Model Checking for Symbolic-Heap Separation Logic with Inductive Predicates

James Brotherston¹

Nikos Gorogiannis² Max Kanovich¹ Reuben Rowe¹

 $^{1}\mathrm{UCL}$

²Middlesex University

Australian National University, Canberra, 9 December 2015

Model checking, in general

• Model checking is the problem of checking whether a structure S satisfies, or is a model of, some formula A: does $S \models A$?

Model checking, in general

- Model checking is the problem of checking whether a structure S satisfies, or is a model of, some formula A: does S ⊨ A?
- In computer science, S is typically a Kripke structure representing a system or program, and A a formula of modal or temporal logic.

Model checking, in general

- Model checking is the problem of checking whether a structure S satisfies, or is a model of, some formula A: does S ⊨ A?
- In computer science, S is typically a Kripke structure representing a system or program, and A a formula of modal or temporal logic.
- More generally, S could be any kind of mathematical structure and A a formula describing such structures.

• Our setting: separation logic, used as a formalism for verifying imperative pointer programs.

- Our setting: separation logic, used as a formalism for verifying imperative pointer programs.
- Typically, we do static analysis: given an annotated program, prove that it meets its specification. There are many such automatic analyses!

- Our setting: separation logic, used as a formalism for verifying imperative pointer programs.
- Typically, we do static analysis: given an annotated program, prove that it meets its specification. There are many such automatic analyses!
- When static analysis fails, we might try run-time verification: run the program and check that it does not violate the spec.

- Our setting: separation logic, used as a formalism for verifying imperative pointer programs.
- Typically, we do static analysis: given an annotated program, prove that it meets its specification. There are many such automatic analyses!
- When static analysis fails, we might try run-time verification: run the program and check that it does not violate the spec.
- In that case, we need to compare memory states S against specs A: does $S \models A$?

- Our setting: separation logic, used as a formalism for verifying imperative pointer programs.
- Typically, we do static analysis: given an annotated program, prove that it meets its specification. There are many such automatic analyses!
- When static analysis fails, we might try run-time verification: run the program and check that it does not violate the spec.
- In that case, we need to compare memory states S against specs A: does $S \models A$?
- We focus on the popular symbolic-heap fragment of separation logic, allowing arbitrary inductive predicates.

• Terms t are either variables $x, y, z \dots$ or the constant nil.

- Terms t are either variables $x, y, z \dots$ or the constant nil.
- Pure formulas π and spatial formulas F given by:

$$\pi ::= t = t \mid t \neq t \qquad F ::= \mathsf{emp} \mid x \mapsto \mathbf{t} \mid P\mathbf{t} \mid F \ast F$$

(where P a predicate symbol, \mathbf{t} a tuple of terms).

- Terms t are either variables $x, y, z \dots$ or the constant nil.
- Pure formulas π and spatial formulas F given by:

$$\pi ::= t = t \mid t \neq t \qquad F ::= \mathsf{emp} \mid x \mapsto \mathbf{t} \mid P\mathbf{t} \mid F \ast F$$

(where P a predicate symbol, \mathbf{t} a tuple of terms).

 → ("points-to") denotes an individual pointer to a record in the heap.

- Terms t are either variables $x, y, z \dots$ or the constant nil.
- Pure formulas π and spatial formulas F given by:

$$\pi ::= t = t \mid t \neq t \qquad F ::= \mathsf{emp} \mid x \mapsto \mathbf{t} \mid P\mathbf{t} \mid F \ast F$$

(where P a predicate symbol, \mathbf{t} a tuple of terms).

- → ("points-to") denotes an individual pointer to a record in the heap.
- * ("and separately") demarks domain-disjoint heaps.

- Terms t are either variables $x, y, z \dots$ or the constant nil.
- Pure formulas π and spatial formulas F given by:

$$\pi ::= t = t \mid t \neq t \qquad F ::= \mathsf{emp} \mid x \mapsto \mathbf{t} \mid P\mathbf{t} \mid F \ast F$$

(where P a predicate symbol, \mathbf{t} a tuple of terms).

