
Electronic Notes in Theoretical Computer Science 58 No. 1 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume58.html 19 pages

The Mechanisation of
Barendregt-Style Equational Proofs

(the Residual Perspective)

René Vestergaard 1,2

Institut de Mathématiques de Luminy
Centre National de la Recherche Scientifique

Marseille, France

James Brotherston 3,4

Centre for Intelligent Systems and Applications
University of Edinburgh
Edinburgh, Scotland, UK

Abstract

We show how to mechanise equational proofs about higher-order languages by using
the primitive proof principles of first-order abstract syntax over one-sorted variable
names. We illustrate the method here by proving (in Isabelle/HOL) a technical
property which makes the method widely applicable for the λ-calculus: the resid-
ual theory of β is renaming-free up-to an initiality condition akin to the so-called
Barendregt Variable Convention. We use our results to give a new diagram-based
proof of the development part of the strong finite development property for the
λ-calculus. The proof has the same equational implications (e.g., confluence) as the
proof of the full property but without the need to prove SN. We account for two
other uses of the proof method, as presented elsewhere. One has been mechanised
in full in Isabelle/HOL.

1 Introduction

There is a de facto difference between pen-and-paper and mechanised proof
practices for equational properties of higher-order languages, i.e., languages

1 Supported under EU TMR grant # ERBFMRXCT-980170: LINEAR.
2 Email: vester@iml.univ-mrs.fr, WWW: http://iml.univ-mrs.fr/~vester
3 Work undertaken while supported by LFCS, Edinburgh.
4 Email: jjb@dai.ed.ac.uk, WWW: http://www.dai.ed.ac.uk/~jjb

c©2001 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume58.html
mailto:vester@iml.univ-mrs.fr
http://iml.univ-mrs.fr/~vester
mailto:jjb@dai.ed.ac.uk
http://www.dai.ed.ac.uk/~jjb

with binding (aka abstraction). The point of disagreement is one of syntactic
representation rather than any specifics of proof methodologies. As for the
pen-and-paper practices, first-order abstract syntax with one-sorted variable
names is a rather simple formalism that is well-suited to focus a reader’s atten-
tion on the sentiments or insights being communicated in a proof [6,16,17,25].
This is partly so because the syntax comes equipped with particularly simple
primitive induction and recursion principles [3]. Unfortunately, the variable
names used to express binding can clash when reducing terms. Traditionally,
one therefore renames offending binders when appropriate. This has a two-fold
negative impact: (i) the notion ‘sub-term of’ on which structural induction
depends is typically broken, 5 and (ii) as a term typically can reduce in several
ways, the resulting name for a given abstraction cannot be pre-determined.

Example 1.1 Consider, e.g., the following β-reduction divergence [13]:

(λy.λx.xy)y λx.xy
(λx.(λy.λx.xy)x)y

(λx.λz.zx)y λz.zy

β

β

β

β

One branch requires the renaming of an x into, say, a z and, although the
resulting terms are α-equivalent, they are not equal as first-order abstract
syntax.

1.1 Side-Stepping the Problem

Standard informal practice in pen-and-paper proofs is simply to ignore variable
names as epitomised in the Barendregt Variable Convention (BVC) [1]:

“2.1.12. Terms that are α-[equivalent] are identified.”
“2.1.13. If M1, . . . ,Mn occur in a certain mathematical context, [their]
bound variables are chosen to be different from the free variables.”

“2.1.14. Using 2.1.12/13 one can work with λ-terms the naive way.”

In a formal setting, postfixed name-unification could be used to prove
an equational property in the above example but the status of the obtained
result will need some interpretation. Furthermore, the required technology
is not easily managed in a theorem prover (see, for example, [23] where this
has been accomplished for β-confluence by building on top of a proof for a de
Bruijn language).

1.2 Formal Alternatives

In response to the long-since established and well-recognised difficulties with
names and equational proofs over first-order abstract syntax with one-sorted
variable names [7,13,22], a large number of alternative formalisms have been

5 Thanks to L. Regnier for pointing out that parallel substitutions can overcome this and
to an anonymous reviewer for referring us to [24] where the details are given.

2

proposed [7,8,9,10,11,12,14,20]. The alternatives are motivated by formalist
considerations and, generally speaking, seek to overcome the naming problems
by native means. All the proposals mark a conceptual and formal departure
from the naive qualities of the first-order set-up.

1.3 Consolidating the Established Pen-and-Paper Practices

We wish to argue that the informal pen-and-paper proof practices of the wider
programming language theory community are formalisable — and feasibly
so. The point is that while the informal proof practices certainly are not
mechanisable in general, they can indeed be employed under suitable initial
conditions. In particular, we show that the key lemmas of various equational
properties typically can be established up-to an initiality condition which is
essentially a formal variant of the BVC. Technically speaking, the proofs of the
lemmas we consider here only require reduction of residuals (i.e., descendants
of terms under reduction) to go through [4]. Informally, this means that the
reductions being performed could have been made in the original term. By
the initiality condition we use, variable conflicts between residuals of different
subterms are not possible. Neither are they possible between residuals of the
same subterm by Hyland’s Disjointness Property, which simply says that such
residuals are non-overlapping (if not, one would be inside the other and a
newly created redex would have had to have been contracted) [18].

