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Abstract: We present the Isabelle/HOL formalisation of some key equa-
tional properties of the untyped λ-calculus with one-sorted variable names.
Existing machine formalisations of λ-calculus proofs typically rely on alterna-
tive representations and/or proof principles to facilitate mechanization and we
briefly account for these works. Our own development remains faithful to the
standard textbook presentation and the usual pen-and-paper proof practices;
we reason purely inductively over the standard first-order syntax of the calculus,
using only primitive proof principles of the syntax and the reduction relations
under consideration. We prove the confluence property of the λ-calculus at the
raw syntactic level and derive confluence of the real λ-calculus (the structural
collapse onto equivalence classes of the raw calculus) via a general result about
abstract rewrite systems which we also formalise. We then show a technical
property of the residual theory of the calculus which suggests the general appli-
cability of the method to other equational properties of the calculus. Finally,
we make some proof-technical observations pertaining to the extent to which
our Isabelle proofs may be automated.
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Preface

As the title suggests, the aim of this project is proof formalisation in Is-
abelle/HOL. We work in the setting of the λ-calculus: a universal model of
computation which in the past has been widely studied in its different formu-
lations. The formalisation of proofs in this setting has been an area of study in
itself and has attracted attention from many quarters. It is a surprising fact that
the existing proof formalisations all employ alternatives to the standard repre-
sentation of the calculus, which is used for conducting pen-and-paper proofs.
This is because the names which are traditionally used to represent binding in
a term can overlap when we manipulate terms in the calculus.

This particular formal impassé was recently overcome by René Vestergaard, who
in 2000 developed a new presentation of the λ-calculus over the standard first-
order abstract syntax and using names to represent binding. The innovation
comes in the careful definition of operations within the calculus so as to avoid
the traditional formal problems caused by variable name overlap. The use of
first-order abstract syntax enables one to perform all reasoning in the calculus
by purely inductive means; this makes the calculus particularly amenable to
formalisation in a theorem prover such as Isabelle, where one is limited to using
induction as a proof principle.

The proof of the confluence property in this setup was published by Vester-
gaard and the author at RTA’01 [17]. A full version of the article has been
invited to be submitted to a special issue of Informartion and Computation
with selected papers from RTA’01. A follow-up article [18], also by Vestergaard
and the author, showing other equational properties of the calculus, has also
been accepted for MERLIN’01. In both papers, the primary contribution of the
author was the Isabelle/HOL formalisation of the results presented there and
it is the details of these formalisations which we aim to present here. The proof
methodology we use and the results we present are due to Vestergaard, unless
otherwise stated; the formal Isabelle proofs are due to the author.

In this dissertation we aim, firstly, to give an overview of the issues involved in
formalising λ-calculus proofs and, secondly, to provide an insight into the details
of our own formalisation work. We also make some meta-level observations in
Chapter 4 about some of the technical issues which arose out of the Isabelle
formalisation.
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1. The λ-calculus and formalised
reasoning

1.1 The λ-calculus: a model of computation

The λ-calculus is a branch of mathematical logic, developed in the 1930s by
Church, that is intended to capture the concept of a function. The pure λ-
calculus is type-free and consists of λ-abstractions (functions), variables, and
applications of one function to another. All structural manipulations in the
calculus are made explicit by the use of reduction relations. A reduction relation
is a set of pairs relating λ-terms to their associated term under the reduction.
(We shall examine reduction relations in some detail in section 1.3.1.)

Church devised the λ-calculus [3] as part of an ultimately abortive attempt to
provide a foundation for logic and parts of mathematics. This attempt failed
largely because the resulting system admitted the well known Russell Paradox.
Still, the pure λ-calculus embedded in the theory was a success and led to the
formulation of Church’s thesis: the effectively computable functions are exactly
those that can be described using the λ-calculus.

The λ-calculus is closely linked with several areas of study in both mathematics
and computer science including categorical logic, proof theory, type theory and
the semantics of programming languages (for examples consult [1]). It is par-
ticularly useful in the study of functional programming languages, since such
languages (Lisp, SML, Miranda) can be seen as extensions of the λ-calculus
with constants and types.

1.2 Presentations of the λ-calculus

Several different presentations of the λ-calculus have been formulated over the
years. The formulation which is used almost exclusively when conducting pen-
and-paper proofs is first-order abstract syntax with one-sorted variables, which
is our main area of attention. However, this formulation also presents some
formal difficulties as we shall see shortly. To counter these problems, various
alternative inceptions of the syntax have been proposed in order to facilitate
machine formalisation and we also examine those formalisations which are most
relevant to our own work.

