Boolean bunched logic: its semantics and completeness

James Brotherston

Programming Principles, Logic and Verification Group Dept. of Computer Science
University College London, UK
J.Brotherston@ucl.ac.uk

Logic Summer School, ANU, 8 December 2015

Bunched logics

- Bunched logics extend classical or intuitionistic logic with various "linear" or multiplicative connectives.

Bunched logics

- Bunched logics extend classical or intuitionistic logic with various "linear" or multiplicative connectives.
- Formulas can be understood as sets of "worlds" (often "resources") in an underlying model.

Bunched logics

- Bunched logics extend classical or intuitionistic logic with various "linear" or multiplicative connectives.
- Formulas can be understood as sets of "worlds" (often "resources") in an underlying model.
- The multiplicatives generally denote composition operations on these worlds.

Bunched logics

- Bunched logics extend classical or intuitionistic logic with various "linear" or multiplicative connectives.
- Formulas can be understood as sets of "worlds" (often "resources") in an underlying model.
- The multiplicatives generally denote composition operations on these worlds.
- Bunched logics are closely related to relevant logics and can also be seen as modal logics.

Boolean BI

- In this course we focus on Boolean BI (from now on BBI)

Boolean BI

- In this course we focus on Boolean BI (from now on BBI)
- BBI extends classical propositional logic with the following "multiplicative" connectives:
- *, a multiplicative conjunction;

Boolean BI

- In this course we focus on Boolean BI (from now on BBI)
- BBI extends classical propositional logic with the following "multiplicative" connectives:
- *, a multiplicative conjunction;
- * ("magic wand"), a multiplicative implication;

Boolean BI

- In this course we focus on Boolean BI (from now on BBI)
- BBI extends classical propositional logic with the following "multiplicative" connectives:
- *, a multiplicative conjunction;
- - ("magic wand"), a multiplicative implication;
- I, a multiplicative unit.

Boolean BI

- In this course we focus on Boolean BI (from now on BBI)
- BBI extends classical propositional logic with the following "multiplicative" connectives:
- *, a multiplicative conjunction;
- * ("magic wand"), a multiplicative implication;
- I, a multiplicative unit.
- "Multiplicative" means $*$ does not satisfy weakening or contraction:

$$
A * B \nvdash A \quad A \nvdash A * A
$$

Boolean BI

- In this course we focus on Boolean BI (from now on BBI)
- BBI extends classical propositional logic with the following "multiplicative" connectives:
- *, a multiplicative conjunction;
- - ("magic wand"), a multiplicative implication;
- I, a multiplicative unit.
- "Multiplicative" means $*$ does not satisfy weakening or contraction:

$$
A * B \nvdash A \quad A \nvdash A * A
$$

- The multiplicatives can be seen as modalities in modal logic (more on that later).

Reading the multiplicatives

- Intuitively, formulas in BBI can be read as properties of resources.

Reading the multiplicatives

- Intuitively, formulas in BBI can be read as properties of resources.
- $A * B$ can be read as "my current resource decomposes into two parts that satisfy A and B respectively".

Reading the multiplicatives

- Intuitively, formulas in BBI can be read as properties of resources.
- $A * B$ can be read as "my current resource decomposes into two parts that satisfy A and B respectively".
- I can be read as "my resource is empty / of unit type".

Reading the multiplicatives

- Intuitively, formulas in BBI can be read as properties of resources.
- $A * B$ can be read as "my current resource decomposes into two parts that satisfy A and B respectively".
- I can be read as "my resource is empty / of unit type".
- $A \rightarrow B$ can be read as "if I add a resource satisfying A to my current resource, the whole thing satisfies B ".

BBI, proof-theoretically

Provability in BBI is given by extending a Hilbert system for propositional classical logic by

$$
\begin{array}{cc}
A * B \vdash B * A & A *(B * C) \vdash(A * B) * C \\
A \vdash A * \mathrm{I} & A * \mathrm{I} \vdash A \\
\frac{A_{1} \vdash B_{1} \quad A_{2} \vdash B_{2}}{A_{1} * A_{2} \vdash B_{1} * B_{2}} & \frac{A * B \vdash C}{A \vdash B-C} \quad \frac{A \vdash B * C}{A * B \vdash C}
\end{array}
$$

These rules are exactly the usual ones for multiplicative intuitionistic linear logic (MILL).

