
On the Complexity of Pointer Arithmetic in
Separation Logic

James Brotherston1 Max Kanovich1,2

1UCL

2National Research University Higher School of Economics, Russian
Federation

ADSL workshop (FLoC), University of Oxford, July 2018

1/ 16

Overview

• Industrial SL analysis is usually based on symbolic heaps
over pointers and list segments, which is PTIME-decidable.

• Many other features have been studied. . .

• user-defined inductive predicates;
• fractional permissions;
• separating implication (—∗);
• arrays;
• reachability predicates;
• arithmetic;

. . . but they typically come with a complexity cost.

• Our focus is on pointer arithmetic in SL.

2/ 16

Overview

• Industrial SL analysis is usually based on symbolic heaps
over pointers and list segments, which is PTIME-decidable.

• Many other features have been studied. . .

• user-defined inductive predicates;
• fractional permissions;
• separating implication (—∗);
• arrays;
• reachability predicates;
• arithmetic;

. . . but they typically come with a complexity cost.

• Our focus is on pointer arithmetic in SL.

2/ 16

Overview

• Industrial SL analysis is usually based on symbolic heaps
over pointers and list segments, which is PTIME-decidable.

• Many other features have been studied. . .

• user-defined inductive predicates;
• fractional permissions;
• separating implication (—∗);
• arrays;
• reachability predicates;
• arithmetic;

. . . but they typically come with a complexity cost.

• Our focus is on pointer arithmetic in SL.

2/ 16

Pointer arithmetic in program analysis

• Pointer arithmetic is usually disallowed or at least
discouraged in modern programming practice.

• However, it still arises implicitly, e.g., in array indexing
and structure / union member selection.

ptr[i] ⇒ ptr + (sizeof(*ptr)*i)

• Thus program analyses must deal with pointer arithmetic
even when programmers don’t!

Question: How much pointer arithmetic can one add to
separation logic and remain within polynomial time?

3/ 16

Pointer arithmetic in program analysis

• Pointer arithmetic is usually disallowed or at least
discouraged in modern programming practice.

• However, it still arises implicitly, e.g., in array indexing
and structure / union member selection.

ptr[i] ⇒ ptr + (sizeof(*ptr)*i)

• Thus program analyses must deal with pointer arithmetic
even when programmers don’t!

Question: How much pointer arithmetic can one add to
separation logic and remain within polynomial time?

3/ 16

Pointer arithmetic in program analysis

• Pointer arithmetic is usually disallowed or at least
discouraged in modern programming practice.

• However, it still arises implicitly, e.g., in array indexing
and structure / union member selection.

ptr[i] ⇒ ptr + (sizeof(*ptr)*i)

• Thus program analyses must deal with pointer arithmetic
even when programmers don’t!

Question: How much pointer arithmetic can one add to
separation logic and remain within polynomial time?

3/ 16

Pointer arithmetic in program analysis

• Pointer arithmetic is usually disallowed or at least
discouraged in modern programming practice.

• However, it still arises implicitly, e.g., in array indexing
and structure / union member selection.

ptr[i] ⇒ ptr + (sizeof(*ptr)*i)

• Thus program analyses must deal with pointer arithmetic
even when programmers don’t!

Question: How much pointer arithmetic can one add to
separation logic and remain within polynomial time?

3/ 16

Minimal fragment, SLMPA

• Terms t, pure formulas Π and spatial formulas F given by:

t ::= x | x+ k | nil
Π ::= x = t | x ≤ t | Π ∧Π
F ::= emp | t 7→ t | F ∗ F

where x ∈ Var, k ∈ Z.

• Symbolic heaps given by ∃x. Π : F .

• Semantics given as usual by s, h |= A in a stack-and-heap
model over locations N and values N ∪ {nil}.

4/ 16

Minimal fragment, SLMPA

• Terms t, pure formulas Π and spatial formulas F given by:

t ::= x | x+ k | nil
Π ::= x = t | x ≤ t | Π ∧Π
F ::= emp | t 7→ t | F ∗ F

where x ∈ Var, k ∈ Z.