1.4 The Remaining Proof Burden

Having established an appropriate conditional variant of the key lemma for an
equational property, it remains to be seen that the lemma which is actually
needed for the abstract reasoning to proceed can be obtained. To this end, we
employ diagrammatic reasoning to compose commutativity lemmas for the
involved relations. Although the proofs of the individual lemmas are fairly
detailed (as formal proofs are), their statement as commutative diagrams and
their subsequent composition are easily understood by a reader. 6

The insights into equational properties that are communicated succinctly
by the use of the ‘right’ definitions and abstract rewriting technology are thus
not compromised in any way by our method [6,16,17,25]. The only intuitive
novelty is an administrative proof layer, dealing with naming issues. It serves
to bridge and facilitate the formalisation of the two standard pen-and-paper
practices (as listed at the start of the paragraph).

1.5 Context of Work

This work builds on Wells and the first author’s [28] and the authors’ [27].

6 On a personal note, we also find that the methodology is helpful in analysing and decom-
posing a sought-after proof.

3

A Calculus of Linking

The basic techniques we use were pioneered mainly by Vestergaard for
[28]. In there, we prove the strong finite development property (SFDP), cf.
Section 6, for a calculus of linking with first-class primitive modules: the m-
calculus. The m-calculus is noticeable from our current perspective in allowing
mutually recursive binding amongst collections of elements. In our opinion,
freely assuming the relevant notion of α-equivalence plus AC-equivalence over
an inductively-defined list-representation of sets in the m-calculus would be
questionable, even at the informal level.

Mechanisation

The proof method at hand is, among other things, substantiated as being
amenable to mechanisation in [27] where we account for a mechanised β-
confluence proof. The mechanisation specifics of the proof development are
accounted for in the second author’s Honours dissertation [2].

Other Uses

The proof methodology has also been applied by the first author to prove
βη-confluence, η-over-β postponement, and β-standardisation [26]. The first
of these follows the pattern we account for here in being concerned with (hor-
izontal) commutativity whereas the latter two are radically different in being
concerned with distributivity, or vertical commutativity, of relations. 7

1.6 This Paper

Section 2 presents the basics of first-order representations of higher-order lan-
guages. In Section 3, we establish that the residual theory of β in the λ-
calculus is renaming-free up-to an initiality condition. This means that a host
of key lemmas for equational properties (of the λ-calculus) can be established
in suitably restricted forms by primitive means, only. Section 4 shows how
to use this to prove the equational part of the SFDP. In Section 5, we show
that the established property implies confluence in a non-standard way (i.e.,
without finiteness of developments). In Section 6, we account for two other
uses of the proof method [27,28]. Finally, in Section 7, we conclude.

2 Raw and Real Calculi

In order to reason about, say, the λ-calculus proper in a first-order manner,
we enforce a distinction between raw and real calculi. The former are induc-
tively defined structures (and we use dashed arrows to denote their reduction
relations). The latter are obtained from the former by collapsing under an

7 By (horizontal) commutativity we mean resolution of co-initial divergences. By distribu-
tivity, or vertical commutativity, we mean reversal of orders of chained relations.

4

equivalence relation (and their relations are denoted by full-lined arrows).
We detail the distinction in the following definition pertaining to Abstract
Rewrite Systems (ARS) — an ARS is a collection of binary relations on the
same domain.

Definition 2.1 Consider an ARS of the form: 99Ks, 99Kc⊆ A × A (the raw
calculus). Its structural collapse is induced from 99Kc by factoring out the
equivalence relation generated by 99Ks; the new, real, relation is written −→c:

• As = A/ ==s

•
b−cs : A −→ As

M 7→ {N |M ==s N}

• bMcs −→c bNcs ⇔M ==s; 99Kc; ==s N

To justify the construction, we present the following two results, essentially
from [27]. Please consult Appendix A for details of our diagram notation. The
first is a minimal requirement: the raw and real equational theories coincide.

Proposition 2.2 Consider an ARS 99Ks, 99Kc⊆ A×A and its structural col-
lapse.

A/ ==s∪c=As/==c

The second gives a sufficient criterion for the raw/real equivalence of not
only equational theories but of the ultimate equational property: confluence.

Lemma 2.3 Consider an ARS 99Ks, 99Kc⊆ A×A and its structural collapse. 8

• •
s

s
⇒





bMcs −→−→c bNcs ⇔ M 99KKs∪c N

∧ Confl(−→c) ⇔ Confl(99Ks∪c)





The confluence equivalence result is perhaps not too surprising as presented
but we refer the interested reader to [27] for a comprehensive account of its
negative variants and their implications. For example, standard pen-and-
paper confluence proofs [1] can easily be established as incomplete.