- → ("points-to") denotes an individual pointer to a record in the heap.
- * ("and separately") demarks domain-disjoint heaps.
- Symbolic heaps A given by $\exists \mathbf{x}. \Pi : F$, for Π a set of pure formulas.

Inductive definitions in separation logic

• Inductive predicates defined by a set of rules of form:

 $A \Rightarrow P\mathbf{t}$

(We typically suppress the existential quantifiers in A.)

Inductive definitions in separation logic

• Inductive predicates defined by a set of rules of form:

$$A \Rightarrow P\mathbf{t}$$

(We typically suppress the existential quantifiers in A.)

• E.g., linked list segments with root x and tail element y: $emp \Rightarrow |s x x$ $x \neq nil : x \mapsto z * |s z y \Rightarrow |s x y$

Inductive definitions in separation logic

• Inductive predicates defined by a set of rules of form:

$$A \Rightarrow P\mathbf{t}$$

(We typically suppress the existential quantifiers in A.)

- E.g., linked list segments with root x and tail element y: $emp \Rightarrow ls x x$ $x \neq nil : x \mapsto z * ls z y \Rightarrow ls x y$
- E.g., binary trees with root x given by:

$$\begin{array}{rcl} x = \mathsf{nil}:\mathsf{emp} &\Rightarrow& \mathsf{bt}\, x\\ x \neq \mathsf{nil}: x \mapsto (y,z) * \mathsf{bt}\, y * \mathsf{bt}\, z &\Rightarrow& \mathsf{bt}\, x \end{array}$$

 Models are stacks s: Var → Val paired with heaps h: Loc →_{fin} Val. ∘ is union of domain-disjoint heaps; e is the empty heap; nil is a non-allocable value.

- Models are stacks s: Var → Val paired with heaps h: Loc →_{fin} Val. ∘ is union of domain-disjoint heaps; e is the empty heap; nil is a non-allocable value.
- Forcing relation $s, h \models A$ given by

 $s, h \models_{\Phi} t_1 = (\neq)t_2 \quad \Leftrightarrow \quad s(t_1) = (\neq)s(t_2)$

- Models are stacks s: Var → Val paired with heaps h: Loc →_{fin} Val. ∘ is union of domain-disjoint heaps; e is the empty heap; nil is a non-allocable value.
- Forcing relation $s, h \models A$ given by

 $\begin{array}{rcl} s,h\models_{\Phi}t_1=(\neq)t_2 &\Leftrightarrow & s(t_1)=(\neq)s(t_2)\\ s,h\models_{\Phi}\mathsf{emp} &\Leftrightarrow & h=e \end{array}$

- Models are stacks s: Var → Val paired with heaps h: Loc →_{fin} Val. ∘ is union of domain-disjoint heaps; e is the empty heap; nil is a non-allocable value.
- Forcing relation $s, h \models A$ given by

$$\begin{array}{rcl} s,h\models_{\Phi}t_1=(\neq)t_2&\Leftrightarrow&s(t_1)=(\neq)s(t_2)\\ s,h\models_{\Phi}\mathsf{emp}&\Leftrightarrow&h=e\\ s,h\models_{\Phi}x\mapsto\mathbf{t}&\Leftrightarrow&\mathrm{dom}(h)=\{s(x)\}\text{ and }h(s(x))=s(\mathbf{t})\end{array}$$

- Models are stacks s: Var → Val paired with heaps h: Loc →_{fin} Val. ∘ is union of domain-disjoint heaps; e is the empty heap; nil is a non-allocable value.
- Forcing relation $s, h \models A$ given by

$$\begin{array}{rcl} s,h\models_{\Phi}t_{1}=(\neq)t_{2}&\Leftrightarrow&s(t_{1})=(\neq)s(t_{2})\\ s,h\models_{\Phi}\mathsf{emp}&\Leftrightarrow&h=e\\ s,h\models_{\Phi}x\mapsto\mathbf{t}&\Leftrightarrow&\mathrm{dom}(h)=\{s(x)\}\text{ and }h(s(x))=s(\mathbf{t})\\ s,h\models_{\Phi}P_{i}\mathbf{t}&\Leftrightarrow&(s(\mathbf{t}),h)\in\llbracket P_{i}\rrbracket^{\Phi} \end{array}$$