3



4 1. THE λ-CALCULUS AND FORMALISED REASONING

1.2.1 First-order abstract syntax with one-sorted variable names

The standard first-order abstract syntax for the λ-calculus is generated by the
following (inductive) definition:

Λvar ::= x | ΛvarΛvar | λx.Λvar

i.e. the set of all λ-terms, Λvar, consists exactly of those terms which can
be constructed from atomic elements of the set (variables) using the provided
constructors (application respectively abstraction).

A term in the λ-calculus is thus finite and is either a variable, an application
of one term to a another, or a functional abstraction of a variable over a term
(which we call the body of the abstraction). When we write λ-terms we will
assume that application ‘binds tighter’ than λ-abstraction.

We use the term first-order in the sense that only the abstract syntax tree is
provided as a primitive constructor - there are no built-in notions of abstraction
or functionality attached to objects constructed this way. We will refer to this
syntax as the raw syntax of the λ-calculus, and we refer to terms constructed
from the syntax as raw terms. (Later, we will consider the real terms of the
calculus as equivalence classes of raw terms. The raw / real terminology was
first introduced in Wells-Vestergaard [19] and used formally in Vestergaard-
Brotherston ([17] and [18]), and we continue to use the notions here.)

We consider the set of variables in this syntax to be a countably infinite set of
names with a decidable equality relation, =. ‘Decidable equality’ here means
that we consider the set of variables to be constructed in some metalanguage in
which equality is well-defined. Variables are one-sorted in the technical sense
that all variables in the set have the same type (i.e. we cannot distinguish
two variables other than by comparing their names). It will be necessary for
us to distinguish between free and bound occurrences of variables within a
given λ-term. Informally, an occurrence of a variable in a raw term is a bound
occurrence if it falls within the scope of a λ-binder with the same name, and
is a free occurrence otherwise. We make this notion precise with the following
definition (by structural recursion on the set of λ-terms).

Definition 1 (Free and bound variables) Define the (finite) set of free vari-
ables of a raw term, FV(−), by:

FV(x) = {x}

FV(e1e2) = FV(e1) ∪ FV(e2)

FV(λx.e) = FV(e) \ {x}

Similarly, define the (finite) set of bound variables of a raw term, BV(−), by:

BV(x) = ∅

BV(e1e2) = BV(e1) ∪ BV(e2)

BV(λx.e) = BV(e) ∪ {x}
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Recall that terms in the λ-calculus are intended to represent parameterised
functions. Therefore, we informally consider two terms in the raw λ-calculus
to be the same (real) term if they differ only in the variable names they use
to express the binding structure of the term. Later, we will derive a formal
relation =α for expressing such equalities; for now, we content ourselves with
an example:

λy.(λx.xy) =α λx.(λz.zx)

Note that two terms which differ by a renaming of free variables will not be
said to be equal in the above sense, so, for example, λx.y 6=α λx.z.

One operation on λ-terms which we will want to allow is the substitution of
a term for a free variable. We will use the syntax e1[x := e2] to denote the
substitution of e2 for the free variable x in the term e1. However, note that
naive syntactic replacement of e2 for x is not a correct definition of substitution,
as shown by the following example:

Example 1 Suppose λy.(add x)y is the function on the natural numbers which
takes one parameter — the bound variable y — and adds it to the free variable
x. (Here the function symbol add is represented by a free variable.) Consider
replacing x by the term consisting of the singleton free variable z into this term:

(λy.(add x)y)[x := z] = λy.(add z)y

as one would expect. However, consider now replacing x by the term consisting
of the free variable y:

(λy.(add x)y)[x := y] = λy.(add y)y

We see that ‘substitution’ now yields the function taking a parameter y and
returning 2y!

Clearly this was not the intended meaning of the function - what has gone
wrong? In making the substitution (λy.(add x)y)[x := y], the free variable
y is captured by the binder λy and becomes bound. (In terms of functional
programming, this corresponds to confusion of variable scopes.) It is this clash
between free and bound variable names which we wish to avoid in order to
preserve correctness of substitution. We will now examine some alternative
presentations of the λ-calculus which prevent this difficulty from arising.

