Boolean bunched logic: its semantics and completeness

James Brotherston

Programming Principles, Logic and Verification Group
Dept. of Computer Science
University College London, UK
J.Brotherston@ucl.ac.uk

Logic Summer School, ANU, 8 December 2015

• Bunched logics extend classical or intuitionistic logic with various "linear" or multiplicative connectives.

- Bunched logics extend classical or intuitionistic logic with various "linear" or multiplicative connectives.
- Formulas can be understood as sets of "worlds" (often "resources") in an underlying model.

- Bunched logics extend classical or intuitionistic logic with various "linear" or multiplicative connectives.
- Formulas can be understood as sets of "worlds" (often "resources") in an underlying model.
- The multiplicatives generally denote composition operations on these worlds.

- Bunched logics extend classical or intuitionistic logic with various "linear" or multiplicative connectives.
- Formulas can be understood as sets of "worlds" (often "resources") in an underlying model.
- The multiplicatives generally denote composition operations on these worlds.
- Bunched logics are closely related to relevant logics and can also be seen as modal logics.

• In this course we focus on Boolean BI (from now on BBI)

- In this course we focus on Boolean BI (from now on BBI)
- BBI extends classical propositional logic with the following "multiplicative" connectives:
 - *, a multiplicative conjunction;

- In this course we focus on Boolean BI (from now on BBI)
- BBI extends classical propositional logic with the following "multiplicative" connectives:
 - *, a multiplicative conjunction;
 - -* ("magic wand"), a multiplicative implication;

- In this course we focus on Boolean BI (from now on BBI)
- BBI extends classical propositional logic with the following "multiplicative" connectives:
 - *, a multiplicative conjunction;
 - -* ("magic wand"), a multiplicative implication;
 - I, a multiplicative unit.

- In this course we focus on Boolean BI (from now on BBI)
- BBI extends classical propositional logic with the following "multiplicative" connectives:
 - *, a multiplicative conjunction;
 - -* ("magic wand"), a multiplicative implication;
 - I, a multiplicative unit.
- "Multiplicative" means * does not satisfy weakening or contraction:

$$A * B \not\vdash A$$
 $A \not\vdash A * A$

- In this course we focus on Boolean BI (from now on BBI)
- BBI extends classical propositional logic with the following "multiplicative" connectives:
 - *, a multiplicative conjunction;
 - -* ("magic wand"), a multiplicative implication;
 - I, a multiplicative unit.
- "Multiplicative" means * does not satisfy weakening or contraction:

$$A * B \not\vdash A$$
 $A \not\vdash A * A$

• The multiplicatives can be seen as modalities in modal logic (more on that later).

• Intuitively, formulas in BBI can be read as properties of resources.

- Intuitively, formulas in BBI can be read as properties of resources.
- A * B can be read as "my current resource decomposes into two parts that satisfy A and B respectively".

- Intuitively, formulas in BBI can be read as properties of resources.
- A * B can be read as "my current resource decomposes into two parts that satisfy A and B respectively".
- I can be read as "my resource is empty / of unit type".

- Intuitively, formulas in BBI can be read as properties of resources.
- A * B can be read as "my current resource decomposes into two parts that satisfy A and B respectively".
- I can be read as "my resource is empty / of unit type".
- A B can be read as "if I add a resource satisfying A to my current resource, the whole thing satisfies B".

BBI, proof-theoretically

Provability in BBI is given by extending a Hilbert system for propositional classical logic by

$$A*B \vdash B*A \qquad A*(B*C) \vdash (A*B)*C$$

$$A \vdash A*I \qquad A*I \vdash A$$

$$\frac{A_1 \vdash B_1 \quad A_2 \vdash B_2}{A_1*A_2 \vdash B_1*B_2} \qquad \frac{A*B \vdash C}{A \vdash B \multimap C} \qquad \frac{A \vdash B \multimap C}{A*B \vdash C}$$

These rules are exactly the usual ones for multiplicative intuitionistic linear logic (MILL).

