Definability in Boolean bunched logic

James Brotherston

Programming Principles, Logic and Verification Group
Dept. of Computer Science
University College London, UK
J.Brotherston@ucl.ac.uk

Logic Summer School, ANU, 11 December 2015

Introduction

- In mathematical logic, there is usually a trade-off between expressivity and complexity of a logical language:

Introduction

- In mathematical logic, there is usually a trade-off between expressivity and complexity of a logical language:
- weaker languages cannot capture interesting properties,

Introduction

- In mathematical logic, there is usually a trade-off between expressivity and complexity of a logical language:
- weaker languages cannot capture interesting properties, but
- richer languages have higher complexity, may lack sensible proof theories and may be unavoidably incomplete (cf. Gödel).

Introduction

- In mathematical logic, there is usually a trade-off between expressivity and complexity of a logical language:
- weaker languages cannot capture interesting properties, but
- richer languages have higher complexity, may lack sensible proof theories and may be unavoidably incomplete (cf. Gödel).
- Incompleteness manifests as a gap between two key concepts:

Introduction

- In mathematical logic, there is usually a trade-off between expressivity and complexity of a logical language:
- weaker languages cannot capture interesting properties, but
- richer languages have higher complexity, may lack sensible proof theories and may be unavoidably incomplete (cf. Gödel).
- Incompleteness manifests as a gap between two key concepts:
- provability in some formal system for the logic (which corresponds to validity in some class of models);

Introduction

- In mathematical logic, there is usually a trade-off between expressivity and complexity of a logical language:
- weaker languages cannot capture interesting properties, but
- richer languages have higher complexity, may lack sensible proof theories and may be unavoidably incomplete (cf. Gödel).
- Incompleteness manifests as a gap between two key concepts:
- provability in some formal system for the logic (which corresponds to validity in some class of models); and
- validity in a (class of) intended model(s) of the logic.

Introduction (contd.)

Thus, given a logical language \mathcal{L}, and an intended class \mathcal{C} of models for that language, there are at least two natural questions:

Introduction (contd.)

Thus, given a logical language \mathcal{L}, and an intended class \mathcal{C} of models for that language, there are at least two natural questions:

1. Is the class \mathcal{C} finitely axiomatisable, a.k.a. definable in \mathcal{L} ?

Introduction (contd.)

Thus, given a logical language \mathcal{L}, and an intended class \mathcal{C} of models for that language, there are at least two natural questions:

1. Is the class \mathcal{C} finitely axiomatisable, a.k.a. definable in \mathcal{L} ?
2. Is there a complete proof system for \mathcal{L} w.r.t. validity in \mathcal{C} ?

Introduction (contd.)

Thus, given a logical language \mathcal{L}, and an intended class \mathcal{C} of models for that language, there are at least two natural questions:

1. Is the class \mathcal{C} finitely axiomatisable, a.k.a. definable in \mathcal{L} ?
2. Is there a complete proof system for \mathcal{L} w.r.t. validity in \mathcal{C} ? In the case of BBI, we are often interested in properties of the heap models used in separation logic.

BBI, proof-theoretically

Recall:
Provability in BBI is given by extending a Hilbert system for propositional classical logic by

$$
\begin{array}{cc}
A * B \vdash B * A & A *(B * C) \vdash(A * B) * C \\
A \vdash A * \mathrm{I} & A * \mathrm{I} \vdash A \\
\frac{A_{1} \vdash B_{1} \quad A_{2} \vdash B_{2}}{A_{1} * A_{2} \vdash B_{1} * B_{2}} & \frac{A * B \vdash C}{A \vdash B-C} \quad \frac{A \vdash B * C}{A * B \vdash C}
\end{array}
$$

BBI, semantically (1)

Recall:
A BBI-model is given by $\langle W, \circ, E\rangle$, where

- W is a set (of "worlds"),
- \circ is a binary function $W \times W \rightarrow \mathcal{P}(W)$; we extend \circ to $\mathcal{P}(W) \times \mathcal{P}(W) \rightarrow \mathcal{P}(W)$ by

$$
W_{1} \circ W_{2} \stackrel{\text { def }}{=} \bigcup_{w_{1} \in W_{1}, w_{2} \in W_{2}} w_{1} \circ w_{2}
$$

- ○ is commutative and associative;
- the set of units $E \subseteq W$ satisfies $w \circ E=\{w\}$ for all $w \in W$.

A valuation for BBI-model $M=\langle W, \circ, E\rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.

