
Model Checking for Symbolic-Heap Separation
Logic with Inductive Predicates

James Brotherston1 Nikos Gorogiannis2 Max Kanovich1

Reuben Rowe1

1UCL

2Middlesex University

Australian National University, Canberra, 9 December 2015

1/ 24

Model checking, in general

• Model checking is the problem of checking whether a
structure S satisfies, or is a model of, some formula A:
does S |= A?

• In computer science, S is typically a Kripke structure
representing a system or program, and A a formula of
modal or temporal logic.

• More generally, S could be any kind of mathematical
structure and A a formula describing such structures.

2/ 24

Model checking, in general

• Model checking is the problem of checking whether a
structure S satisfies, or is a model of, some formula A:
does S |= A?

• In computer science, S is typically a Kripke structure
representing a system or program, and A a formula of
modal or temporal logic.

• More generally, S could be any kind of mathematical
structure and A a formula describing such structures.

2/ 24

Model checking, in general

• Model checking is the problem of checking whether a
structure S satisfies, or is a model of, some formula A:
does S |= A?

• In computer science, S is typically a Kripke structure
representing a system or program, and A a formula of
modal or temporal logic.

• More generally, S could be any kind of mathematical
structure and A a formula describing such structures.

2/ 24

Model checking, in particular

• Our setting: separation logic, used as a formalism for
verifying imperative pointer programs.

• Typically, we do static analysis: given an annotated
program, prove that it meets its specification. There are
many such automatic analyses!

• When static analysis fails, we might try run-time
verification: run the program and check that it does not
violate the spec.

• In that case, we need to compare memory states S against
specs A: does S |= A?

• We focus on the popular symbolic-heap fragment of
separation logic, allowing arbitrary inductive predicates.

3/ 24

Model checking, in particular

• Our setting: separation logic, used as a formalism for
verifying imperative pointer programs.

• Typically, we do static analysis: given an annotated
program, prove that it meets its specification. There are
many such automatic analyses!

• When static analysis fails, we might try run-time
verification: run the program and check that it does not
violate the spec.

• In that case, we need to compare memory states S against
specs A: does S |= A?

• We focus on the popular symbolic-heap fragment of
separation logic, allowing arbitrary inductive predicates.

3/ 24

Model checking, in particular

• Our setting: separation logic, used as a formalism for
verifying imperative pointer programs.

• Typically, we do static analysis: given an annotated
program, prove that it meets its specification. There are
many such automatic analyses!

• When static analysis fails, we might try run-time
verification: run the program and check that it does not
violate the spec.

• In that case, we need to compare memory states S against
specs A: does S |= A?

• We focus on the popular symbolic-heap fragment of
separation logic, allowing arbitrary inductive predicates.

3/ 24

Model checking, in particular

• Our setting: separation logic, used as a formalism for
verifying imperative pointer programs.

• Typically, we do static analysis: given an annotated
program, prove that it meets its specification. There are
many such automatic analyses!

• When static analysis fails, we might try run-time
verification: run the program and check that it does not
violate the spec.

• In that case, we need to compare memory states S against
specs A: does S |= A?

• We focus on the popular symbolic-heap fragment of
separation logic, allowing arbitrary inductive predicates.

3/ 24

Model checking, in particular

• Our setting: separation logic, used as a formalism for
verifying imperative pointer programs.

• Typically, we do static analysis: given an annotated
program, prove that it meets its specification. There are
many such automatic analyses!

• When static analysis fails, we might try run-time
verification: run the program and check that it does not
violate the spec.

• In that case, we need to compare memory states S against
specs A: does S |= A?

• We focus on the popular symbolic-heap fragment of
separation logic, allowing arbitrary inductive predicates.

3/ 24

Symbolic-heap separation logic

• Terms t are either variables x, y, z . . . or the constant nil.

• Pure formulas π and spatial formulas F given by:

π ::= t = t | t 6= t F ::= emp | x 7→ t | P t | F ∗ F

(where P a predicate symbol, t a tuple of terms).

• 7→ (“points-to”) denotes an individual pointer to a record
in the heap.

• ∗ (“and separately”) demarks domain-disjoint heaps.

• Symbolic heaps A given by ∃x. Π : F , for Π a set of pure
formulas.

4/ 24

Symbolic-heap separation logic

• Terms t are either variables x, y, z . . . or the constant nil.

• Pure formulas π and spatial formulas F given by:

π ::= t = t | t 6= t F ::= emp | x 7→ t | P t | F ∗ F

(where P a predicate symbol, t a tuple of terms).

• 7→ (“points-to”) denotes an individual pointer to a record
in the heap.

• ∗ (“and separately”) demarks domain-disjoint heaps.

• Symbolic heaps A given by ∃x. Π : F , for Π a set of pure
formulas.

4/ 24

Symbolic-heap separation logic

• Terms t are either variables x, y, z . . . or the constant nil.

• Pure formulas π and spatial formulas F given by:

π ::= t = t | t 6= t F ::= emp | x 7→ t | P t | F ∗ F

(where P a predicate symbol, t a tuple of terms).

• 7→ (“points-to”) denotes an individual pointer to a record
in the heap.

• ∗ (“and separately”) demarks domain-disjoint heaps.

• Symbolic heaps A given by ∃x. Π : F , for Π a set of pure
formulas.