- Models are stacks s: Var → Val paired with heaps h: Loc →_{fin} Val. ∘ is union of domain-disjoint heaps; e is the empty heap; nil is a non-allocable value.
- Forcing relation $s, h \models A$ given by

$$\begin{split} s,h &\models_{\Phi} t_1 = (\neq)t_2 \quad \Leftrightarrow \quad s(t_1) = (\neq)s(t_2) \\ s,h &\models_{\Phi} \mathsf{emp} \quad \Leftrightarrow \quad h = e \\ s,h &\models_{\Phi} x \mapsto \mathbf{t} \quad \Leftrightarrow \quad \mathrm{dom}(h) = \{s(x)\} \text{ and } h(s(x)) = s(\mathbf{t}) \\ s,h &\models_{\Phi} P_i \mathbf{t} \quad \Leftrightarrow \quad (s(\mathbf{t}),h) \in \llbracket P_i \rrbracket^{\Phi} \\ s,h &\models_{\Phi} F_1 * F_2 \quad \Leftrightarrow \quad \exists h_1, h_2. \ h = h_1 \circ h_2 \text{ and } s, h_1 \models_{\Phi} F_1 \\ & \text{and } s, h_2 \models_{\Phi} F_2 \end{split}$$

- Models are stacks s: Var → Val paired with heaps h: Loc →_{fin} Val. ∘ is union of domain-disjoint heaps; e is the empty heap; nil is a non-allocable value.
- Forcing relation $s, h \models A$ given by

$$\begin{split} s,h &\models_{\Phi} t_1 = (\neq)t_2 \quad \Leftrightarrow \quad s(t_1) = (\neq)s(t_2) \\ s,h &\models_{\Phi} \mathsf{emp} \quad \Leftrightarrow \quad h = e \\ s,h &\models_{\Phi} x \mapsto \mathbf{t} \quad \Leftrightarrow \quad \mathrm{dom}(h) = \{s(x)\} \text{ and } h(s(x)) = s(\mathbf{t}) \\ s,h &\models_{\Phi} P_i \mathbf{t} \quad \Leftrightarrow \quad (s(\mathbf{t}),h) \in \llbracket P_i \rrbracket^{\Phi} \\ s,h &\models_{\Phi} F_1 * F_2 \quad \Leftrightarrow \quad \exists h_1,h_2. \ h = h_1 \circ h_2 \text{ and } s,h_1 \models_{\Phi} F_1 \\ & \text{and } s,h_2 \models_{\Phi} F_2 \\ s,h &\models_{\Phi} \exists \mathbf{z}. \ \Pi : F \quad \Leftrightarrow \quad \exists \mathbf{v} \in \mathsf{Val}^{|\mathbf{z}|} . \ s[\mathbf{z} \mapsto \mathbf{v}], h \models_{\Phi} \pi \text{ for all} \\ \pi \in \Pi \text{ and } s[\mathbf{z} \mapsto \mathbf{v}], h \models_{\Phi} F \end{split}$$

Semantics of inductive predicates

Given inductive rule set Φ , the semantics $\llbracket P \rrbracket^{\Phi}$ of inductive predicate P is the least fixed point of a monotone operator constructed from Φ .

Semantics of inductive predicates

Given inductive rule set Φ , the semantics $\llbracket P \rrbracket^{\Phi}$ of inductive predicate P is the least fixed point of a monotone operator constructed from Φ .

E.g, recall linked list segments 1s:

$$\begin{array}{rcl} \mathsf{emp} & \Rightarrow & \mathsf{ls}\,x\,x\\ x \neq \mathsf{nil}: x \mapsto z * \mathsf{ls}\,z\,y & \Rightarrow & \mathsf{ls}\,x\,y \end{array}$$

Semantics of inductive predicates

Given inductive rule set Φ , the semantics $\llbracket P \rrbracket^{\Phi}$ of inductive predicate P is the least fixed point of a monotone operator constructed from Φ .