BBI, semantically (2)

Given M, ρ, and $w \in W$, we define the forcing relation $w \not{ }_{\rho} A$ by induction on formula A :

$$
\begin{aligned}
& w \models_{\rho} P \Leftrightarrow w \in \rho(P) \\
& w \models_{\rho} A \rightarrow B \Leftrightarrow \Leftrightarrow \\
& \vdots \\
& w \models_{\rho} A \text { implies } w \models_{\rho} B \\
& w \models_{\rho} A * B \Leftrightarrow w \in E \\
& w \models_{\rho} A \rightarrow B \Leftrightarrow w_{1} \circ w_{2} \text { and } w_{1} \models_{\rho} A \text { and } w_{2} \models_{\rho} B \\
& \forall w^{\prime}, w^{\prime \prime} \in W . \text { if } w^{\prime \prime} \in w \circ w^{\prime} \text { and } w^{\prime} \models_{\rho} A \\
& \text { then } w^{\prime \prime} \models_{\rho} B
\end{aligned}
$$

A is valid in M iff $w \models_{\rho} A$ for all ρ and $w \in W$.

Definable properties

A property \mathcal{P} of BBI-models is said to be definable if there exists a formula A such that for all BBI-models M,

$$
A \text { is valid in } M \Longleftrightarrow M \in \mathcal{P} .
$$

Definable properties

A property \mathcal{P} of BBI-models is said to be definable if there exists a formula A such that for all BBI-models M,

$$
A \text { is valid in } M \Longleftrightarrow M \in \mathcal{P} .
$$

We'll consider properties that feature in various models of separation logic.

Definable properties

A property \mathcal{P} of BBI -models is said to be definable if there exists a formula A such that for all BBI-models M,

$$
A \text { is valid in } M \Longleftrightarrow M \in \mathcal{P} .
$$

We'll consider properties that feature in various models of separation logic.

To show a property is definable, just exhibit the defining formula!

Definable properties

A property \mathcal{P} of BBI -models is said to be definable if there exists a formula A such that for all BBI-models M,

$$
A \text { is valid in } M \Longleftrightarrow M \in \mathcal{P} .
$$

We'll consider properties that feature in various models of separation logic.

To show a property is definable, just exhibit the defining formula!

To show a property is not definable, we show it is not preserved by some validity-preserving model construction.

Properties of (some) BBI-models

Partial functionality: $w, w^{\prime} \in w_{1} \circ w_{2}$ implies $w=w^{\prime}$;

Properties of (some) BBI-models

Partial functionality: $w, w^{\prime} \in w_{1} \circ w_{2}$ implies $w=w^{\prime}$;
Cancellativity: $\left(w \circ w_{1}\right) \cap\left(w \circ w_{2}\right) \neq \emptyset$ implies $w_{1}=w_{2} ;$

Properties of (some) BBI-models

Partial functionality: $w, w^{\prime} \in w_{1} \circ w_{2}$ implies $w=w^{\prime}$;
Cancellativity: $\left(w \circ w_{1}\right) \cap\left(w \circ w_{2}\right) \neq \emptyset$ implies $w_{1}=w_{2} ;$
Single unit: $w, w^{\prime} \in E$ implies $w=w^{\prime}$;

Properties of (some) BBI-models

Partial functionality: $w, w^{\prime} \in w_{1} \circ w_{2}$ implies $w=w^{\prime}$;
Cancellativity: $\left(w \circ w_{1}\right) \cap\left(w \circ w_{2}\right) \neq \emptyset$ implies $w_{1}=w_{2} ;$
Single unit: $w, w^{\prime} \in E$ implies $w=w^{\prime}$;
Indivisible units: $\left(w \circ w^{\prime}\right) \cap E \neq \emptyset$ implies $w \in E$;

Properties of (some) BBI-models

Partial functionality: $w, w^{\prime} \in w_{1} \circ w_{2}$ implies $w=w^{\prime}$;
Cancellativity: $\left(w \circ w_{1}\right) \cap\left(w \circ w_{2}\right) \neq \emptyset$ implies $w_{1}=w_{2} ;$
Single unit: $w, w^{\prime} \in E$ implies $w=w^{\prime}$;
Indivisible units: $\left(w \circ w^{\prime}\right) \cap E \neq \emptyset$ implies $w \in E$;
Disjointness: $w \circ w \neq \emptyset$ implies $w \in E$;

Properties of (some) BBI-models

Partial functionality: $w, w^{\prime} \in w_{1} \circ w_{2}$ implies $w=w^{\prime}$;
Cancellativity: $\left(w \circ w_{1}\right) \cap\left(w \circ w_{2}\right) \neq \emptyset$ implies $w_{1}=w_{2} ;$
Single unit: $w, w^{\prime} \in E$ implies $w=w^{\prime}$;
Indivisible units: $\left(w \circ w^{\prime}\right) \cap E \neq \emptyset$ implies $w \in E$;
Disjointness: $w \circ w \neq \emptyset$ implies $w \in E$;
Divisibility: for every $w \notin E$ there are $w_{1}, w_{2} \notin E$ such that $w \in w_{1} \circ w_{2} ;$

