Undecidability of Boolean bunched logic

James Brotherston

Programming Principles, Logic and Verification Group
Dept. of Computer Science
University College London, UK
J.Brotherston@ucl.ac.uk

Logic Summer School, ANU, 10 December 2015

Introduction

Previously:

- we showed that the Hilbert system for BBI is sound and complete w.r.t. validity in an associated class of Kripke models;

Introduction

Previously:

- we showed that the Hilbert system for BBI is sound and complete w.r.t. validity in an associated class of Kripke models;
- we reformulated the Hilbert system as an analytic, cut-eliminating display calculus.

Introduction

Previously:

- we showed that the Hilbert system for BBI is sound and complete w.r.t. validity in an associated class of Kripke models;
- we reformulated the Hilbert system as an analytic, cut-eliminating display calculus.
You might think that BBI is therefore decidable: given a formula A, just conduct an exhaustive search for $\vdash A$ in the display calculus.

Introduction

Previously:

- we showed that the Hilbert system for BBI is sound and complete w.r.t. validity in an associated class of Kripke models;
- we reformulated the Hilbert system as an analytic, cut-eliminating display calculus.
You might think that BBI is therefore decidable: given a formula A, just conduct an exhaustive search for $\vdash A$ in the display calculus.

But, actually, it isn't. That's today's subject.

BBI, proof-theoretically

Recall:
Provability in BBI is given by extending a Hilbert system for propositional classical logic by

$$
\begin{array}{cc}
A * B \vdash B * A & A *(B * C) \vdash(A * B) * C \\
A \vdash A * \mathrm{I} & A * \mathrm{I} \vdash A \\
\frac{A_{1} \vdash B_{1} \quad A_{2} \vdash B_{2}}{A_{1} * A_{2} \vdash B_{1} * B_{2}} & \frac{A * B \vdash C}{A \vdash B-C} \quad \frac{A \vdash B * C}{A * B \vdash C}
\end{array}
$$

BBI, semantically (1)

Recall:
A BBI-model is given by $\langle W, \circ, E\rangle$, where

- W is a set (of "worlds"),
- ○ is a binary function $W \times W \rightarrow \mathcal{P}(W)$; we extend \circ to $\mathcal{P}(W) \times \mathcal{P}(W) \rightarrow \mathcal{P}(W)$ by

$$
W_{1} \circ W_{2}=\operatorname{def}^{\bigcup_{w_{1} \in W_{1}, w_{2} \in W_{2}} w_{1} \circ w_{2}}
$$

- \circ is commutative and associative;
- the set of units $E \subseteq W$ satisfies $w \circ E=\{w\}$ for all $w \in W$.

A valuation for BBI-model $M=\langle W, \circ, E\rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.

BBI, semantically (2)

Given M, ρ, and $w \in W$, we define the forcing relation $w \not \models_{\rho} A$ by induction on formula A :

$$
\begin{aligned}
& w \models_{\rho} P \Leftrightarrow w \in \rho(P) \\
& w \models_{\rho} A \rightarrow B \Leftrightarrow \Leftrightarrow \\
& \vdots \\
& w \models_{\rho} A \text { implies } w \models_{\rho} B \\
& w \models_{\rho} A * B \Leftrightarrow \Leftrightarrow \in E \\
& w \models_{\rho} A \rightarrow B * w_{1} \circ w_{2} \text { and } w_{1} \models_{\rho} A \text { and } w_{2} \models_{\rho} B \\
& \forall w^{\prime}, w^{\prime \prime} \in W . \text { if } w^{\prime \prime} \in w \circ w^{\prime} \text { and } w^{\prime} \models_{\rho} A \\
& \text { then } w^{\prime \prime} \models_{\rho} B
\end{aligned}
$$

A is valid in M iff $w \models_{\rho} A$ for all ρ and $w \in W$.

Undecidability strategy

- There is basically one universal strategy for showing things undecidable: by reduction from some problem already known undecidable!