3 Barendregt-Style Reasoning is Correct, Sometimes

In order to suggest the general applicability of our proof methodology, we will
now prove that the residual theory of β-reduction in the (raw) λ-calculus is
renaming-free up-to an initiality condition. The implication is that all equa-
tional reasoning about the relevant fragment of the residual theory of β can be
undertaken with primitive proof principles. Residual theory is very low level
from a proof-technology point-of-view and, as we shall see, often need not
be considered independently when doing equational proofs. Residual theory

8 Double-headed arrows are transitive, reflexive relations. Confl is confluence.

5

y[x := e] =







e if x = y

y otherwise

(e1 ? e2)[x := e] = e1[x := e] ? e2[x := e]

(λy.e′)[x := e] =







λy.e′[x := e] if x 6= y ∧ y 6∈ FV(e)

λy.e′ otherwise

FV(y) = {y}

FV(e1 ? e2) = FV(e1) ∪ FV(e2)

FV(λy.e) = FV(e) \ {y}

Captx(y) = ∅

Captx(e1 ? e2) = Captx(e1) ∪ Captx(e2)

Captx(λy.e) =







{y} ∪ Captx(e) if x 6= y ∧ x ∈ FV(e)

∅ otherwise

Fig. 1. Total but partially correct substitution, −[− := −], free variables, FV(−),
and variables capturing free occurrences of x, Captx(−), for Λvar

res . NB! The infix
operator ? is used to range over marked and ordinary application: @ and .

is relevant as the key lemmas of most equational properties respect residual
theory in the sense that their proofs only require the contraction of residuals.

The results in this section have all been mechanised in Isabelle/HOL and
the proof scripts are available from our homepages. The mechanisation took
roughly a week for one person.

Definition 3.1 [The Raw, Marked λ-Calculus] Terms are given by

Λvar
res ::= x | Λvar

resΛ
var
res | λx.Λ

var
res | (λx.Λvar

res)@Λvar
res

The residual relations are given in Figure 2 with auxiliaries in Figure 1.

Only marked redexes (denoted by “@”) can be contracted. The marks

6

FV(e2) ∩ Captx(e1) = ∅
(βres)

(λx.e1)@ e2 99Kβres e1[x := e2]

e1 99Kβres e′1
(A1βres)

e1 ? e2 99Kβres e′1 ? e2

e2 99Kβres e′2
(A2βres)

e1 ? e2 99Kβres e1 ? e
′
2

e 99Kβres e′

(Lβres)
λx.e 99Kβres λx.e′

e1 99Kpβres e′1 e2 99Kpβres e′2 FV(e′2) ∩ Captx(e
′
1) = ∅ x ∈ FV(e′1)

(βresKp)
(λx.e1)@ e2 99Kpβres e′1[x := e′2]

e1 99Kpβres e′1 x 6∈ FV(e′1)
(βres

lazy
Kp)

(λx.e1)@ e2 99Kpβres e′1

(Varβ
res

Kp)
x 99Kpβres x

e 99Kpβres e′

(Lβ
res

Kp)
λx.e 99Kpβres λx.e′

e1 99Kpβres e′1 e2 99Kpβres e′2
(Aβres

Kp)
e1e2 99Kpβres e′1e

′
2

Fig. 2. Raw residual relations for the marked λ-calculus: one-step reduction and
residual-completion, respectively.

are introduced to prevent newly created redexes from being contracted. The
disjointness of free and capturing variables is the smallest predicate ensuring
that no (raw) β-reduction will result in a variable clash. 9 The relations we use
are respectively the one-step residual and residual-completion relations. The
latter contracts all marked redexes (if possible) without leaving any behind. It
includes the lazy β-rule for technical reasons (without it, Lemma 4.8 requires
an initiality condition).

9 In [27], we expound the fact that a raw version of the λ-calculus defined in accordance
with the style used here structurally collapses to the standard real λ-calculus [5,13].

7

Definition 3.2 [Barendregt Conventional Form] A term is said to be a BCF
if each binder name is unique and different from the free variables in the term.

Lemma 3.3 (BCF-Enabling of Raw Residual-Completion)

• ◦(BCF)
βres

Proof. By structural induction in the initial BCF. The only non-trivial case
is for (λx.e1)@ e2. It follows by monotonicity of bound and free (but not cap-
turing) variables under 99Kpβres . The BCF-condition ensures that no changes to
e1 can block the redex as capturing variables are included in bound variables.2

Lemma 3.4 (Raw Completion of Residual β)

• •

•

βres

β res
β
res

Proof. By transitive, reflexive induction, it suffices to prove:

• •

•

βres

β res
β
res

The proof is by rule induction in 99Kpβres . The interesting cases are (βres) and
(βres

lazy). The proof follows from Substitutivity and Substitution Lemmas. 2

Substitutivity and Substitution Lemmas are non-trivial to prove formally.
For our present purposes we will merely present one of each to give an indica-
tion of the style. For the following lemmas, we note that Captx(e1)∩FV(e2) =
∅ is the weakest predicate ensuring the correctness of substituting e2 into e1

for x.

