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Introduction

• In mathematical logic, there is usually a trade-off between
expressivity and complexity of a logical language:

• weaker languages cannot capture interesting properties, but
• richer languages have higher complexity, may lack sensible

proof theories and may be unavoidably incomplete (cf.
Gödel).

• Incompleteness manifests as a gap between two key
concepts:

• provability in some formal system for the logic
(which corresponds to validity in some class of models); and

• validity in a (class of) intended model(s) of the logic.
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Introduction (contd.)

Thus, given a logical language L, and an intended class C of
models for that language, there are at least two natural
questions:

1. Is the class C finitely axiomatisable, a.k.a. definable in L?

2. Is there a complete proof system for L w.r.t. validity in C?

In the case of BBI, we are often interested in properties of the
heap models used in separation logic.
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BBI, proof-theoretically

Recall:

Provability in BBI is given by extending a Hilbert system for
propositional classical logic by

A ∗B ` B ∗A A ∗ (B ∗ C) ` (A ∗B) ∗ C

A ` A ∗ I A ∗ I ` A

A1 ` B1 A2 ` B2

A1 ∗A2 ` B1 ∗B2

A ∗B ` C

A ` B −−∗ C
A ` B −−∗ C

A ∗B ` C
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BBI, semantically (1)

Recall:

A BBI-model is given by 〈W, ◦, E〉, where

• W is a set (of “worlds”),

• ◦ is a binary function W ×W → P(W ); we extend ◦ to
P(W )× P(W )→ P(W ) by

W1 ◦W2
def
=

⋃
w1∈W1,w2∈W2

w1 ◦ w2

• ◦ is commutative and associative;

• the set of units E ⊆W satisfies w ◦E = {w} for all w ∈W .

A valuation for BBI-model M = 〈W, ◦, E〉 is a function ρ from
propositional variables to P(W ).
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BBI, semantically (2)

Given M , ρ, and w ∈W , we define the forcing relation w |=ρ A
by induction on formula A:

w |=ρ P ⇔ w ∈ ρ(P )
w |=ρ A→ B ⇔ w |=ρ A implies w |=ρ B

...
w |=ρ I ⇔ w ∈ E

w |=ρ A ∗B ⇔ w ∈ w1 ◦ w2 and w1 |=ρ A and w2 |=ρ B
w |=ρ A −−∗ B ⇔ ∀w′, w′′ ∈W. if w′′ ∈ w ◦ w′ and w′ |=ρ A

then w′′ |=ρ B

A is valid in M iff w |=ρ A for all ρ and w ∈W .
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Definable properties

A property P of BBI-models is said to be definable if there
exists a formula A such that for all BBI-models M ,

A is valid in M ⇐⇒ M ∈ P.

We’ll consider properties that feature in various models of
separation logic.

To show a property is definable, just exhibit the defining
formula!

To show a property is not definable, we show it is not preserved
by some validity-preserving model construction.
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Properties of (some) BBI-models

Partial functionality: w,w′ ∈ w1 ◦ w2 implies w = w′;

Cancellativity: (w ◦ w1) ∩ (w ◦ w2) 6= ∅ implies w1 = w2;

Single unit: w,w′ ∈ E implies w = w′;

Indivisible units: (w ◦ w′) ∩ E 6= ∅ implies w ∈ E;

Disjointness: w ◦ w 6= ∅ implies w ∈ E;

Divisibility: for every w 6∈ E there are w1, w2 /∈ E such that
w ∈ w1 ◦ w2;

Cross-split property: whenever (a ◦ b) ∩ (c ◦ d) 6= ∅, there exist
ac, ad , bc, bd such that a ∈ ac ◦ ad , b ∈ bc ◦ bd ,
c ∈ ac ◦ bc and d ∈ ad ◦ bd .

a b ac
ad bd

bcc
d
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Two definable properties

Proposition

The following two properties are BBI-definable:

Indivisible units: (w ◦ w′) ∩ E 6= ∅ implies w ∈ E
I ∧ (A ∗B) ` A

Divisibility: ∀w 6∈ E.∃w1, w2 /∈ E such that w ∈ w1 ◦ w2

¬I ` ¬I ∗ ¬I
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Disjoint unions of BBI-models

Definition

If M1 = 〈W1, ◦1, E1〉 and M2 = 〈W2, ◦2, E2〉 are BBI-models and
W1,W2 are disjoint then their disjoint union is given by

M1 ]M2
def
= 〈W1 ∪W2, ◦1 ∪ ◦2, E1 ∪ E2〉

(where ◦1 ∪ ◦2 is lifted to W1 ∪W2 in the obvious way)

Proposition

If A is valid in M1 and in M2, and M1 ]M2 is defined, then it
is also valid in M1 ]M2.

Proof. Structural induction on A.
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Undefinability of single-unit property

Lemma
Suppose that there exist BBI-models M1 and M2 such that
M1,M2 ∈ P but M1 ]M2 6∈ P. Then P is not BBI-definable.

Proof. If P were definable via A say, then A would be true in
M1 and M2 but not in M1 ]M2, contradicting previous
Proposition.

Theorem
The single unit property is not BBI-definable.

Proof. The disjoint union of any two single-unit BBI-models
(e.g. two copies of N under addition) is not a single-unit model,
so we are done by the above Lemma.
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Bounded morphisms on BBI-models

Definition

Let M = 〈W, ◦, E〉 and M ′ = 〈W ′, ◦′, E′〉 be BBI-models.

A
bounded morphism from M to M ′ is a function f : W →W ′ s.t.:

1. w ∈ E iff f(w) ∈ E′;

2. w ∈ w1 ◦ w2 implies f(w) ∈ f(w1) ◦′ f(w2);

3. f(w) ∈ w′
1 ◦′ w′

2 implies ∃w1, w2 ∈W. w ∈ w1 ◦ w2 and
f(w1) = w′

1 and f(w2) = w′
2;

4. w′
2 ∈ f(w) ◦′ w′

1 implies ∃w1, w2 ∈W. w2 ∈ w ◦ w1 and
f(w1) = w′

1 and f(w2) = w′
2.

Proposition

Suppose there is a surjective bounded morphism from M to M ′.
Then any formula valid in M is also valid in M ′.

12/ 20



Bounded morphisms on BBI-models

Definition

Let M = 〈W, ◦, E〉 and M ′ = 〈W ′, ◦′, E′〉 be BBI-models. A
bounded morphism from M to M ′ is a function f : W →W ′ s.t.:

1. w ∈ E iff f(w) ∈ E′;

2. w ∈ w1 ◦ w2 implies f(w) ∈ f(w1) ◦′ f(w2);

3. f(w) ∈ w′
1 ◦′ w′

2 implies ∃w1, w2 ∈W. w ∈ w1 ◦ w2 and
f(w1) = w′

1 and f(w2) = w′
2;

4. w′
2 ∈ f(w) ◦′ w′

1 implies ∃w1, w2 ∈W. w2 ∈ w ◦ w1 and
f(w1) = w′

1 and f(w2) = w′
2.

Proposition

Suppose there is a surjective bounded morphism from M to M ′.
Then any formula valid in M is also valid in M ′.

12/ 20



Bounded morphisms on BBI-models

Definition

Let M = 〈W, ◦, E〉 and M ′ = 〈W ′, ◦′, E′〉 be BBI-models. A
bounded morphism from M to M ′ is a function f : W →W ′ s.t.:

1. w ∈ E iff f(w) ∈ E′;

2. w ∈ w1 ◦ w2 implies f(w) ∈ f(w1) ◦′ f(w2);

3. f(w) ∈ w′
1 ◦′ w′

2 implies ∃w1, w2 ∈W. w ∈ w1 ◦ w2 and
f(w1) = w′

1 and f(w2) = w′
2;

4. w′
2 ∈ f(w) ◦′ w′

1 implies ∃w1, w2 ∈W. w2 ∈ w ◦ w1 and
f(w1) = w′

1 and f(w2) = w′
2.