E.g, recall linked list segments 1s:

$$\begin{array}{rcl} \mathsf{emp} & \Rightarrow & \mathsf{ls}\,x\,x\\ x \neq \mathsf{nil}: x \mapsto z \ast \mathsf{ls}\,z\,y & \Rightarrow & \mathsf{ls}\,x\,y \end{array}$$

The corresponding operator is:

$$\begin{array}{lll} \varphi(X) &=& \{(h,(s(x),s(y)) \mid & s,h \models x=y \text{ and } s,h \models \mathsf{emp}, \text{ or } s,h \models x \mapsto z \ast Xzy\} \end{array}$$

where Xzy is interpreted as $(z, y) \in X$.

Problem statement

Model checking problem (MC). Given an inductive rule set Φ , stack s, heap h and symbolic heap A, decide whether $s, h \models_{\Phi} A$.

Problem statement

Model checking problem (MC). Given an inductive rule set Φ , stack s, heap h and symbolic heap A, decide whether $s, h \models_{\Phi} A$.

First, we can simplify the problem:

Restricted model checking problem (RMC). Given an inductive rule set Φ , tuple of values \mathbf{a} , heap h and predicate symbol P, decide whether $(\mathbf{a}, h) \in \llbracket P \rrbracket^{\Phi}$.

Problem statement

Model checking problem (MC). Given an inductive rule set Φ , stack s, heap h and symbolic heap A, decide whether $s, h \models_{\Phi} A$.

First, we can simplify the problem:

Restricted model checking problem (RMC). Given an inductive rule set Φ , tuple of values \mathbf{a} , heap h and predicate symbol P, decide whether $(\mathbf{a}, h) \in \llbracket P \rrbracket^{\Phi}$.

Proposition

MC and RMC are (polynomially) equivalent.

Naive idea: apply inductive rules backwards to $P\mathbf{x}$ until we reach the empty heap.

Naive idea: apply inductive rules backwards to $P\mathbf{x}$ until we reach the empty heap.

But, suppose $((a, b), h) \in \llbracket P \rrbracket^{\Phi}$, and is generated by the rule

 $\exists z. \ Pxz * Pzy \Rightarrow Pxy.$

So, for some $c \in \mathsf{Val}$, we have both $((a, c), h_1) \in \llbracket P \rrbracket^{\Phi}$ and $((c, b), h_2) \in \llbracket P \rrbracket^{\Phi}$, where $h = h_1 \circ h_2$.

Naive idea: apply inductive rules backwards to $P\mathbf{x}$ until we reach the empty heap.

But, suppose $((a, b), h) \in \llbracket P \rrbracket^{\Phi}$, and is generated by the rule

 $\exists z. \ Pxz * Pzy \Rightarrow Pxy.$

So, for some $c \in \mathsf{Val}$, we have both $((a, c), h_1) \in \llbracket P \rrbracket^{\Phi}$ and $((c, b), h_2) \in \llbracket P \rrbracket^{\Phi}$, where $h = h_1 \circ h_2$.

But we do *not* know that h_1 , h_2 are smaller than h.

Naive idea: apply inductive rules backwards to $P\mathbf{x}$ until we reach the empty heap.

But, suppose $((a, b), h) \in \llbracket P \rrbracket^{\Phi}$, and is generated by the rule

 $\exists z. \ Pxz * Pzy \Rightarrow Pxy.$

So, for some $c \in \mathsf{Val}$, we have both $((a, c), h_1) \in \llbracket P \rrbracket^{\Phi}$ and $((c, b), h_2) \in \llbracket P \rrbracket^{\Phi}$, where $h = h_1 \circ h_2$.

But we do *not* know that h_1 , h_2 are smaller than h.

Moral: compute "sub-models" of (\mathbf{a}, h) bottom-up until we reach a fixed point.

Suppose $(a, e) \in \llbracket P \rrbracket^{\Phi}$ is generated by the rule

$$\exists z. \ z \neq x : Qxz \Rightarrow Px.$$

So, for some $b \in Val$, we have $((a, b), e) \in \llbracket Q \rrbracket^{\Phi}$, where $b \neq a$ and b (trivially) does not appear in the empty heap e.