A BBI-model is given by $\langle W, \circ, E \rangle$, where

• W is a set (of "worlds"),

A BBI-model is given by $\langle W, \circ, E \rangle$, where

- W is a set (of "worlds"),
- \circ is a binary function $W \times W \to \mathcal{P}(W)$;

A BBI-model is given by $\langle W, \circ, E \rangle$, where

- W is a set (of "worlds"),
- \circ is a binary function $W \times W \to \mathcal{P}(W)$; we extend \circ to $\mathcal{P}(W) \times \mathcal{P}(W) \to \mathcal{P}(W)$ by

$$W_1 \circ W_2 =_{\text{def}} \bigcup_{w_1 \in W_1, w_2 \in W_2} w_1 \circ w_2$$

A BBI-model is given by $\langle W, \circ, E \rangle$, where

- W is a set (of "worlds"),
- \circ is a binary function $W \times W \to \mathcal{P}(W)$; we extend \circ to $\mathcal{P}(W) \times \mathcal{P}(W) \to \mathcal{P}(W)$ by

$$W_1 \circ W_2 =_{\text{def}} \bigcup_{w_1 \in W_1, w_2 \in W_2} w_1 \circ w_2$$

• o is commutative and associative;

A BBI-model is given by $\langle W, \circ, E \rangle$, where

- W is a set (of "worlds"),
- \circ is a binary function $W \times W \to \mathcal{P}(W)$; we extend \circ to $\mathcal{P}(W) \times \mathcal{P}(W) \to \mathcal{P}(W)$ by

$$W_1 \circ W_2 =_{\text{def}} \bigcup_{w_1 \in W_1, w_2 \in W_2} w_1 \circ w_2$$

- o is commutative and associative:
- the set of units $E \subseteq W$ satisfies $w \circ E = \{w\}$ for all $w \in W$.

A BBI-model is given by $\langle W, \circ, E \rangle$, where

- W is a set (of "worlds"),
- \circ is a binary function $W \times W \to \mathcal{P}(W)$; we extend \circ to $\mathcal{P}(W) \times \mathcal{P}(W) \to \mathcal{P}(W)$ by

$$W_1 \circ W_2 =_{\text{def}} \bigcup_{w_1 \in W_1, w_2 \in W_2} w_1 \circ w_2$$

- o is commutative and associative:
- the set of units $E \subseteq W$ satisfies $w \circ E = \{w\}$ for all $w \in W$.

(Note that \circ can equivalently be seen as a ternary relation, $\circ \subset W \times W \times W$.)

A valuation for BBI-model $M = \langle W, \circ, E \rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.

A valuation for BBI-model $M = \langle W, \circ, E \rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.

$$w\models_{\rho} P \;\;\Leftrightarrow\;\; w\in\rho(P)$$

A valuation for BBI-model $M = \langle W, \circ, E \rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.

$$\begin{array}{ccc} w \models_{\rho} P & \Leftrightarrow & w \in \rho(P) \\ w \models_{\rho} A \to B & \Leftrightarrow & w \models_{\rho} A \text{ implies } w \models_{\rho} B \end{array}$$

A valuation for BBI-model $M = \langle W, \circ, E \rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.

$$\begin{array}{ccc} w \models_{\rho} P & \Leftrightarrow & w \in \rho(P) \\ w \models_{\rho} A \to B & \Leftrightarrow & w \models_{\rho} A \text{ implies } w \models_{\rho} B \\ & \vdots \\ w \models_{\rho} \mathbf{I} & \Leftrightarrow & w \in E \end{array}$$

A valuation for BBI-model $M = \langle W, \circ, E \rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.

$$\begin{array}{cccc} w \models_{\rho} P & \Leftrightarrow & w \in \rho(P) \\ w \models_{\rho} A \to B & \Leftrightarrow & w \models_{\rho} A \text{ implies } w \models_{\rho} B \\ & \vdots & & \\ w \models_{\rho} \mathbf{I} & \Leftrightarrow & w \in E \\ w \models_{\rho} A * B & \Leftrightarrow & w \in w_{1} \circ w_{2} \text{ and } w_{1} \models_{\rho} A \text{ and } w_{2} \models_{\rho} B \end{array}$$

A valuation for BBI-model $M = \langle W, \circ, E \rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.

A valuation for BBI-model $M = \langle W, \circ, E \rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.

Given M, ρ , and $w \in W$, we define the forcing relation $w \models_{\rho} A$ by induction on formula A:

A is valid in M iff $w \models_{\rho} A$ for all ρ and $w \in W$.