Proposition

Suppose there is a surjective bounded morphism from M to M ′.
Then any formula valid in M is also valid in M ′.

12/ 20



Bounded morphisms on BBI-models

Definition

Let M = 〈W, ◦, E〉 and M ′ = 〈W ′, ◦′, E′〉 be BBI-models. A
bounded morphism from M to M ′ is a function f : W →W ′ s.t.:

1. w ∈ E iff f(w) ∈ E′;

2. w ∈ w1 ◦ w2 implies f(w) ∈ f(w1) ◦′ f(w2);

3. f(w) ∈ w′
1 ◦′ w′

2 implies ∃w1, w2 ∈W. w ∈ w1 ◦ w2 and
f(w1) = w′

1 and f(w2) = w′
2;

4. w′
2 ∈ f(w) ◦′ w′

1 implies ∃w1, w2 ∈W. w2 ∈ w ◦ w1 and
f(w1) = w′

1 and f(w2) = w′
2.

Proposition

Suppose there is a surjective bounded morphism from M to M ′.
Then any formula valid in M is also valid in M ′.

12/ 20



Bounded morphisms on BBI-models

Definition

Let M = 〈W, ◦, E〉 and M ′ = 〈W ′, ◦′, E′〉 be BBI-models. A
bounded morphism from M to M ′ is a function f : W →W ′ s.t.:

1. w ∈ E iff f(w) ∈ E′;

2. w ∈ w1 ◦ w2 implies f(w) ∈ f(w1) ◦′ f(w2);

3. f(w) ∈ w′
1 ◦′ w′

2 implies ∃w1, w2 ∈W. w ∈ w1 ◦ w2 and
f(w1) = w′

1 and f(w2) = w′
2;

4. w′
2 ∈ f(w) ◦′ w′

1 implies ∃w1, w2 ∈W. w2 ∈ w ◦ w1 and
f(w1) = w′

1 and f(w2) = w′
2.

Proposition

Suppose there is a surjective bounded morphism from M to M ′.
Then any formula valid in M is also valid in M ′.

12/ 20



Bounded morphisms on BBI-models

Definition

Let M = 〈W, ◦, E〉 and M ′ = 〈W ′, ◦′, E′〉 be BBI-models. A
bounded morphism from M to M ′ is a function f : W →W ′ s.t.:

1. w ∈ E iff f(w) ∈ E′;

2. w ∈ w1 ◦ w2 implies f(w) ∈ f(w1) ◦′ f(w2);

3. f(w) ∈ w′
1 ◦′ w′

2 implies ∃w1, w2 ∈W. w ∈ w1 ◦ w2 and
f(w1) = w′

1 and f(w2) = w′
2;

4. w′
2 ∈ f(w) ◦′ w′

1 implies ∃w1, w2 ∈W. w2 ∈ w ◦ w1 and
f(w1) = w′

1 and f(w2) = w′
2.

Proposition

Suppose there is a surjective bounded morphism from M to M ′.
Then any formula valid in M is also valid in M ′.

12/ 20



Undefinability via bounded morphisms

Lemma
Suppose there are BBI-models M and M ′ s.t. there is a
surjective bounded morphism from M to M ′, and M ∈ P while
M ′ /∈ P. Then P is not BBI-definable.

Proof. If P were definable via A say, then A would be true in
M but not in M ′, contradicting previous Proposition.

Theorem
None of the following properties is BBI-definable: (a) partial
functionality; (b) cancellativity; (c) disjointness.

Proof. In each case we build models M and M ′ such that there
is a bounded morphism from M to M ′, but M has the property
while M ′ doesn’t.
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Theorem
None of the following properties is BBI-definable: (a) partial
functionality; (b) cancellativity; (c) disjointness.

