Undecidability of Boolean bunched logic

James Brotherston

Programming Principles, Logic and Verification Group Dept. of Computer Science University College London, UK J.Brotherston@ucl.ac.uk

Logic Summer School, ANU, 10 December 2015

Previously:

• we showed that the Hilbert system for BBI is sound and complete w.r.t. validity in an associated class of Kripke models;

Previously:

- we showed that the Hilbert system for BBI is sound and complete w.r.t. validity in an associated class of Kripke models;
- we reformulated the Hilbert system as an analytic, cut-eliminating display calculus.

Previously:

- we showed that the Hilbert system for BBI is sound and complete w.r.t. validity in an associated class of Kripke models;
- we reformulated the Hilbert system as an analytic, cut-eliminating display calculus.

You might think that BBI is therefore decidable: given a formula A, just conduct an exhaustive search for $\vdash A$ in the display calculus.

Previously:

- we showed that the Hilbert system for BBI is sound and complete w.r.t. validity in an associated class of Kripke models;
- we reformulated the Hilbert system as an analytic, cut-eliminating display calculus.

You might think that BBI is therefore decidable: given a formula A, just conduct an exhaustive search for $\vdash A$ in the display calculus.

But, actually, it isn't. That's today's subject.

BBI, proof-theoretically

Recall:

Provability in BBI is given by extending a Hilbert system for propositional classical logic by

$A \ast B \vdash B \ast A$	$A \ast (B \ast C) \vdash (A \ast B) \ast C$	
$A \vdash A * \mathrm{I}$	$A*\mathrm{I}\vdash A$	
$A_1 \vdash B_1 A_2 \vdash B_2$	$A*B\vdash C$	$A \vdash B \twoheadrightarrow C$
$\overline{A_1 * A_2 \vdash B_1 * B_2}$	$\overline{A \vdash B \twoheadrightarrow C}$	$A \ast B \vdash C$

BBI, semantically (1)

Recall:

- A BBI-model is given by $\langle W, \circ, E \rangle$, where
 - W is a set (of "worlds"),
 - \circ is a binary function $W \times W \to \mathcal{P}(W)$; we extend \circ to $\mathcal{P}(W) \times \mathcal{P}(W) \to \mathcal{P}(W)$ by

$$W_1 \circ W_2 =_{\mathrm{def}} \bigcup_{w_1 \in W_1, w_2 \in W_2} w_1 \circ w_2$$

- • is commutative and associative;
- the set of units $E \subseteq W$ satisfies $w \circ E = \{w\}$ for all $w \in W$.

A valuation for BBI-model $M = \langle W, \circ, E \rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.

BBI, semantically (2)

Given M, ρ , and $w \in W$, we define the forcing relation $w \models_{\rho} A$ by induction on formula A:

$$\begin{split} w &\models_{\rho} P \iff w \in \rho(P) \\ w &\models_{\rho} A \to B \iff w \models_{\rho} A \text{ implies } w \models_{\rho} B \\ \vdots \\ w &\models_{\rho} I \iff w \in E \\ w &\models_{\rho} A * B \iff w \in w_{1} \circ w_{2} \text{ and } w_{1} \models_{\rho} A \text{ and } w_{2} \models_{\rho} B \\ w &\models_{\rho} A - * B \iff \forall w', w'' \in W. \text{ if } w'' \in w \circ w' \text{ and } w' \models_{\rho} A \\ \text{ then } w'' \models_{\rho} B \end{split}$$

A is valid in M iff $w \models_{\rho} A$ for all ρ and $w \in W$.

• There is basically one universal strategy for showing things undecidable: by reduction from some problem already known undecidable!

- There is basically one universal strategy for showing things undecidable: by reduction from some problem already known undecidable!
- That is, we show that if we could decide validity of BBI-formulas, then we could decide some other undecidable problem.

- There is basically one universal strategy for showing things undecidable: by reduction from some problem already known undecidable!
- That is, we show that if we could decide validity of BBI-formulas, then we could decide some other undecidable problem.
- Classic undecidable problem: the halting problem, as famously considered by Turing.

- There is basically one universal strategy for showing things undecidable: by reduction from some problem already known undecidable!
- That is, we show that if we could decide validity of BBI-formulas, then we could decide some other undecidable problem.
- Classic undecidable problem: the halting problem, as famously considered by Turing.
- Turing machines are not very convenient for our purposes (why not?), so we shall instead consider the halting problem for two counter Minsky machines.

