Boolean bunched logic: its semantics and completeness

James Brotherston

Programming Principles, Logic and Verification Group
Dept. of Computer Science
University College London, UK
J.Brotherston@ucl.ac.uk

Logic Summer School, ANU, 8 December 2015
Bunched logics

- Bunched logics extend classical or intuitionistic logic with various “linear” or multiplicative connectives.
Bunched logics

- **Bunched logics** extend classical or intuitionistic logic with various “linear” or **multiplicative** connectives.

- Formulas can be understood as sets of “worlds” (often “resources”) in an underlying model.
Bunched logics

- Bunched logics extend classical or intuitionistic logic with various “linear” or multiplicative connectives.

- Formulas can be understood as sets of “worlds” (often “resources”) in an underlying model.

- The multiplicatives generally denote composition operations on these worlds.
Bunched logics

- Bunched logics extend classical or intuitionistic logic with various “linear” or multiplicative connectives.

- Formulas can be understood as sets of “worlds” (often “resources”) in an underlying model.

- The multiplicatives generally denote composition operations on these worlds.

- Bunched logics are closely related to relevant logics and can also be seen as modal logics.
Boolean BI

• In this course we focus on Boolean BI (from now on BBI)
In this course we focus on **Boolean BI** (from now on BBI)

BBI extends **classical propositional logic** with the following “multiplicative” connectives:

- *, a multiplicative **conjunction**;

“Multiplicative” means \cdot *does not satisfy weakening or contraction:*

$$A \cdot B \not\vdash A$$

$$A \not\vdash A \cdot A$$

The multiplicatives can be seen as modalities in modal logic (more on that later).
Boolean BI

- In this course we focus on Boolean BI (from now on BBI)

- BBI extends classical propositional logic with the following “multiplicative” connectives:
 - \ast, a multiplicative conjunction;
 - $\neg\ast$ (“magic wand”), a multiplicative implication;
Boolean BI

• In this course we focus on Boolean BI (from now on BBI)

• BBI extends classical propositional logic with the following “multiplicative” connectives:
 • *, a multiplicative conjunction;
 • →* ("magic wand"), a multiplicative implication;
 • I, a multiplicative unit.

"Multiplicative" means * does not satisfy weakening or contraction:

\[A \ast B \not\vdash A \]
\[A \ast A \not\vdash A \]

• The multiplicatives can be seen as modalities in modal logic (more on that later).
Boolean BI

• In this course we focus on Boolean BI (from now on BBI)

• BBI extends classical propositional logic with the following “multiplicative” connectives:
 • \(\ast \), a multiplicative conjunction;
 • \(\neg\ast \) ("magic wand"), a multiplicative implication;
 • I, a multiplicative unit.

• "Multiplicative" means \(\ast \) does not satisfy weakening or contraction:

 \[A \ast B \not\vdash A \quad A \not\vdash A \ast A \]
In this course we focus on **Boolean BI** (from now on BBI)

BBI extends **classical propositional logic** with the following “multiplicative” connectives:

- \ast, a multiplicative **conjunction**;
- $\neg\ast$ (“magic wand”), a multiplicative **implication**;
- I, a multiplicative **unit**.

“Multiplicative” means \ast does not satisfy **weakening** or **contraction**:

$$A \ast B \not\vdash A \quad A \not\vdash A \ast A$$

The multiplicatives can be seen as **modalities** in modal logic (more on that later).
Intuitively, formulas in BBI can be read as properties of resources.

• $A \cdot B$ can be read as "my current resource decomposes into two parts that satisfy A and B respectively".

• I can be read as "my resource is empty / of unit type".

• $A \vdash I$ can be read as "if I add a resource satisfying A to my current resource, the whole thing satisfies B".
Reading the multiplicatives

- Intuitively, formulas in BBI can be read as properties of resources.

- \(A \ast B \) can be read as “my current resource decomposes into two parts that satisfy \(A \) and \(B \) respectively”.

- \(I \) can be read as “my resource is empty / of unit type”.

- \(A \rightleftharpoons B \) can be read as “if I add a resource satisfying \(A \) to my current resource, the whole thing satisfies \(B \)”.
Reading the multiplicatives

- Intuitively, formulas in BBI can be read as properties of resources.

- $A \ast B$ can be read as “my current resource decomposes into two parts that satisfy A and B respectively”.

- I can be read as “my resource is empty / of unit type”.

Reading the multiplicatives

- Intuitively, formulas in BBI can be read as **properties of resources**.

