
An introduction to separation logic

James Brotherston

Programming Principles, Logic and Verification Group
Dept. of Computer Science

University College London, UK
J.Brotherston@ucl.ac.uk

Logic Summer School, ANU, 7 December 2015

1/ 19

Introduction

Verification of imperative programs is classically based on
Hoare triples:

{P}C {Q}

where C is a program and P,Q are assertions in some logical
language.

These are read, roughly speaking, as

for any state σ satisfying P , if C transforms state σ to
σ′, then σ′ satisfies Q.

(with some wriggle room allowing us to deal with faulting or
non-termination in various ways.)

2/ 19

Introduction

Verification of imperative programs is classically based on
Hoare triples:

{P}C {Q}

where C is a program and P,Q are assertions in some logical
language.

These are read, roughly speaking, as

for any state σ satisfying P , if C transforms state σ to
σ′, then σ′ satisfies Q.

(with some wriggle room allowing us to deal with faulting or
non-termination in various ways.)

2/ 19

Introduction

Verification of imperative programs is classically based on
Hoare triples:

{P}C {Q}

where C is a program and P,Q are assertions in some logical
language.

These are read, roughly speaking, as

for any state σ satisfying P , if C transforms state σ to
σ′, then σ′ satisfies Q.

(with some wriggle room allowing us to deal with faulting or
non-termination in various ways.)

2/ 19

Hoare-style verification

A Hoare-style program logic therefore relies on three main
components:

1. a language of programs, and an operational semantics
explaining how they transform states;

2. a language of logical assertions, and a semantics explaining
how to read them as true or false in a particular state;

3. a formal interpretation of Hoare triples, together with
(sound) proof rules for manipulating them.

We’ll look at these informally first, then introduce a little more
formal detail.

3/ 19

Hoare-style verification

A Hoare-style program logic therefore relies on three main
components:

1. a language of programs, and an operational semantics
explaining how they transform states;

2. a language of logical assertions, and a semantics explaining
how to read them as true or false in a particular state;

3. a formal interpretation of Hoare triples, together with
(sound) proof rules for manipulating them.

We’ll look at these informally first, then introduce a little more
formal detail.

3/ 19

Hoare-style verification

A Hoare-style program logic therefore relies on three main
components:

1. a language of programs, and an operational semantics
explaining how they transform states;

2. a language of logical assertions, and a semantics explaining
how to read them as true or false in a particular state;

3. a formal interpretation of Hoare triples, together with
(sound) proof rules for manipulating them.

We’ll look at these informally first, then introduce a little more
formal detail.

3/ 19

Hoare-style verification

A Hoare-style program logic therefore relies on three main
components:

1. a language of programs, and an operational semantics
explaining how they transform states;

2. a language of logical assertions, and a semantics explaining
how to read them as true or false in a particular state;

3. a formal interpretation of Hoare triples, together with
(sound) proof rules for manipulating them.

We’ll look at these informally first, then introduce a little more
formal detail.

3/ 19

Hoare-style verification

A Hoare-style program logic therefore relies on three main
components:

1. a language of programs, and an operational semantics
explaining how they transform states;

2. a language of logical assertions, and a semantics explaining
how to read them as true or false in a particular state;

3. a formal interpretation of Hoare triples, together with
(sound) proof rules for manipulating them.

We’ll look at these informally first, then introduce a little more
formal detail.

3/ 19

Programs, informally

We consider a standard while language with pointers, memory
(de)allocation and recursive procedures.

E.g.:

deltree(*x) {
if x=nil then return;

else {
l,r := x.left,x.right;

deltree(l);

deltree(r);

free(x);

}
}

4/ 19

Programs, informally

We consider a standard while language with pointers, memory
(de)allocation and recursive procedures.E.g.:

deltree(*x) {
if x=nil then return;

else {
l,r := x.left,x.right;

deltree(l);

deltree(r);

free(x);

}
}

4/ 19

Assertions, informally

Our assertion language lets us describe heap data structures
such as linked lists and trees.

E.g., binary trees with root pointer x can be defined by:

x = nil : emp ⇒ tree(x)
x 6= nil : x 7→ (y, z) ∗ tree(y) ∗ tree(z) ⇒ tree(x)

where

• emp denotes the empty heap;

• x 7→ (y, z) denotes a single pointer to a pair of data cells;

• ∗ means “and separately in memory”.

5/ 19

Assertions, informally

Our assertion language lets us describe heap data structures
such as linked lists and trees.