• Symbolic heaps given by ∃x. Π : F .

• Semantics given as usual by s, h |= A in a stack-and-heap
model over locations N and values N ∪ {nil}.

4/ 16

Minimal fragment, SLMPA

• Terms t, pure formulas Π and spatial formulas F given by:

t ::= x | x+ k | nil
Π ::= x = t | x ≤ t | Π ∧Π
F ::= emp | t 7→ t | F ∗ F

where x ∈ Var, k ∈ Z.

• Symbolic heaps given by ∃x. Π : F .

• Semantics given as usual by s, h |= A in a stack-and-heap
model over locations N and values N ∪ {nil}.

4/ 16

Difference constraints

Pure formulas are conjunctions of difference constraints

x ≤ y + k ,

where x, y are pointer variables and k ∈ Z is an integer offset.

Note: the satisfiability of these formulas can be decided in
polynomial time.

x1 ≤ x2 + k1,
. . .
xm−1 ≤ xm + km−1,
xm ≤ x1 + km

 ⇒ x1 − x1 ≤
m∑
i=1

ki

5/ 16

Difference constraints

Pure formulas are conjunctions of difference constraints

x ≤ y + k ,

where x, y are pointer variables and k ∈ Z is an integer offset.

Note: the satisfiability of these formulas can be decided in
polynomial time.

x1 ≤ x2 + k1,
. . .
xm−1 ≤ xm + km−1,
xm ≤ x1 + km

 ⇒ x1 − x1 ≤
m∑
i=1

ki

5/ 16

Difference constraints

Pure formulas are conjunctions of difference constraints

x ≤ y + k ,

where x, y are pointer variables and k ∈ Z is an integer offset.

Note: the satisfiability of these formulas can be decided in
polynomial time.

x1 ≤ x2 + k1,
. . .
xm−1 ≤ xm + km−1,
xm ≤ x1 + km

 ⇒ x1 − x1 ≤
m∑
i=1

ki

5/ 16

Problems of interest

Satisfiability problem. Given symbolic heap A, decide if
there is a stack-heap pair (s, h) with s, h |= A.

Entailment problem. Given symbolic heaps A and B, decide
whether A |= B.

Small model property. Given a satisfiable symbolic heap A,
does A have a model using only addresses and values of size
polynomial in A?

(The latter fails if we allow pointer sums, x ≤ y + z.)

6/ 16

Problems of interest

Satisfiability problem. Given symbolic heap A, decide if
there is a stack-heap pair (s, h) with s, h |= A.

Entailment problem. Given symbolic heaps A and B, decide
whether A |= B.

Small model property. Given a satisfiable symbolic heap A,
does A have a model using only addresses and values of size
polynomial in A?

(The latter fails if we allow pointer sums, x ≤ y + z.)

6/ 16

Problems of interest

Satisfiability problem. Given symbolic heap A, decide if
there is a stack-heap pair (s, h) with s, h |= A.

Entailment problem. Given symbolic heaps A and B, decide
whether A |= B.

Small model property. Given a satisfiable symbolic heap A,
does A have a model using only addresses and values of size
polynomial in A?

(The latter fails if we allow pointer sums, x ≤ y + z.)

6/ 16

Problems of interest

Satisfiability problem. Given symbolic heap A, decide if
there is a stack-heap pair (s, h) with s, h |= A.

Entailment problem. Given symbolic heaps A and B, decide
whether A |= B.

Small model property. Given a satisfiable symbolic heap A,
does A have a model using only addresses and values of size
polynomial in A?

(The latter fails if we allow pointer sums, x ≤ y + z.)

6/ 16

Some known upper bounds

SLMPA is subsumed by the array separation logic in

J. Brotherston, N. Gorogiannis, and M. Kanovich.
Biabduction (and related problems) in array separation
logic. In Proc. CADE 2017.