- $A \ast B$ can be read as “my current resource decomposes into two parts that satisfy A and B respectively”.

- I can be read as “my resource is empty / of unit type”.

- $A \rightarrow B$ can be read as “if I add a resource satisfying A to my current resource, the whole thing satisfies B”.
BBI, *proof-theoretically*

Provability in BBI is given by extending a Hilbert system for propositional classical logic by

\[
A \ast B \vdash B \ast A \quad A \ast (B \ast C) \vdash (A \ast B) \ast C
\]

\[
A \vdash A \ast I \quad A \ast I \vdash A
\]

\[
A_1 \vdash B_1 \quad A_2 \vdash B_2 \quad A \ast B \vdash C \quad A \vdash B \supset C
\]

\[
A_1 \ast A_2 \vdash B_1 \ast B_2 \quad A \vdash B \supset C \quad A \ast B \vdash C
\]

These rules are exactly the usual ones for *multiplicative intuitionistic linear logic* (MILL).
A BBI-model is given by $\langle W, \circ, E \rangle$, where

- W is a set (of "worlds"),
A **BBI-model** is given by \(\langle W, \circ, E \rangle \), where

- \(W \) is a set (of “worlds”),
- \(\circ \) is a binary function \(W \times W \rightarrow \mathcal{P}(W) \);
A BBI-model is given by $\langle W, \circ, E \rangle$, where

- W is a set (of “worlds”),
- \circ is a binary function $W \times W \rightarrow \mathcal{P}(W)$; we extend \circ to $\mathcal{P}(W) \times \mathcal{P}(W) \rightarrow \mathcal{P}(W)$ by

$$W_1 \circ W_2 \overset{\text{def}}{=} \bigcup_{w_1 \in W_1, w_2 \in W_2} w_1 \circ w_2$$

(Note that \circ can equivalently be seen as a ternary relation, $\circ \subseteq W \times W \times W$.)

BBI, semantically (1)
A BBI-model is given by $\langle W, \circ, E \rangle$, where

- W is a set (of “worlds”),
- \circ is a binary function $W \times W \rightarrow \mathcal{P}(W)$; we extend \circ to $\mathcal{P}(W) \times \mathcal{P}(W) \rightarrow \mathcal{P}(W)$ by

$$W_1 \circ W_2 =_{\text{def}} \bigcup_{w_1 \in W_1, w_2 \in W_2} w_1 \circ w_2$$

- \circ is commutative and associative;
A **BBI-model** is given by $\langle W, \circ, E \rangle$, where

- W is a set (of “worlds”),
- \circ is a binary function $W \times W \to \mathcal{P}(W)$; we extend \circ to $\mathcal{P}(W) \times \mathcal{P}(W) \to \mathcal{P}(W)$ by
 \[
 W_1 \circ W_2 = \text{def} \bigcup_{w_1 \in W_1, w_2 \in W_2} w_1 \circ w_2
 \]
- \circ is **commutative** and **associative**;
- the set of **units** $E \subseteq W$ satisfies $w \circ E = \{w\}$ for all $w \in W$.

(Note that \circ can equivalently be seen as a ternary relation, $\circ \subseteq W \times W \times W$.)
A BBI-model is given by $\langle W, \circ, E \rangle$, where

- W is a set (of “worlds”),
- \circ is a binary function $W \times W \rightarrow \mathcal{P}(W)$; we extend \circ to $\mathcal{P}(W) \times \mathcal{P}(W) \rightarrow \mathcal{P}(W)$ by
 \[
 W_1 \circ W_2 = \text{def} \bigcup_{w_1 \in W_1, w_2 \in W_2} w_1 \circ w_2
 \]
- \circ is commutative and associative;
- the set of units $E \subseteq W$ satisfies $w \circ E = \{w\}$ for all $w \in W$.

(Note that \circ can equivalently be seen as a ternary relation, $\circ \subseteq W \times W \times W$.)
A valuation for BBI-model $M = \langle W, \circ, E \rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.

BBI, semantically (2)
A valuation for BBI-model $M = \langle W, \circ, E \rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.

Given M, ρ, and $w \in W$, we define the forcing relation $w \models_{\rho} A$ by induction on formula A:

$$w \models_{\rho} P \iff w \in \rho(P)$$
A valuation for BBI-model \(M = \langle W, \circ, E \rangle \) is a function \(\rho \) from propositional variables to \(\mathcal{P}(W) \).
Given \(M, \rho, \) and \(w \in W \), we define the forcing relation \(w \models_\rho A \) by induction on formula \(A \):

\[
\begin{align*}
 w \models_\rho P & \iff w \in \rho(P) \\
 w \models_\rho A \rightarrow B & \iff w \models_\rho A \text{ implies } w \models_\rho B
\end{align*}
\]
A **valuation** for BBI-model \(M = \langle W, \circ, E \rangle \) is a function \(\rho \) from propositional variables to \(\mathcal{P}(W) \).

