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Bunched logics

• Bunched logics extend classical or intuitionistic logic with
various “linear” or multiplicative connectives.

• Formulas can be understood as sets of “worlds” (often
“resources”) in an underlying model.

• The multiplicatives generally denote composition
operations on these worlds.

• Bunched logics are closely related to relevant logics and can
also be seen as modal logics.
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Boolean BI

• In this course we focus on Boolean BI (from now on BBI)

• BBI extends classical propositional logic with the following
“multiplicative” connectives:

• ∗, a multiplicative conjunction;
• —∗ (“magic wand”), a multiplicative implication;
• I, a multiplicative unit.

• “Multiplicative” means ∗ does not satisfy weakening or
contraction:

A ∗B 6` A A 6` A ∗A

• The multiplicatives can be seen as modalities in modal
logic (more on that later).
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Reading the multiplicatives

• Intuitively, formulas in BBI can be read as properties of
resources.

• A ∗B can be read as “my current resource decomposes into
two parts that satisfy A and B respectively”.

• I can be read as “my resource is empty / of unit type”.

• A —∗ B can be read as “if I add a resource satisfying A to
my current resource, the whole thing satisfies B”.
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BBI, proof-theoretically

Provability in BBI is given by extending a Hilbert system for
propositional classical logic by

A ∗B ` B ∗A A ∗ (B ∗ C) ` (A ∗B) ∗ C

A ` A ∗ I A ∗ I ` A

A1 ` B1 A2 ` B2

A1 ∗A2 ` B1 ∗B2

A ∗B ` C

A ` B —∗ C

A ` B —∗ C

A ∗B ` C

These rules are exactly the usual ones for multiplicative
intuitionistic linear logic (MILL).
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BBI, semantically (1)

A BBI-model is given by 〈W, ◦, E〉, where

• W is a set (of “worlds”),

• ◦ is a binary function W ×W → P(W );we extend ◦ to
P(W )× P(W )→ P(W ) by

W1 ◦W2 =def

⋃
w1∈W1,w2∈W2

w1 ◦ w2

• ◦ is commutative and associative;

• the set of units E ⊆W satisfies w ◦E = {w} for all w ∈W .

(Note that ◦ can equivalently be seen as a ternary relation,
◦ ⊆W ×W ×W .)
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BBI, semantically (2)

A valuation for BBI-model M = 〈W, ◦, E〉 is a function ρ from
propositional variables to P(W ).

Given M , ρ, and w ∈W , we define the forcing relation w |=ρ A
by induction on formula A:

w |=ρ P ⇔ w ∈ ρ(P )
w |=ρ A→ B ⇔ w |=ρ A implies w |=ρ B

...
w |=ρ I ⇔ w ∈ E

w |=ρ A ∗B ⇔ w ∈ w1 ◦ w2 and w1 |=ρ A and w2 |=ρ B
w |=ρ A —∗ B ⇔ ∀w′, w′′ ∈W. if w′′ ∈ w ◦ w′ and w′ |=ρ A

then w′′ |=ρ B

A is valid in M iff w |=ρ A for all ρ and w ∈W .
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Soundness and completeness

Theorem (Galmiche and Larchey-Wendling, 2006)

A formula is BBI-provable iff it is valid in all BBI-models.

• Soundness (⇒) is straightforward: just show that each
proof rule preserves validity. (Easy exercise!)

• Completeness (⇐) is much harder.

• Several different approaches are possible; I am going to try
to show you the simplest one, based on the Sahlqvist
completeness theorem for modal logic.
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Outline of the approach

• We translate BBI into a normal modal logic over
“diamond” modalities I, ∗, (, satisfying a set of
well-behaved Sahlqvist axioms. A( B will come out as
¬(A —∗ ¬B).

• Then the Sahlqvist completeness theorem says that this
modal logic is complete for its models in modal logic.

• By suitable translations t and u between BBI and this
modal logic, we get
A valid in BBI ⇒ t(A) valid in modal logic

⇒ t(A) provable in modal logic (Sahlqvist)
⇒ u(t(A)) provable in BBI
⇒ A provable in BBI
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BBI as a modal logic

A MLBBI formula is built from propositional variables using the
classical connectives, constant I and binary modalities ∗ and (.