Undecidability strategy

- There is basically one universal strategy for showing things undecidable: by reduction from some problem already known undecidable!
- That is, we show that if we could decide validity of BBI-formulas, then we could decide some other undecidable problem.

Undecidability strategy

- There is basically one universal strategy for showing things undecidable: by reduction from some problem already known undecidable!
- That is, we show that if we could decide validity of BBI-formulas, then we could decide some other undecidable problem.
- Classic undecidable problem: the halting problem, as famously considered by Turing.

Undecidability strategy

- There is basically one universal strategy for showing things undecidable: by reduction from some problem already known undecidable!
- That is, we show that if we could decide validity of BBI-formulas, then we could decide some other undecidable problem.
- Classic undecidable problem: the halting problem, as famously considered by Turing.
- Turing machines are not very convenient for our purposes (why not?), so we shall instead consider the halting problem for two counter Minsky machines.

Minsky machines

A Minsky machine M with counters c_{1}, c_{2} is given by a finite set of labelled instructions of the following types, where $k \in\{1,2\}$:

Minsky machines

A Minsky machine M with counters c_{1}, c_{2} is given by a finite set of labelled instructions of the following types, where $k \in\{1,2\}$:

$$
\begin{array}{ll}
L_{i}: c_{k}++; \text { goto } L_{j} ; & \text { "increment } c_{k} \text { (and jump)" } \\
L_{i}: c_{k}--; \text { goto } L_{j} ; & \text { "decrement } c_{k} \text { (and jump)" } \\
L_{i}: \text { if } c_{k}=0 \text { goto } L_{j} ; & \text { "zero-test } c_{k} \text { (and jump)" } \\
L_{i}: \text { goto } L_{j} ; & \text { "jump" }
\end{array}
$$

Minsky machines

A Minsky machine M with counters c_{1}, c_{2} is given by a finite set of labelled instructions of the following types, where $k \in\{1,2\}$:

$$
\begin{array}{ll}
L_{i}: c_{k}++; \text { goto } L_{j} ; & \text { "increment } c_{k} \text { (and jump)" } \\
L_{i}: c_{k}--; \text { goto } L_{j} ; & \text { "decrement } c_{k} \text { (and jump)" } \\
L_{i}: \text { if } c_{k}=0 \text { goto } L_{j} ; & \text { "zero-test } c_{k} \text { (and jump)" } \\
L_{i}: \text { goto } L_{j} ; & \text { "jump" }
\end{array}
$$

Configurations of M have the form $\left\langle L_{i}, n_{1}, n_{2}\right\rangle$. We write $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$ if $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \rightsquigarrow_{M}^{*}\left\langle L_{0}, 0,0\right\rangle$.

Minsky machines

A Minsky machine M with counters c_{1}, c_{2} is given by a finite set of labelled instructions of the following types, where $k \in\{1,2\}$:

$$
\begin{array}{ll}
L_{i}: c_{k}++; \text { goto } L_{j} ; & \text { "increment } c_{k} \text { (and jump)" } \\
L_{i}: c_{k}--; \text { goto } L_{j} ; & \text { "decrement } c_{k} \text { (and jump)" } \\
L_{i}: \text { if } c_{k}=0 \text { goto } L_{j} ; & \text { "zero-test } c_{k} \text { (and jump)" } \\
L_{i}: \text { goto } L_{j} ; & \text { "jump" }
\end{array}
$$

Configurations of M have the form $\left\langle L_{i}, n_{1}, n_{2}\right\rangle$. We write $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$ if $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \rightsquigarrow_{M}^{*}\left\langle L_{0}, 0,0\right\rangle$.
We introduce special labels L_{-1}, L_{-2} with instructions:

$$
\begin{array}{ll}
L_{-1}: c_{2}--; \text { goto } L_{-1} ; & L_{-1}: \text { goto } L_{0} ; \\
L_{-2}: c_{1}--; \text { goto } L_{-2} ; & L_{-2}: \text { goto } L_{0} ;
\end{array}
$$

whence $\left\langle L_{-k}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$ iff $n_{k}=0$.