Given \(M, \rho, \) and \(w \in W \), we define the **forcing relation** \(w \models_\rho A \) by induction on formula \(A \):

\[
\begin{align*}
\quad
w \models_\rho P & \iff w \in \rho(P) \\
w \models_\rho A \to B & \iff w \models_\rho A \text{ implies } w \models_\rho B \\
\vdots \\
w \models_\rho I & \iff w \in E
\end{align*}
\]
A valuation for BBI-model $M = \langle W, \circ, E \rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.

Given M, ρ, and $w \in W$, we define the forcing relation $w \models_{\rho} A$ by induction on formula A:

- $w \models_{\rho} P \iff w \in \rho(P)$
- $w \models_{\rho} A \rightarrow B \iff w \models_{\rho} A$ implies $w \models_{\rho} B$
- $w \models_{\rho} \text{I} \iff w \in E$
- $w \models_{\rho} A \ast B \iff w \in w_1 \circ w_2$ and $w_1 \models_{\rho} A$ and $w_2 \models_{\rho} B$
A **valuation** for BBI-model $M = \langle W, \circ, E \rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$. Given M, ρ, and $w \in W$, we define the **forcing relation** $w \models_\rho A$ by induction on formula A:

\[
\begin{align*}
 w \models_\rho P & \iff w \in \rho(P) \\
 w \models_\rho A \rightarrow B & \iff w \models_\rho A \text{ implies } w \models_\rho B \\
 \vdots \quad & \\
 w \models_\rho I & \iff w \in E \\
 w \models_\rho A \ast B & \iff w \in w_1 \circ w_2 \text{ and } w_1 \models_\rho A \text{ and } w_2 \models_\rho B \\
 w \models_\rho A \ast B & \iff \forall w', w'' \in W. \text{ if } w'' \in w \circ w' \text{ and } w' \models_\rho A \text{ then } w'' \models_\rho B
\end{align*}
\]
A valuation for BBI-model $M = \langle W, \circ, E \rangle$ is a function ρ from propositional variables to $\mathcal{P}(W)$.

Given M, ρ, and $w \in W$, we define the forcing relation $w \models_{\rho} A$ by induction on formula A:

\[
\begin{align*}
 w \models_{\rho} P & \iff w \in \rho(P) \\
 w \models_{\rho} A \rightarrow B & \iff w \models_{\rho} A \text{ implies } w \models_{\rho} B \\
 & \vdots \\
 w \models_{\rho} I & \iff w \in E \\
 w \models_{\rho} A \ast B & \iff w \in w_1 \circ w_2 \text{ and } w_1 \models_{\rho} A \text{ and } w_2 \models_{\rho} B \\
 w \models_{\rho} A \ast B & \iff \forall w', w'' \in W. \text{ if } w'' \in w \circ w' \text{ and } w' \models_{\rho} A \\
 & \text{ then } w'' \models_{\rho} B
\end{align*}
\]

A is valid in M iff $w \models_{\rho} A$ for all ρ and $w \in W$.

7/18
Soundness and completeness

Theorem (Galmiche and Larchey-Wendling, 2006)
A formula is BBI-provable iff it is valid in all BBI-models.

Soundness (⇒) is straightforward: just show that each proof rule preserves validity. (Easy exercise!)

Completeness (⇐) is much harder.

Several different approaches are possible; I am going to try to show you the simplest one, based on the Sahlqvist completeness theorem for modal logic.
Soundness and completeness

Theorem (Galmiche and Larchey-Wendling, 2006)

A formula is BBI-provable iff it is valid in all BBI-models.

- *Soundness* (\Rightarrow) is straightforward: just show that each proof rule preserves validity. (Easy exercise!)
Soundness and completeness

Theorem (Galmiche and Larchey-Wendling, 2006)
A formula is BBI-provable iff it is valid in all BBI-models.

• Soundness (\Rightarrow) is straightforward: just show that each proof rule preserves validity. (Easy exercise!)

• Completeness (\Leftarrow) is much harder.
Soundness and completeness

Theorem (Galmiche and Larchey-Wendling, 2006)
A formula is BBI-provable iff it is valid in all BBI-models.