4/ 24

Symbolic-heap separation logic

• Terms t are either variables x, y, z . . . or the constant nil.

• Pure formulas π and spatial formulas F given by:

π ::= t = t | t 6= t F ::= emp | x 7→ t | P t | F ∗ F

(where P a predicate symbol, t a tuple of terms).

• 7→ (“points-to”) denotes an individual pointer to a record
in the heap.

• ∗ (“and separately”) demarks domain-disjoint heaps.

• Symbolic heaps A given by ∃x. Π : F , for Π a set of pure
formulas.

4/ 24

Symbolic-heap separation logic

• Terms t are either variables x, y, z . . . or the constant nil.

• Pure formulas π and spatial formulas F given by:

π ::= t = t | t 6= t F ::= emp | x 7→ t | P t | F ∗ F

(where P a predicate symbol, t a tuple of terms).

• 7→ (“points-to”) denotes an individual pointer to a record
in the heap.

• ∗ (“and separately”) demarks domain-disjoint heaps.

• Symbolic heaps A given by ∃x. Π : F , for Π a set of pure
formulas.

4/ 24

Inductive definitions in separation logic

• Inductive predicates defined by a set of rules of form:

A⇒ P t

(We typically suppress the existential quantifiers in A.)

• E.g., linked list segments with root x and tail element y:

emp ⇒ lsxx
x 6= nil : x 7→ z ∗ ls z y ⇒ lsx y

• E.g., binary trees with root x given by:

x = nil : emp ⇒ btx
x 6= nil : x 7→ (y, z) ∗ bt y ∗ bt z ⇒ btx

5/ 24

Inductive definitions in separation logic

• Inductive predicates defined by a set of rules of form:

A⇒ P t

(We typically suppress the existential quantifiers in A.)

• E.g., linked list segments with root x and tail element y:

emp ⇒ lsxx
x 6= nil : x 7→ z ∗ ls z y ⇒ lsx y

• E.g., binary trees with root x given by:

x = nil : emp ⇒ btx
x 6= nil : x 7→ (y, z) ∗ bt y ∗ bt z ⇒ btx

5/ 24

Inductive definitions in separation logic

• Inductive predicates defined by a set of rules of form:

A⇒ P t

(We typically suppress the existential quantifiers in A.)

• E.g., linked list segments with root x and tail element y:

emp ⇒ lsxx
x 6= nil : x 7→ z ∗ ls z y ⇒ lsx y

• E.g., binary trees with root x given by:

x = nil : emp ⇒ btx
x 6= nil : x 7→ (y, z) ∗ bt y ∗ bt z ⇒ btx

5/ 24

Semantics

• Models are stacks s : Var→ Val paired with heaps
h : Loc⇀fin Val. ◦ is union of domain-disjoint heaps; e is
the empty heap; nil is a non-allocable value.

• Forcing relation s, h |= A given by

s, h |=Φ t1 = (6=)t2 ⇔ s(t1) = (6=)s(t2)
s, h |=Φ emp ⇔ h = e

s, h |=Φ x 7→ t ⇔ dom(h) = {s(x)} and h(s(x)) = s(t)
s, h |=Φ Pit ⇔ (s(t), h) ∈ JPiKΦ

s, h |=Φ F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |=Φ F1

and s, h2 |=Φ F2

s, h |=Φ ∃z. Π : F ⇔ ∃v ∈ Val|z|. s[z 7→ v], h |=Φ π for all
π ∈ Π and s[z 7→ v], h |=Φ F

6/ 24

Semantics

• Models are stacks s : Var→ Val paired with heaps
h : Loc⇀fin Val. ◦ is union of domain-disjoint heaps; e is
the empty heap; nil is a non-allocable value.

• Forcing relation s, h |= A given by

s, h |=Φ t1 = (6=)t2 ⇔ s(t1) = (6=)s(t2)

s, h |=Φ emp ⇔ h = e
s, h |=Φ x 7→ t ⇔ dom(h) = {s(x)} and h(s(x)) = s(t)
s, h |=Φ Pit ⇔ (s(t), h) ∈ JPiKΦ

s, h |=Φ F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |=Φ F1

and s, h2 |=Φ F2

s, h |=Φ ∃z. Π : F ⇔ ∃v ∈ Val|z|. s[z 7→ v], h |=Φ π for all
π ∈ Π and s[z 7→ v], h |=Φ F

6/ 24

Semantics

• Models are stacks s : Var→ Val paired with heaps
h : Loc⇀fin Val. ◦ is union of domain-disjoint heaps; e is
the empty heap; nil is a non-allocable value.

• Forcing relation s, h |= A given by

s, h |=Φ t1 = (6=)t2 ⇔ s(t1) = (6=)s(t2)
s, h |=Φ emp ⇔ h = e

s, h |=Φ x 7→ t ⇔ dom(h) = {s(x)} and h(s(x)) = s(t)
s, h |=Φ Pit ⇔ (s(t), h) ∈ JPiKΦ

s, h |=Φ F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |=Φ F1

and s, h2 |=Φ F2

s, h |=Φ ∃z. Π : F ⇔ ∃v ∈ Val|z|. s[z 7→ v], h |=Φ π for all
π ∈ Π and s[z 7→ v], h |=Φ F

6/ 24

Semantics

• Models are stacks s : Var→ Val paired with heaps
h : Loc⇀fin Val. ◦ is union of domain-disjoint heaps; e is
the empty heap; nil is a non-allocable value.