This gives some immediate upper bounds by encoding into
Presburger arithmetic (PbA):

• Satisfiability is in NP.

• Quantifier-free entailment is in coNP.

• Quantified entailment is in ΠEXP
1 .

7/ 16

Some known upper bounds

SLMPA is subsumed by the array separation logic in

J. Brotherston, N. Gorogiannis, and M. Kanovich.
Biabduction (and related problems) in array separation
logic. In Proc. CADE 2017.

This gives some immediate upper bounds by encoding into
Presburger arithmetic (PbA):

• Satisfiability is in NP.

• Quantifier-free entailment is in coNP.

• Quantified entailment is in ΠEXP
1 .

7/ 16

Some known upper bounds

SLMPA is subsumed by the array separation logic in

J. Brotherston, N. Gorogiannis, and M. Kanovich.
Biabduction (and related problems) in array separation
logic. In Proc. CADE 2017.

This gives some immediate upper bounds by encoding into
Presburger arithmetic (PbA):

• Satisfiability is in NP.

• Quantifier-free entailment is in coNP.

• Quantified entailment is in ΠEXP
1 .

7/ 16

Some known upper bounds

SLMPA is subsumed by the array separation logic in

J. Brotherston, N. Gorogiannis, and M. Kanovich.
Biabduction (and related problems) in array separation
logic. In Proc. CADE 2017.

This gives some immediate upper bounds by encoding into
Presburger arithmetic (PbA):

• Satisfiability is in NP.

• Quantifier-free entailment is in coNP.

• Quantified entailment is in ΠEXP
1 .

7/ 16

Satisfiability, lower bound

In fact, the lower bound for satisfiability is also NP.

3-colourability problem (NP -hard)

Given an undirected graph, decide whether there is a “perfect”
3-colouring of the vertices, such that no two adjacent vertices
share the same colour.

First, choose numbers eij for each edge (vi, vj) such that
|ei′j′ − eij | ≥ 4 for any two distinct edges.

Next take a variable ci for each vertex vi.

Then encode in SLMPA as (slightly simplified)∧n
i=1 1 ≤ ci ≤ 3: ∗(vi,vj)∈E

(ci + eij 7→ nil ∗ cj + eij 7→ nil)

8/ 16

Satisfiability, lower bound

In fact, the lower bound for satisfiability is also NP.

3-colourability problem (NP -hard)

Given an undirected graph, decide whether there is a “perfect”
3-colouring of the vertices, such that no two adjacent vertices
share the same colour.

First, choose numbers eij for each edge (vi, vj) such that
|ei′j′ − eij | ≥ 4 for any two distinct edges.

Next take a variable ci for each vertex vi.

Then encode in SLMPA as (slightly simplified)∧n
i=1 1 ≤ ci ≤ 3: ∗(vi,vj)∈E

(ci + eij 7→ nil ∗ cj + eij 7→ nil)

8/ 16

Satisfiability, lower bound

In fact, the lower bound for satisfiability is also NP.

3-colourability problem (NP -hard)

Given an undirected graph, decide whether there is a “perfect”
3-colouring of the vertices, such that no two adjacent vertices
share the same colour.

First, choose numbers eij for each edge (vi, vj) such that
|ei′j′ − eij | ≥ 4 for any two distinct edges.

Next take a variable ci for each vertex vi.

Then encode in SLMPA as (slightly simplified)∧n
i=1 1 ≤ ci ≤ 3: ∗(vi,vj)∈E

(ci + eij 7→ nil ∗ cj + eij 7→ nil)

8/ 16

Satisfiability, lower bound

In fact, the lower bound for satisfiability is also NP.

3-colourability problem (NP -hard)

Given an undirected graph, decide whether there is a “perfect”
3-colouring of the vertices, such that no two adjacent vertices
share the same colour.

First, choose numbers eij for each edge (vi, vj) such that
|ei′j′ − eij | ≥ 4 for any two distinct edges.

Next take a variable ci for each vertex vi.

