On the Complexity of Pointer Arithmetic in Separation Logic

James Brotherston¹ Max Kanovich^{1,2}

$^{1}\mathrm{UCL}$

²National Research University Higher School of Economics, Russian Federation

ADSL workshop (FLoC), University of Oxford, July 2018

Overview

• Industrial SL analysis is usually based on symbolic heaps over pointers and list segments, which is PTIME-decidable.

Overview

- Industrial SL analysis is usually based on symbolic heaps over pointers and list segments, which is PTIME-decidable.
- Many other features have been studied...
 - user-defined inductive predicates;
 - fractional permissions;
 - separating implication (-*);
 - arrays;
 - reachability predicates;
 - arithmetic;
 - ... but they typically come with a complexity cost.

Overview

- Industrial SL analysis is usually based on symbolic heaps over pointers and list segments, which is PTIME-decidable.
- Many other features have been studied...
 - user-defined inductive predicates;
 - fractional permissions;
 - separating implication (-*);
 - arrays;
 - reachability predicates;
 - arithmetic;
 - ... but they typically come with a complexity cost.
- Our focus is on pointer arithmetic in SL.

• Pointer arithmetic is usually disallowed or at least discouraged in modern programming practice.

- Pointer arithmetic is usually disallowed or at least discouraged in modern programming practice.
- However, it still arises implicitly, e.g., in array indexing and structure / union member selection.

 $ptr[i] \Rightarrow ptr + (sizeof(*ptr)*i)$

- Pointer arithmetic is usually disallowed or at least discouraged in modern programming practice.
- However, it still arises implicitly, e.g., in array indexing and structure / union member selection.

$$ptr[i] \Rightarrow ptr + (sizeof(*ptr)*i)$$

• Thus program analyses must deal with pointer arithmetic even when programmers don't!

- Pointer arithmetic is usually disallowed or at least discouraged in modern programming practice.
- However, it still arises implicitly, e.g., in array indexing and structure / union member selection.

$ptr[i] \Rightarrow ptr + (sizeof(*ptr)*i)$

• Thus program analyses must deal with pointer arithmetic even when programmers don't!

Question: How much pointer arithmetic can one add to separation logic and remain within polynomial time?

Minimal fragment, SL_{MPA}

• Terms t, pure formulas Π and spatial formulas F given by:

$$\begin{array}{rrrr}t & ::= & x \mid x+k \mid \mathsf{nil}\\ \Pi & ::= & x=t \mid x \leq t \mid \Pi \land \Pi\\ F & ::= & \mathsf{emp} \mid t \mapsto t \mid F \ast F\end{array}$$

where $x \in Var, k \in \mathbb{Z}$.

Minimal fragment, SL_{MPA}

• Terms t, pure formulas Π and spatial formulas F given by:

$$\begin{array}{rrrr}t & ::= & x \mid x+k \mid \mathsf{nil}\\ \Pi & ::= & x=t \mid x \leq t \mid \Pi \land \Pi\\ F & ::= & \mathsf{emp} \mid t \mapsto t \mid F \ast F\end{array}$$

where $x \in Var, k \in \mathbb{Z}$.

• Symbolic heaps given by $\exists \mathbf{x}. \Pi : F$.

Minimal fragment, SL_{MPA}

• Terms t, pure formulas Π and spatial formulas F given by:

$$\begin{array}{rrrr}t & ::= & x \mid x+k \mid \mathsf{nil}\\ \Pi & ::= & x=t \mid x \leq t \mid \Pi \land \Pi\\ F & ::= & \mathsf{emp} \mid t \mapsto t \mid F \ast F\end{array}$$

where $x \in Var, k \in \mathbb{Z}$.

- Symbolic heaps given by $\exists \mathbf{x}. \Pi : F$.
- Semantics given as usual by $s, h \models A$ in a stack-and-heap model over locations \mathbb{N} and values $\mathbb{N} \cup \{nil\}$.

Difference constraints

Pure formulas are conjunctions of difference constraints

$$x \le y + k \;,$$

where x, y are pointer variables and $k \in \mathbb{Z}$ is an integer offset.

Difference constraints

Pure formulas are conjunctions of difference constraints

$$x \le y + k \;,$$

where x, y are pointer variables and $k \in \mathbb{Z}$ is an integer offset.