Properties of (some) BBI-models

Partial functionality: $w, w^{\prime} \in w_{1} \circ w_{2}$ implies $w=w^{\prime} ;$
Cancellativity: $\left(w \circ w_{1}\right) \cap\left(w \circ w_{2}\right) \neq \emptyset$ implies $w_{1}=w_{2} ;$
Single unit: $w, w^{\prime} \in E$ implies $w=w^{\prime}$;
Indivisible units: $\left(w \circ w^{\prime}\right) \cap E \neq \emptyset$ implies $w \in E$;
Disjointness: $w \circ w \neq \emptyset$ implies $w \in E$;
Divisibility: for every $w \notin E$ there are $w_{1}, w_{2} \notin E$ such that $w \in w_{1} \circ w_{2} ;$

Cross-split property: whenever $(a \circ b) \cap(c \circ d) \neq \emptyset$, there exist $a c, a d, b c, b d$ such that $a \in a c \circ a d, b \in b c \circ b d$, $c \in a c \circ b c$ and $d \in a d \circ b d$.
$\forall a b=\frac{c}{d} \exists \frac{a c \mid b c}{a d \mid b d}$

Two definable properties

Proposition
The following two properties are BBI-definable:
Indivisible units: $\quad\left(w \circ w^{\prime}\right) \cap E \neq \emptyset$ implies $w \in E$ $\mathrm{I} \wedge(A * B) \vdash A$

Divisibility: $\quad \forall w \notin E . \exists w_{1}, w_{2} \notin E$ such that $w \in w_{1} \circ w_{2}$ $\neg \mathrm{I} \vdash \neg \mathrm{I} * \neg \mathrm{I}$

Disjoint unions of BBI-models

Definition

If $M_{1}=\left\langle W_{1}, \circ_{1}, E_{1}\right\rangle$ and $M_{2}=\left\langle W_{2}, \circ_{2}, E_{2}\right\rangle$ are BBI-models and W_{1}, W_{2} are disjoint then their disjoint union is given by

$$
M_{1} \uplus M_{2} \stackrel{\text { def }}{=}\left\langle W_{1} \cup W_{2}, \circ_{1} \cup o_{2}, E_{1} \cup E_{2}\right\rangle
$$

(where $\circ_{1} \cup \circ_{2}$ is lifted to $W_{1} \cup W_{2}$ in the obvious way)

Disjoint unions of BBI-models

Definition

If $M_{1}=\left\langle W_{1}, \circ_{1}, E_{1}\right\rangle$ and $M_{2}=\left\langle W_{2}, \circ_{2}, E_{2}\right\rangle$ are BBI-models and W_{1}, W_{2} are disjoint then their disjoint union is given by

$$
M_{1} \uplus M_{2} \stackrel{\text { def }}{=}\left\langle W_{1} \cup W_{2}, \circ_{1} \cup o_{2}, E_{1} \cup E_{2}\right\rangle
$$

(where $\circ_{1} \cup o_{2}$ is lifted to $W_{1} \cup W_{2}$ in the obvious way)
Proposition
If A is valid in M_{1} and in M_{2}, and $M_{1} \uplus M_{2}$ is defined, then it is also valid in $M_{1} \uplus M_{2}$.

Disjoint unions of BBI-models

Definition

If $M_{1}=\left\langle W_{1}, \circ_{1}, E_{1}\right\rangle$ and $M_{2}=\left\langle W_{2}, \circ_{2}, E_{2}\right\rangle$ are BBI-models and W_{1}, W_{2} are disjoint then their disjoint union is given by

$$
M_{1} \uplus M_{2} \stackrel{\text { def }}{=}\left\langle W_{1} \cup W_{2}, \circ_{1} \cup o_{2}, E_{1} \cup E_{2}\right\rangle
$$

(where $\circ_{1} \cup o_{2}$ is lifted to $W_{1} \cup W_{2}$ in the obvious way)
Proposition
If A is valid in M_{1} and in M_{2}, and $M_{1} \uplus M_{2}$ is defined, then it is also valid in $M_{1} \uplus M_{2}$.
Proof. Structural induction on A.

Undefinability of single-unit property

Lemma

Suppose that there exist $\mathrm{BBI}-$ models M_{1} and M_{2} such that $M_{1}, M_{2} \in \mathcal{P}$ but $M_{1} \uplus M_{2} \notin \mathcal{P}$. Then \mathcal{P} is not BBI-definable.

Undefinability of single-unit property

Lemma

Suppose that there exist $\mathrm{BBI}-$ models M_{1} and M_{2} such that $M_{1}, M_{2} \in \mathcal{P}$ but $M_{1} \uplus M_{2} \notin \mathcal{P}$. Then \mathcal{P} is not BBI-definable. Proof. If \mathcal{P} were definable via A say, then A would be true in M_{1} and M_{2} but not in $M_{1} \uplus M_{2}$, contradicting previous Proposition.

Undefinability of single-unit property

Lemma
Suppose that there exist $\mathrm{BBI}-$ models M_{1} and M_{2} such that $M_{1}, M_{2} \in \mathcal{P}$ but $M_{1} \uplus M_{2} \notin \mathcal{P}$. Then \mathcal{P} is not BBI-definable. Proof. If \mathcal{P} were definable via A say, then A would be true in M_{1} and M_{2} but not in $M_{1} \uplus M_{2}$, contradicting previous Proposition.