Theorem (Galmiche and Larchey-Wendling, 2006)
A formula is BBI-provable iff it is valid in all BBI-models.

Theorem (Galmiche and Larchey-Wendling, 2006)

A formula is BBI-provable iff it is valid in all BBI-models.

• Soundness (⇒) is straightforward: just show that each proof rule preserves validity. (Easy exercise!)

Theorem (Galmiche and Larchey-Wendling, 2006)

A formula is BBI-provable iff it is valid in all BBI-models.

- Soundness (⇒) is straightforward: just show that each proof rule preserves validity. (Easy exercise!)
- $Completeness (\Leftarrow)$ is much harder.

Theorem (Galmiche and Larchey-Wendling, 2006)

A formula is BBI-provable iff it is valid in all BBI-models.

- Soundness (⇒) is straightforward: just show that each proof rule preserves validity. (Easy exercise!)
- $Completeness (\Leftarrow)$ is much harder.
- Several different approaches are possible; I am going to try
 to show you the simplest one, based on the Sahlqvist
 completeness theorem for modal logic.

Outline of the approach

• We translate BBI into a normal modal logic over "diamond" modalities I, *, \multimap , satisfying a set of well-behaved Sahlqvist axioms. $A \multimap B$ will come out as $\neg (A \multimap B)$.

Outline of the approach

- We translate BBI into a normal modal logic over "diamond" modalities I, *, →, satisfying a set of well-behaved Sahlqvist axioms. A → B will come out as ¬(A → ¬B).
- Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.

Outline of the approach

- We translate BBI into a normal modal logic over "diamond" modalities I, *, →, satisfying a set of well-behaved Sahlqvist axioms. A → B will come out as ¬(A → ¬B).
- Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.
- By suitable translations t and u between BBI and this modal logic, we get
 A valid in BBI

- We translate BBI into a normal modal logic over "diamond" modalities I, *, →, satisfying a set of well-behaved Sahlqvist axioms. A → B will come out as ¬(A → ¬B).
- Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.
- By suitable translations t and u between BBI and this modal logic, we get

A valid in BBI \Rightarrow t(A) valid in modal logic

- We translate BBI into a normal modal logic over "diamond" modalities I, *, →, satisfying a set of well-behaved Sahlqvist axioms. A → B will come out as ¬(A → ¬B).
- Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.
- By suitable translations t and u between BBI and this modal logic, we get

```
A valid in BBI \Rightarrow t(A) valid in modal logic \Rightarrow t(A) provable in modal logic (Sahlqvist)
```

- We translate BBI into a normal modal logic over "diamond" modalities I, *, →, satisfying a set of well-behaved Sahlqvist axioms. A → B will come out as ¬(A → ¬B).
- Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.
- By suitable translations t and u between BBI and this modal logic, we get

```
A valid in BBI \Rightarrow t(A) valid in modal logic \Rightarrow t(A) provable in modal logic (Sahlqvist) \Rightarrow u(t(A)) provable in BBI
```

- We translate BBI into a normal modal logic over "diamond" modalities I, *, →, satisfying a set of well-behaved Sahlqvist axioms. A → B will come out as ¬(A → ¬B).
- Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.
- By suitable translations t and u between BBI and this modal logic, we get

```
A valid in BBI \Rightarrow t(A) valid in modal logic

\Rightarrow t(A) provable in modal logic (Sahlqvist)

\Rightarrow u(t(A)) provable in BBI
```

 \Rightarrow A provable in BBI

A $\mathbf{ML}_{\mathrm{BBI}}$ formula is built from propositional variables using the classical connectives, constant I and binary modalities * and \multimap .

A $\mathbf{ML}_{\mathrm{BBI}}$ formula is built from propositional variables using the classical connectives, constant I and binary modalities * and \multimap .

Provability in the *normal modal logic* for $\mathbf{ML}_{\mathrm{BBI}}$ is given by extending classical propositional logic with the following axioms and rules, where $\otimes \in \{*, \multimap\}$:

A $\mathbf{ML}_{\mathrm{BBI}}$ formula is built from propositional variables using the classical connectives, constant I and binary modalities * and \multimap .