E.g., binary trees with root pointer x can be defined by:

x = nil : emp ⇒ tree(x)
x 6= nil : x 7→ (y, z) ∗ tree(y) ∗ tree(z) ⇒ tree(x)

where

• emp denotes the empty heap;

• x 7→ (y, z) denotes a single pointer to a pair of data cells;

• ∗ means “and separately in memory”.

5/ 19

Assertions, informally

Our assertion language lets us describe heap data structures
such as linked lists and trees.

E.g., binary trees with root pointer x can be defined by:

x = nil : emp ⇒ tree(x)
x 6= nil : x 7→ (y, z) ∗ tree(y) ∗ tree(z) ⇒ tree(x)

where

• emp denotes the empty heap;

• x 7→ (y, z) denotes a single pointer to a pair of data cells;

• ∗ means “and separately in memory”.

5/ 19

Assertions, informally

Our assertion language lets us describe heap data structures
such as linked lists and trees.

E.g., binary trees with root pointer x can be defined by:

x = nil : emp ⇒ tree(x)
x 6= nil : x 7→ (y, z) ∗ tree(y) ∗ tree(z) ⇒ tree(x)

where

• emp denotes the empty heap;

• x 7→ (y, z) denotes a single pointer to a pair of data cells;

• ∗ means “and separately in memory”.

5/ 19

Assertions, informally

Our assertion language lets us describe heap data structures
such as linked lists and trees.

E.g., binary trees with root pointer x can be defined by:

x = nil : emp ⇒ tree(x)
x 6= nil : x 7→ (y, z) ∗ tree(y) ∗ tree(z) ⇒ tree(x)

where

• emp denotes the empty heap;

• x 7→ (y, z) denotes a single pointer to a pair of data cells;

• ∗ means “and separately in memory”.

5/ 19

An example proof

{tree(x)}

deltree(*x) {
if x=nil then return;

{emp}

else {

{x 7→ (y, z) ∗ tree(y) ∗ tree(z)}

l,r := x.left,x.right;

{x 7→ (l, r) ∗ tree(l) ∗ tree(r)}

deltree(l);

{x 7→ (l, r) ∗ emp ∗ tree(r)}

deltree(r);

{x 7→ (l, r) ∗ emp ∗ emp}

free(x);

{emp ∗ emp ∗ emp}

}

{emp}

}

{emp}

6/ 19

An example proof

{tree(x)}
deltree(*x) {

if x=nil then return;

{emp}

else {

{x 7→ (y, z) ∗ tree(y) ∗ tree(z)}

l,r := x.left,x.right;

{x 7→ (l, r) ∗ tree(l) ∗ tree(r)}

deltree(l);

{x 7→ (l, r) ∗ emp ∗ tree(r)}

deltree(r);

{x 7→ (l, r) ∗ emp ∗ emp}

free(x);

{emp ∗ emp ∗ emp}

}

{emp}

} {emp}
6/ 19

An example proof

{tree(x)}
deltree(*x) {

if x=nil then return; {emp}
else {

{x 7→ (y, z) ∗ tree(y) ∗ tree(z)}

l,r := x.left,x.right;

{x 7→ (l, r) ∗ tree(l) ∗ tree(r)}

deltree(l);

{x 7→ (l, r) ∗ emp ∗ tree(r)}

deltree(r);

{x 7→ (l, r) ∗ emp ∗ emp}

free(x);

{emp ∗ emp ∗ emp}

}

{emp}

} {emp}
6/ 19

An example proof

{tree(x)}
deltree(*x) {

if x=nil then return; {emp}
else { {x 7→ (y, z) ∗ tree(y) ∗ tree(z)}

l,r := x.left,x.right;

{x 7→ (l, r) ∗ tree(l) ∗ tree(r)}

deltree(l);

{x 7→ (l, r) ∗ emp ∗ tree(r)}

deltree(r);

{x 7→ (l, r) ∗ emp ∗ emp}

free(x);

{emp ∗ emp ∗ emp}

}

{emp}

} {emp}
6/ 19

An example proof

{tree(x)}
deltree(*x) {

if x=nil then return; {emp}
else { {x 7→ (y, z) ∗ tree(y) ∗ tree(z)}

l,r := x.left,x.right;

{x 7→ (l, r) ∗ tree(l) ∗ tree(r)}
deltree(l);