Note: the satisfiability of these formulas can be decided in polynomial time.

Difference constraints

Pure formulas are conjunctions of difference constraints

$$x \le y + k \; ,$$

where x, y are pointer variables and $k \in \mathbb{Z}$ is an integer offset.

Note: the satisfiability of these formulas can be decided in polynomial time.

$$\left. \begin{array}{c} x_{1} \leq x_{2} + k_{1}, \\ \dots \\ x_{m-1} \leq x_{m} + k_{m-1}, \\ x_{m} \leq x_{1} + k_{m} \end{array} \right\} \Rightarrow x_{1} - x_{1} \leq \sum_{i=1}^{m} k_{i}$$

Satisfiability problem. Given symbolic heap A, decide if there is a stack-heap pair (s,h) with $s,h \models A$.

Satisfiability problem. Given symbolic heap A, decide if there is a stack-heap pair (s,h) with $s,h \models A$.

Entailment problem. Given symbolic heaps A and B, decide whether $A \models B$.

Satisfiability problem. Given symbolic heap A, decide if there is a stack-heap pair (s,h) with $s,h \models A$.

Entailment problem. Given symbolic heaps A and B, decide whether $A \models B$.

Small model property. Given a satisfiable symbolic heap A, does A have a model using only addresses and values of size polynomial in A?

Satisfiability problem. Given symbolic heap A, decide if there is a stack-heap pair (s,h) with $s,h \models A$.

Entailment problem. Given symbolic heaps A and B, decide whether $A \models B$.

Small model property. Given a satisfiable symbolic heap A, does A have a model using only addresses and values of size polynomial in A?

(The latter fails if we allow pointer sums, $x \le y + z$.)

 $\mathsf{SL}_{\mathsf{MPA}}$ is subsumed by the array separation logic in

J. Brotherston, N. Gorogiannis, and M. Kanovich. Biabduction (and related problems) in array separation logic. In Proc. *CADE* 2017.

 $\mathsf{SL}_{\mathsf{MPA}}$ is subsumed by the array separation logic in

J. Brotherston, N. Gorogiannis, and M. Kanovich. Biabduction (and related problems) in array separation logic. In Proc. *CADE* 2017.

This gives some immediate upper bounds by encoding into Presburger arithmetic (PbA):

• Satisfiability is in NP.

 $\mathsf{SL}_{\mathsf{MPA}}$ is subsumed by the array separation logic in

J. Brotherston, N. Gorogiannis, and M. Kanovich. Biabduction (and related problems) in array separation logic. In Proc. *CADE* 2017.

This gives some immediate upper bounds by encoding into Presburger arithmetic (PbA):

- Satisfiability is in NP.
- Quantifier-free entailment is in coNP.

 $\mathsf{SL}_{\mathsf{MPA}}$ is subsumed by the array separation logic in

J. Brotherston, N. Gorogiannis, and M. Kanovich. Biabduction (and related problems) in array separation logic. In Proc. *CADE* 2017.

This gives some immediate upper bounds by encoding into Presburger arithmetic (PbA):

- Satisfiability is in NP.
- Quantifier-free entailment is in coNP.
- Quantified entailment is in Π_1^{EXP} .

In fact, the lower bound for satisfiability is also NP.

3-colourability problem (NP-hard)

Given an undirected graph, decide whether there is a "perfect" 3-colouring of the vertices, such that no two adjacent vertices share the same colour.

In fact, the lower bound for satisfiability is also NP.

3-colourability problem (NP-hard)

Given an undirected graph, decide whether there is a "perfect" 3-colouring of the vertices, such that no two adjacent vertices share the same colour.

First, choose numbers e_{ij} for each edge (v_i, v_j) such that $|e_{i'j'} - e_{ij}| \ge 4$ for any two distinct edges.

In fact, the lower bound for satisfiability is also NP.

3-colourability problem (NP-hard)

Given an undirected graph, decide whether there is a "perfect" 3-colouring of the vertices, such that no two adjacent vertices share the same colour.

First, choose numbers e_{ij} for each edge (v_i, v_j) such that $|e_{i'j'} - e_{ij}| \ge 4$ for any two distinct edges.