Outline proof of undecidability

Theorem
It is undecidable whether a given Minsky machine terminates from a given configuration.

Outline proof of undecidability

Theorem
It is undecidable whether a given Minsky machine terminates from a given configuration.

Idea: given a machine M and configuration C, we encode M, C as a formula $\mathcal{F}_{M, C}$ of BBI such that
M terminates from $C \Leftrightarrow \mathcal{F}_{M, C}$ is valid .

Outline proof of undecidability

Theorem
It is undecidable whether a given Minsky machine terminates from a given configuration.

Idea: given a machine M and configuration C, we encode M, C as a formula $\mathcal{F}_{M, C}$ of BBI such that
M terminates from $C \Leftrightarrow \mathcal{F}_{M, C}$ is valid .
Then, if we could decide validity of formulas in BBI, we could decide the halting problem for Minsky machines, contradiction!

Encoding configurations (1)

First, for each label L_{i} we have a propositional variable l_{i}.

Encoding configurations (1)

First, for each label L_{i} we have a propositional variable l_{i}. We also pick two propositional variables p_{1}, p_{2} to represent the counters c_{1}, c_{2}.

Encoding configurations (1)

First, for each label L_{i} we have a propositional variable l_{i}.
We also pick two propositional variables p_{1}, p_{2} to represent the counters c_{1}, c_{2}.

Then, a configuration $\left\langle L_{i}, n_{1}, n_{2}\right\rangle$ will be represented as:

$$
l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}}
$$

where p_{k}^{n} denotes the formula $\underbrace{p_{k} * p_{k}^{n}{ }^{*} \cdots \cdots * p_{k}}$, with $p_{k}^{0}=\mathrm{I}$.

Encoding configurations (2)

Now we pick a new propositional variable b and write

$$
-A=\operatorname{def} A \rightarrow b
$$

Encoding configurations (2)

Now we pick a new propositional variable b and write

$$
-A={ }_{\operatorname{def}} A \rightarrow b
$$

b will be interpreted as "all terminating configurations of the machine".

Encoding configurations (2)

Now we pick a new propositional variable b and write

$$
-A={ }_{\operatorname{def}} A \rightarrow b
$$

b will be interpreted as "all terminating configurations of the machine".

So - A should be read as "whenever I add A to my current state, I get a terminating configuration".

Restricted *-contraction

Contraction does not hold for $*$:

$$
A \nvdash A * A
$$

Restricted *-contraction

Contraction does not hold for $*$:

$$
A \nvdash A * A
$$

However, a restricted form of contraction does hold:

$$
\mathrm{I} \wedge A \vdash(\mathrm{I} \wedge A) *(\mathrm{I} \wedge A)
$$

Easy to see semantically, but quite hard to derive!

Encoding machines in BBI

We code each instruction γ of a machine M as a formula $\kappa(\gamma)$ of BBI:

Encoding machines in BBI

We code each instruction γ of a machine M as a formula $\kappa(\gamma)$ of BBI:

$$
L_{i}: c_{k}++; \text { goto } L_{j} ; \quad \Rightarrow \quad\left(-\left(l_{j} * p_{k}\right)-*-l_{i}\right)
$$

Encoding machines in BBI

We code each instruction γ of a machine M as a formula $\kappa(\gamma)$ of BBI:

$$
\begin{array}{ll}
L_{i}: c_{k}++ \text { goto } L_{j} ; & \Rightarrow\left(-\left(l_{j} * p_{k}\right) *-l_{i}\right) \\
L_{i}: c_{k}--; \text { goto } L_{j} ; & \Rightarrow\left(-l_{j} *-\left(l_{i} * p_{k}\right)\right)
\end{array}
$$