Suppose $(a, e) \in \llbracket P \rrbracket^{\Phi}$ is generated by the rule

$$\exists z. \ z \neq x : Qxz \Rightarrow Px.$$

So, for some $b \in Val$, we have $((a, b), e) \in \llbracket Q \rrbracket^{\Phi}$, where $b \neq a$ and b (trivially) does not appear in the empty heap e.

Thus we must allow our sub-models to mention fresh, or "spare", values not mentioned in \mathbf{a} or h.
Subtle problem 2

Suppose $(a, e) \in \llbracket P \rrbracket^{\Phi}$ is generated by the rule

$$\exists z. \ z \neq x : Qxz \Rightarrow Px.$$

So, for some $b \in Val$, we have $((a, b), e) \in \llbracket Q \rrbracket^{\Phi}$, where $b \neq a$ and b (trivially) does not appear in the empty heap e.

Thus we must allow our sub-models to mention fresh, or "spare", values not mentioned in \mathbf{a} or h.

Fortunately, for any given set of definitions Φ , we can get away with using only finitely many of these spare values.

Given Φ , **a** and *h*, define

 $Good(\mathbf{a}, h) = \mathbf{a} \cup \{nil\} \cup all values in h.$

Given Φ , **a** and *h*, define

 $Good(\mathbf{a}, h) = \mathbf{a} \cup \{nil\} \cup all values in h.$

Now let β be the maximum number of variables in any rule in Φ , and define $\text{Spare}_{\Phi}(\mathbf{a}, h)$ to be a set of β fresh values.

Given Φ , **a** and *h*, define

 $Good(\mathbf{a}, h) = \mathbf{a} \cup \{nil\} \cup all values in h.$

Now let β be the maximum number of variables in any rule in Φ , and define $\text{Spare}_{\Phi}(\mathbf{a}, h)$ to be a set of β fresh values.

Then, given Φ , values **a** and heap h we define a monotone operator, similar to the one that constructs the semantics of inductive predicates except that

Given Φ , **a** and *h*, define

 $Good(\mathbf{a}, h) = \mathbf{a} \cup \{nil\} \cup all values in h.$

Now let β be the maximum number of variables in any rule in Φ , and define $\text{Spare}_{\Phi}(\mathbf{a}, h)$ to be a set of β fresh values.

Then, given Φ , values **a** and heap h we define a monotone operator, similar to the one that constructs the semantics of inductive predicates except that

• we only consider heaps $h' \subseteq h$,

Given Φ , **a** and *h*, define

 $Good(\mathbf{a}, h) = \mathbf{a} \cup \{nil\} \cup all values in h.$

Now let β be the maximum number of variables in any rule in Φ , and define $\text{Spare}_{\Phi}(\mathbf{a}, h)$ to be a set of β fresh values.

Then, given Φ , values **a** and heap h we define a monotone operator, similar to the one that constructs the semantics of inductive predicates except that

- we only consider heaps $h' \subseteq h$, and
- all values instantiating variables must be taken from $Good(\mathbf{a}, h) \cup Spare_{\Phi}(\mathbf{a}, h)$.

Given Φ , **a** and *h*, define

 $Good(\mathbf{a}, h) = \mathbf{a} \cup \{nil\} \cup all values in h.$

Now let β be the maximum number of variables in any rule in Φ , and define $\text{Spare}_{\Phi}(\mathbf{a}, h)$ to be a set of β fresh values.

Then, given Φ , values **a** and heap h we define a monotone operator, similar to the one that constructs the semantics of inductive predicates except that

- we only consider heaps $h' \subseteq h$, and
- all values instantiating variables must be taken from $Good(\mathbf{a}, h) \cup Spare_{\Phi}(\mathbf{a}, h)$.

Again, we take the least fixed point of the operator, and write $MC_i^{\Phi}(\mathbf{a}, h)$ for the component corresponding to *i*th predicate.

Correctness

Lemma

For each predicate P_i ,

$$(\mathbf{a},h) \in \llbracket P_i \rrbracket^{\Phi} \iff (\mathbf{a},h) \in MC_i^{\Phi}(\mathbf{a},h)$$
.