Next take a variable c_i for each vertex v_i .

In fact, the lower bound for satisfiability is also NP.

3-colourability problem (NP-hard)

Given an undirected graph, decide whether there is a "perfect" 3-colouring of the vertices, such that no two adjacent vertices share the same colour.

First, choose numbers e_{ij} for each edge (v_i, v_j) such that $|e_{i'j'} - e_{ij}| \ge 4$ for any two distinct edges.

Next take a variable c_i for each vertex v_i .

Then encode in SL_{MPA} as (slightly simplified)

$$\bigwedge_{i=1}^{n} 1 \le c_i \le 3: \ \bigstar_{(v_i, v_j) \in E} (c_i + e_{ij} \mapsto \mathsf{nil} * c_j + e_{ij} \mapsto \mathsf{nil})$$

Suppose A is satisfiable by (s, h).

Suppose A is satisfiable by (s, h).

There is an equisatisfiable PbA formula γ_A with $s \models \gamma_A$.

Suppose A is satisfiable by (s, h).

There is an equisatisfiable PbA formula γ_A with $s \models \gamma_A$.

The formula γ_A can be written as a Boolean combination of difference constraints $x \leq y + k$.

Suppose A is satisfiable by (s, h).

There is an equisatisfiable PbA formula γ_A with $s \models \gamma_A$.

The formula γ_A can be written as a Boolean combination of difference constraints $x \leq y + k$.

Thus s can be viewed as a solution to the equation system

$$x_1 \le y_1 + k_1 \equiv \zeta_1, \dots, x_m \le y_m + k_m \equiv \zeta_m$$

where each $\zeta_i \in \{\top, \bot\}$.

Suppose A is satisfiable by (s, h).

There is an equisatisfiable PbA formula γ_A with $s \models \gamma_A$.

The formula γ_A can be written as a Boolean combination of difference constraints $x \leq y + k$.

Thus s can be viewed as a solution to the equation system

$$x_1 \le y_1 + k_1 \equiv \zeta_1, \dots, x_m \le y_m + k_m \equiv \zeta_m$$

where each $\zeta_i \in \{\top, \bot\}$.

Note that $x \leq y + k \equiv \bot$ means $y \leq x - k - 1$.

View the difference equations as a constraint graph, as follows:

View the difference equations as a constraint graph, as follows:

$$(x_i \le y_i + k_i) \equiv \top \sim y_i \xrightarrow{k} x_i$$

View the difference equations as a constraint graph, as follows:

$$(x_i \le y_i + k_i) \equiv \top \sim y_i \xrightarrow{k} x_i$$
$$(x_i \le y_i + k_i) \equiv \bot \sim x_i \xrightarrow{-k-1} y_i$$

View the difference equations as a constraint graph, as follows:

$$(x_i \le y_i + k_i) \equiv \top \sim y_i \xrightarrow{k} x_i$$
$$(x_i \le y_i + k_i) \equiv \bot \sim x_i \xrightarrow{-k-1} y_i$$
all x_i : $x_0 \xrightarrow{0} x_i$

where x_0 is a new "maximum node".

View the difference equations as a constraint graph, as follows:

$$(x_i \le y_i + k_i) \equiv \top \sim y_i \xrightarrow{k} x_i$$
$$(x_i \le y_i + k_i) \equiv \bot \sim x_i \xrightarrow{-k-1} y_i$$
all x_i : $x_0 \xrightarrow{0} x_i$

where x_0 is a new "maximum node".

FACT: This graph cannot have a negative-weight cycle (else the equation system would have no solutions).

Small model property (2)

View the difference equations as a constraint graph, as follows:

$$(x_i \le y_i + k_i) \equiv \top \sim y_i \xrightarrow{k} x_i$$
$$(x_i \le y_i + k_i) \equiv \bot \sim x_i \xrightarrow{-k-1} y_i$$
all x_i : $x_0 \xrightarrow{0} x_i$

where x_0 is a new "maximum node".

FACT: This graph cannot have a negative-weight cycle (else the equation system would have no solutions).