A Minsky machine M with counters c_1 , c_2 is given by a finite set of labelled instructions of the following types, where $k \in \{1, 2\}$:

A Minsky machine M with counters c_1 , c_2 is given by a finite set of labelled instructions of the following types, where $k \in \{1, 2\}$:

 $\begin{array}{l} L_i: c_k ++; \operatorname{\textbf{goto}} \ L_j;\\ L_i: c_k --; \operatorname{\textbf{goto}} \ L_j;\\ L_i: \operatorname{\textbf{if}} \ c_k = 0 \ \operatorname{\textbf{goto}} \ L_j;\\ L_i: \operatorname{\textbf{goto}} \ L_j; \end{array}$

"increment c_k (and jump)" "decrement c_k (and jump)" "zero-test c_k (and jump)" "jump"

A Minsky machine M with counters c_1 , c_2 is given by a finite set of labelled instructions of the following types, where $k \in \{1, 2\}$:

 $\begin{array}{ll} L_i: c_k ++; \operatorname{\textbf{goto}} L_j; & \text{``increment } c_k \text{ (and jump)''} \\ L_i: c_k --; \operatorname{\textbf{goto}} L_j; & \text{``decrement } c_k \text{ (and jump)''} \\ L_i: \operatorname{\textbf{if}} c_k = 0 \operatorname{\textbf{goto}} L_j; & \text{``zero-test } c_k \text{ (and jump)''} \\ L_i: \operatorname{\textbf{goto}} L_j; & \text{``jump''} \end{array}$

Configurations of M have the form $\langle L_i, n_1, n_2 \rangle$. We write $\langle L_i, n_1, n_2 \rangle \Downarrow_M$ if $\langle L_i, n_1, n_2 \rangle \rightsquigarrow_M^* \langle L_0, 0, 0 \rangle$.

A Minsky machine M with counters c_1 , c_2 is given by a finite set of labelled instructions of the following types, where $k \in \{1, 2\}$:

 $L_i: c_k ++;$ goto $L_j;$ "increment c_k (and jump)" $L_i: c_k --;$ goto $L_j;$ "decrement c_k (and jump)" $L_i:$ if $c_k = 0$ goto $L_j;$ "zero-test c_k (and jump)" $L_i:$ goto $L_j;$ "jump"

Configurations of M have the form $\langle L_i, n_1, n_2 \rangle$. We write $\langle L_i, n_1, n_2 \rangle \Downarrow_M$ if $\langle L_i, n_1, n_2 \rangle \rightsquigarrow_M^* \langle L_0, 0, 0 \rangle$. We introduce special labels L_{-1}, L_{-2} with instructions:

whence $\langle L_{-k}, n_1, n_2 \rangle \Downarrow_M$ iff $n_k = 0$.

Outline proof of undecidability

Theorem

It is undecidable whether a given Minsky machine terminates from a given configuration.

Outline proof of undecidability

Theorem

It is undecidable whether a given Minsky machine terminates from a given configuration.

Idea: given a machine M and configuration C, we encode M, C as a formula $\mathcal{F}_{M,C}$ of BBI such that

M terminates from $C \Leftrightarrow \mathcal{F}_{M,C}$ is valid.

Outline proof of undecidability

Theorem

It is undecidable whether a given Minsky machine terminates from a given configuration.

Idea: given a machine M and configuration C, we encode M, C as a formula $\mathcal{F}_{M,C}$ of BBI such that

M terminates from $C \Leftrightarrow \mathcal{F}_{M,C}$ is valid.

Then, if we could decide validity of formulas in BBI, we could decide the halting problem for Minsky machines, contradiction!

Encoding configurations (1)

First, for each label L_i we have a propositional variable l_i .

Encoding configurations (1)

First, for each label L_i we have a propositional variable l_i .

We also pick two propositional variables p_1 , p_2 to represent the counters c_1 , c_2 .

Encoding configurations (1)

First, for each label L_i we have a propositional variable l_i .

We also pick two propositional variables p_1 , p_2 to represent the counters c_1 , c_2 .

Then, a configuration $\langle L_i, n_1, n_2 \rangle$ will be represented as:

$$l_i * p_1^{n_1} * p_2^{n_2}$$

where p_k^n denotes the formula $\underbrace{p_k * p_k^n * \cdots * p_k}_{k * \cdots * p_k}$, with $p_k^0 = I$.