Lemma 3.5 (Marked Substitution)

y 6∈ FV(e2) ∧ (Captx(e3) ∩ FV(e2) = ∅) ∧ (Capty(e1) ∩ FV(e3) = ∅)

∧x 6= y ∧ (Captx(e1) ∩ FV(e2) = ∅) ∧ (Captx(e1[y := e3]) ∩ FV(e2) = ∅)

⇓

e1[y := e3][x := e2] = e1[x := e2][y := e3[x := e2]]

Lemma 3.6 (β Residual-Completion Substitutivity)

e1 99Kpβres e′1 ∧ e2 99Kpβres e′2

∧ (Captx(e1) ∩ FV(e2)=∅) ∧ (Captx(e
′
1) ∩ FV(e′2)=∅)

⇓

e1[x := e2] 99Kpβres e′1[x := e′2]

8

We refer the interested reader to the Isabelle/HOL proof development at
our homepages for full details. The main result of this section is the following.

Theorem 3.7 (BCF-Initial Raw β-Residual Theory is not Blocked)

• • ◦(BCF)
βres βres

Proof. By Lemma 3.3, any BCF residual-completes. By Lemma 3.4, such a
completion can absorb any initial 99KKβres . 2

The theorem states that any residual of a BCF is such that any marked
redex in it (except, possibly, for those that are discarded by the lazy β-rule)
can be contracted without resulting in a variable clash. We believe the lazy
β-rule could be avoided for the purposes of the above result. The conclu-
sion would then be that all marked redexes can be contracted. However, this
would greatly complicate the proof of Lemma 3.4 as the transitive, reflexive
induction no longer would be straightforward. The reason is that the consid-
ered property would need to be formulated with, say, BCF-initiality which is
not preserved along the inducted relation. As it stands, the only enforced re-
striction is that 99Kpβres must be well-defined in any non-trivial cases (of which
there are some, cf. Lemma 3.3).

The results of this section are also substantial in a more traditional analysis
as we show next.

4 Strong (Finite) Development and Consequences

In this section, we will lift the (raw) results of the previous section to the
real level. The resulting property comprises the major part of the Strong
Finite Development Property (SFDP) for the λ-calculus (see, e.g., [1, Theorem
11.2.25]).

Definition 4.1 Let → be a residual relation, i.e., a relation which only con-
tracts marked redexes (such as 99Kβres in Section 3).

• →→ is said to be the corresponding development relation

• e→→ e′ is said to be a development (of e)

• a development, e→→ e′, is said to be complete if unMarked(e′). 10

Definition 4.2 [The SFDP] A relation, →, is said to enjoy the strong finite
development property if

(i) SN(→)
— developments are finite

10With the obvious definition of unMarked(−).

9

y 6∈ Captx(e) ∪ FV(e)
(αres)

λx.e
y

99Kiαres λy.e[x := y]

e
y

99Kiαres e′

(Lαres)
λx.e

y
99Kiαres λx.e′

e1

y
99Kiαres e′1

(A1αres)
e1 ? e2

y
99Kiαres e′1 ? e2

e2

y
99Kiαres e′2

(A2αres)
e1 ? e2

y
99Kiαres e1 ? e

′
2

Fig. 3. The raw indexed αres-relation.

(ii) e→→ e′ ⇒ (∃e′′.e′ →→ e′′ ∧ unMarked(e′′)) 11

— developments can be completed

(iii) (e→→ e1 ∧ e→→ e2 ∧ unMarked(ei)) ⇒ e1 = e2

— completions are unique

Intuitively, developments are finite because newly constructed redexes are
not marked and thus cannot be contracted.

We call the result we prove the S(F)DP in that it excludes the finiteness
of developments. In contrast to conventional wisdom, 12 we show that even
without finiteness of developments, the SFDP (that is, the S(F)DP) can be
used to conclude confluence. The proof method is a hybrid of the standard
SFDP method and the Tait/Martin-Löf/Takahashi method which we review
in Section 6. It seems to be combinatorially less complex than both of these
because it relies on a ‘weaker’ β-commutativity lemma. On the other hand, it
might also be a bit longer because it uses more auxiliary lemmas. The proof
appears to be new.

We refer the interested reader to [15] for a comprehensive, mechanised
account of the residual theory of the λ-calculus represented with de Bruijn
terms. The aim of [15] is a theoretically robust and stand-alone treatment
of residual theory which is essentially categorical. Informally, Huet’s results
are to ours as the original Tait/Martin-Löf confluence proof using parallel
reduction is to Takahashi [25], cf. Sections 5 and 6.2.