Encoding machines in BBI

We code each instruction γ of a machine M as a formula $\kappa(\gamma)$ of BBI:

$$
\begin{array}{lll}
L_{i}: c_{k}++; \text { goto } L_{j} ; & \Rightarrow\left(-\left(l_{j} * p_{k}\right)-*-l_{i}\right) \\
L_{i}: c_{k}--; \text { goto } L_{j} ; & \Rightarrow\left(-l_{j} *-\left(l_{i} * p_{k}\right)\right) \\
L_{i}: \text { if } c_{k}=0 \text { goto } L_{j} ; & \Rightarrow\left(-\left(l_{j} \vee l_{-k}\right) *-l_{i}\right)
\end{array}
$$

Encoding machines in BBI

We code each instruction γ of a machine M as a formula $\kappa(\gamma)$ of BBI:

$$
\begin{array}{ll}
L_{i}: c_{k}++; \text { goto } L_{j} ; & \Rightarrow\left(-\left(l_{j} * p_{k}\right)-*-l_{i}\right) \\
L_{i}: c_{k}--; \text { goto } L_{j} ; & \Rightarrow\left(-l_{j} *-\left(l_{i} * p_{k}\right)\right) \\
L_{i}: \text { if } c_{k}=0 \text { goto } L_{j} ; & \Rightarrow\left(-\left(l_{j} \vee l_{-k}\right)-l_{i}\right) \\
L_{i}: \text { goto } L_{j} ; & \Rightarrow\left(-l_{j} *-l_{i}\right)
\end{array}
$$

Encoding machines in BBI

We code each instruction γ of a machine M as a formula $\kappa(\gamma)$ of BBI:

$$
\begin{array}{ll}
L_{i}: c_{k}++; \text { goto } L_{j} ; & \Rightarrow\left(-\left(l_{j} * p_{k}\right)-*-l_{i}\right) \\
L_{i}: c_{k}--; \text { goto } L_{j} ; & \Rightarrow\left(-l_{j}-*-\left(l_{i} * p_{k}\right)\right) \\
L_{i}: \text { if } c_{k}=0 \text { goto } L_{j} ; & \Rightarrow\left(-\left(l_{j} \vee l_{-k}\right)-l_{i}\right) \\
L_{i}: \text { goto } L_{j} ; & \Rightarrow\left(-l_{j} *-l_{i}\right)
\end{array}
$$

We code a whole machine $M=\left\{\gamma_{1}, \ldots, \gamma_{t}\right\}$ as:

$$
\kappa(M)=\mathrm{I} \wedge \bigwedge_{i=1}^{t} \kappa\left(\gamma_{i}\right)
$$

Encoding machines in BBI

We code each instruction γ of a machine M as a formula $\kappa(\gamma)$ of BBI:

$$
\begin{array}{ll}
L_{i}: c_{k}++; \text { goto } L_{j} ; & \Rightarrow\left(-\left(l_{j} * p_{k}\right)-*-l_{i}\right) \\
L_{i}: c_{k}--; \text { goto } L_{j} ; & \Rightarrow\left(-l_{j}-*-\left(l_{i} * p_{k}\right)\right) \\
L_{i}: \text { if } c_{k}=0 \text { goto } L_{j} ; & \Rightarrow\left(-\left(l_{j} \vee l_{-k}\right)-l_{i}\right) \\
L_{i}: \text { goto } L_{j} ; & \Rightarrow\left(-l_{j} *-l_{i}\right)
\end{array}
$$

We code a whole machine $M=\left\{\gamma_{1}, \ldots, \gamma_{t}\right\}$ as:

$$
\kappa(M)=\mathrm{I} \wedge \bigwedge_{i=1}^{t} \kappa\left(\gamma_{i}\right)
$$

Finally, we code termination from $\left\langle L_{0}, 0,0\right\rangle$ as $\left(I \wedge-l_{0}\right)$.