Encoding configurations (2)

Now we pick a new propositional variable b and write

$$-A =_{\operatorname{def}} A \twoheadrightarrow b$$

Encoding configurations (2)

Now we pick a new propositional variable b and write

$$-A =_{\operatorname{def}} A \twoheadrightarrow b$$

b will be interpreted as "all terminating configurations of the machine".

Encoding configurations (2)

Now we pick a new propositional variable b and write

 $-A =_{\operatorname{def}} A \twoheadrightarrow b$

b will be interpreted as "all terminating configurations of the machine".

So -A should be read as "whenever I add A to my current state, I get a terminating configuration".

Restricted *-contraction

Contraction does not hold for *:

 $A \not\vdash A \ast A$

Restricted *-contraction

Contraction does not hold for *:

 $A \not\vdash A \ast A$

However, a restricted form of contraction does hold:

 $\mathbf{I} \wedge A \vdash (\mathbf{I} \wedge A) \ast (\mathbf{I} \wedge A)$

Easy to see semantically, but quite hard to derive!

$$L_i: c_k + +;$$
 goto $L_j; \Rightarrow (-(l_j * p_k) - - l_i)$

$$\begin{array}{lll} L_i:c_k++; \operatorname{\textbf{goto}}\ L_j; & \Rightarrow & (-(l_j*p_k) \twoheadrightarrow -l_i) \\ L_i:c_k--; \operatorname{\textbf{goto}}\ L_j; & \Rightarrow & (-l_j \twoheadrightarrow -(l_i*p_k)) \end{array}$$

We code each instruction γ of a machine M as a formula $\kappa(\gamma)$ of BBI:

We code a whole machine $M = \{\gamma_1, \ldots, \gamma_t\}$ as:

$$\kappa(M) = \mathrm{I} \wedge \bigwedge_{i=1}^t \kappa(\gamma_i)$$

We code each instruction γ of a machine M as a formula $\kappa(\gamma)$ of BBI:

We code a whole machine $M = \{\gamma_1, \ldots, \gamma_t\}$ as:

$$\kappa(M) = \mathrm{I} \wedge \bigwedge_{i=1}^t \kappa(\gamma_i)$$

Finally, we code termination from $\langle L_0, 0, 0 \rangle$ as $(I \wedge -l_0)$.

Master encoding

Putting everything together, the formula $\mathcal{F}_{M,C}$ encoding termination of M from C will be

$$\kappa(M)\ast l_i\ast p_1^{n_1}\ast p_2^{n_2}\ast (I\wedge \text{-}\, l_0)\vdash b$$

Master encoding

Putting everything together, the formula $\mathcal{F}_{M,C}$ encoding termination of M from C will be

$$\kappa(M)*l_i*p_1^{n_1}*p_2^{n_2}*(I\wedge -l_0)\vdash b$$

Plan of proof: M terminates from C

Putting everything together, the formula $\mathcal{F}_{M,C}$ encoding termination of M from C will be

$$\kappa(M)\ast l_i\ast p_1^{n_1}\ast p_2^{n_2}\ast (I\wedge \textit{-}l_0)\vdash b$$

Plan of proof:

 ${\cal M}$ terminates from ${\cal C}$

 $\Rightarrow \mathcal{F}_{M,C}$ provable (Theorem 1)

Putting everything together, the formula $\mathcal{F}_{M,C}$ encoding termination of M from C will be

$$\kappa(M)*l_i*p_1^{n_1}*p_2^{n_2}*(I\wedge -l_0)\vdash b$$

Plan of proof:

 ${\cal M}$ terminates from ${\cal C}$

- $\Rightarrow \mathcal{F}_{M,C} \text{ provable} \qquad (\text{Theorem 1})$
- $\Rightarrow \mathcal{F}_{M,C}$ valid in all models (soundness)

Putting everything together, the formula $\mathcal{F}_{M,C}$ encoding termination of M from C will be

$$\kappa(M)*l_i*p_1^{n_1}*p_2^{n_2}*(I\wedge -l_0)\vdash b$$

Plan of proof:

 ${\cal M}$ terminates from ${\cal C}$

- $\Rightarrow \mathcal{F}_{M,C}$ provable (Theorem 1)
- $\Rightarrow \mathcal{F}_{M,C}$ valid in all models (soundness)
- \Rightarrow $\mathcal{F}_{M,C}$ valid in a specially chosen model and valuation

Putting everything together, the formula $\mathcal{F}_{M,C}$ encoding termination of M from C will be

$$\kappa(M)*l_i*p_1^{n_1}*p_2^{n_2}*(I\wedge -l_0)\vdash b$$

Plan of proof:

 ${\cal M}$ terminates from ${\cal C}$

- $\Rightarrow \mathcal{F}_{M,C} \text{ provable} \qquad (\text{Theorem 1})$
- $\Rightarrow \mathcal{F}_{M,C}$ valid in all models (soundness)
- \Rightarrow $\mathcal{F}_{M,C}$ valid in a specially chosen model and valuation
- \Rightarrow *M* terminates from *C* (Theorem 2)

First theorem

Theorem

Suppose $\langle L_i, n_1, n_2 \rangle \Downarrow_M$. Then the following is derivable in BBI:

 $\kappa(M)*l_i*p_1^{n_1}*p_2^{n_2}*(I\wedge -l_0)\vdash b$

First theorem

Theorem

Suppose $\langle L_i, n_1, n_2 \rangle \Downarrow_M$. Then the following is derivable in BBI:

$$\kappa(M) * l_i * p_1^{n_1} * p_2^{n_2} * (I \wedge -l_0) \vdash b$$

We actually derive the stronger

$$\kappa(M) * l_i * p_1^{n_1} * p_2^{n_2} \vdash --l_0$$

First theorem

Theorem

Suppose $\langle L_i, n_1, n_2 \rangle \Downarrow_M$. Then the following is derivable in BBI:

$$\kappa(M) * l_i * p_1^{n_1} * p_2^{n_2} * (I \wedge -l_0) \vdash b$$

We actually derive the stronger

$$\kappa(M) * l_i * p_1^{n_1} * p_2^{n_2} \vdash --l_0$$

Proof is by induction on the length of the computation $\langle L_i, n_1, n_2 \rangle \Downarrow_M$. Restricted *-contraction is used to duplicate instructions from $\kappa(M)$ as needed.

Given that $\mathcal{F}_{M,C}$ is provable, it is valid by soundness.

Given that $\mathcal{F}_{M,C}$ is provable, it is valid by soundness.

It's enough to show that M terminates from C given only that $\mathcal{F}_{M,C}$ is valid in some model of our choice, under some valuation of our choice.

Given that $\mathcal{F}_{M,C}$ is provable, it is valid by soundness.

It's enough to show that M terminates from C given only that $\mathcal{F}_{M,C}$ is valid in some model of our choice, under some valuation of our choice.

We use the **RAM-domain** model $\langle \mathcal{D}, \circ, \{e_0\} \rangle$, where:

• \mathcal{D} is the set of all finite subsets of \mathbb{N} ;

Given that $\mathcal{F}_{M,C}$ is provable, it is valid by soundness.

It's enough to show that M terminates from C given only that $\mathcal{F}_{M,C}$ is valid in some model of our choice, under some valuation of our choice.

We use the **RAM-domain** model $\langle \mathcal{D}, \circ, \{e_0\} \rangle$, where:

- \mathcal{D} is the set of all finite subsets of \mathbb{N} ;
- • is union of disjoint sets, undefined otherwise;

Given that $\mathcal{F}_{M,C}$ is provable, it is valid by soundness.

It's enough to show that M terminates from C given only that $\mathcal{F}_{M,C}$ is valid in some model of our choice, under some valuation of our choice.

We use the **RAM-domain** model $\langle \mathcal{D}, \circ, \{e_0\} \rangle$, where:

- \mathcal{D} is the set of all finite subsets of \mathbb{N} ;
- • is union of disjoint sets, undefined otherwise;
- e_0 is the empty set.

Second main theorem

Theorem

 $\langle L_i, n_1, n_2 \rangle \Downarrow_M$ whenever the following sequent is valid:

$$\kappa(M)*l_i*p_1^{n_1}*p_2^{n_2}*(I\wedge -l_0)\vdash b$$

Second main theorem

Theorem $\langle L_i, n_1, n_2 \rangle \Downarrow_M$ whenever the following sequent is valid:

$$\kappa(M)*l_i*p_1^{n_1}*p_2^{n_2}*(I\wedge -l_0)\vdash b$$

Proof outline. In our RAM-domain model $\langle \mathcal{D}, \circ, \{e_0\}\rangle$, we have for any ρ :

$$\kappa(M) * l_i * p_1^{n_1} * p_2^{n_2} * (I \wedge - l_0) \models_{\rho} b$$

Second main theorem

Theorem

 $\langle L_i, n_1, n_2 \rangle \Downarrow_M$ whenever the following sequent is valid:

$$\kappa(M) * l_i * p_1^{n_1} * p_2^{n_2} * (I \land -l_0) \vdash b$$

Proof outline. In our RAM-domain model $\langle \mathcal{D}, \circ, \{e_0\}\rangle$, we have for any ρ :

$$\kappa(M)*l_i*p_1^{n_1}*p_2^{n_2}*(I\wedge -l_0)\models_\rho b$$

We want to pick ρ with $e_0 \models_{\rho} \kappa(M)$ and $e_0 \models_{\rho} I \wedge -l_0$ to get:

$$l_i * p_1^{n_1} * p_2^{n_2} \models_{\rho} b$$

and infer $\langle L_i, n_1, n_2 \rangle \Downarrow_M$.

16/21

$\llbracket p_k^n \rrbracket_{\rho}$: The (second) edge of disaster

We intend that $l_i * p_1^{n_1} * p_2^{n_2}$ should encode configuration $\langle L_i, n_1, n_2 \rangle$. Thus $d \models_{\rho} p_k^{n_k}$ should determine the number n_k .

$\llbracket p_k^n \rrbracket_{\rho}$: The (second) edge of disaster

We intend that $l_i * p_1^{n_1} * p_2^{n_2}$ should encode configuration $\langle L_i, n_1, n_2 \rangle$. Thus $d \models_{\rho} p_k^{n_k}$ should determine the number n_k .

But composition is disjoint so that, e.g., if we take $\rho(p_k) = \{h\}$ for a nonempty heap h, then $\rho(p_k^2) = \rho(p_k * p_k)$ is empty!

$\llbracket p_k^n \rrbracket_{\rho}$: The (second) edge of disaster

We intend that $l_i * p_1^{n_1} * p_2^{n_2}$ should encode configuration $\langle L_i, n_1, n_2 \rangle$. Thus $d \models_{\rho} p_k^{n_k}$ should determine the number n_k .

But composition is disjoint so that, e.g., if we take $\rho(p_k) = \{h\}$ for a nonempty heap h, then $\rho(p_k^2) = \rho(p_k * p_k)$ is empty!

In general, whenever $\rho(p_k)$ is finite we must have:

$$\llbracket p_k^n \rrbracket_\rho = \llbracket p_k^m \rrbracket_\rho$$

for sufficiently large n and m. So we need an infinite valuation.

Choosing a valuation

We choose a valuation ρ for $\langle \mathcal{D}, \circ, \{e_0\}\rangle$ as follows:

$$\rho(p_1) = \{\{2^m\} \mid m \in \mathbb{N}\} \\
\rho(p_2) = \{\{3^m\} \mid m \in \mathbb{N}\}$$

Choosing a valuation

We choose a valuation ρ for $\langle \mathcal{D}, \circ, \{e_0\}\rangle$ as follows:

$$\begin{array}{lll} \rho(p_1) &=& \{\{2^m\} \mid m \in \mathbb{N}\} \\ \rho(p_2) &=& \{\{3^m\} \mid m \in \mathbb{N}\} \\ \rho(l_i) &=& \{\{\delta^m_i\} \mid m \in \mathbb{N}\} \end{array}$$

where δ_i is a fresh prime number for each propositional variable $l_{-2}, l_{-1}, l_0, l_1, \ldots$

Choosing a valuation

We choose a valuation ρ for $\langle \mathcal{D}, \circ, \{e_0\}\rangle$ as follows:

$$\begin{array}{lll} \rho(p_1) &=& \{\{2^m\} \mid m \in \mathbb{N}\} \\ \rho(p_2) &=& \{\{3^m\} \mid m \in \mathbb{N}\} \\ \rho(l_i) &=& \{\{\delta^m_i\} \mid m \in \mathbb{N}\} \end{array}$$

where δ_i is a fresh prime number for each propositional variable $l_{-2}, l_{-1}, l_0, l_1, \ldots$ Finally, we define:

$$\rho(b) = \bigcup_{\left\langle L_i, n_1, n_2 \right\rangle \Downarrow_M} \{ d \mid d \models_{\rho} l_i * p_1^{n_1} * p_2^{n_2} \}$$

so $\rho(b)$ is the set of interpretations of all terminating configurations.

Lemma

For our chosen model and valuation ρ ,

$$e_0 \models_{\rho} \mathbf{I} \wedge \mathbf{-} l_0$$
.

This is easy.

Lemma

For our chosen model and valuation ρ ,

$$e_0 \models_{\rho} \mathbf{I} \wedge \mathbf{-} l_0$$
.

