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Bunched logics

Bunched logics extend classical or intuitionistic logic with
various “linear” or multiplicative connectives.

Formulas can be understood as sets of “worlds” (often
“resources”) in an underlying model.

The multiplicatives generally denote composition
operations on these worlds.

Bunched logics are closely related to relevant logics and can
also be seen as modal logics.
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BBI extends classical propositional logic with the following
“multiplicative” connectives:

e x a multiplicative conjunction;
e —+ (“magic wand”), a multiplicative implication;
e I, a multiplicative unit.

“Multiplicative” means * does not satisfy weakening or
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The multiplicatives can be seen as modalities in modal
logic (more on that later).
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Reading the multiplicatives

Intuitively, formulas in BBI can be read as properties of
resources.

A x B can be read as “my current resource decomposes into
two parts that satisfy A and B respectively”.

4

I can be read as “my resource is empty / of unit type”.

A — B can be read as “if I add a resource satisfying A to
my current resource, the whole thing satisfies B”.
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BBI, proof-theoretically

Provability in BBI is given by extending a Hilbert system for
propositional classical logic by

AxBFBx A Ax(BxC)F (AxB)«C

AFAxI AxIFHA
A1+ By Ay k By AxBFC A+ B-—«C
A1 x Ao+ By * By AFB—«C AxBFC

These rules are exactly the usual ones for multiplicative
intuitionistic linear logic (MILL).
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A BBI-model is given by (W, o, E'), where
W is a set (of “worlds”),

e o is a binary function W x W — P(W);we extend o to
PW) x P(W)— P(W) by

Wi oWa =aer Unpyew, wnews, W1 © W2

e o is commutative and associative;
the set of units £ C W satisfies wo E = {w} for all w € W.

(Note that o can equivalently be seen as a ternary relation,

ocCWxWxW.)
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A valuation for BBI-model M = (W, o, E) is a function p from
propositional variables to P(W).

Given M, p, and w € W, we define the forcing relation w =, A
by induction on formula A:

wlk, P & wep(P)
wlkE, A= B & wl=, Aimplies w |=, B

wk,I & wekFE
wi=, AxB w € wy owy and wy =, A and wy =, B
wkE, A+B & Yw,w'eW ifw ewow and w' =, A
then v’ |=, B

3

Ais valid in M iff w }=, A for all p and w € W.
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Soundness and completeness

Theorem (Galmiche and Larchey- Wendling, 2006)
A formula is BBI-provable iff it is valid in all BBI-models.

e Soundness (=) is straightforward: just show that each
proof rule preserves validity. (Easy exercise!)

e Completeness (<) is much harder.

e Several different approaches are possible; I am going to try
to show you the simplest one, based on the Sahlqvist
completeness theorem for modal logic.
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Outline of the approach

e We translate BBI into a normal modal logic over
“diamond” modalities I, x, —o, satisfying a set of
well-behaved Sahlqvist axioms. A — B will come out as
—|(A —% —|B)

e Then the Sahlqvist completeness theorem says that this
modal logic is complete for its models in modal logic.

e By suitable translations ¢t and u between BBI and this
modal logic, we get
A valid in BBI t(A) valid in modal logic
t(A) provable in modal logic (Sahlqvist)
u(t(A)) provable in BBI

A provable in BBI

el
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A MLgpg; formula is built from propositional variables using the
classical connectives, constant I and binary modalities * and —o.

Provability in the normal modal logic for MLpgy is given by
extending classical propositional logic with the following axioms
and rules, where ® € {x, —}:

l®AFLand A® LEFL
AiF Ay Bk By

(AVB)®CH (A C)V (B C)
A1 ® B F Ay ® By

A®(BVO)F(A®B)V(A® C)
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BBI as a modal logic (2)

A MLgp; frame is given by (W, o0, —o, E), where E C W and
o,—o: W x W — P(W) (like in BBI).
Now we give the forcing relation w =, A:

wkE, P & wep(P)
wkE,A—=B & wl,Aimpliesw =, B

wk,I & wekFE
wlk, AxB & wewowyand wy =, A and wy =, B
wkEp,A—B & wew —wyand w =, A and ws =, B

A is valid in M iff w |=, A for all w € W and valuations p.
Same as BBI, except for — versus —o!
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(1) ANB*C)F(BA(C — A) T
(2) AN(B—-C)FT— (CA(AxB))
(3) A*xBFBx A

(4) Ax(BxC)F (AxB)*C

(5) AxIFA

(6) AF AxI

These are all of a form called Sahlqvist formulas, and so we
have by the Sahlqvist completeness theorem:

Theorem (Sahlquist)
If B is valid in the MLppy frames satisfying Appi, then it is
provable in MLggr + AgBgi.
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Proof.
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and (2) of Appi. Then we have, for any w,wy,we € W:

W E W —o Wy < Wy € Wouwi.

Proof.
Hint: (<) uses axiom (1), (=) uses axiom 2. O

So, when axioms (1) and (2) are satisfied, Lemma 1 gives us:

wkEp,A—oB & wew —wand wy =, A and wo =, B
& wy €wowy and wy =, A and wy =, B
= w):p—\(A—*ﬂB)
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e Conversely, given MLpp; formula A, write u(A) for the

BBI-formula obtained by replacing every formula of the
form B — C by —(B — —=C).

Lemma (2)
If u(t(A)) is provable in BBI then so is A.

Proof.
Structural induction on A. ]
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Validity translation lemma

Lemma (3)
Let M = (W, 0,—, E) be a MLgp; frame satisfying axioms
(8)-(6) of Agpi. Then (W, o, E) is a BBI-model.

Proof.
Easy exercise!

Lemma (4)

If A is valid in BBI, then t(A) is valid in every MLpp; frame
satisfying ABBI.

Proof.

Uses Lemmas 1 and 3.
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Proof translation lemma

Lemma (5)

If B is provable in MLgpy + Apgi, then u(B) is provable in
BBI.
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Proof translation lemma

Lemma (5)

If B is provable in MLgpy + Apgi, then u(B) is provable in
BBI.

Proof.

By induction on the proof of B in MLggr + Aggr. We have to
show that every proof rule in M Lppr + Appr is derivable in BBI
under the translation u(—). O
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Proof of completeness

Theorem
If A is BBl-valid then it is BBI-provable.

Proof.
Let A be BBI-valid.

By Lemma 4, ¢t(A) is valid in the class of MLpp; frames
satisfying Aggr.

By the Sahlqvist Theorem, t(A) is provable in MLpp + Apgr.
By Lemma 5, u(t(A)) is provable in BBI.

Finally, by Lemma 2, A is provable in BBI. O
Exercise: fill in the proofs of Lemmas 1-5!
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