4.1 Structural/Computational Commutativity

A central part of our proposed proof methodology is the use of commutative
diagrams to reduce general equational properties to conditional variants that
can be proved by simple inductive methods. The main notion of commutativ-
ity we use is between computational relations proper (e.g., βres) and relations

11Observe that e′ →→ e′′ only can contract residuals of e as the terms are marked.
12 See, e.g., [1, p.283]: “[The finiteness of developments] has important consequences, among
them being [confluence] . . . ”

10

which axiomatise structural equivalence. In the raw, marked λ-calculus, the
relevant notion of structure is the αres-relation, cf. Figure 3 (which like most
other formal statements in this section, are adapted from [27]). The figure
presents an indexed relation which is intended to smoothly facilitate the fol-
lowing definition.

Definition 4.3 Following Figure 3,

• let the αres-relation be: e 99Kαres e′ ⇔ ∃y.e
y

99Kiαres e′

• let fresh-naming αres
0 be: e 99Kαres

0
e′ ⇔ ∃y.e

y
99Kiαres e′ ∧ y 6∈ Var(e) 13

We stress that the αres-equivalence relation induced from the above αres-
relation is the standard notion (up-to the marks). With reference to Lemma
2.3, we then present the following result.

Lemma 4.4 (99Kαres-Symmetry)

• •
α res

α res

Proof. By rule induction in the underlying indexed relation 99Kiαres . The only
non-trivial case follows by basic ‘renaming sanity’ properties of substitution.2

The reason for presenting two α-relations is that a fully general commuta-
tivity result for αres and βres is not to be expected as there are side-conditions
pertaining to variable names involved. On the other hand, it is to be expected
that no αres

0 -step will block a βres-step.

Lemma 4.5
•

• •

◦

β
re
s α res0

α res
β
re
s

•

• •

◦

β
re
s α res0

α res
β
re
s

Proof. By transitive, reflexive induction in 99KKαres
0
. The reflexive and tran-

sitive cases are trivial. In the base case we proceed by rule induction in the

underlying indexed relation:
−

99Kiαres
0
. The proof is rather involved and uses the

relevant Substitutivity lemmas on
−

99Kiαres as well as a Substitution Lemma.
We also take advantage of the fact that it suffices to use the same name for

each step of the
−

99KKiαres-closure. 2

It is not difficult to see that 99Kαres
0
⊂99Kαres . It can also be shown that

99KKαres
0
⊂99KKαres . However, by the following lemma we have ==αres = ==αres

0
.

Lemma 4.6
• •

◦

αres

α res0 α
res

0

13With Var(e) being the variable names occurring (anywhere) in e.

11

Proof. Intuitively the proof is straightforward — since the structure of both
terms is the same, it suffices to rename the two α-equivalent terms with suffi-
ciently many fresh names in the same order in order to arrive at the same term.
Formally, the proof proceeds by transitive, reflexive induction (by Lemma 4.4,
it suffices to induct over 99KKαres) and then by rule induction in 99Kαres . The
formal proof is complicated greatly by the need for explicit quantification over
lists of variable names used for the reduction sequences. Substitutivity and
Substitution Lemmas are also required. The proofs do not provide any in-
sights and are omitted here; for a fuller exposition the reader is invited to
consult [27]. 2

The reason for the above asymmetry between αres and αres
0 is that not

all terms can be the target (although they naturally can be the source) of a
99Kαres

0
-step, whereas some terms are not too difficult to target:

Lemma 4.7

• ◦ (BCF)
αres

0
Proof. Intuitively, the property holds since renaming every λ-binder occur-
ring in the term with a fresh name will yield a BCF term. To prove the result
formally, we first prove the following property by structural induction on e1:

∀
→
zi, e1. ||

→
zi ||= #λ(e1) ∧ {zi} all different ∧ ({zi} ∩ (FV(e1) ∪ BV(e1)) = ∅)

⇓

∃e2.e1

→

zi

99KKiα0
e2 ∧ BCF(e2) ∧ {zi} = BV(e2)

where #λ(e1) is the number of λ-abstractions in e1. The inclusion of the
variable name information is necessary in order to make the proof fully con-
structive.

2

With the relevant raw commutativity lemmas in place, we are now ready
to prove properties at the real level.

4.2 The S(F)DP for the Real λ-Calculus

With a danger of causing confusion, we retain e as a meta-variable over real as
opposed to raw terms (and occasionally use M and N for raw terms instead).
We also use, e.g., the raw notion of unMarked(−) at the real level. On the
other hand, we strictly distinguish raw and real relations by the use of dashed
respectively full-coloured arrows. This convention disambiguates our notation.