• Soundness \((\Rightarrow)\) is straightforward: just show that each proof rule preserves validity. (Easy exercise!)

• Completeness \((\Leftarrow)\) is much harder.

• Several different approaches are possible; I am going to try to show you the simplest one, based on the Sahlqvist completeness theorem for modal logic.
Outline of the approach

- We translate BBI into a normal modal logic over “diamond” modalities $I, *, \circ, \neg\circ$, satisfying a set of well-behaved Sahlqvist axioms. $A \circ B$ will come out as $\neg(A \circ \neg B)$.
Outline of the approach

• We translate BBI into a normal modal logic over “diamond” modalities I, ∗, →, satisfying a set of well-behaved Sahlqvist axioms. A → B will come out as ¬(A → ¬B).

• Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.
Outline of the approach

• We translate BBI into a normal modal logic over “diamond” modalities \(I, *, \to \), satisfying a set of well-behaved Sahlqvist axioms. \(A \to B \) will come out as \(\neg (A \to * \neg B) \).

• Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.

• By suitable translations \(t \) and \(u \) between BBI and this modal logic, we get
 \(A \) valid in BBI
Outline of the approach

- We translate BBI into a normal modal logic over “diamond” modalities I, *, →, satisfying a set of well-behaved Sahlqvist axioms. $A → B$ will come out as $\neg (A → * \neg B)$.

- Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.

- By suitable translations t and u between BBI and this modal logic, we get

 A valid in BBI $\implies t(A)$ valid in modal logic
Outline of the approach

• We translate BBI into a normal modal logic over “diamond” modalities I, *, →, satisfying a set of well-behaved Sahlqvist axioms. $A \rightarrow B$ will come out as $\neg (A \multimap \neg B)$.

• Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.

• By suitable translations t and u between BBI and this modal logic, we get

 A valid in BBI \Rightarrow $t(A)$ valid in modal logic
 \Rightarrow $t(A)$ provable in modal logic (Sahlqvist)
Outline of the approach

• We translate BBI into a normal modal logic over “diamond” modalities \mathcal{I}, \star, \rightarrow, satisfying a set of well-behaved Sahlqvist axioms. $A \rightarrow B$ will come out as $\neg(A \rightarrow \neg B)$.

• Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.

• By suitable translations t and u between BBI and this modal logic, we get

 A valid in BBI \Rightarrow $t(A)$ valid in modal logic
 \Rightarrow $t(A)$ provable in modal logic (Sahlqvist)
 \Rightarrow $u(t(A))$ provable in BBI
Outline of the approach

• We translate BBI into a normal modal logic over “diamond” modalities I, \ast, \rightarrow, satisfying a set of well-behaved Sahlqvist axioms. $A \rightarrow B$ will come out as $\neg(A \ast \neg B)$.

• Then the Sahlqvist completeness theorem says that this modal logic is complete for its models in modal logic.

• By suitable translations t and u between BBI and this modal logic, we get

 \[
 \begin{align*}
 A \text{ valid in BBI} & \Rightarrow t(A) \text{ valid in modal logic} \\
 & \Rightarrow t(A) \text{ provable in modal logic (Sahlqvist)} \\
 & \Rightarrow u(t(A)) \text{ provable in BBI} \\
 & \Rightarrow A \text{ provable in BBI}
 \end{align*}
 \]
BBI as a modal logic

A \textbf{ML}_{BBI} formula is built from propositional variables using the classical connectives, constant I and binary modalities \ast and \to.
BBI as a modal logic

A \textbf{ML}_{\text{BBI}} formula is built from propositional variables using the classical connectives, constant I and binary modalities \ast and \rightarrow.

Provability in the \textit{normal modal logic} for \textbf{ML}_{\text{BBI}} is given by extending classical propositional logic with the following axioms and rules, where $\otimes \in \{\ast, \rightarrow\}$:
BBI as a modal logic

A \textbf{ML}_{BBI} formula is built from propositional variables using the classical connectives, constant I and binary modalities $*$ and \to.