{x 7→ (l, r) ∗ emp ∗ tree(r)}

deltree(r);

{x 7→ (l, r) ∗ emp ∗ emp}

free(x);

{emp ∗ emp ∗ emp}

}

{emp}

} {emp}
6/ 19

An example proof

{tree(x)}
deltree(*x) {

if x=nil then return; {emp}
else { {x 7→ (y, z) ∗ tree(y) ∗ tree(z)}

l,r := x.left,x.right;

{x 7→ (l, r) ∗ tree(l) ∗ tree(r)}
deltree(l);

{x 7→ (l, r) ∗ emp ∗ tree(r)}
deltree(r);

{x 7→ (l, r) ∗ emp ∗ emp}

free(x);

{emp ∗ emp ∗ emp}

}

{emp}

} {emp}
6/ 19

An example proof

{tree(x)}
deltree(*x) {

if x=nil then return; {emp}
else { {x 7→ (y, z) ∗ tree(y) ∗ tree(z)}

l,r := x.left,x.right;

{x 7→ (l, r) ∗ tree(l) ∗ tree(r)}
deltree(l);

{x 7→ (l, r) ∗ emp ∗ tree(r)}
deltree(r);

{x 7→ (l, r) ∗ emp ∗ emp}
free(x);

{emp ∗ emp ∗ emp}

}

{emp}

} {emp}
6/ 19

An example proof

{tree(x)}
deltree(*x) {

if x=nil then return; {emp}
else { {x 7→ (y, z) ∗ tree(y) ∗ tree(z)}

l,r := x.left,x.right;

{x 7→ (l, r) ∗ tree(l) ∗ tree(r)}
deltree(l);

{x 7→ (l, r) ∗ emp ∗ tree(r)}
deltree(r);

{x 7→ (l, r) ∗ emp ∗ emp}
free(x);

{emp ∗ emp ∗ emp}
}

{emp}

} {emp}
6/ 19

An example proof

{tree(x)}
deltree(*x) {

if x=nil then return; {emp}
else { {x 7→ (y, z) ∗ tree(y) ∗ tree(z)}

l,r := x.left,x.right;

{x 7→ (l, r) ∗ tree(l) ∗ tree(r)}
deltree(l);

{x 7→ (l, r) ∗ emp ∗ tree(r)}
deltree(r);

{x 7→ (l, r) ∗ emp ∗ emp}
free(x);

{emp ∗ emp ∗ emp}
} {emp}

} {emp}
6/ 19

Frame property

Consider the following step in the previous example:

{x 7→ (l, r) ∗ tree(l) ∗ tree(r)}
deltree(l)

{x 7→ (l, r) ∗ emp ∗ tree(r)}

Implicitly, this relies on a framing property, namely:

{tree(l)} deltree(l) {emp}

{x 7→ (l, r) ∗ tree(l) ∗ tree(r)} deltree(l) {x 7→ (l, r) ∗ emp ∗ tree(r)}

7/ 19

Frame property

Consider the following step in the previous example:

{x 7→ (l, r) ∗ tree(l) ∗ tree(r)}
deltree(l)

{x 7→ (l, r) ∗ emp ∗ tree(r)}

Implicitly, this relies on a framing property, namely:

{tree(l)} deltree(l) {emp}

{x 7→ (l, r) ∗ tree(l) ∗ tree(r)} deltree(l) {x 7→ (l, r) ∗ emp ∗ tree(r)}

7/ 19

Classical failure of frame rule

The so-called frame rule,

{P}C {Q}

{F ∧ P}C {F ∧Q}

is well known to fail in standard Hoare logic.

E.g.,

{x = 0}x := 2 {x = 2}

{y = 0 ∧ x = 0}x := 2 {y = 0 ∧ x = 2}

is not valid (because y could alias x).

As we’ll see, using the “separating conjunction” ∗ instead of ∧
will however give us a valid frame rule.

8/ 19

Classical failure of frame rule

The so-called frame rule,

{P}C {Q}

{F ∧ P}C {F ∧Q}

is well known to fail in standard Hoare logic.E.g.,

{x = 0}x := 2 {x = 2}

{y = 0 ∧ x = 0}x := 2 {y = 0 ∧ x = 2}

is not valid (because y could alias x).

As we’ll see, using the “separating conjunction” ∗ instead of ∧
will however give us a valid frame rule.