This is easy.

Lemma

 $e_0 \models_{\rho} \kappa(M).$

Lemma

For our chosen model and valuation ρ ,

$$e_0 \models_{\rho} \mathbf{I} \wedge \mathbf{-} l_0$$
.

This is easy.

Lemma

$$e_0 \models_{\rho} \kappa(M).$$

We have to show $e_0 \models_{\rho} \kappa(\gamma)$ for each possible instruction γ .

Lemma

For our chosen model and valuation ρ ,

$$e_0 \models_{\rho} \mathbf{I} \wedge \mathbf{-} l_0$$
.

This is easy.

Lemma

$$e_0 \models_{\rho} \kappa(M).$$

We have to show $e_0 \models_{\rho} \kappa(\gamma)$ for each possible instruction γ .

This involves wrangling with the semantics of -* and with the details of our valuation.

If $\kappa(M) * l_i * p_1^{n_1} * p_2^{n_2} * (I \wedge -l_0) \vdash b$ is valid in $\langle \mathcal{D}, \circ, \{e_0\}\rangle$ then:

$$\kappa(M)*l_i*p_1^{n_1}*p_2^{n_2}*(\mathbf{I}\wedge \textbf{-}l_0)\models_\rho b$$

If $\kappa(M) * l_i * p_1^{n_1} * p_2^{n_2} * (I \wedge -l_0) \vdash b$ is valid in $\langle \mathcal{D}, \circ, \{e_0\}\rangle$ then:

$$\kappa(M)*l_i*p_1^{n_1}*p_2^{n_2}*(\mathbf{I}\wedge \textbf{-} l_0)\models_\rho b$$

Since $e_0 \models_{\rho} \kappa(M)$ we get:

$$l_i * p_1^{n_1} * p_2^{n_2} * (\mathbf{I} \wedge - l_0) \models_{\rho} b$$

If $\kappa(M) * l_i * p_1^{n_1} * p_2^{n_2} * (I \wedge -l_0) \vdash b$ is valid in $\langle \mathcal{D}, \circ, \{e_0\}\rangle$ then:

$$\kappa(M)*l_i*p_1^{n_1}*p_2^{n_2}*(\mathbf{I}\wedge \textbf{-}l_0)\models_\rho b$$

Since $e_0 \models_{\rho} \kappa(M)$ we get:

$$l_i * p_1^{n_1} * p_2^{n_2} * (\mathbf{I} \wedge - l_0) \models_{\rho} b$$

Since $e_0 \models_{\rho} I \land -l_0$ (because $\langle L_0, 0, 0 \rangle \Downarrow_M$), we get:

$$l_i * p_1^{n_1} * p_2^{n_2} \models_{\rho} b$$

If $\kappa(M) * l_i * p_1^{n_1} * p_2^{n_2} * (I \wedge -l_0) \vdash b$ is valid in $\langle \mathcal{D}, \circ, \{e_0\}\rangle$ then:

$$\kappa(M)*l_i*p_1^{n_1}*p_2^{n_2}*(\mathbf{I}\wedge \textbf{-} l_0)\models_\rho b$$

Since $e_0 \models_{\rho} \kappa(M)$ we get:

$$l_i * p_1^{n_1} * p_2^{n_2} * (\mathbf{I} \wedge - l_0) \models_{\rho} b$$

Since $e_0 \models_{\rho} I \land -l_0$ (because $\langle L_0, 0, 0 \rangle \Downarrow_M$), we get:

$$l_i * p_1^{n_1} * p_2^{n_2} \models_{\rho} b$$

Since $d \models_{\rho} l_i * p_1^{n_1} * p_2^{n_2}$ uniquely determines n_1 and n_2 we conclude $\langle L_i, n_1, n_2 \rangle \Downarrow_M$ from definition of $\rho(b)$.

Further reading

J. Brotherston and M. Kanovich. Undecidability of propositional separation logic and its neighbours. In *Journal of the ACM* 61(2). ACM, 2014. Original version in *Proc. LICS-25*. IEEE, 2010.

D. Larchey-Wendling and D. Galmiche. Nondeterministic phase semantics and the undecidability of Boolean BI.

In ACM Trans. Comput. Logic 14(1). ACM, 2013. Original version in Proc. LICS-25. IEEE, 2010.

C. Calcagno, P. O'Hearn and H. Yang.

Computability and complexity results for a spatial assertion language for data structures.

In Proceedings of FSTTCS, 2001.