1.2.2 First-order abstract syntax with two-sorted variable names

In their formalisation [12] of a Pure Type System which includes the λ-calculus,
McKinna and Pollack take a novel approach to the issue of avoiding free variable
capture by imposing a strict dichotomy on variable names, which in this set-
up are two-sorted ; every name is either a free variable or a parameter (i.e. a



6 1. THE λ-CALCULUS AND FORMALISED REASONING

bound variable), and the two sorts have different types. There is therefore no
possibility of a syntactic confusion between the two sorts. The λ-calculus part
of the McKinna-Pollack development can thus be defined inductively as follows:

ΛMP ::= p | v | ΛMP ΛMP | λ{p : ΛMP}.ΛMP

where p and v range over the set of parameters and the set of free variables
respectively. Note that the variable for a λ-abstraction has an explicit type
which must itself be given by a term in the system.

McKinna-Pollack formalise a number of equational properties of their Pure
Type System (an extension of the above system) using the LEGO theorem
prover, including β-confluence (also known as the Church-Rosser Theorem)
which we prove ourselves in chapter 2. (We give a formal definition of confluence
there; informally, it means that if a term reduces in two different ways then
these two divergences can be reduced to the same term.) One important facet
of the McKinna-Pollack development is that the employed proof principles are
different to the usual first-order principles. A predicate Vclosed on terms is
defined corresponding to the notion of a closed term, and only terms which are
Vclosed are considered to be well-defined for the purposes of reduction in the
system. The definition of this predicate in (the λ-calculus part of) their system
is as follows, where A,B range over the set of terms:

Vclosed(p)
Vclosed(A) & Vclosed(B[v := p]) → Vclosed(λ{n : A}.B)
Vclosed(A) & Vclosed(B) → Vclosed(AB)

Note that for a term to be Vclosed is equivalent to it having no free variables
(and this is indeed proven to be the case). As only Vclosed terms are considered
to be well-formed for the purposes of reasoning within the system, Vclosed is
treated as an induction principle over well-formed terms. All of McKinna-
Pollack’s results are thus stated in a similar manner to the following example:

Goal DiamondProperty Vclosed par red1

where par red1 is a reduction relation with the desired property. On the other
hand, definition by structural recursion in the system is well-defined on all
terms; the structural induction/recursion principle Trec is given in LEGO as
follows, where Trm denotes the type of terms in the system:

[Trec:{C:Trm->Prop}

{TVAR:{n:VV\}C (var n)}

{TPAR:{n:PP\}C (par n)}

{TLDA:{n:VV}{A,B:Trm}(C A)->(C B)->C (lda n A B)}

{TAPP:{M,N:Trm}(C M)->(C N)->C (app M N)}

{t:Trm}C t];

The correct reading of the above code is as follows. The first line tells us that the
proposition C under consideration must have type trm->Prop. The next four
lines give the premises for the induction principle, i.e. that C should hold of any
parameter or variable, and that if C holds for the subterms of an application or
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abstraction, then C should hold of the term itself. The conclusion then is that
C is true of any term t. Definition by structural recursion is thus well-founded
over all terms and not just those that are Vclosed.

We do not consider this approach further here but observe that the imposition
of the syntactic distinction between parameters and variables is somewhat re-
moved from standard pen-and-paper proof practices as witnessed by, e.g., the
use of the Vclosed predicate. Variables in pen-and-paper proofs are still con-
sidered to be one-sorted, which is one reason why we will choose to work in the
standard set-up despite its additional complication.

1.2.3 Nameless terms: de Bruijn indices

De Bruijn’s contribution to the field was to define the λ-calculus using a set of
nameless terms such that any two α-equivalent terms in the standard λ-calculus
correspond to the same nameless term in the de Bruijn λ-calculus (λdB). (In
fact, the presentation was originally developed by de Bruijn in order to facilitate
a λ-calculus formalisation in his AutoMath system [5].) The set of nameless
terms, Λ∗ is defined as follows:

Λ∗ ::= n | Λ∗Λ∗ | λΛ∗

where n ∈ N \ {0}. Hence, variables in λdB are given as natural numbers.
Given a raw λ-term in the standard syntax, we can construct its de Bruijn rep-
resentation by replacing each bound variable occurrence by an index referring
to the number of λs between it and its binding λ, so, for example:

λx.x(λy.y(λz.zx)x) 7→dB λ1(λ1(λ13)2)

The free variable vn is referred to by the natural number n + k + 1, where
k is the λ-nesting level at which the number occurs. Note that this number
will always be greater than the index given to any bound variable at the same
λ-nesting level; therefore, the problem of bound / free variable overlap never
occurs. Note also that when we perform substitution on λdB we generally need
to update the indices given to all of the variables in order to account for their
new level of λ-nesting after the substitution.