Lemma 4.8 (Real Completion of Residual β)

• •

•

βres

β res
β
res

12

Proof. By transitive, reflexive induction, it suffices to prove the one-step case.

• •

•

βres

β res
β
res

The following diagram outlines the proof of the definitional re-statement of
the property at the raw level.

M1

M l
2

M l
3 N0 M r

2

M l
4 N1

N l
2 M r

3

N r
2

M r
4

(BCF)

α
re
s

α
res

β
re
s

β
res

α
re
s

α
res

α
re

s
0

αres
0

α
re

s
0

β
re
s

β
resβ res

α
re

s

α
re

s

α res

α res

For the Ms given, we
can construct the Ns in
the divergence resolution
on the left in order (0,
1, . . .). N0 follows
from Lemma 4.6. N1

from Lemma 4.7. The
N2’s from Lemma 4.5.
The lower leg follows by
transitivity of ==αres and
Lemma 3.4.

2

Lemma 4.9 (Real Residual-Completion) • ◦
βres

Proof. By Definition 2.1, we must prove: • ◦ ◦ ◦
αres βres αres

The result follows from Lemmas 4.7 and 3.3. 2

Proposition 4.10 (Further Properties of Real Residual-Completion)

(i) →pβres is functional

(ii) e→pβres e′ ⇒ unMarked(e′) — residual-completion leaves no marks

(iii) →pβres⊆−→−→βres — residual-completion is a development

Proof. It essentially suffices to establish the properties at the raw level.

(i) The generating rules of the relation are mutually disjoint.

(ii) And, they contract all marked redexes without creating new ones.

(iii) By inspection (i.e., rule induction).

2

Theorem 4.11 −→βres enjoys the S(F)DP.

Proof. Developments can be completed (i) as any term residual-completes by
Lemma 4.9, (ii) as residual-completions are complete developments by Propo-

13

sition 4.10, and (iii) as developments are transitive by definition. The resulting
term is unique by functionality of →pβres (Proposition 4.10) and Lemma 4.8.2

We observe that an implication of the fact that developments complete is that
the residual relation is weakly normalising.

5 Confluence from the S(F)DP

The original justification for considering residuals is the fact that develop-
ments (as opposed to unrectricted β-reduction) can be proved finite [4,22].
By using Newman’s Lemma, 14 the development relation can thus be proved
confluent merely by proving it weakly confluent. In turn, this can be used to
prove the λ-calculus proper confluent, as we will detail in Section 5.2.

As already stated, conventional wisdom has it that it is the finiteness of de-
velopments which is the main cause of confluence when considering residuals. 15

In contrast to this, we will now show how to obtain confluence from the
S(F)DP (which requires weak but not strong normalisation of the residual re-
lation). We need a few simple ARS results (known, e.g., from the Tait/Martin-
Löf/Takahashi method for proving confluence, cf. Section 6).

Lemma 5.1 (∃ →b .→a⊆→b⊆→→a ∧ ¦ (→b)) ⇒ Confl(→a)

Proof. A formalisation is provided in [21] and is re-used in [27]. 2

Lemma 5.2 (Guarded Diamond Diagonalisation) For any predicates, P
and Q, and any relations, →a and →b, we have

•

◦

(P)

b ∧

•

•

•

(Q)
a

b

a

⇒

•

• •

◦

(P ∧Q)

a a

a a

Proof. Straightforward. A formalisation is provided in [27] following [25]. 2

5.1 Residual Confluence

We believe the proof of the following result is new. We let it speak for itself.

Lemma 5.3 Confl(−→βres) ∧ Confl(99Kαres∪βres)

Proof. As for the first result, we can see that the triangle-property premise
of Lemma 5.2 is substantiated by Lemma 4.8 as any residual-completion is
a development (Proposition 4.10). The other premise of Lemma 5.2 is given

14Weak confluence and strong normalisation implies confluence.
15 See, e.g., [1, p.283]: “[The finiteness of developments] has important consequences, among
them being [confluence] . . . ”

14

by Lemma 4.9. The second result follows from the first and Lemma 4.4 by
Lemma 2.3. 2

5.2 Confluence Proper

This section uses standard techniques and is provided virtually uncommented.

Definition 5.4 Let | − |: Λvar
res −→ Λvar be the function that removes marks

from a marked raw term (with the obvious definition of Λvar). Let

| e1 | −→dev | e2 | ⇔
def e1 −→−→βres e2

be the non-marked development relation.