Provability in the normal modal logic for \textbf{ML}_{BBI} is given by extending classical propositional logic with the following axioms and rules, where $\otimes \in \{*, \to\}$:

$$\bot \otimes A \vdash \bot \quad \text{and} \quad A \otimes \bot \vdash \bot$$

$$(A \lor B) \otimes C \vdash (A \otimes C) \lor (B \otimes C)$$

$$A \otimes (B \lor C) \vdash (A \otimes B) \lor (A \otimes C)$$

$$\frac{A_1 \vdash A_2 \quad B_1 \vdash B_2}{A_1 \otimes B_1 \vdash A_2 \otimes B_2}$$
A \textbf{ML}_{BBI} frame is given by $\langle W, \circ, \triangleright, E \rangle$, where $E \subseteq W$ and $\circ, \triangleright: W \times W \rightarrow \mathcal{P}(W)$ (like in BBI).
BBI as a modal logic (2)

A \textbf{ML}_{\text{BBI}} frame is given by \langle W, \circ, \neg \circ, E \rangle, where \(E \subseteq W \) and \(\circ, \neg \circ : W \times W \to \mathcal{P}(W) \) (like in BBI).

Now we give the forcing relation \(w \models_{\rho} A \):

\[
w \models_{\rho} P \iff w \in \rho(P)
\]
A \textbf{ML}_{BBI} frame is given by $\langle W, \circ, \neg \circ, E \rangle$, where $E \subseteq W$ and $\circ, \neg \circ : W \times W \rightarrow \mathcal{P}(W)$ (like in BBI). Now we give the forcing relation $w \models_{\rho} A$:

\[
\begin{align*}
 w \models_{\rho} P & \iff w \in \rho(P) \\
 w \models_{\rho} A \rightarrow B & \iff w \models_{\rho} A \text{ implies } w \models_{\rho} B
\end{align*}
\]
A **ML\textsubscript{BBI} frame** is given by $\langle W, \circ, \neg \circ, E \rangle$, where $E \subseteq W$ and $\circ, \neg \circ : W \times W \rightarrow \mathcal{P}(W)$ (like in BBI).

Now we give the forcing relation $w \models_\rho A$:

\[
\begin{align*}
w \models_\rho P & \iff w \in \rho(P) \\
w \models_\rho A \rightarrow B & \iff w \models_\rho A \text{ implies } w \models_\rho B \\
\vdots \\
w \models_\rho \text{I} & \iff w \in E
\end{align*}
\]
A **ML\textsubscript{BBI}** frame is given by \(\langle W, \circ, \neg \circ, E \rangle \), where \(E \subseteq W \) and \(\circ, \neg \circ : W \times W \rightarrow \mathcal{P}(W) \) (like in BBI).

Now we give the forcing relation \(w \models_{\rho} A \):

\[
\begin{align*}
 w \models_{\rho} P & \iff w \in \rho(P) \\
 w \models_{\rho} A \rightarrow B & \iff w \models_{\rho} A \text{ implies } w \models_{\rho} B \\
 & \vdots \\
 w \models_{\rho} I & \iff w \in E \\
 w \models_{\rho} A \ast B & \iff w \in w_1 \circ w_2 \text{ and } w_1 \models_{\rho} A \text{ and } w_2 \models_{\rho} B
\end{align*}
\]
A \textbf{ML}_{\text{BBI}} \textbf{ frame} is given by $\langle W, \circ, \rightarrow, E \rangle$, where $E \subseteq W$ and $\circ, \rightarrow: W \times W \rightarrow \mathcal{P}(W)$ (like in BBI).

Now we give the forcing relation $w \models_{\rho} A$:

\[
\begin{align*}
 w \models_{\rho} P & \iff w \in \rho(P) \\
 w \models_{\rho} A \rightarrow B & \iff w \models_{\rho} A \text{ implies } w \models_{\rho} B \\
 \vdots \\
 w \models_{\rho} I & \iff w \in E \\
 w \models_{\rho} A \ast B & \iff w \in w_1 \circ w_2 \text{ and } w_1 \models_{\rho} A \text{ and } w_2 \models_{\rho} B \\
 w \models_{\rho} A \rightarrow B & \iff w \in w_1 \rightarrow w_2 \text{ and } w_1 \models_{\rho} A \text{ and } w_2 \models_{\rho} B
\end{align*}
\]
A **ML\textsubscript{BBI} frame** is given by \(\langle W, \circ, \rightarrow, E \rangle \), where \(E \subseteq W \) and \(\circ, \rightarrow: W \times W \rightarrow \mathcal{P}(W) \) (like in BBI).

