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Bunched logics

• Bunched logics extend classical or intuitionistic logic with
various multiplicative connectives.

• Formulas can be understood as sets of “worlds” (often
“resources”) in an underlying model.

• The multiplicatives generally denote composition
operations on these worlds.

• Bunched logics are closely related to relevant logics and can
also be seen as (special) modal logics.
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BBI, proof-theoretically

Provability in the bunched logic BBI is given by extending
classical logic by

A ∗B ` B ∗A A ∗ (B ∗ C) ` (A ∗B) ∗ C

A ` A ∗ >∗ A ∗ >∗ ` A

A1 ` B1 A2 ` B2

A1 ∗A2 ` B1 ∗B2

A ∗B ` C

A ` B —∗ C

A ` B —∗ C

A ∗B ` C

(i.e., multiplicative intuitionistic linear logic.)
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BBI, semantically (1)

A BBI-model is given by 〈W, ◦, E〉, where

• W is a set (of “worlds”),

• ◦ : W ×W → P(W ) is associative and commutative (we
extend ◦ pointwise to sets), and

• the set of units E ⊆W satisfies w ◦E = {w} for all w ∈W .

Separation logic is based on heap models, e.g. 〈H, ◦, {e}〉, where

• H is the set of heaps, i.e. finite partial maps Loc ⇀fin Val,

• ◦ is union of domain-disjoint heaps, and

• e is the empty map.
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BBI, semantically (2)

Semantics of formula A w.r.t. BBI-model M = 〈W, ◦, E〉,
valuation ρ, and w ∈W given by forcing relation w |=ρ A:

w |=ρ P ⇔ w ∈ ρ(P )
...

w |=ρ >∗ ⇔ w ∈ E
w |=ρ A1 ∗A2 ⇔ w ∈ w1 ◦ w2 and w1 |=ρ A1 and w2 |=ρ A2

w |=ρ A1 —∗ A2 ⇔ ∀w′, w′′ ∈W. if w′′ ∈ w ◦ w′ and w′ |=ρ A1

then w′′ |=ρ A2

A is valid in M iff w |=ρ A for all ρ and w ∈W .

Theorem (Galmiche and Larchey-Wendling, 2006)

A formula is BBI-provable iff it is valid in all BBI-models.
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Motivating question

• ∗ is understood as a resource-sensitive version of
conjunction (with —∗ its adjoint implication).

• Might there be a resource-sensitive version of disjunction?

• If so, then
• how should we interpret it?
• what logical properties ought it to have? and
• can we find natural models in which it makes sense?

6/ 15



Motivating question

• ∗ is understood as a resource-sensitive version of
conjunction (with —∗ its adjoint implication).

• Might there be a resource-sensitive version of disjunction?

• If so, then
• how should we interpret it?
• what logical properties ought it to have? and
• can we find natural models in which it makes sense?

6/ 15



Motivating question

• ∗ is understood as a resource-sensitive version of
conjunction (with —∗ its adjoint implication).

• Might there be a resource-sensitive version of disjunction?

• If so, then
• how should we interpret it?

• what logical properties ought it to have? and
• can we find natural models in which it makes sense?

6/ 15



Motivating question

• ∗ is understood as a resource-sensitive version of
conjunction (with —∗ its adjoint implication).

• Might there be a resource-sensitive version of disjunction?

• If so, then
• how should we interpret it?
• what logical properties ought it to have? and

• can we find natural models in which it makes sense?

6/ 15



Motivating question

• ∗ is understood as a resource-sensitive version of
conjunction (with —∗ its adjoint implication).

• Might there be a resource-sensitive version of disjunction?

• If so, then
• how should we interpret it?
• what logical properties ought it to have? and
• can we find natural models in which it makes sense?

6/ 15



First answer: Classical BI

• Classical BI (CBI) is classical logic plus classical
multiplicative linear logic.

• CBI-models are given by 〈W, ◦, E, U〉, where 〈W, ◦, E〉 is a
BBI-model, and U ⊆W satisfies:

∀w ∈W. ∃ unique −w ∈W. (w ◦ −w) ∩ U 6= ∅

• That is, every world w has a unique “dual” −w. Models
include Abelian groups, bit arrays, regular languages, etc.