Provability in the *normal modal logic* for $\mathbf{ML}_{\mathrm{BBI}}$ is given by extending classical propositional logic with the following axioms and rules, where $\otimes \in \{*, \multimap\}$:

$$\bot \otimes A \vdash \bot \text{ and } A \otimes \bot \vdash \bot$$

$$(A \lor B) \otimes C \vdash (A \otimes C) \lor (B \otimes C) \qquad \qquad \frac{A_1 \vdash A_2 \quad B_1 \vdash B_2}{A_1 \otimes B_1 \vdash A_2 \otimes B_2}$$

$$A \otimes (B \lor C) \vdash (A \otimes B) \lor (A \otimes C)$$

A **ML**_{BBI} frame is given by $\langle W, \circ, -\circ, E \rangle$, where $E \subseteq W$ and $\circ, -\circ: W \times W \to \mathcal{P}(W)$ (like in BBI).

A $\mathbf{ML}_{\mathrm{BBI}}$ frame is given by $\langle W, \circ, \multimap, E \rangle$, where $E \subseteq W$ and $\circ, \multimap : W \times W \to \mathcal{P}(W)$ (like in BBI).

Now we give the forcing relation $w \models_{\rho} A$:

$$w \models_{\rho} P \Leftrightarrow w \in \rho(P)$$

A $\mathbf{ML}_{\mathrm{BBI}}$ frame is given by $\langle W, \circ, -\circ, E \rangle$, where $E \subseteq W$ and $\circ, -\circ: W \times W \to \mathcal{P}(W)$ (like in BBI). Now we give the forcing relation $w \models_{\varrho} A$:

$$w \models_{\rho} P \iff w \in \rho(P)$$

$$w \models_{\rho} P \iff w \in \rho(P)$$

$$w \models_{\rho} A \to B \iff w \models_{\rho} A \text{ implies } w \models_{\rho} B$$

A $\mathbf{ML}_{\mathrm{BBI}}$ frame is given by $\langle W, \circ, -\circ, E \rangle$, where $E \subseteq W$ and $\circ, -\circ: W \times W \to \mathcal{P}(W)$ (like in BBI).

Now we give the forcing relation
$$w \models_{\rho} A$$
:

$$w \models_{\rho} P \iff w \in \rho(P)$$

$$w \models_{\rho} A \to B \iff w \models_{\rho} A \text{ implies } w \models_{\rho} B$$

$$\vdots$$

$$w \models_{\rho} I \iff w \in E$$

A $\mathbf{ML}_{\mathrm{BBI}}$ frame is given by $\langle W, \circ, \multimap, E \rangle$, where $E \subseteq W$ and $\circ, \multimap: W \times W \to \mathcal{P}(W)$ (like in BBI).

Now we give the forcing relation $w \models_{\rho} A$:

$$w \models_{\rho} P \iff w \in \rho(P)$$

$$w \models_{\rho} A \to B \iff w \models_{\rho} A \text{ implies } w \models_{\rho} B$$

$$\vdots$$

$$w \models_{\rho} I \iff w \in E$$

$$w \models_{\rho} A * B \iff w \in w_{1} \circ w_{2} \text{ and } w_{1} \models_{\rho} A \text{ and } w_{2} \models_{\rho} B$$

A $\mathbf{ML}_{\mathrm{BBI}}$ frame is given by $\langle W, \circ, \multimap, E \rangle$, where $E \subseteq W$ and $\circ, \multimap: W \times W \to \mathcal{P}(W)$ (like in BBI).

Now we give the forcing relation $w \models_{\rho} A$:

A $\mathbf{ML}_{\mathrm{BBI}}$ frame is given by $\langle W, \circ, -\circ, E \rangle$, where $E \subseteq W$ and $\circ, -\circ: W \times W \to \mathcal{P}(W)$ (like in BBI).

Now we give the forcing relation $w \models_{\rho} A$:

A is valid in M iff $w \models_{\rho} A$ for all $w \in W$ and valuations ρ . Same as BBI, except for $\neg *$ versus \multimap !