Now we give the forcing relation \(w \models_{\rho} A \):

\[
\begin{align*}
 w \models_{\rho} P & \iff w \in \rho(P) \\
 w \models_{\rho} A \rightarrow B & \iff w \models_{\rho} A \text{ implies } w \models_{\rho} B \\
 & \vdots \\
 w \models_{\rho} I & \iff w \in E \\
 w \models_{\rho} A \ast B & \iff w \in w_1 \circ w_2 \text{ and } w_1 \models_{\rho} A \text{ and } w_2 \models_{\rho} B \\
 w \models_{\rho} A \rightarrowo B & \iff w \in w_1 \rightarrowo w_2 \text{ and } w_1 \models_{\rho} A \text{ and } w_2 \models_{\rho} B
\end{align*}
\]

\(A \) is valid in \(M \) iff \(w \models_{\rho} A \) for all \(w \in W \) and valuations \(\rho \).

Same as BBI, except for \(\ast \) versus \(\rightarrowo \)!
Sahlqvist axioms for ML_{BBI}

Define a set \mathcal{A}_{BBI} of ML_{BBI}-formulas as follows:
Define a set A_{BBI} of ML_{BBI}-formulas as follows:

1. $A \land (B * C) \vdash (B \land (C \rightarrow A)) * \top$
2. $A \land (B \rightarrow C) \vdash \top \rightarrow (C \land (A * B))$
3. $A * B \vdash B * A$
4. $A * (B * C) \vdash (A * B) * C$
5. $A * I \vdash A$
6. $A \vdash A * I$

These are all of a form called Sahlqvist formulas, and so we have by the Sahlqvist completeness theorem:

Theorem (Sahlqvist)
If B is valid in the ML_{BBI} frames satisfying A_{BBI}, then it is provable in ML_{BBI}.
Define a set \mathcal{A}_{BBI} of ML_{BBI}-formulas as follows:

\begin{align*}
(1) & \quad A \land (B \star C) \vdash (B \land (C \rightarrow A)) \star \top \\
(2) & \quad A \land (B \rightarrow C) \vdash \top \rightarrow (C \land (A \star B)) \\
(3) & \quad A \star B \vdash B \star A \\
(4) & \quad A \star (B \star C) \vdash (A \star B) \star C \\
(5) & \quad A \star I \vdash A \\
(6) & \quad A \vdash A \star I
\end{align*}

These are all of a form called Sahlqvist formulas, and so we have by the Sahlqvist completeness theorem:
Sahlqvist axioms for \mathbf{ML}_{BBI}

Define a set \mathcal{A}_{BBI} of \mathbf{ML}_{BBI}-formulas as follows:

1. $A \land (B \ast C) \vdash (B \land (C \to A)) \ast \top$
2. $A \land (B \to C) \vdash \top \to (C \land (A \ast B))$
3. $A \ast B \vdash B \ast A$
4. $A \ast (B \ast C) \vdash (A \ast B) \ast C$
5. $A \ast I \vdash A$
6. $A \vdash A \ast I$

These are all of a form called Sahlqvist formulas, and so we have by the Sahlqvist completeness theorem:

Theorem (Sahlqvist)

*If B is valid in the \mathbf{ML}_{BBI} frames satisfying \mathcal{A}_{BBI}, then it is provable in $\mathbf{ML}_{\text{BBI}} + \mathcal{A}_{\text{BBI}}$.***
Modal frames are BBI-models

Lemma (1)
Let $M = \langle W, \circ, \rightarrow, E \rangle$ be a modal frame satisfying axioms (1) and (2) of \mathcal{A}_{BBI}. Then we have, for any $w, w_1, w_2 \in W$:

$$w \in w_1 \rightarrow w_2 \iff w_2 \in w \circ w_1.$$

Proof.
Modal frames are BBI-models

Lemma (1)

Let $M = \langle W, \circ, \rightarrow, E \rangle$ be a modal frame satisfying axioms (1) and (2) of \mathcal{A}_{BBI}. Then we have, for any $w, w_1, w_2 \in W$:

$$w \in w_1 \rightarrow w_2 \iff w_2 \in w \circ w_1.$$

Proof.

Hint: (\Leftarrow) uses axiom (1), (\Rightarrow) uses axiom 2.
Modal frames are BBI-models

Lemma (1)

Let $M = \langle W, \circ, \rightarrow, E \rangle$ be a modal frame satisfying axioms (1) and (2) of A_{BBI}. Then we have, for any $w, w_1, w_2 \in W$:

$$w \in w_1 \rightarrow w_2 \iff w_2 \in w \circ w_1.$$

Proof.

Hint: (\Leftarrow) uses axiom (1), (\Rightarrow) uses axiom 2.