Then encode in SLMPA as (slightly simplified)∧n
i=1 1 ≤ ci ≤ 3: ∗(vi,vj)∈E

(ci + eij 7→ nil ∗ cj + eij 7→ nil)

8/ 16

Small model property

Suppose A is satisfiable by (s, h).

There is an equisatisfiable PbA formula γA with s |= γA.

The formula γA can be written as a Boolean combination of
difference constraints x ≤ y + k.

Thus s can be viewed as a solution to the equation system

x1 ≤ y1 + k1 ≡ ζ1, . . . , xm ≤ ym + km ≡ ζm

where each ζi ∈ {>,⊥}.

Note that x ≤ y + k ≡ ⊥ means y ≤ x− k − 1.

9/ 16

Small model property

Suppose A is satisfiable by (s, h).

There is an equisatisfiable PbA formula γA with s |= γA.

The formula γA can be written as a Boolean combination of
difference constraints x ≤ y + k.

Thus s can be viewed as a solution to the equation system

x1 ≤ y1 + k1 ≡ ζ1, . . . , xm ≤ ym + km ≡ ζm

where each ζi ∈ {>,⊥}.

Note that x ≤ y + k ≡ ⊥ means y ≤ x− k − 1.

9/ 16

Small model property

Suppose A is satisfiable by (s, h).

There is an equisatisfiable PbA formula γA with s |= γA.

The formula γA can be written as a Boolean combination of
difference constraints x ≤ y + k.

Thus s can be viewed as a solution to the equation system

x1 ≤ y1 + k1 ≡ ζ1, . . . , xm ≤ ym + km ≡ ζm

where each ζi ∈ {>,⊥}.

Note that x ≤ y + k ≡ ⊥ means y ≤ x− k − 1.

9/ 16

Small model property

Suppose A is satisfiable by (s, h).

There is an equisatisfiable PbA formula γA with s |= γA.

The formula γA can be written as a Boolean combination of
difference constraints x ≤ y + k.

Thus s can be viewed as a solution to the equation system

x1 ≤ y1 + k1 ≡ ζ1, . . . , xm ≤ ym + km ≡ ζm

where each ζi ∈ {>,⊥}.

Note that x ≤ y + k ≡ ⊥ means y ≤ x− k − 1.

9/ 16

Small model property

Suppose A is satisfiable by (s, h).

There is an equisatisfiable PbA formula γA with s |= γA.

The formula γA can be written as a Boolean combination of
difference constraints x ≤ y + k.

Thus s can be viewed as a solution to the equation system

x1 ≤ y1 + k1 ≡ ζ1, . . . , xm ≤ ym + km ≡ ζm

where each ζi ∈ {>,⊥}.

Note that x ≤ y + k ≡ ⊥ means y ≤ x− k − 1.

9/ 16

Small model property (2)

View the difference equations as a constraint graph, as follows:

(xi ≤ yi + ki) ≡ > ∼ yi
k−→ xi

(xi ≤ yi + ki) ≡ ⊥ ∼ xi
−k−1−→ yi

all xi: x0
0−→ xi

where x0 is a new “maximum node”.

FACT: This graph cannot have a negative-weight cycle (else the
equation system would have no solutions).

We will construct a model s, h of A in which all values are
bounded by

M = Σm
i=1 |ki|+ 1

10/ 16

Small model property (2)

View the difference equations as a constraint graph, as follows:

(xi ≤ yi + ki) ≡ > ∼ yi
k−→ xi

(xi ≤ yi + ki) ≡ ⊥ ∼ xi
−k−1−→ yi

all xi: x0
0−→ xi

where x0 is a new “maximum node”.

FACT: This graph cannot have a negative-weight cycle (else the
equation system would have no solutions).