Sahlqvist axioms for ML_{BBI}

Define a set \mathcal{A}_{BBI} of \mathbf{ML}_{BBI} -formulas as follows:

Sahlqvist axioms for $\mathbf{ML}_{\mathrm{BBI}}$

Define a set \mathcal{A}_{BBI} of \mathbf{ML}_{BBI} -formulas as follows:

(1)
$$A \wedge (B * C) \vdash (B \wedge (C \multimap A)) * \top$$

(2)
$$A \wedge (B \multimap C) \vdash \top \multimap (C \wedge (A * B))$$

$$(3) \quad A * B \vdash B * A$$

(4)
$$A * (B * C) \vdash (A * B) * C$$

(5)
$$A * I \vdash A$$

(6)
$$A \vdash A * I$$

Sahlqvist axioms for ML_{BBI}

Define a set \mathcal{A}_{BBI} of \mathbf{ML}_{BBI} -formulas as follows:

(1)
$$A \wedge (B * C) \vdash (B \wedge (C \multimap A)) * \top$$

(2)
$$A \wedge (B \multimap C) \vdash \top \multimap (C \wedge (A * B))$$

$$(3) \quad A * B \vdash B * A$$

(4)
$$A * (B * C) \vdash (A * B) * C$$

(5)
$$A * I \vdash A$$

(6)
$$A \vdash A * I$$

These are all of a form called Sahlqvist formulas, and so we have by the Sahlqvist completeness theorem:

Sahlqvist axioms for $\mathbf{ML}_{\mathrm{BBI}}$

Define a set \mathcal{A}_{BBI} of \mathbf{ML}_{BBI} -formulas as follows:

(1)
$$A \wedge (B * C) \vdash (B \wedge (C \multimap A)) * \top$$

(2)
$$A \wedge (B \multimap C) \vdash \top \multimap (C \wedge (A * B))$$

- $(3) \quad A*B \vdash B*A$
- (4) $A * (B * C) \vdash (A * B) * C$
- (5) $A * I \vdash A$
- (6) $A \vdash A * I$

These are all of a form called Sahlqvist formulas, and so we have by the Sahlqvist completeness theorem:

Theorem (Sahlqvist)

If B is valid in the $\mathbf{ML}_{\mathrm{BBI}}$ frames satisfying $\mathcal{A}_{\mathrm{BBI}}$, then it is provable in $\mathbf{ML}_{\mathrm{BBI}} + \mathcal{A}_{\mathrm{BBI}}$.

Lemma (1)

Let $M = \langle W, \circ, -\circ, E \rangle$ be a modal frame satisfying axioms (1) and (2) of \mathcal{A}_{BBI} . Then we have, for any $w, w_1, w_2 \in W$:

$$w \in w_1 \multimap w_2 \Leftrightarrow w_2 \in w \circ w_1.$$

Proof.

Lemma (1)

Let $M = \langle W, \circ, -\circ, E \rangle$ be a modal frame satisfying axioms (1) and (2) of \mathcal{A}_{BBI} . Then we have, for any $w, w_1, w_2 \in W$:

$$w \in w_1 \multimap w_2 \iff w_2 \in w \circ w_1.$$

Proof.

Hint: (\Leftarrow) uses axiom (1), (\Rightarrow) uses axiom 2.

Lemma (1)

Let $M = \langle W, \circ, -\circ, E \rangle$ be a modal frame satisfying axioms (1) and (2) of \mathcal{A}_{BBI} . Then we have, for any $w, w_1, w_2 \in W$:

$$w \in w_1 \multimap w_2 \iff w_2 \in w \circ w_1.$$

Proof.

Hint: (\Leftarrow) uses axiom (1), (\Rightarrow) uses axiom 2.

So, when axioms (1) and (2) are satisfied, Lemma 1 gives us:

$$w \models_{\rho} A \multimap B \iff w \in w_1 \multimap w_2 \text{ and } w_1 \models_{\rho} A \text{ and } w_2 \models_{\rho} B$$

Lemma (1)

Let $M = \langle W, \circ, -\circ, E \rangle$ be a modal frame satisfying axioms (1) and (2) of \mathcal{A}_{BBI} . Then we have, for any $w, w_1, w_2 \in W$:

$$w \in w_1 \multimap w_2 \Leftrightarrow w_2 \in w \circ w_1.$$

Proof.

Hint:
$$(\Leftarrow)$$
 uses axiom (1) , (\Rightarrow) uses axiom 2.