Probably the most notable λ-calculus formalisation work in a de Bruijn setting
is an Isabelle/HOL proof development due to Tobias Nipkow. In [13] he defines
a de Bruijn representation of the terms of the standard λ-calculus as given
above, and gives the following definition of substitution:

i[k := s] =







i − 1 if k < i
s if k = i
i otherwise

tu[k := s] = t[k := s]u[k := s]

λt[k := s] = λ(t[k + 1 := lift s0])
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where lift s 0 increments all free variables in s. Observe that substitution as
defined here is quite complex and may involve updating all of the variables
in a term. Nipkow goes on to prove confluence of β-reduction, confluence of
η-reduction and confluence of the conjoint β ∪ η-reduction. The intricate way
in which substitution operates means that the bulk of Nipkow’s work goes into
proving subtle lemmas involving the behaviour of the set of free variables under
the lifting and substitution operations. However, working in this system enables
Nipkow to use the standard (first-order) inductive proof principles of first-order
abstract syntax. Much of his foundational work also employs diagrammatic
reasoning about general abstract rewrite systems and we actually reuse some of
his Isabelle work in this area for our own development. Huet [11] has also for-
malised some properties of the de Bruijn λ-calculus in the Gallina specification
language used by the Coq theorem prover. He works in the residual theory of
the λ-calculus, which we discuss in chapter 3 and derives β-confluence via the
so-called Prism Theorem.

The use of de Bruijn indices as opposed to one-sorted variable names is the de
facto standard for machine implementations of λ-calculus, since the nameless
terms can be manipulated cleanly and efficiently using first-order methods, and
no recourse is needed to the issue of variable-renaming with which we will
concern ourselves. However, to the human reader it presents several intuitive
problems (apart from the obvious illegibility of the representation). Firstly,
when performing a substitution, potentially all of the indices in the term must
be updated, and therefore parts of a term which have nothing to do with the
actual target of the substitution are affected. Secondly, substitution enjoys some
highly non-intuitive properties; for example, Nipkow [13] presents the following
property of substitution in the de Bruijn λ-calculus, which is used in proving
confluence of β ∪ η:

e[i := i] = e[i + 1 := i]

(This property is due to Nipkow’s definition of de Bruijn substitution; the
subtle manner in which it updates indices throughout a term ensures the result
of the substitution is the same on both sides. For a more detailed discussion
of why this holds the reader is advised to consult [13].) Lastly, and perhaps
most seriously, when examining de Bruijn representations of more complicated
languages (e.g. a functional programming language) it is not at all obvious
that the representation is correct. In other words, it can be hard to convince
oneself, both formally and informally, that the language being represented is in
fact the language under consideration. De Bruijn languages are thus not ideal
for human consumption.

1.2.4 Axiomatising α-equivalence

All the approaches we have considered so far employ first order abstract syntax
to represent λ-terms. In other words, we work with explicitly defined sets of
variables and in order to define substitution and reduction in the calculus (which
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we will do shortly) we need to reason about these object-level variable names.
However, much recent effort has been devoted to formalising the behaviour of
substitution and reduction directly at the level of α-equivalence classes (which
we refer to as the real λ-calculus or λreal). Working at the real level entails
the study of suitable proof methods for the equivalence classes since the usual
induction principles no longer come ‘for free’ once one abandons the first-order
abstract syntax of the calculus. In fact, Hofmann [9] reports that adding an
axiom of full recursion to higher-order abstract syntax results in an inconsistent
theory.