We will construct a model s, h of A in which all values are
bounded by

M = Σm
i=1 |ki|+ 1

10/ 16

Small model property (2)

View the difference equations as a constraint graph, as follows:

(xi ≤ yi + ki) ≡ > ∼ yi
k−→ xi

(xi ≤ yi + ki) ≡ ⊥ ∼ xi
−k−1−→ yi

all xi: x0
0−→ xi

where x0 is a new “maximum node”.

FACT: This graph cannot have a negative-weight cycle (else the
equation system would have no solutions).

We will construct a model s, h of A in which all values are
bounded by

M = Σm
i=1 |ki|+ 1

10/ 16

Small model property (2)

View the difference equations as a constraint graph, as follows:

(xi ≤ yi + ki) ≡ > ∼ yi
k−→ xi

(xi ≤ yi + ki) ≡ ⊥ ∼ xi
−k−1−→ yi

all xi: x0
0−→ xi

where x0 is a new “maximum node”.

FACT: This graph cannot have a negative-weight cycle (else the
equation system would have no solutions).

We will construct a model s, h of A in which all values are
bounded by

M = Σm
i=1 |ki|+ 1

10/ 16

Small model property (2)

View the difference equations as a constraint graph, as follows:

(xi ≤ yi + ki) ≡ > ∼ yi
k−→ xi

(xi ≤ yi + ki) ≡ ⊥ ∼ xi
−k−1−→ yi

all xi: x0
0−→ xi

where x0 is a new “maximum node”.

FACT: This graph cannot have a negative-weight cycle (else the
equation system would have no solutions).

We will construct a model s, h of A in which all values are
bounded by

M = Σm
i=1 |ki|+ 1

10/ 16

Small model property (2)

View the difference equations as a constraint graph, as follows:

(xi ≤ yi + ki) ≡ > ∼ yi
k−→ xi

(xi ≤ yi + ki) ≡ ⊥ ∼ xi
−k−1−→ yi

all xi: x0
0−→ xi

where x0 is a new “maximum node”.

FACT: This graph cannot have a negative-weight cycle (else the
equation system would have no solutions).

We will construct a model s, h of A in which all values are
bounded by

M = Σm
i=1 |ki|+ 1

10/ 16

Quantifier-free entailment

Define a new, small model s′ of γA as follows:

di = minimal path weight from x0 to xi
s′(xi) = M + di

Note di is always well defined and di ≤ 0 (a 0-weight path exists
by construction, and no negative-weight cycles). So s′ is small.

Why is it a model?

Consider constraint x ≤ y + k ≡ >. There is an edge y
k−→ x.

Thus dx ≤ dy + k and so s′(x) ≤ s′(y) + k.

So s′ satisfies our difference equation system, and thus γA.
Then we can create a suitable h′ with s′, h′ |= A.

11/ 16

Quantifier-free entailment

Define a new, small model s′ of γA as follows:

di = minimal path weight from x0 to xi

s′(xi) = M + di

Note di is always well defined and di ≤ 0 (a 0-weight path exists
by construction, and no negative-weight cycles). So s′ is small.

Why is it a model?

Consider constraint x ≤ y + k ≡ >. There is an edge y
k−→ x.

Thus dx ≤ dy + k and so s′(x) ≤ s′(y) + k.

So s′ satisfies our difference equation system, and thus γA.
Then we can create a suitable h′ with s′, h′ |= A.

11/ 16

Quantifier-free entailment

Define a new, small model s′ of γA as follows:

di = minimal path weight from x0 to xi
s′(xi) = M + di

Note di is always well defined and di ≤ 0 (a 0-weight path exists
by construction, and no negative-weight cycles). So s′ is small.

Why is it a model?

Consider constraint x ≤ y + k ≡ >. There is an edge y
k−→ x.

Thus dx ≤ dy + k and so s′(x) ≤ s′(y) + k.

So s′ satisfies our difference equation system, and thus γA.
Then we can create a suitable h′ with s′, h′ |= A.

11/ 16

Quantifier-free entailment

Define a new, small model s′ of γA as follows:

di = minimal path weight from x0 to xi
s′(xi) = M + di

Note di is always well defined and di ≤ 0 (a 0-weight path exists
by construction, and no negative-weight cycles). So s′ is small.