So, when axioms (1) and (2) are satisfied, Lemma 1 gives us:

$$w \models_{\rho} A \multimap B \iff w \in w_1 \multimap w_2 \text{ and } w_1 \models_{\rho} A \text{ and } w_2 \models_{\rho} B \Leftrightarrow w_2 \in w \circ w_1 \text{ and } w_1 \models_{\rho} A \text{ and } w_2 \models_{\rho} B$$

Lemma (1)

Let $M = \langle W, \circ, -\circ, E \rangle$ be a modal frame satisfying axioms (1) and (2) of \mathcal{A}_{BBI} . Then we have, for any $w, w_1, w_2 \in W$:

$$w \in w_1 \multimap w_2 \Leftrightarrow w_2 \in w \circ w_1.$$

Proof.

Hint:
$$(\Leftarrow)$$
 uses axiom (1) , (\Rightarrow) uses axiom 2.

So, when axioms (1) and (2) are satisfied, Lemma 1 gives us:

$$w \models_{\rho} A \multimap B \Leftrightarrow w \in w_1 \multimap w_2 \text{ and } w_1 \models_{\rho} A \text{ and } w_2 \models_{\rho} B$$

 $\Leftrightarrow w_2 \in w \circ w_1 \text{ and } w_1 \models_{\rho} A \text{ and } w_2 \models_{\rho} B$
 $\Leftrightarrow w \models_{\rho} \neg (A \multimap B)$

• Given a BBI-formula A, write t(A) for the $\mathbf{ML}_{\mathrm{BBI}}$ formula obtained by replacing every formula of the form $B \twoheadrightarrow C$ by $\neg (B \multimap \neg C)$.

- Conversely, given $\mathbf{ML}_{\mathrm{BBI}}$ formula A, write u(A) for the BBI-formula obtained by replacing every formula of the form $B \multimap C$ by $\neg (B \multimap C)$.

- Given a BBI-formula A, write t(A) for the $\mathbf{ML}_{\mathrm{BBI}}$ formula obtained by replacing every formula of the form $B \twoheadrightarrow C$ by $\neg (B \multimap \neg C)$.
- Conversely, given $\mathbf{ML}_{\mathrm{BBI}}$ formula A, write u(A) for the BBI-formula obtained by replacing every formula of the form $B \multimap C$ by $\neg (B \multimap C)$.

Lemma (2)

If u(t(A)) is provable in BBI then so is A.

- Given a BBI-formula A, write t(A) for the $\mathbf{ML}_{\mathrm{BBI}}$ formula obtained by replacing every formula of the form $B \twoheadrightarrow C$ by $\neg (B \multimap \neg C)$.
- Conversely, given $\mathbf{ML}_{\mathrm{BBI}}$ formula A, write u(A) for the BBI-formula obtained by replacing every formula of the form $B \multimap C$ by $\neg (B \multimap C)$.

Lemma (2)

If u(t(A)) is provable in BBI then so is A.

Proof.

Structural induction on A.

Lemma (3)

Let $M = \langle W, \circ, -\circ, E \rangle$ be a $\mathbf{ML}_{\mathrm{BBI}}$ frame satisfying axioms (3)-(6) of $\mathcal{A}_{\mathrm{BBI}}$. Then $\langle W, \circ, E \rangle$ is a BBI-model.

Lemma (3)

Let $M = \langle W, \circ, -\circ, E \rangle$ be a $\mathbf{ML}_{\mathrm{BBI}}$ frame satisfying axioms (3)-(6) of $\mathcal{A}_{\mathrm{BBI}}$. Then $\langle W, \circ, E \rangle$ is a BBI-model.

Proof.

Easy exercise!

Lemma (3)

Let $M = \langle W, \circ, -\circ, E \rangle$ be a $\mathbf{ML}_{\mathrm{BBI}}$ frame satisfying axioms (3)-(6) of $\mathcal{A}_{\mathrm{BBI}}$. Then $\langle W, \circ, E \rangle$ is a BBI-model.

Proof.

Easy exercise!

Lemma (4)

If A is valid in BBI, then t(A) is valid in every $\mathbf{ML}_{\mathrm{BBI}}$ frame satisfying $\mathcal{A}_{\mathrm{BBI}}$.

Lemma (3)

Let $M = \langle W, \circ, -\circ, E \rangle$ be a $\mathbf{ML}_{\mathrm{BBI}}$ frame satisfying axioms (3)-(6) of $\mathcal{A}_{\mathrm{BBI}}$. Then $\langle W, \circ, E \rangle$ is a BBI-model.