One of the most accessible works of this kind is the PVS formalisation of the
Church-Rosser theorem due to Ford-Mason [6]. Their approach uses the stan-
dard named-variable presentation used in textbooks and as defined in section
1.2.1, but explicitly formalises and makes use of the notion of α-equivalence.
β-reduction is then defined (non-inductively!) on the α-equivalence classes and
reasoning about reduction is carried out at the level of this quotient space. Nat-
urally, the usual first-order induction principles cannot be used in this setting;
all reasoning is carried out by induction on the rank of λ-terms, defined by
structural recursion as follows:

rk(e) = 1
rk(λx.e) = 1 + rk(e)
rk(e1e2) = 1 + rk(e1) + rk(e2)

In order for this definition to provide a well-founded induction principle, one
must then show that the rank of a term is strictly larger than the ranks of
any of its subterms. Ford-Mason define substitution with the help of a fresh-
naming function which renames any offending binders; they then show that
substitution is preserved over α-equivalence and from then on work at the level
of the quotient space (at which induction over the rank of an expression is
still possible) in order to prove Church-Rosser. A similar approach is taken by
Homeier in a proof of CR using the HOL theorem prover [10], except that the
involved proof principles are different; properties are proved both by strong rule
induction (which we will discuss in detail in chapter 2) and by induction on the
height of a term.

Proof developments which axiomatise the behaviour of λ-terms under α-equivalence
in this manner (including the above-mentioned contributions but see also Gordon-
Melham [7] and Gordon [8]) have the advantage that the treatment of variable
renaming (i.e. α-reduction) is typically built into the proof principles which one
employs and hence need not come into consideration when conducting reason-
ing. On the other hand, working with such higher-order proof principles does
not lend much formal support to the standard, first-order proof practices to
which we aim to stay faithful. In addition, the wide variety of subtly different
proof principles involved — which are often tailored to the particular theorem
prover or system under consideration — can make such proofs difficult to follow
or standardise.

All machine-checked proofs in the λ-calculus have, to the best of our knowledge,
used one of the alternatives presented in the last three sections (or a hybrid)
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to the first order abstract syntax presentation with one-sorted variables. The
reason for this is that this presentation is widely believed to present too many
problems with renaming issues to facilitate fully formal proof developments.
The main contribution of this dissertation will be to show that this is not,
in fact, the case — the naive presentation as used in hand proofs is powerful
enough to enable one to prove equational properties of the calculus (in a fully
formal, machine-checked manner) that until now have resisted formalisation in
this setup.

1.3 λvar: a first-order development

The aim of this project will be to formalise the proof of some important equa-
tional properties of the λ-calculus using the first-order abstract syntax pre-
sentation of the calculus with one-sorted variables (FOASV N ) as discussed in
section 1.2.1. We will now look at how one may present the λ-calculus over
FOASV N in such a way that it is possible to deal with the variable-renaming
issues we have identified. To do so, we first examine the notions of reduction
and structural induction in the calculus and then define its operations in such
a way as to ensure the compatibility of these notions.

1.3.1 Reduction relations

As mentioned in section 1.1, all structural manipulations of λ-terms must be
made explicitly in the form of reductions. A term is said to reduce to another
term if they are related by a reduction relation and we denote this reduction
by an infix arrow →. The main reduction relation we will consider is called
β-reduction, given schematically in the traditional λ-calculus as follows:

(λx.e1)e2 7→β e1[x := e2]

We consider the contextual closure of this relation; any suitable sub-term of
a given term may be β-reduced providing it is of the correct form. We will
formalise this notion later by giving a formal inductive definition of β-reduction.
The sub-term upon which a particular reduction step acts is called the redex
and is said to be contracted under the reduction step.

Notice that the above formulation of β-reduction involves the operation of sub-
stitution which we discussed earlier. Thus in order to define β-reduction cor-
rectly we must first ensure that the substitution invoked by the reduction is
itself correct, i.e. does not permit the capture of free variables.
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1.3.2 Structural induction for λ-terms over FOASV N

The principle of structural induction for terms over the first-order abstract
syntax of the λ-calculus can be stated as follows:

∀x, y, e1, e2. P (x) ∧ (P (e1) ∧ P (e2) → P (e1e2)) ∧ (P (e1) → P (λy.e1))
⇓
∀e. P (e)

Informally, to prove a property P of an arbitrary term e in a first-order abstract
syntax entails showing that P holds for any atomic construct in the syntax and
that if P holds for the subterms of a composite term in the syntax, then it holds
for the composite term itself. For the λ-calculus, the atomic terms are the vari-
ables and the composite terms are built using the application and abstraction
constructors. This proof technique comes ‘for free’ with any first-order abstract
syntax (see Burstall [2]) without recourse to semantical interpretations or other
derived proof methods. Since we wish to conduct our proofs at the level of
FOAS, this proof principle will turn out to be of vital importance.