Theorem
The single unit property is not BBI-definable.

Undefinability of single-unit property

Lemma

Suppose that there exist $\mathrm{BBI}-m o d e l s M_{1}$ and M_{2} such that $M_{1}, M_{2} \in \mathcal{P}$ but $M_{1} \uplus M_{2} \notin \mathcal{P}$. Then \mathcal{P} is not BBI-definable. Proof. If \mathcal{P} were definable via A say, then A would be true in M_{1} and M_{2} but not in $M_{1} \uplus M_{2}$, contradicting previous Proposition.

Theorem

The single unit property is not BBI-definable.
Proof. The disjoint union of any two single-unit BBI-models (e.g. two copies of \mathbb{N} under addition) is not a single-unit model, so we are done by the above Lemma.

Bounded morphisms on BBI-models

Definition

Let $M=\langle W, \circ, E\rangle$ and $M^{\prime}=\left\langle W^{\prime}, \circ^{\prime}, E^{\prime}\right\rangle$ be BBI-models.

Bounded morphisms on BBI-models

Definition

Let $M=\langle W, \circ, E\rangle$ and $M^{\prime}=\left\langle W^{\prime}, \circ^{\prime}, E^{\prime}\right\rangle$ be BBI-models. A bounded morphism from M to M^{\prime} is a function $f: W \rightarrow W^{\prime}$ s.t.:

1. $w \in E$ iff $f(w) \in E^{\prime}$;

Bounded morphisms on BBI-models

Definition

Let $M=\langle W, \circ, E\rangle$ and $M^{\prime}=\left\langle W^{\prime}, \circ^{\prime}, E^{\prime}\right\rangle$ be BBI-models. A bounded morphism from M to M^{\prime} is a function $f: W \rightarrow W^{\prime}$ s.t.:

1. $w \in E$ iff $f(w) \in E^{\prime}$;
2. $w \in w_{1} \circ w_{2}$ implies $f(w) \in f\left(w_{1}\right) \circ^{\prime} f\left(w_{2}\right)$;

Bounded morphisms on BBI-models

Definition

Let $M=\langle W, \circ, E\rangle$ and $M^{\prime}=\left\langle W^{\prime}, \circ^{\prime}, E^{\prime}\right\rangle$ be BBI-models. A bounded morphism from M to M^{\prime} is a function $f: W \rightarrow W^{\prime}$ s.t.:

1. $w \in E$ iff $f(w) \in E^{\prime}$;
2. $w \in w_{1} \circ w_{2}$ implies $f(w) \in f\left(w_{1}\right) \circ^{\prime} f\left(w_{2}\right)$;
3. $f(w) \in w_{1}^{\prime} \circ^{\prime} w_{2}^{\prime}$ implies $\exists w_{1}, w_{2} \in W . w \in w_{1} \circ w_{2}$ and $f\left(w_{1}\right)=w_{1}^{\prime}$ and $f\left(w_{2}\right)=w_{2}^{\prime} ;$

Bounded morphisms on BBI-models

Definition

Let $M=\langle W, \circ, E\rangle$ and $M^{\prime}=\left\langle W^{\prime}, \circ^{\prime}, E^{\prime}\right\rangle$ be BBI-models. A bounded morphism from M to M^{\prime} is a function $f: W \rightarrow W^{\prime}$ s.t.:

1. $w \in E$ iff $f(w) \in E^{\prime}$;
2. $w \in w_{1} \circ w_{2}$ implies $f(w) \in f\left(w_{1}\right) \circ^{\prime} f\left(w_{2}\right)$;
3. $f(w) \in w_{1}^{\prime} \circ^{\prime} w_{2}^{\prime}$ implies $\exists w_{1}, w_{2} \in W . w \in w_{1} \circ w_{2}$ and $f\left(w_{1}\right)=w_{1}^{\prime}$ and $f\left(w_{2}\right)=w_{2}^{\prime} ;$
4. $w_{2}^{\prime} \in f(w) \circ^{\prime} w_{1}^{\prime}$ implies $\exists w_{1}, w_{2} \in W . w_{2} \in w \circ w_{1}$ and $f\left(w_{1}\right)=w_{1}^{\prime}$ and $f\left(w_{2}\right)=w_{2}^{\prime}$.

Bounded morphisms on BBI-models

Definition

Let $M=\langle W, \circ, E\rangle$ and $M^{\prime}=\left\langle W^{\prime}, \circ^{\prime}, E^{\prime}\right\rangle$ be BBI-models. A bounded morphism from M to M^{\prime} is a function $f: W \rightarrow W^{\prime}$ s.t.:

1. $w \in E$ iff $f(w) \in E^{\prime}$;
2. $w \in w_{1} \circ w_{2}$ implies $f(w) \in f\left(w_{1}\right) \circ^{\prime} f\left(w_{2}\right)$;
3. $f(w) \in w_{1}^{\prime} \circ^{\prime} w_{2}^{\prime}$ implies $\exists w_{1}, w_{2} \in W . w \in w_{1} \circ w_{2}$ and $f\left(w_{1}\right)=w_{1}^{\prime}$ and $f\left(w_{2}\right)=w_{2}^{\prime} ;$
4. $w_{2}^{\prime} \in f(w) \circ^{\prime} w_{1}^{\prime}$ implies $\exists w_{1}, w_{2} \in W . w_{2} \in w \circ w_{1}$ and $f\left(w_{1}\right)=w_{1}^{\prime}$ and $f\left(w_{2}\right)=w_{2}^{\prime}$.