BBI, semantically (1)

A BBI-model is given by $\langle W, \circ, E\rangle$, where

- W is a set (of "worlds"),

BBI, semantically (1)

A BBI-model is given by $\langle W, \circ, E\rangle$, where

- W is a set (of "worlds"),
- \circ is a binary function $W \times W \rightarrow \mathcal{P}(W)$;

BBI, semantically (1)

A BBI-model is given by $\langle W, \circ, E\rangle$, where

- W is a set (of "worlds"),
- \circ is a binary function $W \times W \rightarrow \mathcal{P}(W)$;we extend \circ to $\mathcal{P}(W) \times \mathcal{P}(W) \rightarrow \mathcal{P}(W)$ by

$$
W_{1} \circ W_{2}=_{\text {def }} \bigcup_{w_{1} \in W_{1}, w_{2} \in W_{2}} w_{1} \circ w_{2}
$$

BBI, semantically (1)

A BBI-model is given by $\langle W, \circ, E\rangle$, where

- W is a set (of "worlds"),
- \circ is a binary function $W \times W \rightarrow \mathcal{P}(W)$;we extend \circ to $\mathcal{P}(W) \times \mathcal{P}(W) \rightarrow \mathcal{P}(W)$ by

$$
W_{1} \circ W_{2}=_{\text {def }} \bigcup_{w_{1} \in W_{1}, w_{2} \in W_{2}} w_{1} \circ w_{2}
$$

- \circ is commutative and associative;

BBI, semantically (1)

A BBI-model is given by $\langle W, \circ, E\rangle$, where

- W is a set (of "worlds"),
- \circ is a binary function $W \times W \rightarrow \mathcal{P}(W)$;we extend \circ to $\mathcal{P}(W) \times \mathcal{P}(W) \rightarrow \mathcal{P}(W)$ by

$$
W_{1} \circ W_{2}={ }_{\text {def }} \bigcup_{w_{1} \in W_{1}, w_{2} \in W_{2}} w_{1} \circ w_{2}
$$

- \circ is commutative and associative;
- the set of units $E \subseteq W$ satisfies $w \circ E=\{w\}$ for all $w \in W$.

BBI, semantically (1)

A BBI-model is given by $\langle W, \circ, E\rangle$, where

- W is a set (of "worlds"),
- \circ is a binary function $W \times W \rightarrow \mathcal{P}(W)$;we extend \circ to $\mathcal{P}(W) \times \mathcal{P}(W) \rightarrow \mathcal{P}(W)$ by

$$
W_{1} \circ W_{2}={ }_{\text {def }} \bigcup_{w_{1} \in W_{1}, w_{2} \in W_{2}} w_{1} \circ w_{2}
$$

- ○ is commutative and associative;
- the set of units $E \subseteq W$ satisfies $w \circ E=\{w\}$ for all $w \in W$.
(Note that o can equivalently be seen as a ternary relation, $\circ \subseteq W \times W \times W$.)

BBI, semantically (2)

A valuation for BBI-model $M=\langle W, \circ, E\rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.

BBI, semantically (2)

A valuation for BBI-model $M=\langle W, \circ, E\rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.
Given M, ρ, and $w \in W$, we define the forcing relation $w \models_{\rho} A$ by induction on formula A :

$$
w \models_{\rho} P \Leftrightarrow w \in \rho(P)
$$

BBI, semantically (2)

A valuation for BBI-model $M=\langle W, \circ, E\rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.
Given M, ρ, and $w \in W$, we define the forcing relation $w \models_{\rho} A$ by induction on formula A :

$$
\begin{aligned}
w \models_{\rho} P & \Leftrightarrow w \in \rho(P) \\
w \models_{\rho} A \rightarrow B & \Leftrightarrow w \models_{\rho} A \text { implies } w \models_{\rho} B
\end{aligned}
$$

BBI, semantically (2)

A valuation for BBI-model $M=\langle W, \circ, E\rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.
Given M, ρ, and $w \in W$, we define the forcing relation $w \models_{\rho} A$ by induction on formula A :

$$
\begin{aligned}
w \not{ }_{\rho} P & \Leftrightarrow w \in \rho(P) \\
w \models{ }_{\rho} A \rightarrow B & \Leftrightarrow w \models_{\rho} A \text { implies } w \not{ }_{\rho} B \\
\vdots & \\
w \models{ }_{\rho} \mathrm{I} & \Leftrightarrow w \in E
\end{aligned}
$$

BBI, semantically (2)

A valuation for BBI-model $M=\langle W, \circ, E\rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.
Given M, ρ, and $w \in W$, we define the forcing relation $w \models_{\rho} A$ by induction on formula A :

$$
\begin{aligned}
w \not \models_{\rho} P & \Leftrightarrow w \in \rho(P) \\
w \models_{\rho} A \rightarrow B & \Leftrightarrow w \models_{\rho} A \text { implies } w \models_{\rho} B \\
\vdots & \\
w \models_{\rho} \mathrm{I} & \Leftrightarrow w \in E \\
w \models_{\rho} A * B & \Leftrightarrow w \in w_{1} \circ w_{2} \text { and } w_{1} \models_{\rho} A \text { and } w_{2} \models_{\rho} B
\end{aligned}
$$

BBI, semantically (2)