Provability in the normal modal logic for MLBBI is given by
extending classical propositional logic with the following axioms
and rules, where ⊗ ∈ {∗,(}:

⊥⊗A ` ⊥ and A⊗⊥ ` ⊥
A1 ` A2 B1 ` B2

A1 ⊗B1 ` A2 ⊗B2

(A ∨B)⊗ C ` (A⊗ C) ∨ (B ⊗ C)

A⊗ (B ∨ C) ` (A⊗B) ∨ (A⊗ C)
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BBI as a modal logic (2)

A MLBBI frame is given by 〈W, ◦,(, E〉, where E ⊆W and
◦,(: W ×W → P(W ) (like in BBI).

Now we give the forcing relation w |=ρ A:

w |=ρ P ⇔ w ∈ ρ(P )
w |=ρ A→ B ⇔ w |=ρ A implies w |=ρ B

...
w |=ρ I ⇔ w ∈ E

w |=ρ A ∗B ⇔ w ∈ w1 ◦ w2 and w1 |=ρ A and w2 |=ρ B
w |=ρ A( B ⇔ w ∈ w1 ( w2 and w1 |=ρ A and w2 |=ρ B

A is valid in M iff w |=ρ A for all w ∈W and valuations ρ.
Same as BBI, except for —∗ versus (!
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Sahlqvist axioms for MLBBI

Define a set ABBI of MLBBI-formulas as follows:

(1) A ∧ (B ∗ C) ` (B ∧ (C ( A)) ∗ >
(2) A ∧ (B ( C) ` >( (C ∧ (A ∗B))
(3) A ∗B ` B ∗A
(4) A ∗ (B ∗ C) ` (A ∗B) ∗ C
(5) A ∗ I ` A
(6) A ` A ∗ I

These are all of a form called Sahlqvist formulas, and so we
have by the Sahlqvist completeness theorem:

Theorem (Sahlqvist)

If B is valid in the MLBBI frames satisfying ABBI, then it is
provable in MLBBI +ABBI.
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Modal frames are BBI-models

Lemma (1)

Let M = 〈W, ◦,(, E〉 be a modal frame satisfying axioms (1)
and (2) of ABBI. Then we have, for any w,w1, w2 ∈W :

w ∈ w1 ( w2 ⇔ w2 ∈ w ◦ w1.

Proof.

Hint: (⇐) uses axiom (1), (⇒) uses axiom 2.

So, when axioms (1) and (2) are satisfied, Lemma 1 gives us:

w |=ρ A( B ⇔ w ∈ w1 ( w2 and w1 |=ρ A and w2 |=ρ B
⇔ w2 ∈ w ◦ w1 and w1 |=ρ A and w2 |=ρ B
⇔ w |=ρ ¬(A —∗ ¬B)
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Translating between BBI and MLBBI

• Given a BBI-formula A, write t(A) for the MLBBI formula
obtained by replacing every formula of the form B —∗ C by
¬(B ( ¬C).

• Conversely, given MLBBI formula A, write u(A) for the
BBI-formula obtained by replacing every formula of the
form B ( C by ¬(B —∗ ¬C).

Lemma (2)

If u(t(A)) is provable in BBI then so is A.

Proof.

Structural induction on A.
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Validity translation lemma

Lemma (3)

Let M = 〈W, ◦,(, E〉 be a MLBBI frame satisfying axioms
(3)–(6) of ABBI. Then 〈W, ◦, E〉 is a BBI-model.

Proof.

Easy exercise!

Lemma (4)

If A is valid in BBI, then t(A) is valid in every MLBBI frame
satisfying ABBI.

Proof.

Uses Lemmas 1 and 3.
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Proof translation lemma

Lemma (5)

If B is provable in MLBBI +ABBI, then u(B) is provable in
BBI.

Proof.

By induction on the proof of B in MLBBI +ABBI. We have to
show that every proof rule in MLBBI +ABBI is derivable in BBI
under the translation u(−).
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Proof of completeness

Theorem
If A is BBI-valid then it is BBI-provable.

Proof.

Let A be BBI-valid.

By Lemma 4, t(A) is valid in the class of MLBBI frames
satisfying ABBI.

By the Sahlqvist Theorem, t(A) is provable in MLBBI +ABBI.

By Lemma 5, u(t(A)) is provable in BBI.

Finally, by Lemma 2, A is provable in BBI.

Exercise: fill in the proofs of Lemmas 1–5!
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