Proof.

Easy exercise!

Lemma (4)

If A is valid in BBI, then t(A) is valid in every \mathbf{ML}_{BBI} frame satisfying \mathcal{A}_{BBI} .

Proof.

Uses Lemmas 1 and 3.

Proof translation lemma

Lemma (5)

If B is provable in $\mathbf{ML}_{\mathrm{BBI}} + \mathcal{A}_{\mathrm{BBI}}$, then u(B) is provable in BBI.

Proof translation lemma

Lemma (5)

If B is provable in $\mathbf{ML}_{\mathrm{BBI}} + \mathcal{A}_{\mathrm{BBI}}$, then u(B) is provable in BBI.

Proof.

By induction on the proof of B in $\mathbf{ML}_{BBI} + \mathcal{A}_{BBI}$. We have to show that every proof rule in $\mathbf{ML}_{BBI} + \mathcal{A}_{BBI}$ is derivable in BBI under the translation u(-).

Theorem

If A is BBI-valid then it is BBI-provable.

Proof.

Let A be BBI-valid.

Theorem

If A is BBI-valid then it is BBI-provable.

Proof.

Let A be BBI-valid.

By Lemma 4, t(A) is valid in the class of $\mathbf{ML}_{\mathrm{BBI}}$ frames satisfying $\mathcal{A}_{\mathrm{BBI}}$.

Theorem

If A is BBI-valid then it is BBI-provable.

Proof.

Let A be BBI-valid.

By Lemma 4, t(A) is valid in the class of $\mathbf{ML}_{\mathrm{BBI}}$ frames satisfying $\mathcal{A}_{\mathrm{BBI}}$.

By the Sahlqvist Theorem, t(A) is provable in $\mathbf{ML}_{\mathrm{BBI}} + \mathcal{A}_{\mathrm{BBI}}$.

Theorem

If A is BBI-valid then it is BBI-provable.

Proof.

Let A be BBI-valid.

By Lemma 4, t(A) is valid in the class of $\mathbf{ML}_{\mathrm{BBI}}$ frames satisfying $\mathcal{A}_{\mathrm{BBI}}$.

By the Sahlqvist Theorem, t(A) is provable in $\mathbf{ML}_{\mathrm{BBI}} + \mathcal{A}_{\mathrm{BBI}}$.

By Lemma 5, u(t(A)) is provable in BBI.

Theorem

If A is BBI-valid then it is BBI-provable.

Proof.

Let A be BBI-valid.

By Lemma 4, t(A) is valid in the class of $\mathbf{ML}_{\mathrm{BBI}}$ frames satisfying $\mathcal{A}_{\mathrm{BBI}}$.

By the Sahlqvist Theorem, t(A) is provable in $\mathbf{ML}_{\mathrm{BBI}} + \mathcal{A}_{\mathrm{BBI}}$.

By Lemma 5, u(t(A)) is provable in BBI.

Finally, by Lemma 2, A is provable in BBI.

Theorem

If A is BBI-valid then it is BBI-provable.

Proof.

Let A be BBI-valid.

By Lemma 4, t(A) is valid in the class of $\mathbf{ML}_{\mathrm{BBI}}$ frames satisfying $\mathcal{A}_{\mathrm{BBI}}$.

By the Sahlqvist Theorem, t(A) is provable in $\mathbf{ML}_{\mathrm{BBI}} + \mathcal{A}_{\mathrm{BBI}}$.

By Lemma 5, u(t(A)) is provable in BBI.

Finally, by Lemma 2, A is provable in BBI.

Exercise: fill in the proofs of Lemmas 1–5!

Further reading

D. Galmiche and D. Larchey-Wendling.

Expressivity properties of Boolean BI through relational models.

In Proc. FSTTCS-26. Springer, 2006.

D. Pym.

The semantics and proof theory of the logic of bunched implications. Kluwer, Applied Logic Series, 2002.

C. Calcagno, P. Gardner and U. Zarfaty.

Context logic as modal logic: completeness and parametric inexpressivity.

In Proc. POPL-34. ACM, 2007.

J. Brotherston and J. Villard.

Sub-classical Boolean bunched logics and the meaning of par.

In Proc. CSL-24. Dagstuhl LIPIcs, 2015.