1.3.3 Substitution à la Curry

We have already seen that to define the substitution operator −[− := −] by
naive syntactic replacement is not sufficient to ensure correctness of the op-
eration. In 1958, Curry [4] made the following formal, inductive definition of
substitution for the λ-calculus using first order abstract syntax and one-sorted
variables, assuming a linear order on the set of variable names:

x[y := e]Cu =

{

e if x = y
x otherwise

e1e2[y := e]Cu = e1[y := e]Cue2[y := e]Cu

(λx.e′)[y := e]Cu =







λx.e′ if x = y
λx.(e′[y := e]Cu) if x 6= y ∧ (x /∈ FV(e) ∨ y /∈ FV(e′))
λz.(e′[x := z]Cu[y := e]Cu) otherwise — first z not in e or e′

Observe that this notion of substitution is intuitively correct; free variables are
never unintentionally captured by λ-binders of the same name, due to the final
clause of the definition which renames any offending binders.

However, the Curry λ-calculus (λCurry) suffers from at least one serious problem
when we attempt to perform first-order equational reasoning with it — it will
not admit proof by structural induction if the proof involves the final clause
of substitution for λ-abstractions. This is because making the substitution
e′[x := z]Cu destroys the sub-term property, i.e. e′[x := z]Cu is not (in general)
a sub-term of λy.e′. This makes it impossible to apply the induction hypothesis.

Example 2 Consider the proof of the (trivial) lemma e[y := y]Cu = e by
structural induction on e.
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• Case e = x:

– Subcase x = y: x[y := y]Cu = y[y := y]Cu = y = x.

– Subcase x 6= y: x[y := y]Cu = x by definition.

• Case e = e1e2: We have (e1e2)[y := y]Cu = e1[y := y]Cue2[y := y]Cu and
so the result holds by applying the induction hypothesis to e1 and e2.

• Case e = λx.e′: There are three subcases to consider.

– Subcase x = y: Then (λy.e′)[y := y]Cu = λy.e′ by the first clause of
Curry’s definition.

– Subcase x 6= y∧y /∈ FV(e′): Then (λx.e′)[y := y]Cu = λx.(e′[y := y]Cu) =
λx.e′ by induction hypothesis.

– Subcase x 6= y ∧ y ∈ FV(e′): Then by the third clause of Curry’s
definition, (λx.e′)[y := y]Cu = λz.e′[x := z]Cu[y := y]Cu, where z is a
‘fresh variable’. But now we cannot proceed; our intended usage of
the induction hypothesis e′[x := x] = e′ is blocked because in general
e′[y := z] 6= e′.

Hence the principle of structural induction is broken when we work in λCurry.
However, we would like to be able to perform reasoning over the first order
abstract syntax of λvar using standard equational (rewriting) principles and
structural induction as given in section 1.3.1. We will now give a definition of
λvar that enables us to do so.

1.3.4 Defining substitution and reduction

Our approach to the situation outlined above is to ensure that when we reason
about substitutions, the offending clause of Curry’s definition is never invoked.
By doing so, we ensure the integrity of the sub-term property and so enable the
use of structural induction on λ-terms. We do so by making a key alteration to
Curry’s formulation of substitution.

Definition 2 (Substitution) The substitution operator, −[− := −], on λvar

is defined as follows:

x[y := e] =

{

e if x = y
x otherwise

e1e2[y := e] = e1[y := e]e2[y := e]

(λx.e′)[y := e] =

{

λx.e′[y := e] if x 6= y ∧ x /∈ FV(e)
λx.e′ otherwise

Note that this definition, like Curry’s, is total : this is crucial from our formal
viewpoint since all function definitions in Isabelle must be total on the given
domain. If substitution were not total, we would then have had to define a
notion of well-founded term (à la McKinna-Pollack) and conduct reasoning
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over the domain of well-founded terms only. Notice also that this definition is
only partially correct; in the case where Curry would perform a renaming step
to ensure correctness, we simply discard the offending substitution. It appears
as though there are more differences between the two — however, this is not so.
To see this, observe that our definition coincides with Curry’s when y = x, and
also when y /∈ FV(e′), since it should be obvious that the following property
holds of substitution:

y /∈ FV(e′) → e′[y := e] = e′

(We define the final clause the way we do to preserve totality of the substi-
tution function and in order to prove certain ‘renaming sanity’ properties of
substitution such as the above. We will present the formal proof of the above
result and other similar propositions in chapter 2.) The partial correctness of
our substitution is not an issue as we will ensure that β-reduction can only be
performed when the resulting substitution behaves correctly. In order to do so,
we need to first define the notion of the capturing variables of free occurrences
of a variable in a term:

Definition 3 (Capturing Variables) Define the capturing variables of free
occurrences of x, Captx(−), in a given term as:

Captx(y) = ∅

Captx(e1e2) = Captx(e1) ∪ Captx(e2)

Captx(λy.e) =

{

{y} ∪ Captx(e) if x 6= y ∧ x ∈ FV(e)
∅ otherwise

Notice that if we have the condition Captx(e1) ∩ FV(e2) = ∅, then the asso-
ciated substitution e1[x := e2] behaves correctly, i.e. the ‘incorrect’ clause of
substitution as we define it is never applicable. (In fact, this condition is the
weakest predicate ensuring correctness of substitution.) With this definition, in
place, we can now define β-reduction in such a way as to avoid variable capture:

Definition 4 (β-reduction) β-reduction on raw λ-terms is defined induc-
tively thus:

Captx(e1) ∩ FV(e2) = ∅
(β)

(λx.e1)e2 9 9 Kβ e1[x := e2]

e 9 9 Kβ e′

(Absβ)
λx.e 9 9 Kβ λx.e′

e1 9 9 Kβ e′1
(AppLβ)

e1e2 9 9 Kβ e′1e2

e2 9 9 Kβ e′2
(AppRβ)

e1e2 9 9 Kβ e1e
′

2

As our definition of substitution does not permit the renaming of λ-binders á la
Curry when invoked, we will sometimes need to explicitly perform a renaming
in order to enable the β-reduction of some term. We call this operation α-
reduction (or α-renaming) and define it as a reduction relation:
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Definition 5 (α-reduction) Indexed α-reduction on raw λ-terms is defined
inductively thus:

y /∈ Captx(e) ∪ FV(e)
(α)

λx.e
y9 9 Kiα λy.e[x := y]

e
y9 9 Kiα e′

(Absα)
λx.e

y9 9 Kiα λx.e′

e1

y9 9 Kiα e′1
(AppLα)

e1e2

y9 9 Kiα e′1e2

e2

y9 9 Kiα e′2
(AppRα)

e1e2

y9 9 Kiα e1e
′

2

Ordinary α-reduction is then given by as the union of the
y9 9 Kiα and we denote

this relation by 9 9 Kα.

We define α-equality on λ-terms as the reflexive, symmetric, transitive closure
of 9 9 Kα:

==α = (9 9 Kα ∪ L99 α)∗

Notice that our definition of ==α coincides with our informal notion of α-equality
introduced in section 1.2.1. Also note that the α-contraction rule has a side-
condition similar to that on the β-contraction rule in order to ensure correctness
of the corresponding substitution, and to ensure that no ‘extra’ variables are
captured by changing the binder λx to λy.

As one might expect, the introduction of side conditions on our β-reduction
relation, and on α-renaming, necessarily entails the introduction of similar con-
ditions on the lemmas in our proof development which considerably complicate
the proofs. It seems that the implicit assumption of other authors who have
undertaken automated proof developments in λ-calculus [Nipkow] is that au-
tomated reasoning with such heavily conditioned rules and proof goals is not
practically feasible. One objective of this paper will be to show that this is not,
in fact, the case — the proof of equational properties in this calculus, while
indeed substantially more involved, is nevertheless manageable.

1.3.5 (Connections with) Barendregt’s Variable Convention

In his book The Lambda Calculus: Its Syntax and Semantics [1], the stan-
dard reference for the λ-calculus, Barendregt makes the following remarks—
somewhat notorious within the literature—which we refer to collectively as the
Barendregt Variable Convention (BVC):

“2.1.12. CONVENTION. Terms that are α-congruent are iden-
tified. So now we write λx.x ≡ λy.y, etcetera.

2.1.13. VARIABLE CONVENTION. If M1, ...,Mn occur in a
certain mathematical context (e.g. definition, proof) then in these
terms all bound variables are chosen to be different from the free



1.3. λV AR: A FIRST-ORDER DEVELOPMENT 15

variables.

2.1.14. MORAL. Using conventions 2.1.12 and 2.1.13 one can
work with λ-terms in the naive way.”

Said differently, Barendregt’s stance is that the problem of avoiding free variable
capture when performing substitution can always be avoided provided one can
rename terms ‘for free’ as necessary at any point in the proof. Hence in his
pen-and-paper proofs, substitution and β-reduction on terms are performed
under the assumption that such problems never occur. However, from a formal
perspective this is clearly inadequate; it essentially amounts to ignoring the
issues with which we are concerned.

