.

Forcing relation for new connectives:

$$
\begin{aligned}
w \models \models_{\rho} A * B \Leftrightarrow & \forall w_{1}, w_{2} \in W \cdot w \in w_{1} \nabla w_{2} \text { implies } \\
& w_{1} \models_{\rho} A \text { or } w_{2} \models_{\rho} B \\
w \models_{\rho} A \wp^{*} B \Leftrightarrow & w^{\prime \prime} \in w^{\prime} \nabla w \text { and } w^{\prime \prime} \models_{\rho} A \text { and } w^{\prime} \not \models_{\rho} B \\
w \models_{\rho} \perp^{*} \Leftrightarrow & w \notin U
\end{aligned}
$$

This is compatible with CBI interpretation of these connectives.

Bells and whistles

Principle	Axiom	Model condition
Associativity	$A *(B * C) \vdash(A * B) * C$	$w_{1} \nabla\left(w_{2} \nabla w_{3}\right)=\left(w_{1} \nabla w_{2}\right) \nabla w_{3}$
Unit expansion	$A \vdash A * \perp^{*}$	$w \nabla U \subseteq\{w\}$
Unit contraction	$A * \perp^{*} \vdash A$	$w \in w \nabla U$
Contraction	$A * A \vdash A$	$w \in w \nabla w$
Weak distribution	$A *(B * C) \vdash(A * B) * C$	$\left(x_{1} \circ x_{2}\right) \cap\left(y_{1} \nabla y_{2}\right) \neq \emptyset$ implies $\exists w \cdot y_{1} \in x_{1} \circ w$ and $x_{2} \in w \nabla y_{2}$ Classicality
	$\sim \sim A \vdash A$	$\exists!-w .(w \circ-w) \cap U \neq \emptyset$

Theorem

Each axiom defines the corresponding model condition.

Some technical results

For any collection \mathcal{A} of axioms from our table, we have:

Some technical results

For any collection \mathcal{A} of axioms from our table, we have:
Theorem
A BiBBI-formula is provable in $\mathrm{BiBBI}+\mathcal{A}$ iff it is valid in the corresponding subclass of basic BiBBI-models.

Some technical results

For any collection \mathcal{A} of axioms from our table, we have:
Theorem
A BiBBI-formula is provable in $\mathrm{BiBBI}+\mathcal{A}$ iff it is valid in the corresponding subclass of basic BiBBI-models.
(Completeness is by embedding $\mathrm{BiBBI}+\mathcal{A}$ into a Sahlqvist fragment of modal logic.)

Some technical results

For any collection \mathcal{A} of axioms from our table, we have:
Theorem
A BiBBI-formula is provable in $\mathrm{BiBBI}+\mathcal{A}$ iff it is valid in the corresponding subclass of basic BiBBI-models.
(Completeness is by embedding $\mathrm{BiBBI}+\mathcal{A}$ into a Sahlqvist fragment of modal logic.)

Theorem
There is a display calculus proof system for $\mathrm{BiBBI}+\mathcal{A}$ that is both complete and cut-eliminating.

Weak distribution principle

- The most interesting versions of BiBBI are those satisfying weak distribution:

$$
A *(B \stackrel{*}{*} C) \vdash(A * B) \vee^{*} C
$$

which is a consequence of De Morgan equivalences (so holds in CBI), but not vice versa

Weak distribution principle

- The most interesting versions of BiBBI are those satisfying weak distribution:
which is a consequence of De Morgan equivalences (so holds in CBI), but not vice versa
- At the model level, this corresponds to:

$$
\left(x_{1} \circ x_{2}\right) \cap\left(y_{1} \nabla y_{2}\right) \neq \emptyset \text { implies } \exists w . y_{1} \in x_{1} \circ w \text { and } x_{2} \in w \nabla y_{2}
$$

Weak distribution principle

- The most interesting versions of BiBBI are those satisfying weak distribution:

$$
A *\left(B *{ }^{*} C\right) \vdash(A * B) * C
$$

which is a consequence of De Morgan equivalences (so holds in CBI), but not vice versa

- At the model level, this corresponds to:

$$
\left(x_{1} \circ x_{2}\right) \cap\left(y_{1} \nabla y_{2}\right) \neq \emptyset \text { implies } \exists w . y_{1} \in x_{1} \circ w \text { and } x_{2} \in w \nabla y_{2}
$$

- If \perp^{*} is a unit for $\stackrel{*}{*}^{*}$, we obtain the disjunctive syllogism: $A *(\sim A * B) \vdash B$.

Heap intersection

In the heap model, we can obtain a weak-distributive ∇ via at least two kinds of heap intersection:

Heap intersection

In the heap model, we can obtain a weak-distributive ∇ via at least two kinds of heap intersection:

Definition
Define $h \nabla h^{\prime}$ to be the intersection of (partial functions) h and h^{\prime} if $h(\ell)=h^{\prime}(\ell)$ for all $\ell \in \operatorname{dom}(h) \cap \operatorname{dom}\left(h^{\prime}\right)$, and undefined otherwise.

Heap intersection

In the heap model, we can obtain a weak-distributive ∇ via at least two kinds of heap intersection:

Definition
Define $h \nabla h^{\prime}$ to be the intersection of (partial functions) h and h^{\prime} if $h(\ell)=h^{\prime}(\ell)$ for all $\ell \in \operatorname{dom}(h) \cap \operatorname{dom}\left(h^{\prime}\right)$, and undefined otherwise.

Definition
Define $h \nabla h^{\prime}$ to be the intersection of h and h^{\prime} only where $h(\ell)=h^{\prime}(\ell)$.

Heap intersection

In the heap model, we can obtain a weak-distributive ∇ via at least two kinds of heap intersection:

Definition
Define $h \nabla h^{\prime}$ to be the intersection of (partial functions) h and h^{\prime} if $h(\ell)=h^{\prime}(\ell)$ for all $\ell \in \operatorname{dom}(h) \cap \operatorname{dom}\left(h^{\prime}\right)$, and undefined otherwise.

Definition
Define $h \nabla h^{\prime}$ to be the intersection of h and h^{\prime} only where $h(\ell)=h^{\prime}(\ell)$.

The second is associative, but not the first. Neither intersection has a unit!

Future work

- The paper has quite a bit more about constructing models of different fragments of BiBBI.

Future work

- The paper has quite a bit more about constructing models of different fragments of BiBBI.
- Better (non)conservativity results for various fragments

Future work

- The paper has quite a bit more about constructing models of different fragments of BiBBI.
- Better (non)conservativity results for various fragments
- Explore further the space of models

Future work

- The paper has quite a bit more about constructing models of different fragments of BiBBI.
- Better (non)conservativity results for various fragments
- Explore further the space of models
- Applications of $\uplus^{*}, \downarrow^{*}$ etc., in program analysis?

Future work

- The paper has quite a bit more about constructing models of different fragments of BiBBI.
- Better (non)conservativity results for various fragments
- Explore further the space of models
- Applications of $\uplus^{*}, \backslash^{*}$ etc., in program analysis?

Thanks for listening!