8/ 19

Classical failure of frame rule

The so-called frame rule,

{P}C {Q}

{F ∧ P}C {F ∧Q}

is well known to fail in standard Hoare logic.E.g.,

{x = 0}x := 2 {x = 2}

{y = 0 ∧ x = 0}x := 2 {y = 0 ∧ x = 2}

is not valid (because y could alias x).

As we’ll see, using the “separating conjunction” ∗ instead of ∧
will however give us a valid frame rule.

8/ 19

Heap memory model

• We assume an infinite set Val of values of which an infinite
subset Loc ⊂ Val are allocable locations; nil is a
non-allocable value.

• Stacks map variables to values, s : Var→ Val.

• Heaps map finitely many locations to values,
h : Loc⇀fin Val. We write e for the empty heap (undefined
on all locations).

• Heap composition h1 ◦ h2 is defined to be h1 ∪ h2 if their
domains are non-overlapping, and undefined otherwise.

• A state is simply a stack paired with a heap, (s, h).

9/ 19

Heap memory model

• We assume an infinite set Val of values of which an infinite
subset Loc ⊂ Val are allocable locations; nil is a
non-allocable value.

• Stacks map variables to values, s : Var→ Val.

• Heaps map finitely many locations to values,
h : Loc⇀fin Val. We write e for the empty heap (undefined
on all locations).

• Heap composition h1 ◦ h2 is defined to be h1 ∪ h2 if their
domains are non-overlapping, and undefined otherwise.

• A state is simply a stack paired with a heap, (s, h).

9/ 19

Heap memory model

• We assume an infinite set Val of values of which an infinite
subset Loc ⊂ Val are allocable locations; nil is a
non-allocable value.

• Stacks map variables to values, s : Var→ Val.

• Heaps map finitely many locations to values,
h : Loc⇀fin Val. We write e for the empty heap (undefined
on all locations).

• Heap composition h1 ◦ h2 is defined to be h1 ∪ h2 if their
domains are non-overlapping, and undefined otherwise.

• A state is simply a stack paired with a heap, (s, h).

9/ 19

Heap memory model

• We assume an infinite set Val of values of which an infinite
subset Loc ⊂ Val are allocable locations; nil is a
non-allocable value.

• Stacks map variables to values, s : Var→ Val.

• Heaps map finitely many locations to values,
h : Loc⇀fin Val. We write e for the empty heap (undefined
on all locations).

• Heap composition h1 ◦ h2 is defined to be h1 ∪ h2 if their
domains are non-overlapping, and undefined otherwise.

• A state is simply a stack paired with a heap, (s, h).

9/ 19

Heap memory model

• We assume an infinite set Val of values of which an infinite
subset Loc ⊂ Val are allocable locations; nil is a
non-allocable value.

• Stacks map variables to values, s : Var→ Val.

• Heaps map finitely many locations to values,
h : Loc⇀fin Val. We write e for the empty heap (undefined
on all locations).

• Heap composition h1 ◦ h2 is defined to be h1 ∪ h2 if their
domains are non-overlapping, and undefined otherwise.

• A state is simply a stack paired with a heap, (s, h).

9/ 19

Program semantics

• A configuration is given by (C, s, h), where C is a program,
and (s, h) a (stack-heap) state.

• C could be empty, in which case we call (C, s, h) final (and
usually just write 〈s, h〉).

• fault is a special configuration used to catch memory errors.

• The small-step semantics of programs is then given by a
relation between configurations:

(C, s, h) (C ′, s′, h′)

10/ 19

Program semantics

• A configuration is given by (C, s, h), where C is a program,
and (s, h) a (stack-heap) state.

• C could be empty, in which case we call (C, s, h) final (and
usually just write 〈s, h〉).

• fault is a special configuration used to catch memory errors.

• The small-step semantics of programs is then given by a
relation between configurations:

(C, s, h) (C ′, s′, h′)

10/ 19

Program semantics

• A configuration is given by (C, s, h), where C is a program,
and (s, h) a (stack-heap) state.

• C could be empty, in which case we call (C, s, h) final (and
usually just write 〈s, h〉).

• fault is a special configuration used to catch memory errors.

• The small-step semantics of programs is then given by a
relation between configurations:

(C, s, h) (C ′, s′, h′)

10/ 19

Program semantics

• A configuration is given by (C, s, h), where C is a program,
and (s, h) a (stack-heap) state.

• C could be empty, in which case we call (C, s, h) final (and
usually just write 〈s, h〉).

• fault is a special configuration used to catch memory errors.