Proposition 5.5 −→β⊆−→dev⊆−→−→β

Proof. Both inclusions follow by simole rule inductions at the raw level. 2

Theorem 5.6 Confl(−→β) ∧ Confl(99Kα∪β)

Proof. As for the first result, the −→dev-relation is a witness of the quantifi-
cation in Lemma 5.1 according to Lemma 5.3 and Proposition 5.5. The second
result follows from the first and an adaptation of Lemma 4.4 by Lemma 2.3.2

6 Other First-Order Equational Proofs

In this section we give an overview of the diagrammatic reasoning of [27,28].
The (formats of the necessary) commutativity lemmas have already been pre-
sented. We stress that [28] introduces the m-calculus, a calculus of linking
with first-class primitive modules. The m-calculus is vastly more expressive
than the λ-calculus in terms of the computational paradigms in can simu-
late directly [28]. Among other things, it contains mutually recursive binding
amongst sets of elements. For uniformity, we frame both results in terms of
the λ-calculus.

6.1 The Strong Finite Development Property [28]

Apart from finiteness of developments, it suffices to prove a real residual rela-
tion weakly confluent to prove the SFDP and confluence. The latter step uses
Newman’s Lemma. The former is conducted at the raw level.

15

x 99qKβ x

e 99qKβ e′

λx.e 99qKβ λx.e′
e1 99qKβ e′1 e2 99qKβ e′2

e1e2 99qKβ e′1e
′
2

e1 99qKβ e′1 e2 99qKβ e′2 FV(e′2) ∩ Captx(e
′
1) = ∅

(λx.e1)e2 99qKβ e′1[x := e′2]

Fig. 4. The parallel β-relation: any pre-existing β-redexes contracted in parallel.

M0

M l
1 N0 M r

1

M l
2 N1 M r

2

N l
2 N r

2

M l
3 N3 M r

3

α α

β β

α0 α0

α
0

α

α

β β

β β

(BCF)

α

α

α

α

The M -divergence on the left
is the re-statement at the raw
level of a one-step divergence in
the real calculus according to
Definition 2.1. We have sup-
pressed the “res” superscripts
on the residual-relation names.
The N ’s are constructed in or-
der (0, 1, . . .) to resolve the di-
vergence. Adaptations of Lem-
mas 4.4, 4.5, 4.6, and 4.7 are
easily recognised in the proof.

6.2 Confluence via Parallel Reduction [27]

The Tait/Martin-Löf proof method uses a parallel relation that can contract
any number of pre-existing redexes in one step, 99qK below. The point is that
such a relation can be shown to be a witness for the quantification in Lemma
5.1. Takahashi [25] introduced the idea of defining the parallel relation di-
rectly by induction on terms which brings the method within reach of our
proof methodology. Figure 4 presents our raw version of the relation [27].

Takahashi also introduced the idea of diagonalising the central diamond
property of the proof resolution, cf. Lemma 5.2, which we re-use in [27]. We
do not present the details here but refer to Lemma 5.3.

16

M

M l
1 N0 M r

1

M l
2 N1 M r

2

N l
2 N r

2

N3

(BCF)

α α

α0 α0

α
0β

||

β||

α
αβ

||

β

||

β

||

β

||

The proof resolution tech-
nique on the left is assumed
to be familiar to the reader
at this point. Instead, we
note that the proof estab-
lishes ¦(99KKα; 99qKβ) — the
symbol “;” is for relation
composition. As opposed
to the other two proofs
we have presented, we use
this property to prove (raw)
Confl(99Kα∪β) first (Lemma
5.1) and from there con-
clude (real) Confl(−→β) via
Lemma 2.3.

7 Conclusion

We hope to have convinced our reader that the pen-and-paper proof prac-
tices of the wider programming language theory community are formalisable.
In trying to do so, we have proved an approximation of the SFDP of the
λ-calculus. It was observed that the presented results imply that the resid-
ual theory of β-reduction is renaming-free up-to BCF-initiality. The results
also imply confluence. Although we use the development set-up, we showed
that strong normalisation of the residual relation is not required to draw this
conclusion. Following on from there, we accounted for our work in [27,28]
and outlined the administrative proof layer that is required to formalise the
SFDP and confluence for a higher-order language represented with first-order
abstract syntax over one-sorted variable names. On-going work aims at ex-
tending the methodology to other typical situations. Although informal proofs
are incomplete by a wide formal margin as far as proof burden resolution goes,
we hope to also have convinced our reader that the intuitive gap is somewhat
smaller.

References

[1] Barendregt, H., “The Lambda Calculus — Its Syntax and Semantics (Revised
Edition),” North-Holland, 1984.

[2] Brotherston, J., “Formalizing Proofs in Isabelle/HOL of Equational Properties
for the Lambda-Calculus using One-Sorted Variable Names”, Honours
dissertation, University of Edinburgh (2001). Available from the author’s
homepage.

17

[3] Burstall, R., Proving properties of programs by structural induction, The
Computer Journal 12 (1967).

[4] Church, A. and J. B. Rosser, Some properties of conversion, Transaction of the
American Mathematical Society 39 (1936).

[5] Curry, H. B. and R. Feys, “Combinatory Logic,” North-Holland, Amsterdam,
1958.