A valuation for BBI-model $M=\langle W, \circ, E\rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.
Given M, ρ, and $w \in W$, we define the forcing relation $w \models_{\rho} A$ by induction on formula A :

$$
\begin{aligned}
& w \not \models_{\rho} P \Leftrightarrow w \in \rho(P) \\
& w \models_{\rho} A \rightarrow B \Leftrightarrow \Leftrightarrow \\
& \vdots \\
& w \models_{\rho} A \text { implies } w \models_{\rho} B \\
& w \models_{\rho} A * B \Leftrightarrow w \in E \\
& w \models_{\rho} A \rightarrow B * B \in w_{1} \circ w_{2} \text { and } w_{1} \models_{\rho} A \text { and } w_{2} \models_{\rho} B \\
& \forall w^{\prime}, w^{\prime \prime} \in W . \text { if } w^{\prime \prime} \in w \circ w^{\prime} \text { and } w^{\prime} \models_{\rho} A \\
& \text { then } w^{\prime \prime} \models_{\rho} B
\end{aligned}
$$

BBI, semantically (2)

A valuation for BBI-model $M=\langle W, \circ, E\rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.
Given M, ρ, and $w \in W$, we define the forcing relation $w \models_{\rho} A$ by induction on formula A :

$$
\begin{aligned}
w \models{ }_{\rho} P & \Leftrightarrow w \in \rho(P) \\
w \models{ }_{\rho} A \rightarrow B & \Leftrightarrow w \models_{\rho} A \text { implies } w \models_{\rho} B \\
\vdots & \\
w \models \rho_{\rho} \mathrm{I} & \Leftrightarrow w \in E \\
w \models_{\rho} A * B & \Leftrightarrow w \in w_{1} \circ w_{2} \text { and } w_{1}=_{\rho} A \text { and } w_{2} \models_{\rho} B \\
w \models{ }_{\rho} A \rightarrow B & \Leftrightarrow \forall w^{\prime}, w^{\prime \prime} \in W . \text { if } w^{\prime \prime} \in w \circ w^{\prime} \text { and } w^{\prime} \models_{\rho} A \\
& \text { then } w^{\prime \prime} \models{ }_{\rho} B
\end{aligned}
$$

A is valid in M iff $w \models_{\rho} A$ for all ρ and $w \in W$.

Soundness and completeness

Theorem (Galmiche and Larchey-Wendling, 2006) A formula is BBI-provable iff it is valid in all BBI-models.

Soundness and completeness

Theorem (Galmiche and Larchey-Wendling, 2006)
A formula is BBI-provable iff it is valid in all BBI-models.

- Soundness (\Rightarrow) is straightforward: just show that each proof rule preserves validity. (Easy exercise!)

Soundness and completeness

Theorem (Galmiche and Larchey-Wendling, 2006)
A formula is BBI-provable iff it is valid in all BBI-models.

- Soundness (\Rightarrow) is straightforward: just show that each proof rule preserves validity. (Easy exercise!)
- Completeness (\Leftarrow) is much harder.

Soundness and completeness

Theorem (Galmiche and Larchey-Wendling, 2006)
A formula is BBI-provable iff it is valid in all BBI-models.

- Soundness (\Rightarrow) is straightforward: just show that each proof rule preserves validity. (Easy exercise!)
- Completeness (\Leftarrow) is much harder.
- Several different approaches are possible; I am going to try to show you the simplest one, based on the Sahlqvist completeness theorem for modal logic.

Outline of the approach

- We translate BBI into a normal modal logic over "diamond" modalities I, $*, \multimap$, satisfying a set of well-behaved Sahlqvist axioms. $A \multimap B$ will come out as $\neg(A \rightarrow \neg B)$.

Outline of the approach

- We translate BBI into a normal modal logic over "diamond" modalities I, $*, \multimap$, satisfying a set of well-behaved Sahlqvist axioms. $A \multimap B$ will come out as $\neg(A \rightarrow \neg B)$.
- Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.

Outline of the approach

- We translate BBI into a normal modal logic over "diamond" modalities I, $*, \multimap$, satisfying a set of well-behaved Sahlqvist axioms. $A \multimap B$ will come out as $\neg(A \rightarrow \neg B)$.
- Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.
- By suitable translations t and u between BBI and this modal logic, we get A valid in BBI

Outline of the approach

- We translate BBI into a normal modal logic over "diamond" modalities I, $*, \multimap$, satisfying a set of well-behaved Sahlqvist axioms. $A \multimap B$ will come out as $\neg(A \rightarrow \neg B)$.
- Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.
- By suitable translations t and u between BBI and this modal logic, we get
A valid in $\mathrm{BBI} \Rightarrow t(A)$ valid in modal logic