Proposition

Suppose there is a surjective bounded morphism from M to M^{\prime}. Then any formula valid in M is also valid in M^{\prime}.

Undefinability via bounded morphisms

Lemma

Suppose there are BBI-models M and M^{\prime} s.t. there is a surjective bounded morphism from M to M^{\prime}, and $M \in \mathcal{P}$ while $M^{\prime} \notin \mathcal{P}$. Then \mathcal{P} is not BBI-definable.

Undefinability via bounded morphisms

Lemma

Suppose there are BBI-models M and M^{\prime} s.t. there is a surjective bounded morphism from M to M^{\prime}, and $M \in \mathcal{P}$ while $M^{\prime} \notin \mathcal{P}$. Then \mathcal{P} is not BBI-definable.
Proof. If \mathcal{P} were definable via A say, then A would be true in M but not in M^{\prime}, contradicting previous Proposition.

Undefinability via bounded morphisms

Lemma

Suppose there are BBI-models M and M^{\prime} s.t. there is a surjective bounded morphism from M to M^{\prime}, and $M \in \mathcal{P}$ while $M^{\prime} \notin \mathcal{P}$. Then \mathcal{P} is not BBI-definable.
Proof. If \mathcal{P} were definable via A say, then A would be true in M but not in M^{\prime}, contradicting previous Proposition.

Theorem
None of the following properties is BBI-definable: (a) partial functionality; (b) cancellativity; (c) disjointness.

Undefinability via bounded morphisms

Lemma

Suppose there are BBI-models M and M^{\prime} s.t. there is a surjective bounded morphism from M to M^{\prime}, and $M \in \mathcal{P}$ while $M^{\prime} \notin \mathcal{P}$. Then \mathcal{P} is not BBI-definable.
Proof. If \mathcal{P} were definable via A say, then A would be true in M but not in M^{\prime}, contradicting previous Proposition.

Theorem

None of the following properties is BBI-definable: (a) partial functionality; (b) cancellativity; (c) disjointness.
Proof. In each case we build models M and M^{\prime} such that there is a bounded morphism from M to M^{\prime}, but M has the property while M^{\prime} doesn't.

Example:partial functionality

Define BBI-models $M=\langle W, \circ, E\rangle$ and $M^{\prime}=\left\langle W^{\prime}, \circ^{\prime}, E^{\prime}\right\rangle$ by

$$
\begin{aligned}
& W=\left\{e, v_{1}, v_{2}, x_{1}, x_{2}, y, z\right\} \quad E=\{e\} \\
& w \circ e=e \circ w=\{w\} \text { for all } w \in W \\
& x_{1} \circ v_{1}=v_{1} \circ x_{1}=\{y\} \quad x_{1} \circ v_{2}=v_{2} \circ x_{1}=\{y\} \\
& x_{2} \circ v_{1}=v_{1} \circ x_{2}=\{z\} \quad x_{2} \circ v_{2}=v_{2} \circ x_{2}=\{z\}
\end{aligned}
$$

Example:partial functionality

Define BBI-models $M=\langle W, \circ, E\rangle$ and $M^{\prime}=\left\langle W^{\prime}, \circ^{\prime}, E^{\prime}\right\rangle$ by

$$
\begin{aligned}
& W=\left\{e, v_{1}, v_{2}, x_{1}, x_{2}, y, z\right\} \quad E=\{e\} \\
& w \circ e=e \circ w=\{w\} \text { for all } w \in W \\
& x_{1} \circ v_{1}=v_{1} \circ x_{1}=\{y\} \quad x_{1} \circ v_{2}=v_{2} \circ x_{1}=\{y\} \\
& x_{2} \circ v_{1}=v_{1} \circ x_{2}=\{z\} \quad x_{2} \circ v_{2}=v_{2} \circ x_{2}=\{z\} \\
& W^{\prime}=\{e, v, x, y, z\} \quad E^{\prime}=\{e\} \\
& w \circ^{\prime} e=e \circ^{\prime} w=\{w\} \text { for all } w \in W^{\prime} \\
& x \circ^{\prime} v=v \circ^{\prime} x=\{y, z\}
\end{aligned}
$$