Correctness

Lemma

For each predicate P_i ,

$$(\mathbf{a},h) \in \llbracket P_i \rrbracket^{\Phi} \iff (\mathbf{a},h) \in MC_i^{\Phi}(\mathbf{a},h)$$
.

Soundness (\Leftarrow) is easy — $MC_i^{\Phi}(\mathbf{a}, h)$ only constructs models of P_i by construction.

Correctness

Lemma

For each predicate P_i ,

$$(\mathbf{a},h) \in \llbracket P_i \rrbracket^{\Phi} \iff (\mathbf{a},h) \in MC_i^{\Phi}(\mathbf{a},h) .$$

Soundness (\Leftarrow) is easy $-MC_i^{\Phi}(\mathbf{a}, h)$ only constructs models of P_i by construction.

However, completeness (\Rightarrow) is hard: we have to show that (\mathbf{a}, h) must eventually turn up in $MC_i^{\Phi}(\mathbf{a}, h)$, even if its derivation involves values outside $\text{Good}(\mathbf{a}, h) \cup \text{Spare}_{\Phi}(\mathbf{a}, h)$. Argument involves considering certain value substitutions and recycling values at each iteration of the fixed point construction.

Theorem The model checking problem MC *is decidable*.

Theorem

The model checking problem MC is decidable.

Proof.

It suffices to show that RMC is decidable: does $(\mathbf{a}, h) \in \llbracket P_i \rrbracket^{\Phi}$?

Theorem

The model checking problem MC is decidable.

Proof.

It suffices to show that RMC is decidable: does $(\mathbf{a}, h) \in \llbracket P_i \rrbracket^{\Phi}$?

By our correctness lemma, this is equivalent to deciding whether $(\mathbf{a}, h) \in MC_i^{\Phi}(\mathbf{a}, h)$.

Theorem

The model checking problem MC is decidable.

Proof.

It suffices to show that RMC is decidable: does $(\mathbf{a}, h) \in \llbracket P_i \rrbracket^{\Phi}$?

By our correctness lemma, this is equivalent to deciding whether $(\mathbf{a}, h) \in MC_i^{\Phi}(\mathbf{a}, h)$.

But clearly $MC_i^{\Phi}(\mathbf{a}, h)$ is a finite and computable set (because we restrict to subheaps of h and a finite set of values), so this is a decidable problem.

Theorem MC *is* EXPTIME-*complete*.

Theorem MC *is* EXPTIME-*complete*.

Proof. Computing $MC_i^{\Phi}(\mathbf{a}, h)$ decides the problem and can be seen to run in exponential time in the size of (\mathbf{a}, h, Φ) .

Theorem

MC is EXPTIME-complete.

Proof. Computing $MC_i^{\Phi}(\mathbf{a}, h)$ decides the problem and can be seen to run in exponential time in the size of (\mathbf{a}, h, Φ) . EXPTIME-hardness is by reduction from the satisfiability problem for our logic, which is EXPTIME-hard [Brotherston et al., CSL-LICS'14].

Theorem

MC is EXPTIME-complete.

Proof. Computing $MC_i^{\Phi}(\mathbf{a}, h)$ decides the problem and can be seen to run in exponential time in the size of (\mathbf{a}, h, Φ) . EXPTIME-hardness is by reduction from the satisfiability problem for our logic, which is EXPTIME-hard [Brotherston et al., CSL-LICS'14].

Proposition

When Φ and \mathbf{a} are fixed, MC is still NP-hard in the size of h.

Theorem

MC is EXPTIME-complete.

Proof. Computing $MC_i^{\Phi}(\mathbf{a}, h)$ decides the problem and can be seen to run in exponential time in the size of (\mathbf{a}, h, Φ) . EXPTIME-hardness is by reduction from the satisfiability problem for our logic, which is EXPTIME-hard [Brotherston et al., CSL-LICS'14].

Proposition

When Φ and **a** are fixed, MC is still NP-hard in the size of h. *Proof.* By reduction from the triangle partition problem: given a graph G = (V, E) with |V| = 3q for some q > 0, decide whether there is a partition of G into triangles.