• The small-step semantics of programs is then given by a
relation between configurations:

(C, s, h) (C ′, s′, h′)

10/ 19

Semantics of assignment and (de)allocation

(x := E, s, h) (s[x 7→ [[E]]s], h)

[[E]]s ∈ dom(h)

(x := E.f, s, h) (s[x 7→ h([[E]]s).f], h)

[[E]]s ∈ dom(h)

(E.f := E′, s, h) (s, h[[[E]]s.f 7→ [[E′]]s])

` ∈ Loc \ dom(h) v ∈ Val

(E := new(), s, h) (s[x 7→ `], h[` 7→ v])

[[E]]s = ` ∈ dom(h)

(free(E), s, h) (s, (h � (dom(h) \ {`}))

C ≡ x := E.f | E.f := E′ | free(E) [[E]]s /∈ dom(h)

(C, s, h) fault

11/ 19

Symbolic-heap assertions

• Terms t are either variables x, y, z . . . or the constant nil.

• Pure formulas π and spatial formulas F are given by:

π ::= t = t | t 6= t
F ::= emp | x 7→ t | P t | F ∗ F

(where P a predicate symbol, t a tuple of terms).

• A symbolic heap is ∃x. Π : F , for Π a set of pure formulas.

• The predicate symbols might come from a hard-coded set,
or might be user-defined.

12/ 19

Symbolic-heap assertions

• Terms t are either variables x, y, z . . . or the constant nil.

• Pure formulas π and spatial formulas F are given by:

π ::= t = t | t 6= t
F ::= emp | x 7→ t | P t | F ∗ F

(where P a predicate symbol, t a tuple of terms).

• A symbolic heap is ∃x. Π : F , for Π a set of pure formulas.

• The predicate symbols might come from a hard-coded set,
or might be user-defined.

12/ 19

Symbolic-heap assertions

• Terms t are either variables x, y, z . . . or the constant nil.

• Pure formulas π and spatial formulas F are given by:

π ::= t = t | t 6= t
F ::= emp | x 7→ t | P t | F ∗ F

(where P a predicate symbol, t a tuple of terms).

• A symbolic heap is ∃x. Π : F , for Π a set of pure formulas.

• The predicate symbols might come from a hard-coded set,
or might be user-defined.

12/ 19

Symbolic-heap assertions

• Terms t are either variables x, y, z . . . or the constant nil.

• Pure formulas π and spatial formulas F are given by:

π ::= t = t | t 6= t
F ::= emp | x 7→ t | P t | F ∗ F

(where P a predicate symbol, t a tuple of terms).

• A symbolic heap is ∃x. Π : F , for Π a set of pure formulas.

• The predicate symbols might come from a hard-coded set,
or might be user-defined.

12/ 19

Semantics of assertions

We define the forcing relation s, h |= A:

s, h |=Φ t1 = (6=)t2 ⇔ s(t1) = (6=)s(t2)

s, h |=Φ emp ⇔ h = e

s, h |=Φ x 7→ t ⇔ dom(h) = {s(x)} and h(s(x)) = s(t)

s, h |=Φ P t ⇔ (s(t), h) ∈ [[P]]

s, h |=Φ F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |=Φ F1

and s, h2 |=Φ F2

s, h |=Φ ∃z. Π : F ⇔ ∃v ∈ Val|z|. s[z 7→ v], h |=Φ π for all

π ∈ Π and s[z 7→ v], h |=Φ F

The semantics [[P]] of inductive predicate P has a standard
construction (but outside the scope of this talk).

13/ 19

Semantics of assertions

We define the forcing relation s, h |= A:

s, h |=Φ t1 = (6=)t2 ⇔ s(t1) = (6=)s(t2)

s, h |=Φ emp ⇔ h = e

s, h |=Φ x 7→ t ⇔ dom(h) = {s(x)} and h(s(x)) = s(t)

s, h |=Φ P t ⇔ (s(t), h) ∈ [[P]]

s, h |=Φ F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |=Φ F1

and s, h2 |=Φ F2

s, h |=Φ ∃z. Π : F ⇔ ∃v ∈ Val|z|. s[z 7→ v], h |=Φ π for all

π ∈ Π and s[z 7→ v], h |=Φ F

The semantics [[P]] of inductive predicate P has a standard
construction (but outside the scope of this talk).