[6] David, R., Une preuve simple de rèsultats classiques en λ calcul, Comptes
Rendus de l’Acadèmie des Sciences 320 (1995), pp. 1401–1406, série I.

[7] de Bruijn, N., Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
Theorem, Indag. Math. 34 (1972), pp. 381–392.

[8] Despeyroux, J. and A. Hirschowitz, Higher-order abstract syntax with induction
in Coq, in: F. Pfenning, editor, Proceedings of LPAR-5, LNAI 822 (1994).

[9] Despeyroux, J., F. Pfenning and C. Schürmann, Primitive recursion for higher-
order abstract syntax, in: P. De Groote and J. R. Hindley, editors, Proceedings
of TLCA-3, LNCS 1210 (1997).

[10] Fiore, M., G. Plotkin and D. Turi, Abstract syntax and variable binding, in:
Longo [19], pp. 193–202.

[11] Gabbay, M. J. and A. M. Pitts, A new approach to abstract syntax involving
binders, in: Longo [19], pp. 214–224.

[12] Gordon, A. D. and T. Melham, Five axioms of alpha-conversion, in: J. Von
Wright, J. Grundy and J. Harrison, editors, Proceedings of TPHOL-9, LNCS
1125 (1996).

[13] Hindley, J. R., “The Church-Rosser Property and a Result in Combinatory
Logic,” Ph.D. thesis, University of Newcastle upon Tyne (1964).

[14] Hofmann, M., Semantical analysis of higher-order abstract syntax, in: Longo
[19], pp. 204–213.

[15] Huet, G., Residual theory in λ-calculus: A formal development, Journal of
Functional Programming 4 (1994), pp. 371–394.

[16] Joachimski, F. and R. Matthes, Standardization and confluence for a lambda
calculus with generalized applications, in: L. Bachmair, editor, Proceedings of
RTA-11, LNCS 1833 (2000).

[17] Joachimski, F. and R. Matthes, Short proofs of normalization for the simply-
typed lambda-calculus, permutative conversions and Gödel’s T, Archive for
Mathematical Logic (200X), to appear.

[18] Klop, J. W., “Combinatory Reduction Systems,” Mathematical Centre Tracts
127, Mathematisch Centrum, Amsterdam, 1980.

18

[19] Longo, G., editor, “Proceedings of LICS-14,” IEEE CS Press, 1999.

[20] McKinna, J. and R. Pollack, Some lambda calculus and type theory formalized,
Journal of Automated Reasoning 23 (1999).

[21] Nipkow, T., More Church-Rosser proofs (in Isabelle/HOL), in: Proceedings of
CADE-13, LNCS 1104 (1996).

[22] Schroer, D. E., “The Church-Rosser theorem,” Ph.D. thesis, Cornell (1965).

[23] Shankar, N., A mechanical proof of the Church-Rosser Theorem, Journal of the
ACM 35 (1988), pp. 475–522.

[24] Stoughton, A., Substitution revisited, Theoretical Computer Science 59 (1988),
pp. 317–325.

[25] Takahashi, M., Parallel reductions in λ-calculus, Information and Computation
118 (1995), pp. 120–127.

[26] Vestergaard, R., “First-Order Equational Reasoning about Higher-Order
Languages,” Ph.D. thesis, Heriot-Watt University (2001), forthcoming.

[27] Vestergaard, R. and J. Brotherston, A formalised first-order confluence proof
for the λ-calculus using one-sorted variable names (Barendregt was right after
all ... almost), in: A. Middeldorp, editor, Proceedings of RTA-12, LNCS 2051

(2001).

[28] Wells, J. and R. Vestergaard, Equational reasoning for linking with first-class
primitive modules, in: G. Smolka, editor, Proceedings of ESOP-9, LNCS 1782

(2000).

A Commutative Diagrams

Formally, a commutative diagram is a set of vertices and a set of directed edges between pairs
of vertices. A vertex is written as either • or ◦. Informally, this denotes quantification modes
over terms, universal respectively existential. A vertex may be guarded by a predicate.
Edges are written as the relational symbol they pertain to and are either full-coloured
(black) or half-coloured (gray). Informally, the colour indicates assumed and concluded
relations, respectively. An edge connected to a ◦ must be half-coloured. A diagram must
be type-correct on domains. A property is read off of a diagram thus:

(i) write universal quantifications for all •s (over the relevant domains)

(ii) assume the full-coloured relations and the validation of any guard for a •

(iii) conclude the guarded existence of all ◦s and their relations

The following diagram and property correspond to each other (for →⊆ A×A).

• •

• ◦

(P)

(Q)

∀e1, e2, e3 ∈ A . e1 → e2 ∧ e1 → e3 ∧ P (e1)

⇓

∃e4 ∈ A . e2 → e4 ∧ e3 → e4 ∧ Q(e4)

We will often leave quantification domains implicit and furthermore assume the standard
disambiguating conventions for binding strength and associativity of connectives.

19