• Forcing relation s, h |= A given by

s, h |=Φ t1 = (6=)t2 ⇔ s(t1) = (6=)s(t2)
s, h |=Φ emp ⇔ h = e

s, h |=Φ x 7→ t ⇔ dom(h) = {s(x)} and h(s(x)) = s(t)

s, h |=Φ Pit ⇔ (s(t), h) ∈ JPiKΦ

s, h |=Φ F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |=Φ F1

and s, h2 |=Φ F2

s, h |=Φ ∃z. Π : F ⇔ ∃v ∈ Val|z|. s[z 7→ v], h |=Φ π for all
π ∈ Π and s[z 7→ v], h |=Φ F

6/ 24

Semantics

• Models are stacks s : Var→ Val paired with heaps
h : Loc⇀fin Val. ◦ is union of domain-disjoint heaps; e is
the empty heap; nil is a non-allocable value.

• Forcing relation s, h |= A given by

s, h |=Φ t1 = (6=)t2 ⇔ s(t1) = (6=)s(t2)
s, h |=Φ emp ⇔ h = e

s, h |=Φ x 7→ t ⇔ dom(h) = {s(x)} and h(s(x)) = s(t)
s, h |=Φ Pit ⇔ (s(t), h) ∈ JPiKΦ

s, h |=Φ F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |=Φ F1

and s, h2 |=Φ F2

s, h |=Φ ∃z. Π : F ⇔ ∃v ∈ Val|z|. s[z 7→ v], h |=Φ π for all
π ∈ Π and s[z 7→ v], h |=Φ F

6/ 24

Semantics

• Models are stacks s : Var→ Val paired with heaps
h : Loc⇀fin Val. ◦ is union of domain-disjoint heaps; e is
the empty heap; nil is a non-allocable value.

• Forcing relation s, h |= A given by

s, h |=Φ t1 = (6=)t2 ⇔ s(t1) = (6=)s(t2)
s, h |=Φ emp ⇔ h = e

s, h |=Φ x 7→ t ⇔ dom(h) = {s(x)} and h(s(x)) = s(t)
s, h |=Φ Pit ⇔ (s(t), h) ∈ JPiKΦ

s, h |=Φ F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |=Φ F1

and s, h2 |=Φ F2

s, h |=Φ ∃z. Π : F ⇔ ∃v ∈ Val|z|. s[z 7→ v], h |=Φ π for all
π ∈ Π and s[z 7→ v], h |=Φ F

6/ 24

Semantics

• Models are stacks s : Var→ Val paired with heaps
h : Loc⇀fin Val. ◦ is union of domain-disjoint heaps; e is
the empty heap; nil is a non-allocable value.

• Forcing relation s, h |= A given by

s, h |=Φ t1 = (6=)t2 ⇔ s(t1) = (6=)s(t2)
s, h |=Φ emp ⇔ h = e

s, h |=Φ x 7→ t ⇔ dom(h) = {s(x)} and h(s(x)) = s(t)
s, h |=Φ Pit ⇔ (s(t), h) ∈ JPiKΦ

s, h |=Φ F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |=Φ F1

and s, h2 |=Φ F2

s, h |=Φ ∃z. Π : F ⇔ ∃v ∈ Val|z|. s[z 7→ v], h |=Φ π for all
π ∈ Π and s[z 7→ v], h |=Φ F

6/ 24

Semantics of inductive predicates

Given inductive rule set Φ, the semantics JP KΦ of inductive
predicate P is the least fixed point of a monotone operator
constructed from Φ.

E.g, recall linked list segments ls:

emp ⇒ lsxx
x 6= nil : x 7→ z ∗ ls z y ⇒ lsx y

The corresponding operator is:

ϕ(X) = {(h, (s(x), s(y)) | s, h |= x = y and s, h |= emp, or
s, h |= x 7→ z ∗Xzy}

where Xzy is interpreted as (z, y) ∈ X.

7/ 24

Semantics of inductive predicates

Given inductive rule set Φ, the semantics JP KΦ of inductive
predicate P is the least fixed point of a monotone operator
constructed from Φ.
E.g, recall linked list segments ls:

emp ⇒ lsxx
x 6= nil : x 7→ z ∗ ls z y ⇒ lsx y

The corresponding operator is:

ϕ(X) = {(h, (s(x), s(y)) | s, h |= x = y and s, h |= emp, or
s, h |= x 7→ z ∗Xzy}

where Xzy is interpreted as (z, y) ∈ X.

7/ 24

Semantics of inductive predicates

Given inductive rule set Φ, the semantics JP KΦ of inductive
predicate P is the least fixed point of a monotone operator
constructed from Φ.
E.g, recall linked list segments ls:

emp ⇒ lsxx
x 6= nil : x 7→ z ∗ ls z y ⇒ lsx y

The corresponding operator is:

ϕ(X) = {(h, (s(x), s(y)) | s, h |= x = y and s, h |= emp, or
s, h |= x 7→ z ∗Xzy}

where Xzy is interpreted as (z, y) ∈ X.

7/ 24

Problem statement

Model checking problem (MC). Given an inductive rule set
Φ, stack s, heap h and symbolic heap A, decide whether
s, h |=Φ A.