So, when axioms (1) and (2) are satisfied, Lemma 1 gives us:

$$w \models_{\rho} A \rightarrow B \iff w \in w_1 \rightarrow w_2 \text{ and } w_1 \models_{\rho} A \text{ and } w_2 \models_{\rho} B.$$
Modal frames are BBI-models

Lemma (1)

Let $M = \langle W, \circ, \to, E \rangle$ be a modal frame satisfying axioms (1) and (2) of A_{BBI}. Then we have, for any $w, w_1, w_2 \in W$:

$$w \in w_1 \to w_2 \iff w_2 \in w \circ w_1.$$

Proof.

Hint: (\Leftarrow) uses axiom (1), (\Rightarrow) uses axiom 2.

So, when axioms (1) and (2) are satisfied, Lemma 1 gives us:

$$w \models_\rho A \to B \iff w \in w_1 \to w_2 \text{ and } w_1 \models_\rho A \text{ and } w_2 \models_\rho B$$

$$\iff w_2 \in w \circ w_1 \text{ and } w_1 \models_\rho A \text{ and } w_2 \models_\rho B$$
Modal frames are BBI-models

Lemma (1)

Let \(M = \langle W, \circ, \rightarrow, E \rangle \) be a modal frame satisfying axioms (1) and (2) of \(A_{\text{BBI}} \). Then we have, for any \(w, w_1, w_2 \in W \):

\[
w \in w_1 \rightarrow w_2 \iff w_2 \in w \circ w_1.
\]

Proof.

Hint: \((\Leftarrow)\) uses axiom (1), \((\Rightarrow)\) uses axiom 2.

So, when axioms (1) and (2) are satisfied, Lemma 1 gives us:

\[
w \models_\rho A \rightarrow B \iff w \in w_1 \rightarrow w_2 \text{ and } w_1 \models_\rho A \text{ and } w_2 \models_\rho B
\]

\[
\iff w_2 \in w \circ w_1 \text{ and } w_1 \models_\rho A \text{ and } w_2 \models_\rho B
\]

\[
\iff w \models_\rho \neg(A \rightarrow \neg B)
\]
Translating between BBI and ML_{BBI}

- Given a BBI-formula A, write $t(A)$ for the ML_{BBI} formula obtained by replacing every formula of the form $B \rightarrow C$ by $\lnot (B \rightarrow \lnot C)$.

Lemma (2)
If $u(t(A))$ is provable in BBI then so is A.

Proof. Structural induction on A.

14/ 18
Translating between BBI and ML_{BBI}

- Given a BBI-formula A, write $t(A)$ for the ML_{BBI} formula obtained by replacing every formula of the form $B \multimap C$ by $\neg (B \multimap \neg C)$.

- Conversely, given ML_{BBI} formula A, write $u(A)$ for the BBI-formula obtained by replacing every formula of the form $B \multimap C$ by $\neg (B \multimap \neg C)$.

Lemma (2)

If $u(t(A))$ is provable in BBI then so is A.

Proof.

Structural induction on A.

14/ 18
Translating between BBI and ML_{BBI}

- Given a BBI-formula A, write $t(A)$ for the ML_{BBI} formula obtained by replacing every formula of the form $B \rightarrow* C$ by $\neg(B \rightarrow \neg C)$.

- Conversely, given ML_{BBI} formula A, write $u(A)$ for the BBI-formula obtained by replacing every formula of the form $B \rightarrow C$ by $\neg(B \rightarrow* \neg C)$.

Lemma (2)

*If $u(t(A))$ is provable in BBI then so is A.**
Translating between BBI and ML_{BBI}

- Given a BBI-formula A, write $t(A)$ for the ML_{BBI} formula obtained by replacing every formula of the form $B \imp C$ by $\neg(B \imp \neg C)$.
- Conversely, given ML_{BBI} formula A, write $u(A)$ for the BBI-formula obtained by replacing every formula of the form $B \imp C$ by $\neg(B \imp \neg C)$.

Lemma (2)

If $u(t(A))$ is provable in BBI then so is A.

Proof.

Structural induction on A.

\[\square\]
Validity translation lemma

Lemma (3)

Let $M = \langle W, \circ, \neg, E \rangle$ be a ML_{BBI} frame satisfying axioms (3)–(6) of \mathcal{A}_{BBI}. Then $\langle W, \circ, E \rangle$ is a BBI-model.
Lemma (3)

Let $M = \langle W, \odot, \rightarrow, E \rangle$ be a ML_{BBI} frame satisfying axioms (3)–(6) of A_{BBI}. Then $\langle W, \odot, E \rangle$ is a BBI-model.

Proof.