Outline of the approach

- We translate BBI into a normal modal logic over "diamond" modalities I, $*, \multimap$, satisfying a set of well-behaved Sahlqvist axioms. $A \multimap B$ will come out as $\neg(A \rightarrow \neg B)$.
- Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.
- By suitable translations t and u between BBI and this modal logic, we get
A valid in $\mathrm{BBI} \Rightarrow t(A)$ valid in modal logic

$$
\Rightarrow \quad t(A) \text { provable in modal logic (Sahlqvist) }
$$

Outline of the approach

- We translate BBI into a normal modal logic over "diamond" modalities $\mathrm{I}, *, \multimap$, satisfying a set of well-behaved Sahlqvist axioms. $A \multimap B$ will come out as $\neg(A \rightarrow \neg B)$.
- Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.
- By suitable translations t and u between BBI and this modal logic, we get
A valid in $\mathrm{BBI} \Rightarrow t(A)$ valid in modal logic
$\Rightarrow \quad t(A)$ provable in modal logic (Sahlqvist)
$\Rightarrow u(t(A))$ provable in BBI

Outline of the approach

- We translate BBI into a normal modal logic over "diamond" modalities I, $*$, \multimap, satisfying a set of well-behaved Sahlqvist axioms. $A \multimap B$ will come out as $\neg(A \rightarrow \neg B)$.
- Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.
- By suitable translations t and u between BBI and this modal logic, we get
A valid in $\mathrm{BBI} \Rightarrow t(A)$ valid in modal logic
$\Rightarrow \quad t(A)$ provable in modal logic (Sahlqvist)
$\Rightarrow u(t(A))$ provable in BBI
$\Rightarrow \quad A$ provable in BBI

BBI as a modal logic

A $\mathrm{ML}_{\mathrm{BBI}}$ formula is built from propositional variables using the classical connectives, constant I and binary modalities $*$ and \multimap.

BBI as a modal logic

A $\mathbf{M L}_{\text {BBI }}$ formula is built from propositional variables using the classical connectives, constant I and binary modalities $*$ and \multimap.

Provability in the normal modal logic for $\mathbf{M L}_{\text {BBI }}$ is given by extending classical propositional logic with the following axioms and rules, where $\otimes \in\{*, \multimap\}$:

BBI as a modal logic

A $\mathbf{M L}_{\text {BBI }}$ formula is built from propositional variables using the classical connectives, constant I and binary modalities $*$ and \multimap.

Provability in the normal modal logic for $\mathbf{M L}_{\text {BBI }}$ is given by extending classical propositional logic with the following axioms and rules, where $\otimes \in\{*, \multimap\}$:
$\perp \otimes A \vdash \perp$ and $A \otimes \perp \vdash \perp$

$$
(A \vee B) \otimes C \vdash(A \otimes C) \vee(B \otimes C) \quad \frac{A_{1} \vdash A_{2} \quad B_{1} \vdash B_{2}}{A_{1} \otimes B_{1} \vdash A_{2} \otimes B_{2}}
$$

$$
A \otimes(B \vee C) \vdash(A \otimes B) \vee(A \otimes C)
$$

BBI as a modal logic (2)

A $\mathbf{M L}_{\mathrm{BBI}}$ frame is given by $\langle W, \circ, \multimap, E\rangle$, where $E \subseteq W$ and $\circ, \multimap: W \times W \rightarrow \mathcal{P}(W)$ (like in BBI).

BBI as a modal logic (2)

A $\mathbf{M L}_{\mathrm{BBI}}$ frame is given by $\langle W, \circ, \multimap, E\rangle$, where $E \subseteq W$ and $\circ, \multimap: W \times W \rightarrow \mathcal{P}(W)$ (like in BBI).
Now we give the forcing relation $w \models{ }_{\rho} A$:

$$
w \models{ }_{\rho} P \quad \Leftrightarrow \quad w \in \rho(P)
$$

BBI as a modal logic (2)

A $\mathbf{M L}_{\mathrm{BBI}}$ frame is given by $\langle W, \circ, \multimap, E\rangle$, where $E \subseteq W$ and $\circ, \multimap: W \times W \rightarrow \mathcal{P}(W)$ (like in BBI).
Now we give the forcing relation $w \models{ }_{\rho} A$:

$$
\begin{aligned}
w \models{ }_{\rho} P & \Leftrightarrow w \in \rho(P) \\
w \models_{\rho} A \rightarrow B & \Leftrightarrow w \models_{\rho} A \text { implies } w \models_{\rho} B
\end{aligned}
$$

BBI as a modal logic (2)

A $\mathbf{M L}_{\mathrm{BBI}}$ frame is given by $\langle W, \circ, \multimap, E\rangle$, where $E \subseteq W$ and $\circ, \multimap: W \times W \rightarrow \mathcal{P}(W)$ (like in BBI).
Now we give the forcing relation $w \models{ }_{\rho} A$:

$$
\begin{aligned}
w \models_{\rho} P & \Leftrightarrow w \in \rho(P) \\
w \models_{\rho} A \rightarrow B & \Leftrightarrow w=_{\rho} A \text { implies } w \models_{\rho} B \\
\vdots & \\
w \models_{\rho} \mathrm{I} & \Leftrightarrow w \in E
\end{aligned}
$$