First, we can simplify the problem:

Restricted model checking problem (RMC). Given an
inductive rule set Φ, tuple of values a, heap h and predicate
symbol P , decide whether (a, h) ∈ JP KΦ.

Proposition

MC and RMC are (polynomially) equivalent.

8/ 24

Problem statement

Model checking problem (MC). Given an inductive rule set
Φ, stack s, heap h and symbolic heap A, decide whether
s, h |=Φ A.

First, we can simplify the problem:

Restricted model checking problem (RMC). Given an
inductive rule set Φ, tuple of values a, heap h and predicate
symbol P , decide whether (a, h) ∈ JP KΦ.

Proposition

MC and RMC are (polynomially) equivalent.

8/ 24

Problem statement

Model checking problem (MC). Given an inductive rule set
Φ, stack s, heap h and symbolic heap A, decide whether
s, h |=Φ A.

First, we can simplify the problem:

Restricted model checking problem (RMC). Given an
inductive rule set Φ, tuple of values a, heap h and predicate
symbol P , decide whether (a, h) ∈ JP KΦ.

Proposition

MC and RMC are (polynomially) equivalent.

8/ 24

Subtle problem 1

Naive idea: apply inductive rules backwards to Px until we
reach the empty heap.

But, suppose ((a, b), h) ∈ JP KΦ, and is generated by the rule

∃z. Pxz ∗ Pzy ⇒ Pxy.

So, for some c ∈ Val, we have both ((a, c), h1) ∈ JP KΦ and
((c, b), h2) ∈ JP KΦ, where h = h1 ◦ h2.

But we do not know that h1, h2 are smaller than h.

Moral: compute “sub-models” of (a, h) bottom-up until we
reach a fixed point.

9/ 24

Subtle problem 1

Naive idea: apply inductive rules backwards to Px until we
reach the empty heap.

But, suppose ((a, b), h) ∈ JP KΦ, and is generated by the rule

∃z. Pxz ∗ Pzy ⇒ Pxy.

So, for some c ∈ Val, we have both ((a, c), h1) ∈ JP KΦ and
((c, b), h2) ∈ JP KΦ, where h = h1 ◦ h2.

But we do not know that h1, h2 are smaller than h.

Moral: compute “sub-models” of (a, h) bottom-up until we
reach a fixed point.

9/ 24

Subtle problem 1

Naive idea: apply inductive rules backwards to Px until we
reach the empty heap.

But, suppose ((a, b), h) ∈ JP KΦ, and is generated by the rule

∃z. Pxz ∗ Pzy ⇒ Pxy.

So, for some c ∈ Val, we have both ((a, c), h1) ∈ JP KΦ and
((c, b), h2) ∈ JP KΦ, where h = h1 ◦ h2.

But we do not know that h1, h2 are smaller than h.

Moral: compute “sub-models” of (a, h) bottom-up until we
reach a fixed point.

9/ 24

Subtle problem 1

Naive idea: apply inductive rules backwards to Px until we
reach the empty heap.

But, suppose ((a, b), h) ∈ JP KΦ, and is generated by the rule

∃z. Pxz ∗ Pzy ⇒ Pxy.

So, for some c ∈ Val, we have both ((a, c), h1) ∈ JP KΦ and
((c, b), h2) ∈ JP KΦ, where h = h1 ◦ h2.

But we do not know that h1, h2 are smaller than h.

Moral: compute “sub-models” of (a, h) bottom-up until we
reach a fixed point.

9/ 24

Subtle problem 2

Suppose (a, e) ∈ JP KΦ is generated by the rule

∃z. z 6= x : Qxz ⇒ Px.

So, for some b ∈ Val, we have ((a, b), e) ∈ JQKΦ, where b 6= a and
b (trivially) does not appear in the empty heap e.

Thus we must allow our sub-models to mention fresh, or
“spare”, values not mentioned in a or h.

Fortunately, for any given set of definitions Φ, we can get away
with using only finitely many of these spare values.

10/ 24

Subtle problem 2

Suppose (a, e) ∈ JP KΦ is generated by the rule

∃z. z 6= x : Qxz ⇒ Px.

So, for some b ∈ Val, we have ((a, b), e) ∈ JQKΦ, where b 6= a and
b (trivially) does not appear in the empty heap e.

Thus we must allow our sub-models to mention fresh, or
“spare”, values not mentioned in a or h.

Fortunately, for any given set of definitions Φ, we can get away
with using only finitely many of these spare values.

10/ 24

Subtle problem 2

Suppose (a, e) ∈ JP KΦ is generated by the rule

∃z. z 6= x : Qxz ⇒ Px.

So, for some b ∈ Val, we have ((a, b), e) ∈ JQKΦ, where b 6= a and
b (trivially) does not appear in the empty heap e.

Thus we must allow our sub-models to mention fresh, or
“spare”, values not mentioned in a or h.

Fortunately, for any given set of definitions Φ, we can get away
with using only finitely many of these spare values.

10/ 24

Our model checking constructions

Given Φ, a and h, define

Good(a, h) = a ∪ {nil} ∪ all values in h.

Now let β be the maximum number of variables in any rule in
Φ, and define SpareΦ(a, h) to be a set of β fresh values.