Example:partial functionality

Define BBI-models $M=\langle W, \circ, E\rangle$ and $M^{\prime}=\left\langle W^{\prime}, \circ^{\prime}, E^{\prime}\right\rangle$ by

$$
\begin{aligned}
& W=\left\{e, v_{1}, v_{2}, x_{1}, x_{2}, y, z\right\} \quad E=\{e\} \\
& w \circ e=e \circ w=\{w\} \text { for all } w \in W \\
& x_{1} \circ v_{1}=v_{1} \circ x_{1}=\{y\} \quad x_{1} \circ v_{2}=v_{2} \circ x_{1}=\{y\} \\
& x_{2} \circ v_{1}=v_{1} \circ x_{2}=\{z\} \quad x_{2} \circ v_{2}=v_{2} \circ x_{2}=\{z\} \\
& W^{\prime}=\{e, v, x, y, z\} \quad E^{\prime}=\{e\} \\
& w \circ^{\prime} e=e \circ^{\prime} w=\{w\} \text { for all } w \in W^{\prime} \\
& x \circ^{\prime} v=v \circ^{\prime} x=\{y, z\}
\end{aligned}
$$

Easy to check M, M^{\prime} are both BBI-models, and M is partial functional but M^{\prime} is not.

Example:partial functionality

Define BBI-models $M=\langle W, \circ, E\rangle$ and $M^{\prime}=\left\langle W^{\prime}, \circ^{\prime}, E^{\prime}\right\rangle$ by

$$
\begin{aligned}
& W=\left\{e, v_{1}, v_{2}, x_{1}, x_{2}, y, z\right\} \quad E=\{e\} \\
& w \circ e=e \circ w=\{w\} \text { for all } w \in W \\
& x_{1} \circ v_{1}=v_{1} \circ x_{1}=\{y\} \quad x_{1} \circ v_{2}=v_{2} \circ x_{1}=\{y\} \\
& x_{2} \circ v_{1}=v_{1} \circ x_{2}=\{z\} \quad x_{2} \circ v_{2}=v_{2} \circ x_{2}=\{z\} \\
& W^{\prime}=\{e, v, x, y, z\} \quad E^{\prime}=\{e\} \\
& w \circ^{\prime} e=e \circ^{\prime} w=\{w\} \text { for all } w \in W^{\prime} \\
& x \circ^{\prime} v=v \circ^{\prime} x=\{y, z\}
\end{aligned}
$$

Easy to check M, M^{\prime} are both BBI-models, and M is partial functional but M^{\prime} is not. Our surjective morphism is:

$$
\begin{gathered}
f\left(v_{1}\right)=f\left(v_{2}\right)=v \quad f\left(x_{1}\right)=f\left(x_{2}\right)=x \\
f(w)=w \quad(w \in\{e, y, z\})
\end{gathered}
$$

HyBBI: a hybrid extension of BBI

- So, BBI cannot define some natural properties.

HyBBI: a hybrid extension of BBI

- So, BBI cannot define some natural properties.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.

HyBBI: a hybrid extension of BBI

- So, BBI cannot define some natural properties.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.
- HyBBI extends the language of BBI by: any nominal ℓ is a formula, and so is any formula of the form $@_{\ell} A$.

HyBBI: a hybrid extension of BBI

- So, BBI cannot define some natural properties.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.
- HyBBI extends the language of BBI by: any nominal ℓ is a formula, and so is any formula of the form $@_{\ell} A$.
- Valuations interpret nominals as individual worlds in a BBI-model.

HyBBI: a hybrid extension of BBI

- So, BBI cannot define some natural properties.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.
- HyBBI extends the language of BBI by: any nominal ℓ is a formula, and so is any formula of the form $@_{\ell} A$.
- Valuations interpret nominals as individual worlds in a BBI-model.
- We extend the forcing relation by:

$$
M, w \neq_{\rho} \ell \quad \Leftrightarrow \quad w=\rho(\ell)
$$

HyBBI: a hybrid extension of BBI

- So, BBI cannot define some natural properties.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.
- HyBBI extends the language of BBI by: any nominal ℓ is a formula, and so is any formula of the form $@_{\ell} A$.
- Valuations interpret nominals as individual worlds in a BBI-model.
- We extend the forcing relation by:

$$
\begin{aligned}
M, w \models_{\rho} \ell & \Leftrightarrow w=\rho(\ell) \\
M, w \models_{\rho} @_{\ell} A & \Leftrightarrow \quad M, \rho(\ell) \models_{\rho} A
\end{aligned}
$$

HyBBI: a hybrid extension of BBI

- So, BBI cannot define some natural properties.
- Idea: conservatively increase the expressivity of BBI, using machinery of hybrid logic.
- HyBBI extends the language of BBI by: any nominal ℓ is a formula, and so is any formula of the form $@_{\ell} A$.
- Valuations interpret nominals as individual worlds in a BBI-model.
- We extend the forcing relation by:

$$
\begin{aligned}
M, w \models_{\rho} \ell & \Leftrightarrow w=\rho(\ell) \\
M, w \models_{\rho} @_{\ell} A & \Leftrightarrow M, \rho(\ell) \models_{\rho} A
\end{aligned}
$$

Easy to see that HyBBI is a conservative extension of BBI .