BBI as a modal logic (2)

A $\mathbf{M L}_{\mathrm{BBI}}$ frame is given by $\langle W, \circ, \multimap, E\rangle$, where $E \subseteq W$ and $\circ, \multimap: W \times W \rightarrow \mathcal{P}(W)$ (like in BBI).
Now we give the forcing relation $w \models{ }_{\rho} A$:

$$
\begin{aligned}
w \models_{\rho} P & \Leftrightarrow w \in \rho(P) \\
w \models_{\rho} A \rightarrow B & \Leftrightarrow w \not \models_{\rho} A \text { implies } w \models_{\rho} B \\
\vdots & \\
w \models_{\rho} \mathrm{I} & \Leftrightarrow w \in E \\
w \models_{\rho} A * B & \Leftrightarrow w \in w_{1} \circ w_{2} \text { and } w_{1} \models_{\rho} A \text { and } w_{2} \models_{\rho} B
\end{aligned}
$$

BBI as a modal logic (2)

A $\mathrm{ML}_{\mathrm{BBI}}$ frame is given by $\langle W, \circ, \multimap, E\rangle$, where $E \subseteq W$ and $\circ, \multimap: W \times W \rightarrow \mathcal{P}(W)$ (like in BBI).
Now we give the forcing relation $w \models{ }_{\rho} A$:

$$
\begin{aligned}
w \models \rho_{\rho} P & \Leftrightarrow w \in \rho(P) \\
w \models \rho_{\rho} A \rightarrow B & \Leftrightarrow w \neq{ }_{\rho} A \text { implies } w \models{ }_{\rho} B \\
\vdots & \Leftrightarrow \\
w \models \rho_{\rho} \mathrm{I} & \Leftrightarrow w \in E \\
w \models \rho_{\rho} A * B & \Leftrightarrow w \in w_{1} \circ w_{2} \text { and } w_{1}=_{\rho} A \text { and } w_{2} \models{ }_{\rho} B \\
w \models{ }_{\rho} A \multimap B & \Leftrightarrow w \in w_{1} \multimap w_{2} \text { and } w_{1} \models_{\rho} A \text { and } w_{2} \models{ }_{\rho} B
\end{aligned}
$$

BBI as a modal logic (2)

A $\mathrm{ML}_{\mathrm{BBI}}$ frame is given by $\langle W, \circ, \multimap, E\rangle$, where $E \subseteq W$ and $\circ, \multimap: W \times W \rightarrow \mathcal{P}(W)$ (like in BBI).
Now we give the forcing relation $w \models{ }_{\rho} A$:

$$
\begin{aligned}
w \models{ }_{\rho} P & \Leftrightarrow w \in \rho(P) \\
w \models_{\rho} A \rightarrow B & \Leftrightarrow w \models_{\rho} A \text { implies } w \models_{\rho} B \\
\vdots & \\
w \models_{\rho} \mathrm{I} & \Leftrightarrow w \in E \\
w \models_{\rho} A * B & \Leftrightarrow w \in w_{1} \circ w_{2} \text { and } w_{1} \models_{\rho} A \text { and } w_{2} \models_{\rho} B \\
w \models_{\rho} A \multimap B & \Leftrightarrow w \in w_{1} \multimap w_{2} \text { and } w_{1} \models_{\rho} A \text { and } w_{2} \models_{\rho} B
\end{aligned}
$$

A is valid in M iff $w \models{ }_{\rho} A$ for all $w \in W$ and valuations ρ. Same as BBI, except for \rightarrow versus \multimap !

Sahlqvist axioms for $\mathrm{ML}_{\mathrm{BBI}}$

Define a set $\mathcal{A}_{\mathrm{BBI}}$ of $\mathrm{ML}_{\mathrm{BBI}}$-formulas as follows:

Sahlqvist axioms for $\mathbf{M L}_{\mathrm{BBI}}$

Define a set $\mathcal{A}_{\mathrm{BBI}}$ of $\mathrm{ML}_{\mathrm{BBI}}$-formulas as follows:
(1) $A \wedge(B * C) \vdash(B \wedge(C \multimap A)) * \top$
(2) $A \wedge(B \multimap C) \vdash \top \multimap(C \wedge(A * B))$
(3) $A * B \vdash B * A$
(4) $A *(B * C) \vdash(A * B) * C$
(5) $A * \mathrm{I} \vdash A$
(6) $A \vdash A * \mathrm{I}$