Master encoding

Putting everything together, the formula $\mathcal{F}_{M, C}$ encoding termination of M from C will be

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

Master encoding

Putting everything together, the formula $\mathcal{F}_{M, C}$ encoding termination of M from C will be

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

Plan of proof:
M terminates from C

Master encoding

Putting everything together, the formula $\mathcal{F}_{M, C}$ encoding termination of M from C will be

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

Plan of proof:

$$
M \text { terminates from } C
$$

$\Rightarrow \quad \mathcal{F}_{M, C}$ provable $\quad($ Theorem 1)

Master encoding

Putting everything together, the formula $\mathcal{F}_{M, C}$ encoding termination of M from C will be

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

Plan of proof:
M terminates from C
$\Rightarrow \quad \mathcal{F}_{M, C}$ provable \quad (Theorem 1)
$\Rightarrow \quad \mathcal{F}_{M, C}$ valid in all models \quad (soundness)

Master encoding

Putting everything together, the formula $\mathcal{F}_{M, C}$ encoding termination of M from C will be

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

Plan of proof:

$$
M \text { terminates from } C
$$

$\Rightarrow \quad \mathcal{F}_{M, C}$ provable \quad (Theorem 1)
$\Rightarrow \quad \mathcal{F}_{M, C}$ valid in all models \quad (soundness)
$\Rightarrow \quad \mathcal{F}_{M, C}$ valid in a specially chosen model and valuation

Master encoding

Putting everything together, the formula $\mathcal{F}_{M, C}$ encoding termination of M from C will be

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

Plan of proof:

$$
M \text { terminates from } C
$$

$\Rightarrow \quad \mathcal{F}_{M, C}$ provable \quad (Theorem 1)
$\Rightarrow \quad \mathcal{F}_{M, C}$ valid in all models \quad (soundness)
$\Rightarrow \quad \mathcal{F}_{M, C}$ valid in a specially chosen model and valuation
$\Rightarrow \quad M$ terminates from $C \quad$ (Theorem 2)

First theorem

Theorem
Suppose $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$. Then the following is derivable in BBI :

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

First theorem

Theorem
Suppose $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$. Then the following is derivable in BBI :

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

We actually derive the stronger

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} \vdash--l_{0}
$$

First theorem

Theorem
Suppose $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$. Then the following is derivable in BBI :

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

We actually derive the stronger

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} \vdash--l_{0}
$$

Proof is by induction on the length of the computation $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$. Restricted $*$-contraction is used to duplicate instructions from $\kappa(M)$ as needed.

Choosing a model

Given that $\mathcal{F}_{M, C}$ is provable, it is valid by soundness.

Choosing a model

Given that $\mathcal{F}_{M, C}$ is provable, it is valid by soundness.
It's enough to show that M terminates from C given only that $\mathcal{F}_{M, C}$ is valid in some model of our choice, under some valuation of our choice.

Choosing a model

Given that $\mathcal{F}_{M, C}$ is provable, it is valid by soundness.
It's enough to show that M terminates from C given only that $\mathcal{F}_{M, C}$ is valid in some model of our choice, under some valuation of our choice.

We use the RAM-domain model $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$, where:

- \mathcal{D} is the set of all finite subsets of \mathbb{N};

Choosing a model

Given that $\mathcal{F}_{M, C}$ is provable, it is valid by soundness.
It's enough to show that M terminates from C given only that $\mathcal{F}_{M, C}$ is valid in some model of our choice, under some valuation of our choice.

We use the RAM-domain model $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$, where:

- \mathcal{D} is the set of all finite subsets of \mathbb{N};
- \circ is union of disjoint sets, undefined otherwise;

Choosing a model

Given that $\mathcal{F}_{M, C}$ is provable, it is valid by soundness.
It's enough to show that M terminates from C given only that $\mathcal{F}_{M, C}$ is valid in some model of our choice, under some valuation of our choice.

We use the RAM-domain model $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$, where:

- \mathcal{D} is the set of all finite subsets of \mathbb{N};
- \circ is union of disjoint sets, undefined otherwise;
- e_{0} is the empty set.