Then, given Φ, values a and heap h we define a monotone
operator, similar to the one that constructs the semantics of
inductive predicates except that

• we only consider heaps h′ ⊆ h, and

• all values instantiating variables must be taken from
Good(a, h) ∪ SpareΦ(a, h).

Again, we take the least fixed point of the operator, and write
MC Φ

i (a, h) for the component corresponding to ith predicate.

11/ 24

Our model checking constructions

Given Φ, a and h, define

Good(a, h) = a ∪ {nil} ∪ all values in h.

Now let β be the maximum number of variables in any rule in
Φ, and define SpareΦ(a, h) to be a set of β fresh values.

Then, given Φ, values a and heap h we define a monotone
operator, similar to the one that constructs the semantics of
inductive predicates except that

• we only consider heaps h′ ⊆ h, and

• all values instantiating variables must be taken from
Good(a, h) ∪ SpareΦ(a, h).

Again, we take the least fixed point of the operator, and write
MC Φ

i (a, h) for the component corresponding to ith predicate.

11/ 24

Our model checking constructions

Given Φ, a and h, define

Good(a, h) = a ∪ {nil} ∪ all values in h.

Now let β be the maximum number of variables in any rule in
Φ, and define SpareΦ(a, h) to be a set of β fresh values.

Then, given Φ, values a and heap h we define a monotone
operator, similar to the one that constructs the semantics of
inductive predicates except that

• we only consider heaps h′ ⊆ h, and

• all values instantiating variables must be taken from
Good(a, h) ∪ SpareΦ(a, h).

Again, we take the least fixed point of the operator, and write
MC Φ

i (a, h) for the component corresponding to ith predicate.

11/ 24

Our model checking constructions

Given Φ, a and h, define

Good(a, h) = a ∪ {nil} ∪ all values in h.

Now let β be the maximum number of variables in any rule in
Φ, and define SpareΦ(a, h) to be a set of β fresh values.

Then, given Φ, values a and heap h we define a monotone
operator, similar to the one that constructs the semantics of
inductive predicates except that

• we only consider heaps h′ ⊆ h,

and

• all values instantiating variables must be taken from
Good(a, h) ∪ SpareΦ(a, h).

Again, we take the least fixed point of the operator, and write
MC Φ

i (a, h) for the component corresponding to ith predicate.

11/ 24

Our model checking constructions

Given Φ, a and h, define

Good(a, h) = a ∪ {nil} ∪ all values in h.

Now let β be the maximum number of variables in any rule in
Φ, and define SpareΦ(a, h) to be a set of β fresh values.

Then, given Φ, values a and heap h we define a monotone
operator, similar to the one that constructs the semantics of
inductive predicates except that

• we only consider heaps h′ ⊆ h, and

• all values instantiating variables must be taken from
Good(a, h) ∪ SpareΦ(a, h).

Again, we take the least fixed point of the operator, and write
MC Φ

i (a, h) for the component corresponding to ith predicate.

11/ 24

Our model checking constructions

Given Φ, a and h, define

Good(a, h) = a ∪ {nil} ∪ all values in h.

Now let β be the maximum number of variables in any rule in
Φ, and define SpareΦ(a, h) to be a set of β fresh values.

Then, given Φ, values a and heap h we define a monotone
operator, similar to the one that constructs the semantics of
inductive predicates except that

• we only consider heaps h′ ⊆ h, and

• all values instantiating variables must be taken from
Good(a, h) ∪ SpareΦ(a, h).

Again, we take the least fixed point of the operator, and write
MC Φ

i (a, h) for the component corresponding to ith predicate.
11/ 24

Correctness

Lemma
For each predicate Pi,

(a, h) ∈ JPiKΦ ⇔ (a, h) ∈ MC Φ
i (a, h) .

Soundness (⇐) is easy — MC Φ
i (a, h) only constructs models of

Pi by construction.

However, completeness (⇒) is hard: we have to show that (a, h)
must eventually turn up in MC Φ

i (a, h), even if its derivation
involves values outside Good(a, h) ∪ SpareΦ(a, h). Argument
involves considering certain value substitutions and recycling
values at each iteration of the fixed point construction.

12/ 24

Correctness

Lemma
For each predicate Pi,

(a, h) ∈ JPiKΦ ⇔ (a, h) ∈ MC Φ
i (a, h) .

Soundness (⇐) is easy — MC Φ
i (a, h) only constructs models of

Pi by construction.

However, completeness (⇒) is hard: we have to show that (a, h)
must eventually turn up in MC Φ

i (a, h), even if its derivation
involves values outside Good(a, h) ∪ SpareΦ(a, h). Argument
involves considering certain value substitutions and recycling
values at each iteration of the fixed point construction.

12/ 24

Correctness

Lemma
For each predicate Pi,

(a, h) ∈ JPiKΦ ⇔ (a, h) ∈ MC Φ
i (a, h) .

Soundness (⇐) is easy — MC Φ
i (a, h) only constructs models of

Pi by construction.

However, completeness (⇒) is hard: we have to show that (a, h)
must eventually turn up in MC Φ

i (a, h), even if its derivation
involves values outside Good(a, h) ∪ SpareΦ(a, h). Argument
involves considering certain value substitutions and recycling
values at each iteration of the fixed point construction.

12/ 24

Decidability

Theorem
The model checking problem MC is decidable.

Proof.