Sahlqvist axioms for $\mathbf{M L}_{\mathrm{BBI}}$

Define a set $\mathcal{A}_{\mathrm{BBI}}$ of $\mathrm{ML}_{\mathrm{BBI}}$-formulas as follows:
(1) $A \wedge(B * C) \vdash(B \wedge(C \multimap A)) * \top$
(2) $A \wedge(B \multimap C) \vdash \top \multimap(C \wedge(A * B))$
(3) $A * B \vdash B * A$
(4) $A *(B * C) \vdash(A * B) * C$
(5) $A * \mathrm{I} \vdash A$
(6) $A \vdash A * \mathrm{I}$

These are all of a form called Sahlqvist formulas, and so we have by the Sahlqvist completeness theorem:

Sahlqvist axioms for $\mathrm{ML}_{\mathrm{BBI}}$

Define a set $\mathcal{A}_{\mathrm{BBI}}$ of $\mathrm{ML}_{\mathrm{BBI}}$-formulas as follows:

$$
\begin{aligned}
& \text { (1) } A \wedge(B * C) \vdash(B \wedge(C \multimap A)) * \top \\
& \text { (2) } A \wedge(B \multimap C) \vdash \top \multimap(C \wedge(A * B)) \\
& \text { (3) } A * B \vdash B * A \\
& \text { (4) } A *(B * C) \vdash(A * B) * C \\
& \text { (5) } A * \mathrm{I} \vdash A \\
& \text { (6) } A \vdash A * \mathrm{I}
\end{aligned}
$$

These are all of a form called Sahlqvist formulas, and so we have by the Sahlqvist completeness theorem:

Theorem (Sahlqvist)
If B is valid in the $\mathbf{M L}_{\mathrm{BBI}}$ frames satisfying $\mathcal{A}_{\mathrm{BBI}}$, then it is provable in $\mathrm{ML}_{\mathrm{BBI}}+\mathcal{A}_{\mathrm{BBI}}$.

Modal frames are BBI-models

Lemma (1)
Let $M=\langle W, \circ, \multimap, E\rangle$ be a modal frame satisfying axioms (1) and (2) of $\mathcal{A}_{\mathrm{BBI}}$. Then we have, for any $w, w_{1}, w_{2} \in W$:

$$
w \in w_{1} \multimap w_{2} \quad \Leftrightarrow \quad w_{2} \in w \circ w_{1}
$$

Proof.

Modal frames are BBI-models

Lemma (1)
Let $M=\langle W, \circ, \multimap, E\rangle$ be a modal frame satisfying axioms (1) and (2) of $\mathcal{A}_{\mathrm{BBI}}$. Then we have, for any $w, w_{1}, w_{2} \in W$:

$$
w \in w_{1} \multimap w_{2} \quad \Leftrightarrow \quad w_{2} \in w \circ w_{1}
$$

Proof.
Hint: (\Leftarrow) uses axiom $(1),(\Rightarrow)$ uses axiom 2.

Modal frames are BBI-models

Lemma (1)
Let $M=\langle W, \circ, \multimap, E\rangle$ be a modal frame satisfying axioms (1) and (2) of $\mathcal{A}_{\mathrm{BBI}}$. Then we have, for any $w, w_{1}, w_{2} \in W$:

$$
w \in w_{1} \multimap w_{2} \quad \Leftrightarrow \quad w_{2} \in w \circ w_{1}
$$

Proof.
Hint: (\Leftarrow) uses axiom $(1),(\Rightarrow)$ uses axiom 2.
So, when axioms (1) and (2) are satisfied, Lemma 1 gives us:

$$
w \not \models_{\rho} A \multimap B \quad \Leftrightarrow \quad w \in w_{1} \multimap w_{2} \text { and } w_{1} \models_{\rho} A \text { and } w_{2} \models_{\rho} B
$$

Modal frames are BBI-models

Lemma (1)
Let $M=\langle W, \circ, \multimap, E\rangle$ be a modal frame satisfying axioms (1) and (2) of $\mathcal{A}_{\mathrm{BBI}}$. Then we have, for any $w, w_{1}, w_{2} \in W$:

$$
w \in w_{1} \multimap w_{2} \quad \Leftrightarrow \quad w_{2} \in w \circ w_{1}
$$

Proof.
Hint: (\Leftarrow) uses axiom $(1),(\Rightarrow)$ uses axiom 2.
So, when axioms (1) and (2) are satisfied, Lemma 1 gives us:

$$
\begin{aligned}
w \neq_{\rho} A \multimap B & \Leftrightarrow w \in w_{1} \multimap w_{2} \text { and } w_{1} \models_{\rho} A \text { and } w_{2} \models_{\rho} B \\
& \Leftrightarrow w_{2} \in w \circ w_{1} \text { and } w_{1} \models_{\rho} A \text { and } w_{2} \models_{\rho} B
\end{aligned}
$$