Why is it a model?

Consider constraint x ≤ y + k ≡ >. There is an edge y
k−→ x.

Thus dx ≤ dy + k and so s′(x) ≤ s′(y) + k.

So s′ satisfies our difference equation system, and thus γA.
Then we can create a suitable h′ with s′, h′ |= A.

11/ 16

Quantifier-free entailment

Define a new, small model s′ of γA as follows:

di = minimal path weight from x0 to xi
s′(xi) = M + di

Note di is always well defined and di ≤ 0 (a 0-weight path exists
by construction, and no negative-weight cycles). So s′ is small.

Why is it a model?

Consider constraint x ≤ y + k ≡ >.

There is an edge y
k−→ x.

Thus dx ≤ dy + k and so s′(x) ≤ s′(y) + k.

So s′ satisfies our difference equation system, and thus γA.
Then we can create a suitable h′ with s′, h′ |= A.

11/ 16

Quantifier-free entailment

Define a new, small model s′ of γA as follows:

di = minimal path weight from x0 to xi
s′(xi) = M + di

Note di is always well defined and di ≤ 0 (a 0-weight path exists
by construction, and no negative-weight cycles). So s′ is small.

Why is it a model?

Consider constraint x ≤ y + k ≡ >. There is an edge y
k−→ x.

Thus dx ≤ dy + k and so s′(x) ≤ s′(y) + k.

So s′ satisfies our difference equation system, and thus γA.
Then we can create a suitable h′ with s′, h′ |= A.

11/ 16

Quantifier-free entailment

Define a new, small model s′ of γA as follows:

di = minimal path weight from x0 to xi
s′(xi) = M + di

Note di is always well defined and di ≤ 0 (a 0-weight path exists
by construction, and no negative-weight cycles). So s′ is small.

Why is it a model?

Consider constraint x ≤ y + k ≡ >. There is an edge y
k−→ x.

Thus dx ≤ dy + k and so s′(x) ≤ s′(y) + k.

So s′ satisfies our difference equation system, and thus γA.
Then we can create a suitable h′ with s′, h′ |= A.

11/ 16

Quantifier-free entailment

Define a new, small model s′ of γA as follows:

di = minimal path weight from x0 to xi
s′(xi) = M + di

Note di is always well defined and di ≤ 0 (a 0-weight path exists
by construction, and no negative-weight cycles). So s′ is small.

Why is it a model?

Consider constraint x ≤ y + k ≡ >. There is an edge y
k−→ x.

Thus dx ≤ dy + k and so s′(x) ≤ s′(y) + k.

So s′ satisfies our difference equation system, and thus γA.

Then we can create a suitable h′ with s′, h′ |= A.

11/ 16

Quantifier-free entailment

Define a new, small model s′ of γA as follows:

di = minimal path weight from x0 to xi
s′(xi) = M + di

Note di is always well defined and di ≤ 0 (a 0-weight path exists
by construction, and no negative-weight cycles). So s′ is small.

Why is it a model?

Consider constraint x ≤ y + k ≡ >. There is an edge y
k−→ x.

Thus dx ≤ dy + k and so s′(x) ≤ s′(y) + k.

So s′ satisfies our difference equation system, and thus γA.
Then we can create a suitable h′ with s′, h′ |= A.

11/ 16

Quantifier-free entailment

By relatively minor adaptations of the corresponding tricks for
satisfiability, we have the following for the quantifier-free
entailment problem:

1. a lower bound of coNP;

2. the small model property (any invalid entailment has a
small countermodel).

12/ 16

Quantified entailment, lower bound

Lower bound is ΠP
2 in the polynomial-time hierarchy.

2-round 3-colourability problem (ΠP
2 -hard)

Given an undirected graph, decide whether every 3-colouring of
the leaves can be extended to a perfect 3-colouring of the graph.