Proof. In each case we build models M and M ′ such that there
is a bounded morphism from M to M ′, but M has the property
while M ′ doesn’t.
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Example:partial functionality

Define BBI-models M = 〈W, ◦, E〉 and M ′ = 〈W ′, ◦′, E′〉 by

W = {e, v1, v2, x1, x2, y, z} E = {e}
w ◦ e = e ◦ w = {w} for all w ∈W
x1 ◦ v1 = v1 ◦ x1 = {y} x1 ◦ v2 = v2 ◦ x1 = {y}
x2 ◦ v1 = v1 ◦ x2 = {z} x2 ◦ v2 = v2 ◦ x2 = {z}

W ′ = {e, v, x, y, z} E′ = {e}
w ◦′ e = e ◦′ w = {w} for all w ∈W ′

x ◦′ v = v ◦′ x = {y, z}

Easy to check M,M ′ are both BBI-models, and M is partial
functional but M ′ is not. Our surjective morphism is:

f(v1) = f(v2) = v f(x1) = f(x2) = x
f(w) = w (w ∈ {e, y, z})
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HyBBI: a hybrid extension of BBI

• So, BBI cannot define some natural properties.

• Idea: conservatively increase the expressivity of BBI, using
machinery of hybrid logic.

• HyBBI extends the language of BBI by: any nominal ` is a
formula, and so is any formula of the form @`A.

• Valuations interpret nominals as individual worlds in a
BBI-model.

• We extend the forcing relation by:

M,w |=ρ ` ⇔ w = ρ(`)
M,w |=ρ @`A ⇔ M,ρ(`) |=ρ A

Easy to see that HyBBI is a conservative extension of BBI.
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Definable properties in HyBBI

Theorem
The following properties are HyBBI-definable:

Functionality: @`(j ∗ k) ∧@`′(j ∗ k) ` @``
′

Cancellativity: ` ∗ j ∧ ` ∗ k ` @jk
Single unit: @`1I ∧@`2I ` @`1`2
Disjointness: ` ∗ ` ` I ∧ `

Proof.

Easy verifications!
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A word about cross-split

We have brushed over the cross-split property:

(a ◦ b) ∩ (c ◦ d) 6= ∅, implies ∃ac, ad , bc, bd with
a ∈ ac ◦ ad, b ∈ bc ◦ bd, c ∈ ac ◦ bc, d ∈ ad ◦ bd.

a b ac
ad bd

bcc
d

We conjecture this is not definable in BBI or in HyBBI. If we
add the ↓ binder to HyBBI, defined by

M,w |=ρ ↓`. A ⇔ M,w |=ρ[`:=w] A

then cross-split is definable as the pure formula

(a ∗ b) ∧ (c ∗ d) ` @a(> ∗ ↓ac.@a(> ∗ ↓ad .@a(ac ∗ ad)

∧@b(> ∗ ↓bc.@b(> ∗ ↓bd .@b(bc ∗ bd)

∧@c(ac ∗ bc) ∧@d(ad ∗ bd)))))
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Statement of completeness

We can write down a (quite complex) Hilbert-style proof system
for HyBBI by adding rules for the hybrid operators. Soundness
is easy, as usual.

Following an approach based on a Lindenbaum construction
using maximal consistent sets we obtain the following
completeness result:

Theorem (Completeness)

Let Ax be a set of axioms not containing any propositional
variables (nominals are OK).
Suppose that A is valid in the class of BBI-models satisfying Ax.

Then A is provable in the Hilbert system for HyBBI, extended
with Ax.
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Conclusions and future work

• BBI is insufficiently expressive to capture important classes
of models.

• We can gain this expressivity by deploying naming
machinery from hybrid logic.

• In HyBBI, we have parametric completeness for any set of
axioms expressed as pure formulas.

• In particular, this yields complete proof systems for
previously undefinable classes of BBI-models.

• Future work on our hybrid logics could include

• identification of decidable fragments;
• search for nice structural proof theories;
• investigate possible applications to program analysis.
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Z. Hóu, R. Clouston, R. Goré and A. Tiu.
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