
Proof theory for Boolean bunched logic

James Brotherston

Programming Principles, Logic and Verification Group
Dept. of Computer Science

University College London, UK
J.Brotherston@ucl.ac.uk

Logic Summer School, ANU, 9 Dec 2015

1/ 19



Gentzen-style proof systems

Gentzen-style systems are built around proof rules
manipulating judgements called sequents, of the form:

Γ ` ∆

where Γ,∆ are sets, multisets or even more exotic structures.

Characteristic feature: for any logical connective there should
be proof rules explaining how to introduce that connective on
the left and right of the conclusion of the rule.

There are also structural rules that only involve sequent
structure, not logical connectives.
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Example: Gentzen’s LK

E.g., in Gentzen’s LK for classical propositional logic, the
sequents are built from sets, interpreted as

Γ ` ∆ is valid ⇐⇒
∧

Γ |=
∨

∆

and the rules for → are:

Γ ` A,∆ Γ, B ` ∆
(→L)

Γ, A→ B ` ∆

Γ, A ` B,∆
(→R)

Γ ` A→ B,∆

Structural rules include:

Γ,Γ ` ∆
(ContrL)

Γ ` ∆

Γ ` ∆
(WkL)

Γ ` ∆,∆′

3/ 19



Example: Gentzen’s LK

E.g., in Gentzen’s LK for classical propositional logic, the
sequents are built from sets, interpreted as

Γ ` ∆ is valid ⇐⇒
∧

Γ |=
∨

∆

and the rules for → are:

Γ ` A,∆ Γ, B ` ∆
(→L)

Γ, A→ B ` ∆

Γ, A ` B,∆
(→R)

Γ ` A→ B,∆

Structural rules include:

Γ,Γ ` ∆
(ContrL)

Γ ` ∆

Γ ` ∆
(WkL)

Γ ` ∆,∆′

3/ 19



Example: Gentzen’s LK

E.g., in Gentzen’s LK for classical propositional logic, the
sequents are built from sets, interpreted as

Γ ` ∆ is valid ⇐⇒
∧

Γ |=
∨

∆

and the rules for → are:

Γ ` A,∆ Γ, B ` ∆
(→L)

Γ, A→ B ` ∆

Γ, A ` B,∆
(→R)

Γ ` A→ B,∆

Structural rules include:

Γ,Γ ` ∆
(ContrL)

Γ ` ∆

Γ ` ∆
(WkL)

Γ ` ∆,∆′

3/ 19



Analyticity

The holy grail for Gentzen systems is analyticity, a.k.a. the
subformula property:

The premises of each rule only involve subformulas of
the conclusion. Hence in any derivation of Γ ` ∆, the
only formulas that appear are subformulas of formulas
in Γ ∪∆.

This means getting rid of the dreaded cut rule, the sequent
equivalent of modus ponens:

Γ ` A A ` ∆
(Cut)

Γ ` ∆

Getting rid of this is called cut-elimination, and proof theorists
are absolutely obsessed with it!
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BBI, proof-theoretically

Recall:

Provability in BBI is given by extending a Hilbert system for
propositional classical logic by

A ∗B ` B ∗A A ∗ (B ∗ C) ` (A ∗B) ∗ C

A ` A ∗ I A ∗ I ` A

A1 ` B1 A2 ` B2

A1 ∗A2 ` B1 ∗B2

A ∗B ` C

A ` B —∗ C

A ` B —∗ C

A ∗B ` C
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Motivation

• Can we give an analytic proof system for BBI?

• For quite a long time in the 2000s, researchers tried to find
a nice sequent calculus for BBI, but cut-elimination
typically failed.

• But we can give an analytic Gentzen system based on the
slightly more general notion of display calculus.
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Display calculus: an overview

• Display calculi were first formulated by Belnap in the 1980s
(sequent calculi were invented by Gentzen in the 1930s).

• Like sequent calculi, display calculi work with sequents of
the form X ` Y , with left- and right-introduction rules for
each logical connective.

• But, the structures X and Y can be structurally more
complex than simple sets or multisets.

• Most importantly, display calculi allow us to rearrange
sequents to focus on any individual part (like rearranging
an equation in standard algebra).
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Structures and interpretation

Structures X defined as follows:

X ::= A | ∅ | ]X | X;X | X,X

A sequent X ` Y is valid if ΨX |= ΥY , where Ψ− and Υ− are
defined by:

ΨA = A ΥA = A
Ψ∅ = I Υ∅ = undefined

Ψ]X = ¬ΥX Υ]X = ¬ΨX

ΨX;Y = ΨX ∧ΨY ΥX;Y = ΥX ∨ΥY

ΨX,Y = ΨX ∗ΨY ΥX,Y = ΨX —∗ ΥY

(N.B. (1) we switch from one interpretation function to the
other when going inside ]; (2) ∅ is not allowed to occur
“positively” in a sequent.)
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Display property