Second main theorem

Theorem
$\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$ whenever the following sequent is valid:

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

Second main theorem

Theorem

$\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$ whenever the following sequent is valid:

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

Proof outline. In our RAM-domain model $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$, we have for any ρ :

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \models_{\rho} b
$$

Second main theorem

Theorem

$\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$ whenever the following sequent is valid:

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \vdash b
$$

Proof outline. In our RAM-domain model $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$, we have for any ρ :

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(I \wedge-l_{0}\right) \models_{\rho} b
$$

We want to pick ρ with $e_{0} \models_{\rho} \kappa(M)$ and $e_{0} \models_{\rho} I \wedge-l_{0}$ to get:

$$
l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} \models{ }_{\rho} b
$$

and infer $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$.

$\llbracket p_{k}^{n} \rrbracket_{\rho}$: The (second) edge of disaster

We intend that $l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}}$ should encode configuration $\left\langle L_{i}, n_{1}, n_{2}\right\rangle$. Thus $d{ }_{\rho} p_{k}^{n_{k}}$ should determine the number n_{k}.

$$
\llbracket p_{k}^{n} \rrbracket_{\rho}: \text { The (second) edge of disaster }
$$

We intend that $l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}}$ should encode configuration $\left\langle L_{i}, n_{1}, n_{2}\right\rangle$. Thus $d{ }_{\rho} p_{k}^{n_{k}}$ should determine the number n_{k}.

But composition is disjoint so that, e.g., if we take $\rho\left(p_{k}\right)=\{h\}$ for a nonempty heap h, then $\rho\left(p_{k}^{2}\right)=\rho\left(p_{k} * p_{k}\right)$ is empty!

$$
\llbracket p_{k}^{n} \rrbracket_{\rho}: \text { The (second) edge of disaster }
$$

We intend that $l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}}$ should encode configuration $\left\langle L_{i}, n_{1}, n_{2}\right\rangle$. Thus $d \vDash \rho p_{k}^{n_{k}}$ should determine the number n_{k}.

But composition is disjoint so that, e.g., if we take $\rho\left(p_{k}\right)=\{h\}$ for a nonempty heap h, then $\rho\left(p_{k}^{2}\right)=\rho\left(p_{k} * p_{k}\right)$ is empty!
In general, whenever $\rho\left(p_{k}\right)$ is finite we must have:

$$
\llbracket p_{k}^{n} \rrbracket_{\rho}=\llbracket p_{k}^{m} \rrbracket_{\rho}
$$

for sufficiently large n and m. So we need an infinite valuation.

Choosing a valuation

We choose a valuation ρ for $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$ as follows:

$$
\begin{aligned}
& \rho\left(p_{1}\right)=\left\{\left\{2^{m}\right\} \mid m \in \mathbb{N}\right\} \\
& \rho\left(p_{2}\right)=\left\{\left\{3^{m}\right\} \mid m \in \mathbb{N}\right\}
\end{aligned}
$$

Choosing a valuation

We choose a valuation ρ for $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$ as follows:

$$
\begin{aligned}
\rho\left(p_{1}\right) & =\left\{\left\{2^{m}\right\} \mid m \in \mathbb{N}\right\} \\
\rho\left(p_{2}\right) & =\left\{\left\{3^{m}\right\} \mid m \in \mathbb{N}\right\} \\
\rho\left(l_{i}\right) & =\left\{\left\{\delta_{i}^{m}\right\} \mid m \in \mathbb{N}\right\}
\end{aligned}
$$

where δ_{i} is a fresh prime number for each propositional variable $l_{-2}, l_{-1}, l_{0}, l_{1}, \ldots$

Choosing a valuation

We choose a valuation ρ for $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$ as follows:

$$
\begin{aligned}
\rho\left(p_{1}\right) & =\left\{\left\{2^{m}\right\} \mid m \in \mathbb{N}\right\} \\
\rho\left(p_{2}\right) & =\left\{\left\{3^{m}\right\} \mid m \in \mathbb{N}\right\} \\
\rho\left(l_{i}\right) & =\left\{\left\{\delta_{i}^{m}\right\} \mid m \in \mathbb{N}\right\}
\end{aligned}
$$

where δ_{i} is a fresh prime number for each propositional variable $l_{-2}, l_{-1}, l_{0}, l_{1}, \ldots$
Finally, we define:

$$
\rho(b)=\bigcup_{\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}}\left\{d|d|=\rho l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}}\right\}
$$

so $\rho(b)$ is the set of interpretations of all terminating configurations.