Definable properties in HyBBI

Theorem
The following properties are HyBBI-definable:
Functionality: $@_{\ell}(j * k) \wedge @_{\ell^{\prime}}(j * k) \vdash @_{\ell} \ell^{\prime}$

Definable properties in HyBBI

Theorem
The following properties are HyBBI-definable:
Functionality:
Cancellativity:

$$
\begin{array}{r}
@_{\ell}(j * k) \wedge @_{\ell^{\prime}}(j * k) \vdash @_{\ell^{\prime}} \\
\ell * j \wedge \ell * k \vdash @_{j} k
\end{array}
$$

Definable properties in HyBBI

Theorem
The following properties are HyBBI-definable:
Functionality:

$$
\begin{array}{r}
@_{\ell}(j * k) \wedge @_{\ell^{\prime}}(j * k) \vdash @_{\ell} \ell^{\prime} \\
\ell * j \wedge \ell * k \vdash @_{j} k \\
@_{\ell_{1}} \mathrm{I} \wedge @_{\ell_{2}} \mathrm{I} \vdash @_{\ell_{1}} \ell_{2}
\end{array}
$$

Definable properties in HyBBI

Theorem
The following properties are HyBBI-definable:

Functionality:
Cancellativity: Single unit:
Disjointness:

$$
\begin{array}{r}
@_{\ell}(j * k) \wedge @_{\ell^{\prime}}(j * k) \vdash @_{\ell} \ell^{\prime} \\
\ell * j \wedge \ell * k \vdash @_{j} k \\
@_{\ell_{1}} \mathrm{I} \wedge @_{\ell_{2}} \mathrm{I} \vdash @_{\ell_{1} \ell_{2}} \\
\ell * \ell \vdash \mathrm{I} \wedge \ell
\end{array}
$$

Definable properties in HyBBI

Theorem
The following properties are HyBBI-definable:

$$
\begin{array}{lr}
\text { Functionality: } & @_{\ell}(j * k) \wedge @_{\ell^{\prime}}(j * k) \vdash @_{\ell} \ell^{\prime} \\
\text { Cancellativity: } & \ell * j \wedge \ell * k \vdash @_{j} k \\
\text { Single unit: } & @_{\ell_{1}} \mathrm{I} \wedge @_{\ell_{2}} \mathrm{I} \vdash @_{\ell_{1}} \ell_{2} \\
\text { Disjointness: } & \ell * \ell \vdash \mathrm{I} \wedge \ell
\end{array}
$$

Proof.
Easy verifications!

A word about cross-split

We have brushed over the cross-split property:

$$
\begin{aligned}
& (a \circ b) \cap(c \circ d) \neq \emptyset \text {, implies } \exists a c, a d, b c, b d \text { with } \\
& a \in a c \circ a d, b \in b c \circ b d, c \in a c \circ b c, d \in a d \circ b d .
\end{aligned}
$$

$$
\forall a b=\frac{c}{d} \exists \frac{a c \mid b c}{a d \mid b d}
$$

A word about cross-split

We have brushed over the cross-split property:

$$
\begin{aligned}
& (a \circ b) \cap(c \circ d) \neq \emptyset \text {, implies } \exists a c, a d, b c, b d \text { with } \\
& a \in a c \circ a d, b \in b c \circ b d, c \in a c \circ b c, d \in a d \circ b d .
\end{aligned}
$$

$$
\forall a b a \frac{c}{d} \exists \frac{a c \mid b c}{a d \mid b d}
$$

We conjecture this is not definable in BBI or in HyBBI .

A word about cross-split

We have brushed over the cross-split property:

$$
\begin{aligned}
& (a \circ b) \cap(c \circ d) \neq \emptyset \text {, implies } \exists a c, a d, b c, b d \text { with } \\
& a \in a c \circ a d, b \in b c \circ b d, c \in a c \circ b c, d \in a d \circ b d .
\end{aligned}
$$

We conjecture this is not definable in BBI or in HyBBI . If we add the \downarrow binder to HyBBI, defined by

$$
M, w=_{\rho} \downarrow \ell . A \quad \Leftrightarrow \quad M, w \models_{\rho[\ell:=w]} A
$$

A word about cross-split

We have brushed over the cross-split property:

$$
\begin{aligned}
& (a \circ b) \cap(c \circ d) \neq \emptyset \text {, implies } \exists a c, a d, b c, b d \text { with } \\
& a \in a c \circ a d, b \in b c \circ b d, c \in a c \circ b c, d \in a d \circ b d .
\end{aligned}
$$

We conjecture this is not definable in BBI or in HyBBI . If we add the \downarrow binder to HyBBI, defined by

$$
M, w=_{\rho} \downarrow \ell . A \quad \Leftrightarrow \quad M, w=_{\rho[\ell:=w]} A
$$

then cross-split is definable as the pure formula

$$
\begin{array}{r}
(a * b) \wedge(c * d) \vdash @_{a}\left(\top * \downarrow a c . @_{a}\left(\top * \downarrow a d . @_{a}(a c * a d)\right.\right. \\
\wedge @_{b}\left(\top * \downarrow b c \cdot @ _ { b } \left(\top * \downarrow b d . @_{b}(b c * b d)\right.\right. \\
\left.\left.\left.\left.\wedge @_{c}(a c * b c) \wedge @_{d}(a d * b d)\right)\right)\right)\right)
\end{array}
$$

Statement of completeness

We can write down a (quite complex) Hilbert-style proof system for HyBBI by adding rules for the hybrid operators. Soundness is easy, as usual.