Reuse the variables ci and numbers eij from previous reduction.
Also use c̃ij for the colour “complementary” to ci and cj .
Simplified encoding:

LHS:
∧k

i=1(1 ≤ ci ≤ 3) : ∗`∈{1,2,3}
(vi,vj)∈E (eij + `) 7→ nil

RHS: ∃z.
∧1≤k≤n

(vi,vj)∈E (1 ≤ ck, c̃ij ≤ 3) :

∗(vi,vj)∈E
ci + eij 7→ nil ∗ cj + eij 7→ nil ∗ c̃ij + eij 7→ nil

13/ 16

Quantified entailment, lower bound

Lower bound is ΠP
2 in the polynomial-time hierarchy.

2-round 3-colourability problem (ΠP
2 -hard)

Given an undirected graph, decide whether every 3-colouring of
the leaves can be extended to a perfect 3-colouring of the graph.

Reuse the variables ci and numbers eij from previous reduction.
Also use c̃ij for the colour “complementary” to ci and cj .

Simplified encoding:

LHS:
∧k

i=1(1 ≤ ci ≤ 3) : ∗`∈{1,2,3}
(vi,vj)∈E (eij + `) 7→ nil

RHS: ∃z.
∧1≤k≤n

(vi,vj)∈E (1 ≤ ck, c̃ij ≤ 3) :

∗(vi,vj)∈E
ci + eij 7→ nil ∗ cj + eij 7→ nil ∗ c̃ij + eij 7→ nil

13/ 16

Quantified entailment, lower bound

Lower bound is ΠP
2 in the polynomial-time hierarchy.

2-round 3-colourability problem (ΠP
2 -hard)

Given an undirected graph, decide whether every 3-colouring of
the leaves can be extended to a perfect 3-colouring of the graph.

Reuse the variables ci and numbers eij from previous reduction.
Also use c̃ij for the colour “complementary” to ci and cj .
Simplified encoding:

LHS:
∧k

i=1(1 ≤ ci ≤ 3) : ∗`∈{1,2,3}
(vi,vj)∈E (eij + `) 7→ nil

RHS: ∃z.
∧1≤k≤n

(vi,vj)∈E (1 ≤ ck, c̃ij ≤ 3) :

∗(vi,vj)∈E
ci + eij 7→ nil ∗ cj + eij 7→ nil ∗ c̃ij + eij 7→ nil

13/ 16

Quantified entailment, lower bound

Lower bound is ΠP
2 in the polynomial-time hierarchy.

2-round 3-colourability problem (ΠP
2 -hard)

Given an undirected graph, decide whether every 3-colouring of
the leaves can be extended to a perfect 3-colouring of the graph.

Reuse the variables ci and numbers eij from previous reduction.
Also use c̃ij for the colour “complementary” to ci and cj .
Simplified encoding:

LHS:
∧k

i=1(1 ≤ ci ≤ 3) : ∗`∈{1,2,3}
(vi,vj)∈E (eij + `) 7→ nil

RHS: ∃z.
∧1≤k≤n

(vi,vj)∈E (1 ≤ ck, c̃ij ≤ 3) :

∗(vi,vj)∈E
ci + eij 7→ nil ∗ cj + eij 7→ nil ∗ c̃ij + eij 7→ nil

13/ 16

Quantified entailment, upper bound

We have an encoding into Π0
2 PbA, an upper bound of ΠEXP

1 (in
the exponential-time hierarchy).

In fact this upper bound is exponentially overstated! The upper
bound is also ΠP

2 .

The key difference between Π0
2 PbA and ΠP

2 is that in the latter
all variables must be polynomially bounded.

This follows from the small model property for quantified
entailment. Construction uses similar ideas to satisfiability case,
but is (quite a bit) more complex.

14/ 16

Quantified entailment, upper bound

We have an encoding into Π0
2 PbA, an upper bound of ΠEXP

1 (in
the exponential-time hierarchy).

In fact this upper bound is exponentially overstated! The upper
bound is also ΠP

2 .