Easy exercise!
Validity translation lemma

Lemma (3)

Let \(M = \langle W, \circ, \rightarrow, E \rangle \) be a \(\text{ML}_{\text{BBI}} \) frame satisfying axioms (3)–(6) of \(\mathcal{A}_{\text{BBI}} \). Then \(\langle W, \circ, E \rangle \) is a BBI-model.

Proof.

Easy exercise!

Lemma (4)

If \(A \) is valid in BBI, then \(t(A) \) is valid in every \(\text{ML}_{\text{BBI}} \) frame satisfying \(\mathcal{A}_{\text{BBI}} \).
Validity translation lemma

Lemma (3)
Let $M = \langle W, \circ, \rightarrow, E \rangle$ be a ML_{BBI} frame satisfying axioms (3)–(6) of A_{BBI}. Then $\langle W, \circ, E \rangle$ is a BBI-model.

Proof.
Easy exercise!

Lemma (4)
If A is valid in BBI, then $t(A)$ is valid in every ML_{BBI} frame satisfying A_{BBI}.

Proof.
Uses Lemmas 1 and 3.
Proof translation lemma

Lemma (5)

If B is provable in $\text{ML}_{\text{BBI}} + A_{\text{BBI}}$, then $u(B)$ is provable in BBI.
Lemma (5)

If B is provable in $\text{ML}_{\text{BBI}} + \mathcal{A}_{\text{BBI}}$, then $u(B)$ is provable in BBI.

Proof.

By induction on the proof of B in $\text{ML}_{\text{BBI}} + \mathcal{A}_{\text{BBI}}$. We have to show that every proof rule in $\text{ML}_{\text{BBI}} + \mathcal{A}_{\text{BBI}}$ is derivable in BBI under the translation $u(\cdot)$.

\qed
Proof of completeness

Theorem
If A is BBI-valid then it is BBI-provable.

Proof.
Let A be BBI-valid.
Proof of completeness

Theorem
If A is BBI-valid then it is BBI-provable.

Proof.
Let A be BBI-valid.

By Lemma 4, $t(A)$ is valid in the class of ML_{BBI} frames satisfying A_{BBI}.

Proof of completeness

Theorem
If A is BBI-valid then it is BBI-provable.

Proof.
Let A be BBI-valid.

By Lemma 4, $t(A)$ is valid in the class of ML_{BBI} frames satisfying \mathcal{A}_{BBI}.

By the Sahlqvist Theorem, $t(A)$ is provable in $\text{ML}_{\text{BBI}} + \mathcal{A}_{\text{BBI}}$.
Proof of completeness

Theorem
If \(A \) is BBI-valid then it is BBI-provable.

Proof.
Let \(A \) be BBI-valid.

By Lemma 4, \(t(A) \) is valid in the class of \(\text{ML}_{\text{BBI}} \) frames satisfying \(A_{\text{BBI}} \).

By the Sahlqvist Theorem, \(t(A) \) is provable in \(\text{ML}_{\text{BBI}} + A_{\text{BBI}} \).

By Lemma 5, \(u(t(A)) \) is provable in BBI.
Proof of completeness

Theorem
If A is BBI-valid then it is BBI-provable.

Proof.
Let A be BBI-valid.

By Lemma 4, $t(A)$ is valid in the class of ML_{BBI} frames satisfying A_{BBI}.

By the Sahlqvist Theorem, $t(A)$ is provable in $\text{ML}_{\text{BBI}} + A_{\text{BBI}}$.

By Lemma 5, $u(t(A))$ is provable in BBI.

Finally, by Lemma 2, A is provable in BBI.
Proof of completeness

Theorem

If A *is BBI-valid then it is BBI-provable.*

Proof.

Let A be BBI-valid.

By Lemma 4, $t(A)$ is valid in the class of \mathbf{ML}_{BBI} frames satisfying A_{BBI}.

By the Sahlqvist Theorem, $t(A)$ is provable in $\mathbf{ML}_{BBI} + A_{BBI}$.

By Lemma 5, $u(t(A))$ is provable in BBI.

Finally, by Lemma 2, A is provable in BBI.

Exercise: fill in the proofs of Lemmas 1–5!
Further reading

D. Galmiche and D. Larchey-Wendling.
Expressivity properties of Boolean BI through relational models.

D. Pym.
The semantics and proof theory of the logic of bunched implications.

Context logic as modal logic: completeness and parametric inexpressivity.

J. Brotherston and J. Villard.
Sub-classical Boolean bunched logics and the meaning of par.