MEM: Restriction to memory-consuming rules

An inductive rule set is memory-consuming (a.k.a. "in MEM")

MEM: Restriction to memory-consuming rules

An inductive rule set is memory-consuming (a.k.a. "in MEM") if every rule in it is of the form

$$\Pi : \mathsf{emp} \quad \Rightarrow \ P\mathbf{x},$$

or $\exists \mathbf{z}. \ \Pi : F * x \mapsto \mathbf{t} \ \Rightarrow \ P\mathbf{x}$.

i.e., one or more pointers are "consumed" when recursing.

MEM: Restriction to memory-consuming rules

An inductive rule set is memory-consuming (a.k.a. "in MEM") if every rule in it is of the form

$$\Pi : \mathsf{emp} \quad \Rightarrow P\mathbf{x},$$

or $\exists \mathbf{z}. \ \Pi : F * x \mapsto \mathbf{t} \ \Rightarrow P\mathbf{x}$

i.e., one or more pointers are "consumed" when recursing.

In practice, almost all predicate definitions in the literature fall into MEM.

Model checking in the MEM fragment

Theorem $MC \in NP$ when all predicates are restricted to MEM.

Model checking in the MEM fragment

Theorem

 $MC \in NP$ when all predicates are restricted to MEM.

Proof. Given predicate P_i , values **a** and heap h, we can search backwards by applying inductive rules to $(\mathbf{a}, h) \in [\![P_i]\!]$, noting that we can confine the search space of values using our previous observations. This search must terminate because at least one heap cell is consumed with each recursion.

Model checking in the MEM fragment

Theorem

 $MC \in NP$ when all predicates are restricted to MEM.

Proof. Given predicate P_i , values **a** and heap h, we can search backwards by applying inductive rules to $(\mathbf{a}, h) \in [\![P_i]\!]$, noting that we can confine the search space of values using our previous observations. This search must terminate because at least one heap cell is consumed with each recursion.

Theorem

MC is in fact NP-hard for MEM(thus NP-complete), even when some further restrictions are added.

Restriction: constructively valued definitions (CV)

Informally, a rule set is constructively valued ("in CV") if values of existentially quantified variables are determined by a given heap and values for variables in the head.

Restriction: constructively valued definitions (CV)

Informally, a rule set is constructively valued ("in CV") if values of existentially quantified variables are determined by a given heap and values for variables in the head.

E.g., consider two list definitions

$$\begin{aligned} x &= y \colon \mathsf{emp} \ \Rightarrow \ ls(x, y) \\ \exists z. \ x \mapsto z \, * \, ls(z, y) \ \Rightarrow \ ls(x, y) \\ x &= y \colon \mathsf{emp} \ \Rightarrow \ rls(x, y) \\ \exists z. \ x \neq y \colon \ rls(x, z) \, * \, z \mapsto y \ \Rightarrow \ rls(x, y) \end{aligned}$$

The existential z is constructively valued in ls, but not in rls.

Restriction: deterministic definitions (DET)

A predicate P_i is said to be *deterministic* (in an inductive rule set Φ) if for any two of its inductive rules and any stack, the stack can satisfy the pure part of at most one of the rules.

Restriction: deterministic definitions (DET)

A predicate P_i is said to be *deterministic* (in an inductive rule set Φ) if for any two of its inductive rules and any stack, the stack can satisfy the pure part of at most one of the rules.

Again, take the list definitions:

F

$$\begin{aligned} x &= y \colon \mathsf{emp} \ \Rightarrow \ ls(x, y) \\ \exists z. \ x \mapsto z \, * \, ls(z, y) \ \Rightarrow \ ls(x, y) \\ x &= y \colon \mathsf{emp} \ \Rightarrow \ rls(x, y) \\ z. \ x &\neq y \colon \ rls(x, z) \, * \, z \mapsto y \ \Rightarrow \ rls(x, y) \end{aligned}$$

Here, rls is deterministic, but ls is not.

Results on CV + DET *fragments*

Theorem MC is PTIME-solvable when all predicates are in MEM + CV + DET.

Results on CV + DET *fragments*

Theorem

MC is PTIME-solvable when all predicates are in MEM + CV + DET.