Modal frames are BBI-models

Lemma (1)
Let $M=\langle W, \circ, \multimap, E\rangle$ be a modal frame satisfying axioms (1) and (2) of $\mathcal{A}_{\mathrm{BBI}}$. Then we have, for any $w, w_{1}, w_{2} \in W$:

$$
w \in w_{1} \multimap w_{2} \quad \Leftrightarrow \quad w_{2} \in w \circ w_{1}
$$

Proof.
Hint: (\Leftarrow) uses axiom $(1),(\Rightarrow)$ uses axiom 2.
So, when axioms (1) and (2) are satisfied, Lemma 1 gives us:

$$
\begin{aligned}
w \models_{\rho} A \multimap B & \Leftrightarrow w \in w_{1} \multimap w_{2} \text { and } w_{1} \models_{\rho} A \text { and } w_{2} \models_{\rho} B \\
& \Leftrightarrow w_{2} \in w \circ w_{1} \text { and } w_{1} \models_{\rho} A \text { and } w_{2} \models_{\rho} B \\
& \Leftrightarrow w \not \models_{\rho} \neg(A \rightarrow \neg B)
\end{aligned}
$$

Translating between BBI and $\mathrm{ML}_{\mathrm{BBI}}$

- Given a BBI-formula A, write $t(A)$ for the $\mathbf{M L}_{\mathrm{BBI}}$ formula obtained by replacing every formula of the form $B \rightarrow C$ by $\neg(B \multimap \neg C)$.

Translating between BBI and $\mathrm{ML}_{\mathrm{BBI}}$

- Given a BBI-formula A, write $t(A)$ for the $\mathbf{M L}_{\mathrm{BBI}}$ formula obtained by replacing every formula of the form $B \rightarrow C$ by $\neg(B \multimap \neg C)$.
- Conversely, given $\mathbf{M L}_{\mathrm{BBI}}$ formula A, write $u(A)$ for the BBI-formula obtained by replacing every formula of the form $B \multimap C$ by $\neg(B \rightarrow \neg C)$.

Translating between BBI and $\mathrm{ML}_{\mathrm{BBI}}$

- Given a BBI-formula A, write $t(A)$ for the $\mathbf{M L}_{\mathrm{BBI}}$ formula obtained by replacing every formula of the form $B \rightarrow C$ by $\neg(B \multimap \neg C)$.
- Conversely, given $\mathbf{M L}_{\mathrm{BBI}}$ formula A, write $u(A)$ for the BBI-formula obtained by replacing every formula of the form $B \multimap C$ by $\neg(B \rightarrow \neg C)$.

Lemma (2)
If $u(t(A))$ is provable in BBI then so is A.

Translating between BBI and $\mathrm{ML}_{\mathrm{BBI}}$

- Given a BBI-formula A, write $t(A)$ for the $\mathbf{M L}_{\mathrm{BBI}}$ formula obtained by replacing every formula of the form $B \rightarrow C$ by $\neg(B \multimap \neg C)$.
- Conversely, given $\mathbf{M L}_{\mathrm{BBI}}$ formula A, write $u(A)$ for the BBI-formula obtained by replacing every formula of the form $B \multimap C$ by $\neg(B \rightarrow \neg C)$.

Lemma (2)
If $u(t(A))$ is provable in BBI then so is A.
Proof.
Structural induction on A.

Validity translation lemma

Lemma (3)
Let $M=\langle W, \circ, \multimap, E\rangle$ be a $\mathbf{M L}_{\mathrm{BBI}}$ frame satisfying axioms (3)-(6) of $\mathcal{A}_{\mathrm{BBI}}$. Then $\langle W, \circ, E\rangle$ is a $\mathrm{BBI}-m o d e l$.

Validity translation lemma

Lemma (3)
Let $M=\langle W, \circ, \multimap, E\rangle$ be a $\mathbf{M L}_{\mathrm{BBI}}$ frame satisfying axioms (3)-(6) of $\mathcal{A}_{\mathrm{BBI}}$. Then $\langle W, \circ, E\rangle$ is a BBI-model.

Proof.
Easy exercise!

Validity translation lemma

Lemma (3)
Let $M=\langle W, \circ, \multimap, E\rangle$ be a $\mathbf{M L}_{\mathrm{BBI}}$ frame satisfying axioms (3)-(6) of $\mathcal{A}_{\mathrm{BBI}}$. Then $\langle W, \circ, E\rangle$ is a BBI-model.

Proof.
Easy exercise!
Lemma (4)
If A is valid in BBI , then $t(A)$ is valid in every $\mathrm{ML}_{\mathrm{BBI}}$ frame satisfying $\mathcal{A}_{\mathrm{BBI}}$.