The key difference between Π0
2 PbA and ΠP

2 is that in the latter
all variables must be polynomially bounded.

This follows from the small model property for quantified
entailment. Construction uses similar ideas to satisfiability case,
but is (quite a bit) more complex.

14/ 16

Quantified entailment, upper bound

We have an encoding into Π0
2 PbA, an upper bound of ΠEXP

1 (in
the exponential-time hierarchy).

In fact this upper bound is exponentially overstated! The upper
bound is also ΠP

2 .

The key difference between Π0
2 PbA and ΠP

2 is that in the latter
all variables must be polynomially bounded.

This follows from the small model property for quantified
entailment. Construction uses similar ideas to satisfiability case,
but is (quite a bit) more complex.

14/ 16

Quantified entailment, upper bound

We have an encoding into Π0
2 PbA, an upper bound of ΠEXP

1 (in
the exponential-time hierarchy).

In fact this upper bound is exponentially overstated! The upper
bound is also ΠP

2 .

The key difference between Π0
2 PbA and ΠP

2 is that in the latter
all variables must be polynomially bounded.

This follows from the small model property for quantified
entailment. Construction uses similar ideas to satisfiability case,
but is (quite a bit) more complex.

14/ 16

Conclusions

• NP-hardness or worse is an inevitable consequence of
adding pointer arithmetic to SL,

• even for pointer data only, and

• even for pointer-offset comparisons, x ≤ y + k.

• Satisfiability is NP-complete.

• Quantifier-free entailment is coNP-complete.

• Quantified entailment is ΠP
2 -complete.

• The small model property holds.

15/ 16

Conclusions

• NP-hardness or worse is an inevitable consequence of
adding pointer arithmetic to SL,

• even for pointer data only, and

• even for pointer-offset comparisons, x ≤ y + k.

• Satisfiability is NP-complete.

• Quantifier-free entailment is coNP-complete.

• Quantified entailment is ΠP
2 -complete.

• The small model property holds.

15/ 16

Conclusions

• NP-hardness or worse is an inevitable consequence of
adding pointer arithmetic to SL,

• even for pointer data only, and

• even for pointer-offset comparisons, x ≤ y + k.

• Satisfiability is NP-complete.

• Quantifier-free entailment is coNP-complete.

• Quantified entailment is ΠP
2 -complete.

• The small model property holds.

15/ 16

Conclusions

• NP-hardness or worse is an inevitable consequence of
adding pointer arithmetic to SL,

• even for pointer data only, and

• even for pointer-offset comparisons, x ≤ y + k.

• Satisfiability is NP-complete.

• Quantifier-free entailment is coNP-complete.

• Quantified entailment is ΠP
2 -complete.

• The small model property holds.

15/ 16

Conclusions

• NP-hardness or worse is an inevitable consequence of
adding pointer arithmetic to SL,

• even for pointer data only, and

• even for pointer-offset comparisons, x ≤ y + k.

• Satisfiability is NP-complete.

• Quantifier-free entailment is coNP-complete.

• Quantified entailment is ΠP
2 -complete.

• The small model property holds.

15/ 16

Conclusions

• NP-hardness or worse is an inevitable consequence of
adding pointer arithmetic to SL,

• even for pointer data only, and

• even for pointer-offset comparisons, x ≤ y + k.

• Satisfiability is NP-complete.

• Quantifier-free entailment is coNP-complete.

• Quantified entailment is ΠP
2 -complete.

• The small model property holds.

15/ 16

Conclusions

• NP-hardness or worse is an inevitable consequence of
adding pointer arithmetic to SL,

• even for pointer data only, and

• even for pointer-offset comparisons, x ≤ y + k.

• Satisfiability is NP-complete.

• Quantifier-free entailment is coNP-complete.

• Quantified entailment is ΠP
2 -complete.

• The small model property holds.

15/ 16

Thanks for listening!

Revised paper available (my webpage)

16/ 16