Needed lemma

Lemma
For our chosen model and valuation ρ,

$$
e_{0} \models_{\rho} \mathrm{I} \wedge-l_{0} .
$$

This is easy.

Needed lemma

Lemma
For our chosen model and valuation ρ,

$$
e_{0} \models_{\rho} \mathrm{I} \wedge-l_{0} .
$$

This is easy.
Lemma

$$
e_{0} \models_{\rho} \kappa(M) .
$$

Needed lemma

Lemma
For our chosen model and valuation ρ,

$$
e_{0} \models_{\rho} \mathrm{I} \wedge-l_{0} .
$$

This is easy.
Lemma

$$
e_{0} \models_{\rho} \kappa(M) .
$$

We have to show $e_{0} \models_{\rho} \kappa(\gamma)$ for each possible instruction γ.

Needed lemma

Lemma
For our chosen model and valuation ρ,

$$
e_{0} \models_{\rho} \mathrm{I} \wedge-l_{0} .
$$

This is easy.
Lemma

$$
e_{0} \models_{\rho} \kappa(M) .
$$

We have to show $e_{0}=_{\rho} \kappa(\gamma)$ for each possible instruction γ.
This involves wrangling with the semantics of $-*$ and with the details of our valuation.

Proof of Lemma 2

If $\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \vdash b$ is valid in $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$ then:

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \models_{\rho} b
$$

Proof of Lemma 2

If $\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \vdash b$ is valid in $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$ then:

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \models_{\rho} b
$$

Since $e_{0}=_{\rho} \kappa(M)$ we get:

$$
l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \models_{\rho} b
$$

Proof of Lemma 2

If $\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \vdash b$ is valid in $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$ then:

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \models_{\rho} b
$$

Since $e_{0} \models{ }_{\rho} \kappa(M)$ we get:

$$
l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \models_{\rho} b
$$

Since $e_{0} \models{ }_{\rho} \mathrm{I} \wedge-l_{0}$ (because $\left\langle L_{0}, 0,0\right\rangle \Downarrow_{M}$), we get:

$$
l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} \models{ }_{\rho} b
$$

Proof of Lemma 2

If $\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \vdash b$ is valid in $\left\langle\mathcal{D}, \circ,\left\{e_{0}\right\}\right\rangle$ then:

$$
\kappa(M) * l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \models_{\rho} b
$$

Since $e_{0} \models{ }_{\rho} \kappa(M)$ we get:

$$
l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} *\left(\mathrm{I} \wedge-l_{0}\right) \models_{\rho} b
$$

Since $e_{0} \models{ }_{\rho} \mathrm{I} \wedge-l_{0}$ (because $\left\langle L_{0}, 0,0\right\rangle \Downarrow_{M}$), we get:

$$
l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}} \models{ }_{\rho} b
$$

Since $d \models_{\rho} l_{i} * p_{1}^{n_{1}} * p_{2}^{n_{2}}$ uniquely determines n_{1} and n_{2} we conclude $\left\langle L_{i}, n_{1}, n_{2}\right\rangle \Downarrow_{M}$ from definition of $\rho(b)$.

Further reading

J. Brotherston and M. Kanovich.

Undecidability of propositional separation logic and its neighbours.
In Journal of the ACM 61(2). ACM, 2014.
Original version in Proc. LICS-25. IEEE, 2010.
D. Larchey-Wendling and D. Galmiche.

Nondeterministic phase semantics and the undecidability of Boolean BI.
In ACM Trans. Comput. Logic 14(1). ACM, 2013.
Original version in Proc. LICS-25. IEEE, 2010.
C. Calcagno, P. O'Hearn and H. Yang.

Computability and complexity results for a spatial assertion language for data structures.
In Proceedings of FSTTCS, 2001.