We give the following display rules for our sequents:

X ; Y ` Z <>D X ` ]Y ; Z <>D Y ; X ` Z

X ` Y ; Z <>D X ; ]Y ` Z <>D X ` Z ; Y
X ` Y <>D ]Y ` ]X <>D ]]X ` Y

X , Y ` Z <>D X ` Y , Z <>D Y , X ` Z

We call the reflexive-transitive closure of these rules display
equivalence, ≡D. Then we get the crucial display property:

Theorem
For any “negative” part Z of X ` Y we have
X ` Y ≡D Z `W , and for any “positive” part Z of X ` Y we
have X ` Y ≡D W ` Z.
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Identity and logical rules

Identity rules:

(Id)
A ` A

W ` Z
W ` Z ≡D X ` Y (≡D)

X ` Y

X ` A A ` Y
(Cut)

X ` Y

Logical rules:

A ` X B ` X
(∨L)

A ∨B ` X

X ` A B ` Y
(→L)

A→ B ` ]X ; Y

X ` A B ` Y
(—∗L)

A —∗ B ` X , Y

X ` A1 ; A2

(∨R)
X ` A1 ∨A2

X ; A ` B
(→R)

X ` A→ B

X ` A , B
(—∗R)

X ` A —∗ B

(etc.)
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Structural rules

X ; X ` Z
(Contr)

X ` Z

X ` Z
(Weak)

X ; Y ` Z

X ` Y
(∅1)

∅ , X ` Y

∅ , X ` Y
(∅2)

X ` Y

W , (X , Y ) ` Z
(Assoc)

(W , X) , Y ` Z
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Soundness

Theorem (Soundness)

If X ` Y is provable in our display calculus then it is valid.

Proof is easy: just check that each rule preserves validity from
premises to conclusion.

E.g., for the rule

X ` A B ` Y
(—∗L)

A —∗ B ` X , Y

assume premises are valid, i.e. ΨX |= A and B |= ΥY ; we have
to show A —∗ B |= ΨX —∗ ΥY .

This can be done by appealing to the semantics, or by deriving
in the Hilbert system for BBI.
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Completeness (1)

Theorem
If X ` Y is valid then it is provable in our display calculus.

First, we need a couple of lemmas:

Lemma (1)

For any structure X, both X ` ΨX and ΥX ` X are provable.

(Proof by structural induction on X. Note we only care about
the case where ΥX is defined.)

Lemma (2)

If F ` G is provable in the Hilbert system for BBI then it is
provable in the display calculus too.
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Proof of completeness

Suppose X ` Y is valid, i.e. ΨX |= ΥY .

By completeness of Hilbert system, ΨX ` ΥY is provable in
BBI.

Then X ` Y is provable in display calculus as follows:

(Lemma 1)
···

X ` ΨX

(Lemma 2)
···

ΨX ` ΥY

(Lemma 1)
···

ΥY ` Y
(Cut)

ΨX ` Y
(Cut)

X ` Y
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Cut-elimination

All the rules except (Cut) have the subformula property.

So to
get analyticity, we need

Theorem (Cut-elimination)

Any proof of X ` Y can be transformed into a proof of X ` Y
without (Cut):

X ` F F ` Y
(Cut)

X ` Y

Belnap ’82 famously gave a set of syntactic conditions C1–C8
on the proof rules of a display calculus which are sufficient to
guarantee this.

Most are boring and easy to check. The only non-trivial one is
that so-called principal cuts can be reduced to cuts on smaller
formulas.
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Principal cuts

An instance of cut in a proof is called principal if the cut
formula F has immediately been introduced in both premises
by the right- and left-side logical rules for the main connective
in F .

E.g., the following is a principal cut:

X ` F , G
(—∗R)

X ` F —∗ G

Y ` F G ` Z
(—∗L)

F —∗ G ` Y , Z
(Cut)

X ` Y , Z

Belnap’s condition C8 requires us to show that we can
transform this derivation into one where only cuts on the
smaller subformulas, F and G, are used.
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Cut elimination

Here’s the reduced principal cut:

Y ` F

X ` F , G
(D≡)

X,F ` G G ` Z
(Cut)

X,F ` Z
(D≡)

F ` X , Z
(Cut)

Y ` X , Z
(D≡)

X ` Y , Z

Other types of principal cut can be treated similarly. This gives
us cut-elimination by Belnap’s theorem.
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Consequences

• Proof search in this system, even though it’s analytic, is
still very difficult (display rules, structural rules).

• In general, for both display and sequent calculi:

cut-elimination 6⇒ (semi)decidability
(cf. linear logic, relevant logic, arithmetic . . . )

• Indeed, as we shall see in the next lecture, BBI is still in
fact undecidable.

• Cut-elimination provides structure and removes infinite
branching points from the proof search space.
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