Validity translation lemma

Lemma (3)
Let $M=\langle W, \circ, \multimap, E\rangle$ be a $\mathbf{M L}_{\mathrm{BBI}}$ frame satisfying axioms (3)-(6) of $\mathcal{A}_{\mathrm{BBI}}$. Then $\langle W, \circ, E\rangle$ is a BBI-model.

Proof.
Easy exercise!
Lemma (4)
If A is valid in BBI , then $t(A)$ is valid in every $\mathrm{ML}_{\mathrm{BBI}}$ frame satisfying $\mathcal{A}_{\mathrm{BBI}}$.

Proof.
Uses Lemmas 1 and 3.

Proof translation lemma

Lemma (5)
If B is provable in $\mathrm{ML}_{\mathrm{BBI}}+\mathcal{A}_{\mathrm{BBI}}$, then $u(B)$ is provable in BBI.

Proof translation lemma

Lemma (5)
If B is provable in $\mathbf{M L}_{\mathrm{BBI}}+\mathcal{A}_{\mathrm{BBI}}$, then $u(B)$ is provable in BBI.

Proof.
By induction on the proof of B in $\mathbf{M L}_{\mathrm{BBI}}+\mathcal{A}_{\mathrm{BBI}}$. We have to show that every proof rule in $\mathrm{ML}_{\mathrm{BBI}}+\mathcal{A}_{\mathrm{BBI}}$ is derivable in BBI under the translation $u(-)$.

Proof of completeness

Theorem
If A is BBI-valid then it is BBI-provable.
Proof.
Let A be BBI-valid.

Proof of completeness

Theorem
If A is BBI-valid then it is BBI-provable.
Proof.
Let A be BBI-valid.
By Lemma $4, t(A)$ is valid in the class of $\mathrm{ML}_{\mathrm{BBI}}$ frames satisfying $\mathcal{A}_{\mathrm{BBI}}$.

Proof of completeness

Theorem
If A is BBI-valid then it is BBI-provable.
Proof.
Let A be BBI-valid.
By Lemma $4, t(A)$ is valid in the class of $\mathrm{ML}_{\mathrm{BBI}}$ frames satisfying $\mathcal{A}_{\mathrm{BBI}}$.

By the Sahlqvist Theorem, $t(A)$ is provable in $\mathrm{ML}_{\mathrm{BBI}}+\mathcal{A}_{\mathrm{BBI}}$.

Proof of completeness

Theorem
If A is BBI-valid then it is BBI-provable.
Proof.
Let A be BBI-valid.
By Lemma $4, t(A)$ is valid in the class of $\mathrm{ML}_{\mathrm{BBI}}$ frames satisfying $\mathcal{A}_{\mathrm{BBI}}$.

By the Sahlqvist Theorem, $t(A)$ is provable in $\mathrm{ML}_{\mathrm{BBI}}+\mathcal{A}_{\mathrm{BBI}}$.
By Lemma 5, $u(t(A))$ is provable in BBI .

Proof of completeness

Theorem
If A is BBI-valid then it is BBI-provable.
Proof.
Let A be BBI-valid.
By Lemma $4, t(A)$ is valid in the class of $\mathrm{ML}_{\mathrm{BBI}}$ frames satisfying $\mathcal{A}_{\mathrm{BBI}}$.

By the Sahlqvist Theorem, $t(A)$ is provable in $\mathrm{ML}_{\mathrm{BBI}}+\mathcal{A}_{\mathrm{BBI}}$.
By Lemma 5, $u(t(A))$ is provable in BBI .
Finally, by Lemma 2, A is provable in BBI .

Proof of completeness

Theorem
If A is $\mathrm{BBI}-v a l i d$ then it is $\mathrm{BBI}-$ provable.
Proof.
Let A be BBI-valid.
By Lemma $4, t(A)$ is valid in the class of $\mathrm{ML}_{\mathrm{BBI}}$ frames satisfying $\mathcal{A}_{\mathrm{BBI}}$.

By the Sahlqvist Theorem, $t(A)$ is provable in $\mathrm{ML}_{\mathrm{BBI}}+\mathcal{A}_{\mathrm{BBI}}$.
By Lemma 5, $u(t(A))$ is provable in BBI .
Finally, by Lemma 2, A is provable in BBI.
Exercise: fill in the proofs of Lemmas 1-5!

Further reading

圊
D. Galmiche and D. Larchey-Wendling.

Expressivity properties of Boolean BI through relational models.
In Proc. FSTTCS-26. Springer, 2006.
B
D. Pym.

The semantics and proof theory of the logic of bunched implications. Kluwer, Applied Logic Series, 2002.
R-C. Calcagno, P. Gardner and U. Zarfaty.
Context logic as modal logic: completeness and parametric inexpressivity.
In Proc. POPL-34. ACM, 2007.
J. Brotherston and J. Villard.

Sub-classical Boolean bunched logics and the meaning of par.
In Proc. CSL-24. Dagstuhl LIPIcs, 2015.