13/ 19

Interpretation of Hoare triples

Our interpretation of Hoare triples is almost standard, except
we take a fault-avoiding interpretation:

Definition

{P}C {Q} is valid if, whenever s, h |= P ,

1. (C, s, h) 6 ∗ fault (i.e. is memory-safe), and

2. if (C, s, h) ∗ (ε, s, h), then s, h |= Q.

If we are interested in total correctness, simply replace the
memory-safety condition above by (safe) termination:
everything still works!

14/ 19

Interpretation of Hoare triples

Our interpretation of Hoare triples is almost standard, except
we take a fault-avoiding interpretation:

Definition

{P}C {Q} is valid if, whenever s, h |= P ,

1. (C, s, h) 6 ∗ fault (i.e. is memory-safe), and

2. if (C, s, h) ∗ (ε, s, h), then s, h |= Q.

If we are interested in total correctness, simply replace the
memory-safety condition above by (safe) termination:
everything still works!

14/ 19

Interpretation of Hoare triples

Our interpretation of Hoare triples is almost standard, except
we take a fault-avoiding interpretation:

Definition

{P}C {Q} is valid if, whenever s, h |= P ,

1. (C, s, h) 6 ∗ fault (i.e. is memory-safe), and

2. if (C, s, h) ∗ (ε, s, h), then s, h |= Q.

If we are interested in total correctness, simply replace the
memory-safety condition above by (safe) termination:
everything still works!

14/ 19

Interpretation of Hoare triples

Our interpretation of Hoare triples is almost standard, except
we take a fault-avoiding interpretation:

Definition

{P}C {Q} is valid if, whenever s, h |= P ,

1. (C, s, h) 6 ∗ fault (i.e. is memory-safe), and

2. if (C, s, h) ∗ (ε, s, h), then s, h |= Q.

If we are interested in total correctness, simply replace the
memory-safety condition above by (safe) termination:
everything still works!

14/ 19

Axioms and proof rules for triples

{emp}x := E {x = E[x′/x] : emp} {E.f 7→ }E.f := E′ {E.f 7→ E′}

{E.f 7→ t}x := E.f {x = t[x′/x] : E.f 7→ t[x′/x]}

{emp}x := new() {x 7→ x′} {E 7→ } free(E) {emp}

{P}C1 {R} {R}C2 {Q}

{P}C1;C2 {Q}

{B : P}C1 {Q} {¬B : P}C2 {Q}

{P} if B then C1 else C2 {Q}

(Note that E.f 7→ E′ is a shorthand for E 7→ (. . . , E′, . . .)
where E′ occurs at the fth position in the tuple.)

15/ 19

The frame rule

The general frame rule of separation logic can be stated as
follows:

{P}C {Q}

{F ∗ P}C {F ∗Q}

subject to the obvious sanity condition: C does not modify any
variable mentioned in the “frame” F .

This rule is exactly what is needed to carry out proofs like the
one we saw before for deltree.

16/ 19

The frame rule

The general frame rule of separation logic can be stated as
follows:

{P}C {Q}

{F ∗ P}C {F ∗Q}

subject to the obvious sanity condition: C does not modify any
variable mentioned in the “frame” F .

This rule is exactly what is needed to carry out proofs like the
one we saw before for deltree.

16/ 19

The frame rule

The general frame rule of separation logic can be stated as
follows:

{P}C {Q}

{F ∗ P}C {F ∗Q}

subject to the obvious sanity condition: C does not modify any
variable mentioned in the “frame” F .

This rule is exactly what is needed to carry out proofs like the
one we saw before for deltree.

16/ 19

Soundness of frame rule

Soundness of the frame rule depends on the following two facts
about the programming language:

Lemma (Safety monotonicity)

If (C, s, h) 6 ∗ fault then (C, s, h ◦ h′) 6 ∗ fault (for any h′ such
that h ◦ h′ is defined).

Lemma (Frame property)

Suppose (C, s, h1 ◦ h2) ∗ 〈s, h〉, and that (C, s, h1) 6 ∗ fault.
Then there exists h′ such that (C, s, h1) ∗ 〈s, h′〉, and,
moreover, h = h′ ◦ h2.

Together, these lemmas imply the locality of all commands.
N.B.: this is an operational fact about the programming
language, and nothing at all to do with logic!

17/ 19

Soundness of frame rule

Soundness of the frame rule depends on the following two facts
about the programming language:

Lemma (Safety monotonicity)

If (C, s, h) 6 ∗ fault then (C, s, h ◦ h′) 6 ∗ fault (for any h′ such
that h ◦ h′ is defined).