It suffices to show that RMC is decidable: does (a, h) ∈ JPiKΦ?

By our correctness lemma, this is equivalent to deciding
whether (a, h) ∈ MC Φ

i (a, h).

But clearly MC Φ
i (a, h) is a finite and computable set (because

we restrict to subheaps of h and a finite set of values), so this is
a decidable problem.

13/ 24

Decidability

Theorem
The model checking problem MC is decidable.

Proof.

It suffices to show that RMC is decidable: does (a, h) ∈ JPiKΦ?

By our correctness lemma, this is equivalent to deciding
whether (a, h) ∈ MC Φ

i (a, h).

But clearly MC Φ
i (a, h) is a finite and computable set (because

we restrict to subheaps of h and a finite set of values), so this is
a decidable problem.

13/ 24

Decidability

Theorem
The model checking problem MC is decidable.

Proof.

It suffices to show that RMC is decidable: does (a, h) ∈ JPiKΦ?

By our correctness lemma, this is equivalent to deciding
whether (a, h) ∈ MC Φ

i (a, h).

But clearly MC Φ
i (a, h) is a finite and computable set (because

we restrict to subheaps of h and a finite set of values), so this is
a decidable problem.

13/ 24

Decidability

Theorem
The model checking problem MC is decidable.

Proof.

It suffices to show that RMC is decidable: does (a, h) ∈ JPiKΦ?

By our correctness lemma, this is equivalent to deciding
whether (a, h) ∈ MC Φ

i (a, h).

But clearly MC Φ
i (a, h) is a finite and computable set (because

we restrict to subheaps of h and a finite set of values), so this is
a decidable problem.

13/ 24

Complexity of model checking

Theorem
MC is EXPTIME-complete.

Proof. Computing MC Φ
i (a, h) decides the problem and can be

seen to run in exponential time in the size of (a, h,Φ).
EXPTIME-hardness is by reduction from the satisfiability
problem for our logic, which is EXPTIME-hard [Brotherston et
al., CSL-LICS’14].

Proposition

When Φ and a are fixed, MC is still NP-hard in the size of h.

Proof. By reduction from the triangle partition problem: given
a graph G = (V,E) with |V | = 3q for some q > 0, decide
whether there is a partition of G into triangles.

14/ 24

Complexity of model checking

Theorem
MC is EXPTIME-complete.

Proof. Computing MC Φ
i (a, h) decides the problem and can be

seen to run in exponential time in the size of (a, h,Φ).

EXPTIME-hardness is by reduction from the satisfiability
problem for our logic, which is EXPTIME-hard [Brotherston et
al., CSL-LICS’14].

Proposition

When Φ and a are fixed, MC is still NP-hard in the size of h.

Proof. By reduction from the triangle partition problem: given
a graph G = (V,E) with |V | = 3q for some q > 0, decide
whether there is a partition of G into triangles.

14/ 24

Complexity of model checking

Theorem
MC is EXPTIME-complete.

Proof. Computing MC Φ
i (a, h) decides the problem and can be

seen to run in exponential time in the size of (a, h,Φ).
EXPTIME-hardness is by reduction from the satisfiability
problem for our logic, which is EXPTIME-hard [Brotherston et
al., CSL-LICS’14].

Proposition

When Φ and a are fixed, MC is still NP-hard in the size of h.

Proof. By reduction from the triangle partition problem: given
a graph G = (V,E) with |V | = 3q for some q > 0, decide
whether there is a partition of G into triangles.

14/ 24

Complexity of model checking

Theorem
MC is EXPTIME-complete.

Proof. Computing MC Φ
i (a, h) decides the problem and can be

seen to run in exponential time in the size of (a, h,Φ).
EXPTIME-hardness is by reduction from the satisfiability
problem for our logic, which is EXPTIME-hard [Brotherston et
al., CSL-LICS’14].

Proposition

When Φ and a are fixed, MC is still NP-hard in the size of h.

Proof. By reduction from the triangle partition problem: given
a graph G = (V,E) with |V | = 3q for some q > 0, decide
whether there is a partition of G into triangles.

14/ 24

Complexity of model checking

Theorem
MC is EXPTIME-complete.

Proof. Computing MC Φ
i (a, h) decides the problem and can be

seen to run in exponential time in the size of (a, h,Φ).
EXPTIME-hardness is by reduction from the satisfiability
problem for our logic, which is EXPTIME-hard [Brotherston et
al., CSL-LICS’14].

Proposition

When Φ and a are fixed, MC is still NP-hard in the size of h.

Proof. By reduction from the triangle partition problem: given
a graph G = (V,E) with |V | = 3q for some q > 0, decide
whether there is a partition of G into triangles.

14/ 24

MEM: Restriction to memory-consuming rules

An inductive rule set is memory-consuming (a.k.a. “in MEM”)

if every rule in it is of the form

Π : emp ⇒ Px,
or ∃z. Π : F ∗ x 7→ t ⇒ Px .

i.e., one or more pointers are “consumed” when recursing.

In practice, almost all predicate definitions in the literature fall
into MEM.

15/ 24

MEM: Restriction to memory-consuming rules

An inductive rule set is memory-consuming (a.k.a. “in MEM”)
if every rule in it is of the form

Π : emp ⇒ Px,
or ∃z. Π : F ∗ x 7→ t ⇒ Px .

i.e., one or more pointers are “consumed” when recursing.