We will construct a model s, h of A in which all values are bounded by

$$M = \sum_{i=1}^{m} |k_i| + 1$$

Define a new, small model s' of γ_A as follows:

Define a new, small model s' of γ_A as follows:

$$d_i$$
 = minimal path weight from x_0 to x_i

Define a new, small model s' of γ_A as follows:

$$d_i =$$
minimal path weight from x_0 to x_i
 $s'(x_i) = M + d_i$

Define a new, small model s' of γ_A as follows:

$$d_i =$$
minimal path weight from x_0 to x_i
 $s'(x_i) = M + d_i$

Note d_i is always well defined and $d_i \leq 0$ (a 0-weight path exists by construction, and no negative-weight cycles). So s' is small.

Why is it a model?

Define a new, small model s' of γ_A as follows:

$$d_i =$$
minimal path weight from x_0 to x_i
 $s'(x_i) = M + d_i$

Note d_i is always well defined and $d_i \leq 0$ (a 0-weight path exists by construction, and no negative-weight cycles). So s' is small.

Why is it a model?

Consider constraint $x \leq y + k \equiv \top$.

Define a new, small model s' of γ_A as follows:

$$d_i =$$
minimal path weight from x_0 to x_i
 $s'(x_i) = M + d_i$

Note d_i is always well defined and $d_i \leq 0$ (a 0-weight path exists by construction, and no negative-weight cycles). So s' is small.

Why is it a model?

Consider constraint $x \leq y + k \equiv \top$. There is an edge $y \xrightarrow{k} x$.

Define a new, small model s' of γ_A as follows:

$$d_i =$$
minimal path weight from x_0 to x_i
 $s'(x_i) = M + d_i$

Note d_i is always well defined and $d_i \leq 0$ (a 0-weight path exists by construction, and no negative-weight cycles). So s' is small.

Why is it a model?

Consider constraint $x \leq y + k \equiv \top$. There is an edge $y \xrightarrow{k} x$. Thus $d_x \leq d_y + k$ and so $s'(x) \leq s'(y) + k$.

Define a new, small model s' of γ_A as follows:

$$d_i =$$
minimal path weight from x_0 to x_i
 $s'(x_i) = M + d_i$

Note d_i is always well defined and $d_i \leq 0$ (a 0-weight path exists by construction, and no negative-weight cycles). So s' is small.

Why is it a model?

Consider constraint $x \leq y + k \equiv \top$. There is an edge $y \xrightarrow{k} x$. Thus $d_x \leq d_y + k$ and so $s'(x) \leq s'(y) + k$.

So s' satisfies our difference equation system, and thus γ_A .

Define a new, small model s' of γ_A as follows:

$$d_i =$$
minimal path weight from x_0 to x_i
 $s'(x_i) = M + d_i$

Note d_i is always well defined and $d_i \leq 0$ (a 0-weight path exists by construction, and no negative-weight cycles). So s' is small.

Why is it a model?

Consider constraint $x \leq y + k \equiv \top$. There is an edge $y \xrightarrow{k} x$. Thus $d_x \leq d_y + k$ and so $s'(x) \leq s'(y) + k$.

So s' satisfies our difference equation system, and thus γ_A . Then we can create a suitable h' with $s', h' \models A$.

By relatively minor adaptations of the corresponding tricks for satisfiability, we have the following for the quantifier-free entailment problem:

- 1. a lower bound of coNP;
- 2. the small model property (any invalid entailment has a small countermodel).

Lower bound is Π_2^P in the polynomial-time hierarchy.

2-round 3-colourability problem (Π_2^P -hard)

Given an undirected graph, decide whether every 3-colouring of the leaves can be extended to a perfect 3-colouring of the graph.

Lower bound is Π_2^P in the polynomial-time hierarchy.

2-round 3-colourability problem (Π_2^P -hard)

Given an undirected graph, decide whether every 3-colouring of the leaves can be extended to a perfect 3-colouring of the graph. Reuse the variables c_i and numbers e_{ij} from previous reduction. Also use $\widetilde{c_{ij}}$ for the colour "complementary" to c_i and c_j .

Lower bound is Π_2^P in the polynomial-time hierarchy.