Lemma (Frame property)

Suppose (C, s, h1 ◦ h2) ∗ 〈s, h〉, and that (C, s, h1) 6 ∗ fault.
Then there exists h′ such that (C, s, h1) ∗ 〈s, h′〉, and,
moreover, h = h′ ◦ h2.

Together, these lemmas imply the locality of all commands.
N.B.: this is an operational fact about the programming
language, and nothing at all to do with logic!

17/ 19

Soundness of frame rule

Soundness of the frame rule depends on the following two facts
about the programming language:

Lemma (Safety monotonicity)

If (C, s, h) 6 ∗ fault then (C, s, h ◦ h′) 6 ∗ fault (for any h′ such
that h ◦ h′ is defined).

Lemma (Frame property)

Suppose (C, s, h1 ◦ h2) ∗ 〈s, h〉, and that (C, s, h1) 6 ∗ fault.
Then there exists h′ such that (C, s, h1) ∗ 〈s, h′〉, and,
moreover, h = h′ ◦ h2.

Together, these lemmas imply the locality of all commands.
N.B.: this is an operational fact about the programming
language, and nothing at all to do with logic!

17/ 19

Soundness of frame rule

Soundness of the frame rule depends on the following two facts
about the programming language:

Lemma (Safety monotonicity)

If (C, s, h) 6 ∗ fault then (C, s, h ◦ h′) 6 ∗ fault (for any h′ such
that h ◦ h′ is defined).

Lemma (Frame property)

Suppose (C, s, h1 ◦ h2) ∗ 〈s, h〉, and that (C, s, h1) 6 ∗ fault.
Then there exists h′ such that (C, s, h1) ∗ 〈s, h′〉, and,
moreover, h = h′ ◦ h2.

Together, these lemmas imply the locality of all commands.
N.B.: this is an operational fact about the programming
language, and nothing at all to do with logic!

17/ 19

Closing remarks

• What we call separation logic is really a combination of
• programming language,
• assertion language
• and rules for Hoare triples.

• The power of separation logic comes from compositionality:
proofs of sub-programs can be combined into proofs of
whole programs.

• Compositionality depends on the frame rule:

{P}C {Q}

{F ∗ P}C {F ∗Q}

• And the soundness of the frame rule is essentially a
reflection of the locality of commands.

18/ 19

Closing remarks

• What we call separation logic is really a combination of
• programming language,
• assertion language
• and rules for Hoare triples.

• The power of separation logic comes from compositionality:
proofs of sub-programs can be combined into proofs of
whole programs.

• Compositionality depends on the frame rule:

{P}C {Q}

{F ∗ P}C {F ∗Q}

• And the soundness of the frame rule is essentially a
reflection of the locality of commands.

18/ 19

Closing remarks

• What we call separation logic is really a combination of
• programming language,
• assertion language
• and rules for Hoare triples.

• The power of separation logic comes from compositionality:
proofs of sub-programs can be combined into proofs of
whole programs.

• Compositionality depends on the frame rule:

{P}C {Q}

{F ∗ P}C {F ∗Q}

• And the soundness of the frame rule is essentially a
reflection of the locality of commands.

18/ 19

Closing remarks

• What we call separation logic is really a combination of
• programming language,
• assertion language
• and rules for Hoare triples.

• The power of separation logic comes from compositionality:
proofs of sub-programs can be combined into proofs of
whole programs.

• Compositionality depends on the frame rule:

{P}C {Q}

{F ∗ P}C {F ∗Q}

• And the soundness of the frame rule is essentially a
reflection of the locality of commands.

18/ 19

Further reading

S. Ishtiaq and P. O’Hearn.
BI as an assertion language for mutable data structures.
In Proc. POPL-28. ACM, 2001.
(Winner of Most Influential POPL Paper 2001 award.)

J.C. Reynolds.
Separation logic: A logic for shared mutable data structures.
In Proc. LICS-17. IEEE, 2002.

H. Yang and P. O’Hearn.
A semantic basis for local reasoning.
In Proc. FoSSaCS-5. Springer. 2002.

C. Calcagno, D. Distefano, P. O’Hearn and H. Yang.
Compositional shape analysis by means of bi-abduction.
In Journal of the ACM 58(6). ACM, 2011.
Original version in Proc. POPL-36. ACM, 2009.

19/ 19