• Negation defined by w |= ∼A⇔ −w 6|= A.

• We have ∼∼A ≡ A and A ∗∨ B =def ∼(∼A ∗ ∼B).
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CBI is (often) too strong

• Many BBI-models cannot be made into CBI-models,
because worlds in those models don’t have natural duals.

• There is no U ⊆ N such that 〈N,+, {0}, U〉 is a CBI-model.

• Similarly, for the heap model, there is no U ⊆ H such that
〈H, ◦, {e}, U〉 is a CBI-model.
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BiBBI: Sub-classical BBI

We add multiplicative disjunction ∗∨, coimplication ∗\ and
(maybe) falsum ⊥∗ to BBI via the following rules:

Monotonicity: Residuation: Commutativity:

A1 ` B1 A2 ` B2

A1
∗∨ A2 ` B1

∗∨ B2

A ` B ∗∨ C
=========
A ∗\ B ` C

A ∗∨ B ` B ∗∨ A

(Other principles are considered optional!)
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Semantics of BiBBI

A basic BiBBI-model is given by 〈W, ◦, E,O, U〉, where

• 〈W, ◦, E〉 is a BBI-model,

• O: W ×W → P(W ) (extended pointwise to sets), and

• U ⊆W .

Forcing relation for new connectives:

w |=ρ A
∗∨ B ⇔ ∀w1, w2 ∈W. w ∈ w1 O w2 implies

w1 |=ρ A or w2 |=ρ B
w |=ρ A

∗\ B ⇔ w′′ ∈ w′ O w and w′′ |=ρ A and w′ 6|=ρ B
w |=ρ ⊥∗ ⇔ w 6∈ U

This is compatible with CBI interpretation of these connectives.
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Bells and whistles

Principle Axiom Model condition

Associativity A ∗∨ (B ∗∨ C) ` (A ∗∨ B) ∗∨ C w1 O (w2 O w3) = (w1 O w2) O w3

Unit expansion A ` A ∗∨ ⊥∗ w O U ⊆ {w}

Unit contraction A ∗∨ ⊥∗ ` A w ∈ w O U

Contraction A ∗∨ A ` A w ∈ w O w

Weak distribution A ∗ (B ∗∨ C) ` (A ∗ B) ∗∨ C
(x1 ◦ x2) ∩ (y1 O y2) 6= ∅ implies
∃w. y1 ∈ x1 ◦ w and x2 ∈ w O y2

Classicality ∼∼A ` A ∃!−w. (w ◦ −w) ∩ U 6= ∅

Theorem
Each axiom defines the corresponding model condition.
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Some technical results

For any collection A of axioms from our table, we have:

Theorem
A BiBBI-formula is provable in BiBBI +A iff it is valid in the
corresponding subclass of basic BiBBI-models.

(Completeness is by embedding BiBBI +A into a Sahlqvist
fragment of modal logic.)

Theorem
There is a display calculus proof system for BiBBI +A that is
both complete and cut-eliminating.
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Weak distribution principle

• The most interesting versions of BiBBI are those satisfying
weak distribution:

A ∗ (B ∗∨ C) ` (A ∗B) ∗∨ C

which is a consequence of De Morgan equivalences (so
holds in CBI), but not vice versa

• At the model level, this corresponds to:

(x1 ◦ x2) ∩ (y1 O y2) 6= ∅ implies ∃w. y1 ∈ x1 ◦ w and x2 ∈ w O y2

• If ⊥∗ is a unit for ∗∨, we obtain the disjunctive syllogism:
A ∗ (∼A ∗∨ B) ` B.
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Heap intersection

In the heap model, we can obtain a weak-distributive O via at
least two kinds of heap intersection:

Definition

Define h O h′ to be the intersection of (partial functions) h and
h′ if h(`) = h′(`) for all ` ∈ dom(h) ∩ dom(h′), and undefined
otherwise.

Definition

Define h O h′ to be the intersection of h and h′ only where
h(`) = h′(`).

The second is associative, but not the first. Neither intersection
has a unit!
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Future work

• The paper has quite a bit more about constructing models
of different fragments of BiBBI.

• Better (non)conservativity results for various fragments

• Explore further the space of models

• Applications of ∗∨, ∗\ etc., in program analysis?

Thanks for listening!
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