2-round 3-colourability problem (Π_2^P -hard)

Given an undirected graph, decide whether every 3-colouring of the leaves can be extended to a perfect 3-colouring of the graph. Reuse the variables c_i and numbers e_{ij} from previous reduction. Also use $\widetilde{c_{ij}}$ for the colour "complementary" to c_i and c_j . Simplified encoding:

LHS:
$$\bigwedge_{i=1}^{k} (1 \le c_i \le 3)$$
: $\bigstar_{(v_i, v_j) \in E}^{\ell \in \{1, 2, 3\}} (e_{ij} + \ell) \mapsto \mathsf{nil}$

Lower bound is Π_2^P in the polynomial-time hierarchy.

2-round 3-colourability problem (Π_2^P -hard)

Given an undirected graph, decide whether every 3-colouring of the leaves can be extended to a perfect 3-colouring of the graph. Reuse the variables c_i and numbers e_{ij} from previous reduction. Also use $\widetilde{c_{ij}}$ for the colour "complementary" to c_i and c_j . Simplified encoding:

LHS:
$$\bigwedge_{i=1}^{k} (1 \le c_i \le 3)$$
: $\bigstar_{(v_i, v_j) \in E}^{\ell \in \{1, 2, 3\}} (e_{ij} + \ell) \mapsto \mathsf{nil}$

RHS:
$$\exists \mathbf{z}. \ \bigwedge_{(v_i,v_j)\in E}^{1\leq k\leq n} (1\leq c_k, \widetilde{c_{ij}}\leq 3):$$

 $\mathbf{*}_{(v_i,v_j)\in E} c_i + e_{ij} \mapsto \mathsf{nil} * c_j + e_{ij} \mapsto \mathsf{nil} * \widetilde{c_{ij}} + e_{ij} \mapsto \mathsf{nil}$

We have an encoding into Π_2^0 PbA, an upper bound of Π_1^{EXP} (in the exponential-time hierarchy).

We have an encoding into Π_2^0 PbA, an upper bound of Π_1^{EXP} (in the exponential-time hierarchy).

In fact this upper bound is exponentially overstated! The upper bound is also Π_2^P .

We have an encoding into Π_2^0 PbA, an upper bound of Π_1^{EXP} (in the exponential-time hierarchy).

In fact this upper bound is exponentially overstated! The upper bound is also Π_2^P .

The key difference between Π_2^0 PbA and Π_2^P is that in the latter all variables must be polynomially bounded.

We have an encoding into Π_2^0 PbA, an upper bound of Π_1^{EXP} (in the exponential-time hierarchy).

In fact this upper bound is exponentially overstated! The upper bound is also Π_2^P .

The key difference between Π_2^0 PbA and Π_2^P is that in the latter all variables must be polynomially bounded.

This follows from the small model property for quantified entailment. Construction uses similar ideas to satisfiability case, but is (quite a bit) more complex.

• NP-hardness or worse is an inevitable consequence of adding pointer arithmetic to SL,

- NP-hardness or worse is an inevitable consequence of adding pointer arithmetic to SL,
 - even for pointer data only, and

- NP-hardness or worse is an inevitable consequence of adding pointer arithmetic to SL,
 - even for pointer data only, and
 - even for pointer-offset comparisons, $x \leq y + k$.

- NP-hardness or worse is an inevitable consequence of adding pointer arithmetic to SL,
 - even for pointer data only, and
 - even for pointer-offset comparisons, $x \leq y + k$.
- Satisfiability is NP-complete.

- NP-hardness or worse is an inevitable consequence of adding pointer arithmetic to SL,
 - even for pointer data only, and
 - even for pointer-offset comparisons, $x \leq y + k$.
- Satisfiability is NP-complete.
- Quantifier-free entailment is coNP-complete.

- NP-hardness or worse is an inevitable consequence of adding pointer arithmetic to SL,
 - even for pointer data only, and
 - even for pointer-offset comparisons, $x \leq y + k$.
- Satisfiability is NP-complete.
- Quantifier-free entailment is coNP-complete.
- Quantified entailment is Π_2^P -complete.

- NP-hardness or worse is an inevitable consequence of adding pointer arithmetic to SL,
 - even for pointer data only, and
 - even for pointer-offset comparisons, $x \leq y + k$.
- Satisfiability is NP-complete.
- Quantifier-free entailment is coNP-complete.
- Quantified entailment is Π_2^P -complete.
- The small model property holds.

Thanks for listening!

Revised paper available (my webpage)