Proof.

Like in the MEM case, we can search backwards for a derivation of $(\mathbf{a}, h) \in \llbracket P_i \rrbracket^{\Phi}$ using inductive rules. MEM ensures termination. DET ensures at most one inductive rule can apply, and CV ensures it can be instantiated in only one way.

Results on CV + DET *fragments*

Theorem

MC is PTIME-solvable when all predicates are in MEM + CV + DET.

Proof.

Like in the MEM case, we can search backwards for a derivation of $(\mathbf{a}, h) \in \llbracket P_i \rrbracket^{\Phi}$ using inductive rules. MEM ensures termination. DET ensures at most one inductive rule can apply, and CV ensures it can be instantiated in only one way.

Theorem

If we remove any of the restrictions MEM, CV, DET, then the complexity of MC becomes PSPACE-hard or worse!

Summary of problem complexities

		CV	DET	CV + DET
$\operatorname{non-MEM}$	EXPTIME	EXPTIME	EXPTIME	\geq PSPACE
MEM	NP	NP	NP	PTIME

$\ Implementation$

• We have implemented the general EXPTIME algorithm and the PTIME algorithm for MEM + CV + DET in OcaML.

Implementation

- We have implemented the general EXPTIME algorithm and the PTIME algorithm for MEM + CV + DET in OcaML.
- Tested on a range of annotated test programs, falling into various fragments, taken from the Verifast tool (Jacobs et al., Leuvens).

Implementation

- We have implemented the general EXPTIME algorithm and the PTIME algorithm for MEM + CV + DET in OcaML.
- Tested on a range of annotated test programs, falling into various fragments, taken from the Verifast tool (Jacobs et al., Leuvens).
- Average-case performance is in line with predicted complexity bounds.
Implementation

- We have implemented the general EXPTIME algorithm and the PTIME algorithm for MEM + CV + DET in OcaML.
- Tested on a range of annotated test programs, falling into various fragments, taken from the Verifast tool (Jacobs et al., Leuvens).
- Average-case performance is in line with predicted complexity bounds.
- Thus, run-time verification is broadly practical for predicates in MEM + CV + DET; more complicated predicates can play a role in unit testing.

Conclusions

• Main contribution: for symbolic-heap separation logic with arbitrary inductive predicates, the model checking problem is decidable and indeed EXPTIME-complete.

Conclusions

- Main contribution: for symbolic-heap separation logic with arbitrary inductive predicates, the model checking problem is decidable and indeed EXPTIME-complete.
- However, in practice most predicates are memory-consuming, i.e. in MEM, in which case the problem becomes NP-complete.

Conclusions

- Main contribution: for symbolic-heap separation logic with arbitrary inductive predicates, the model checking problem is decidable and indeed EXPTIME-complete.
- However, in practice most predicates are memory-consuming, i.e. in MEM, in which case the problem becomes NP-complete.
- If we additionally insist on constructively valued (CV) and deterministic (DET) definitions (some are, some aren't), then the problem becomes PTIME-solvable.

• Investigate the complexity when we add classical conjunction ∧ to the logic? (Satisfiability becomes undecidable.)

- Investigate the complexity when we add classical conjunction ∧ to the logic? (Satisfiability becomes undecidable.)
- Investigate complexity of satisfiability for combinations of MEM/CV/DET.

- Investigate the complexity when we add classical conjunction ∧ to the logic? (Satisfiability becomes undecidable.)
- Investigate complexity of satisfiability for combinations of MEM/CV/DET.
- Implementing the NP algorithm for the MEM fragment can be expected to yield better implementation performance (on MEM).

- Investigate the complexity when we add classical conjunction ∧ to the logic? (Satisfiability becomes undecidable.)
- Investigate complexity of satisfiability for combinations of MEM/CV/DET.
- Implementing the NP algorithm for the MEM fragment can be expected to yield better implementation performance (on MEM).
- Disprove entailments using model checking?

Thanks for listening!

Try our techniques within the Cyclist distribution: github.com/ngorogiannis/cyclist Also available as an official POPL'16 Artefact.