In practice, almost all predicate definitions in the literature fall
into MEM.

15/ 24

MEM: Restriction to memory-consuming rules

An inductive rule set is memory-consuming (a.k.a. “in MEM”)
if every rule in it is of the form

Π : emp ⇒ Px,
or ∃z. Π : F ∗ x 7→ t ⇒ Px .

i.e., one or more pointers are “consumed” when recursing.

In practice, almost all predicate definitions in the literature fall
into MEM.

15/ 24

Model checking in the MEM fragment

Theorem
MC ∈ NP when all predicates are restricted to MEM.

Proof. Given predicate Pi, values a and heap h, we can search
backwards by applying inductive rules to (a, h) ∈ JPiK, noting
that we can confine the search space of values using our
previous observations. This search must terminate because at
least one heap cell is consumed with each recursion.

Theorem
MC is in fact NP-hard for MEM(thus NP-complete), even when
some further restrictions are added.

16/ 24

Model checking in the MEM fragment

Theorem
MC ∈ NP when all predicates are restricted to MEM.

Proof. Given predicate Pi, values a and heap h, we can search
backwards by applying inductive rules to (a, h) ∈ JPiK, noting
that we can confine the search space of values using our
previous observations. This search must terminate because at
least one heap cell is consumed with each recursion.

Theorem
MC is in fact NP-hard for MEM(thus NP-complete), even when
some further restrictions are added.

16/ 24

Model checking in the MEM fragment

Theorem
MC ∈ NP when all predicates are restricted to MEM.

Proof. Given predicate Pi, values a and heap h, we can search
backwards by applying inductive rules to (a, h) ∈ JPiK, noting
that we can confine the search space of values using our
previous observations. This search must terminate because at
least one heap cell is consumed with each recursion.

Theorem
MC is in fact NP-hard for MEM(thus NP-complete), even when
some further restrictions are added.

16/ 24

Restriction: constructively valued definitions (CV)

Informally, a rule set is constructively valued (“in CV”) if values
of existentially quantified variables are determined by a given
heap and values for variables in the head.

E.g., consider two list definitions

x = y : emp ⇒ ls(x, y)

∃z. x 7→ z ∗ ls(z, y) ⇒ ls(x, y)

x = y : emp ⇒ rls(x, y)

∃z. x 6= y : rls(x, z) ∗ z 7→ y ⇒ rls(x, y)

The existential z is constructively valued in ls, but not in rls.

17/ 24

Restriction: constructively valued definitions (CV)

Informally, a rule set is constructively valued (“in CV”) if values
of existentially quantified variables are determined by a given
heap and values for variables in the head.

E.g., consider two list definitions

x = y : emp ⇒ ls(x, y)

∃z. x 7→ z ∗ ls(z, y) ⇒ ls(x, y)

x = y : emp ⇒ rls(x, y)

∃z. x 6= y : rls(x, z) ∗ z 7→ y ⇒ rls(x, y)

The existential z is constructively valued in ls, but not in rls.

17/ 24

Restriction: deterministic definitions (DET)

A predicate Pi is said to be deterministic (in an inductive rule
set Φ) if for any two of its inductive rules and any stack, the
stack can satisfy the pure part of at most one of the rules.

Again, take the list definitions:

x = y : emp ⇒ ls(x, y)

∃z. x 7→ z ∗ ls(z, y) ⇒ ls(x, y)

x = y : emp ⇒ rls(x, y)

∃z. x 6= y : rls(x, z) ∗ z 7→ y ⇒ rls(x, y)

Here, rls is deterministic, but ls is not.

18/ 24

Restriction: deterministic definitions (DET)

A predicate Pi is said to be deterministic (in an inductive rule
set Φ) if for any two of its inductive rules and any stack, the
stack can satisfy the pure part of at most one of the rules.

Again, take the list definitions:

x = y : emp ⇒ ls(x, y)

∃z. x 7→ z ∗ ls(z, y) ⇒ ls(x, y)

x = y : emp ⇒ rls(x, y)

∃z. x 6= y : rls(x, z) ∗ z 7→ y ⇒ rls(x, y)

Here, rls is deterministic, but ls is not.

18/ 24

Results on CV + DET fragments

Theorem
MC is PTIME-solvable when all predicates are in
MEM + CV + DET.

Proof.

Like in the MEM case, we can search backwards for a derivation
of (a, h) ∈ JPiKΦ using inductive rules. MEM ensures
termination. DET ensures at most one inductive rule can apply,
and CV ensures it can be instantiated in only one way.

Theorem
If we remove any of the restrictions MEM, CV, DET, then the
complexity of MC becomes PSPACE-hard or worse!

19/ 24

Results on CV + DET fragments

Theorem
MC is PTIME-solvable when all predicates are in
MEM + CV + DET.

Proof.

Like in the MEM case, we can search backwards for a derivation
of (a, h) ∈ JPiKΦ using inductive rules. MEM ensures
termination. DET ensures at most one inductive rule can apply,
and CV ensures it can be instantiated in only one way.

Theorem
If we remove any of the restrictions MEM, CV, DET, then the
complexity of MC becomes PSPACE-hard or worse!

19/ 24

Results on CV + DET fragments

Theorem
MC is PTIME-solvable when all predicates are in
MEM + CV + DET.

Proof.