Statement of completeness

We can write down a (quite complex) Hilbert-style proof system for HyBBI by adding rules for the hybrid operators. Soundness is easy, as usual.

Following an approach based on a Lindenbaum construction using maximal consistent sets we obtain the following completeness result:

Statement of completeness

We can write down a (quite complex) Hilbert-style proof system for HyBBI by adding rules for the hybrid operators. Soundness is easy, as usual.

Following an approach based on a Lindenbaum construction using maximal consistent sets we obtain the following completeness result:

Theorem (Completeness)
Let $A x$ be a set of axioms not containing any propositional variables (nominals are OK).

Statement of completeness

We can write down a (quite complex) Hilbert-style proof system for HyBBI by adding rules for the hybrid operators. Soundness is easy, as usual.

Following an approach based on a Lindenbaum construction using maximal consistent sets we obtain the following completeness result:

Theorem (Completeness)

Let $A x$ be a set of axioms not containing any propositional variables (nominals are OK).
Suppose that A is valid in the class of BBI-models satisfying $A x$.

Statement of completeness

We can write down a (quite complex) Hilbert-style proof system for HyBBI by adding rules for the hybrid operators. Soundness is easy, as usual.

Following an approach based on a Lindenbaum construction using maximal consistent sets we obtain the following completeness result:

Theorem (Completeness)

Let $A x$ be a set of axioms not containing any propositional variables (nominals are OK).
Suppose that A is valid in the class of BBI-models satisfying $A x$.
Then A is provable in the Hilbert system for HyBBI, extended with $A x$.

Conclusions and future work

- BBI is insufficiently expressive to capture important classes of models.

Conclusions and future work

- BBI is insufficiently expressive to capture important classes of models.
- We can gain this expressivity by deploying naming machinery from hybrid logic.

Conclusions and future work

- BBI is insufficiently expressive to capture important classes of models.
- We can gain this expressivity by deploying naming machinery from hybrid logic.
- In $H y B B I$, we have parametric completeness for any set of axioms expressed as pure formulas.

Conclusions and future work

- BBI is insufficiently expressive to capture important classes of models.
- We can gain this expressivity by deploying naming machinery from hybrid logic.
- In $H y B B I$, we have parametric completeness for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for previously undefinable classes of BBI-models.

Conclusions and future work

- BBI is insufficiently expressive to capture important classes of models.
- We can gain this expressivity by deploying naming machinery from hybrid logic.
- In $H y B B I$, we have parametric completeness for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for previously undefinable classes of BBI-models.
- Future work on our hybrid logics could include

Conclusions and future work

- BBI is insufficiently expressive to capture important classes of models.
- We can gain this expressivity by deploying naming machinery from hybrid logic.
- In $H y B B I$, we have parametric completeness for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for previously undefinable classes of BBI-models.
- Future work on our hybrid logics could include
- identification of decidable fragments;

Conclusions and future work

- BBI is insufficiently expressive to capture important classes of models.
- We can gain this expressivity by deploying naming machinery from hybrid logic.
- In $H y B B I$, we have parametric completeness for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for previously undefinable classes of BBI-models.
- Future work on our hybrid logics could include
- identification of decidable fragments;
- search for nice structural proof theories;

Conclusions and future work

- BBI is insufficiently expressive to capture important classes of models.
- We can gain this expressivity by deploying naming machinery from hybrid logic.
- In $H y B B I$, we have parametric completeness for any set of axioms expressed as pure formulas.
- In particular, this yields complete proof systems for previously undefinable classes of BBI-models.
- Future work on our hybrid logics could include
- identification of decidable fragments;
- search for nice structural proof theories;
- investigate possible applications to program analysis.

Further reading

J. Brotherston and J. Villard.

Parametric completeness for separation theories.
In Proc. POPL-41. ACM, 2014.
國 P. Blackburn, M. de Rijke and Y. Venema.
Modal Logic.
Cambridge University Press, 2001.
T
Z. Hóu, R. Clouston, R. Goré and A. Tiu.

Proof search for propositional abstract separation logics via labelled sequents.
In Proc. POPL-41. ACM, 2014.
D. Larchey-Wendling and D. Galmiche.

Exploring the relation between intuitionistic BI and Boolean BI: an unexpected embedding.
In Math. Struct. in Comp. Sci., vol. 19. Cambridge University Press, 2009.