Like in the MEM case, we can search backwards for a derivation
of (a, h) ∈ JPiKΦ using inductive rules. MEM ensures
termination. DET ensures at most one inductive rule can apply,
and CV ensures it can be instantiated in only one way.

Theorem
If we remove any of the restrictions MEM, CV, DET, then the
complexity of MC becomes PSPACE-hard or worse!

19/ 24

Summary of problem complexities

CV DET CV+DET

non-MEM EXPTIME EXPTIME EXPTIME ≥ PSPACE

MEM NP NP NP PTIME

20/ 24

Implementation

• We have implemented the general EXPTIME algorithm and
the PTIME algorithm for MEM + CV + DET in OcaML.

• Tested on a range of annotated test programs, falling into
various fragments, taken from the Verifast tool (Jacobs et
al., Leuvens).

• Average-case performance is in line with predicted
complexity bounds.

• Thus, run-time verification is broadly practical for
predicates in MEM + CV + DET; more complicated
predicates can play a role in unit testing.

21/ 24

Implementation

• We have implemented the general EXPTIME algorithm and
the PTIME algorithm for MEM + CV + DET in OcaML.

• Tested on a range of annotated test programs, falling into
various fragments, taken from the Verifast tool (Jacobs et
al., Leuvens).

• Average-case performance is in line with predicted
complexity bounds.

• Thus, run-time verification is broadly practical for
predicates in MEM + CV + DET; more complicated
predicates can play a role in unit testing.

21/ 24

Implementation

• We have implemented the general EXPTIME algorithm and
the PTIME algorithm for MEM + CV + DET in OcaML.

• Tested on a range of annotated test programs, falling into
various fragments, taken from the Verifast tool (Jacobs et
al., Leuvens).

• Average-case performance is in line with predicted
complexity bounds.

• Thus, run-time verification is broadly practical for
predicates in MEM + CV + DET; more complicated
predicates can play a role in unit testing.

21/ 24

Implementation

• We have implemented the general EXPTIME algorithm and
the PTIME algorithm for MEM + CV + DET in OcaML.

• Tested on a range of annotated test programs, falling into
various fragments, taken from the Verifast tool (Jacobs et
al., Leuvens).

• Average-case performance is in line with predicted
complexity bounds.

• Thus, run-time verification is broadly practical for
predicates in MEM + CV + DET; more complicated
predicates can play a role in unit testing.

21/ 24

Conclusions

• Main contribution: for symbolic-heap separation logic with
arbitrary inductive predicates, the model checking problem
is decidable and indeed EXPTIME-complete.

• However, in practice most predicates are
memory-consuming, i.e. in MEM, in which case the
problem becomes NP-complete.

• If we additionally insist on constructively valued (CV) and
deterministic (DET) definitions (some are, some aren’t),
then the problem becomes PTIME-solvable.

22/ 24

Conclusions

• Main contribution: for symbolic-heap separation logic with
arbitrary inductive predicates, the model checking problem
is decidable and indeed EXPTIME-complete.

• However, in practice most predicates are
memory-consuming, i.e. in MEM, in which case the
problem becomes NP-complete.

• If we additionally insist on constructively valued (CV) and
deterministic (DET) definitions (some are, some aren’t),
then the problem becomes PTIME-solvable.

22/ 24

Conclusions

• Main contribution: for symbolic-heap separation logic with
arbitrary inductive predicates, the model checking problem
is decidable and indeed EXPTIME-complete.

• However, in practice most predicates are
memory-consuming, i.e. in MEM, in which case the
problem becomes NP-complete.

• If we additionally insist on constructively valued (CV) and
deterministic (DET) definitions (some are, some aren’t),
then the problem becomes PTIME-solvable.

22/ 24

Future work

• Investigate the complexity when we add classical
conjunction ∧ to the logic? (Satisfiability becomes
undecidable.)

• Investigate complexity of satisfiability for combinations of
MEM/CV/DET.

• Implementing the NP algorithm for the MEM fragment can
be expected to yield better implementation performance
(on MEM).

• Disprove entailments using model checking?

23/ 24

Future work

• Investigate the complexity when we add classical
conjunction ∧ to the logic? (Satisfiability becomes
undecidable.)

• Investigate complexity of satisfiability for combinations of
MEM/CV/DET.

• Implementing the NP algorithm for the MEM fragment can
be expected to yield better implementation performance
(on MEM).

• Disprove entailments using model checking?

23/ 24

Future work

• Investigate the complexity when we add classical
conjunction ∧ to the logic? (Satisfiability becomes
undecidable.)

• Investigate complexity of satisfiability for combinations of
MEM/CV/DET.

• Implementing the NP algorithm for the MEM fragment can
be expected to yield better implementation performance
(on MEM).

• Disprove entailments using model checking?

23/ 24

Future work

• Investigate the complexity when we add classical
conjunction ∧ to the logic? (Satisfiability becomes
undecidable.)

• Investigate complexity of satisfiability for combinations of
MEM/CV/DET.

• Implementing the NP algorithm for the MEM fragment can
be expected to yield better implementation performance
(on MEM).

• Disprove entailments using model checking?

23/ 24

Thanks for listening!

Try our techniques within the Cyclist distribution:

github.com/ngorogiannis/cyclist

Also available as an official POPL’16 Artefact.

24/ 24