However, we will show in the course of our proof development that the as-
sumptions made by Barendregt in the above are actually correct; the operation
of β-reducing any term can be largely separated from the issue of variable-
renaming (given by α-reduction) and can proceed as one would expect in a
pen-and-paper proof. (This statement needs considerable justification and will
be expounded on in chapters 2 and 3.)

1.3.6 Isabelle: a generic theorem prover

Isabelle is a popular generic theorem prover developed at the University of
Cambridge and TU Munich. It can be instantiated with a number of object-
logics of which HOL (higher-order logic) is probably the most widely used.
Theorem-proving in Isabelle is tactic-based : theorems are stated by the user as
proof goals (possibly involving one or more premises), which are then refined or
broken down into smaller subgoals by successively invoking tactics which apply
the rules of the logic. Such rules are either supplied ‘built in’ by the definition of
the logic or derived from lemmas proven earlier by the user. Once the subgoals
in the proof become trivial they may be solved outright.

Isabelle also places a number of automatic tactics at the disposal of the user
which use either simplification (i.e. equational rewriting) or classical reasoning,
or a combination of both, to search for a proof or refinement of a goal. Such
tactics are particularly useful when dealing with lemmas which have lengthy
but reasonably trivial proofs, as such goals can often be proved entirely auto-
matically.

We use Isabelle to implement our proofs because it provides a high degree of
automation (via the simplifier and classical reasoner), but also because the
recursive style of definition (á la ML) is particularly suitable for our setup, and
because Isabelle has an extensive library of built-in theories and tactics.
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2. Confluence of the raw and real
λ-calculi

We now turn to a detailed examination of the Isabelle proof of a substantial
result in the equational theory of the λ-calculus — confluence:

Definition 6 (Confluence) A relation →R is said to have the diamond (⋄)
property if:

x →R y & x →R y′ implies ∃z. y →R z & y′ →R z

If the transitive-reflexive closure of →R (denoted by �R) has the diamond prop-
erty then →R is said to be confluent.

The primary goal of our this chapter will be the proof of confluence of 9 9 Kα∪β

in λvar. (We will then use this property to derive the usual confluence property
of the →β relation in λreal.)

2.1 Getting started in Isabelle

There are several possible interfaces through which one can use Isabelle but the
one we use is ProofGeneral on XEmacs (available from http://zermelo.dcs.ed.ac.uk/˜ proofgen/)
for its ease of use and proof script management facilities. Having installed Is-
abelle and ProofGeneral on your system (for a guide refer to [20]), both pro-
grams are invoked automatically when the user opens a file in XEmacs with the
appropriate filename extension.

Isabelle distinguishes between theory files (denoted by the extension .thy),
which contain definitions of types, constants, relations et cetera, and proof
script files (denoted by the extension .ML), which contain the actual tactic
scripts for proving the various lemmas of our proof development. A theory file
has at most one associated proof script file which must share the same name
so, e.g., the proof scripts in MyProof.ML would use the definitions contained
in MyProof.thy. However, a theory may itself depend on several subtheories so,
e.g., we can make all the definitions and lemmas proved in the theory MyProof
available to the new theory MyNextProof simply by adding an appropriate
dependency to MyNextProof.thy.

In accordance with this bottom-up philosophy to building proofs, we start in
Isabelle by defining the basics of λvar as given in chapter 1 and by proving
increasingly complex lemmas in order to prove our main result. However, note
that determining what these lemmas should be does require some deconstruc-
tion of the original goal. Thus a combination of bottom-up and top-down
methodologies is necessary for any large proof development.

17
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For the interested reader, Appendix A contains code listings for all the theory
files used during our proof development as well as statements of all of the
individual lemmas proved. The full tactic scripts are not included here but are
available from the author’s homepage at http://www.dcs.ed.ac.uk/̃jjb/.

2.2 Basics of λvar

We start by creating a new file Lambda.thy which will contain our definitions of
the λvar-calculus and associated notions (free variables of a term, for example).
Initially we import the standard Isabelle/HOL theory library ‘Main’ as follows:

Lambda = Main + Variables +

The theory ‘Variables’ contains an implementation of the set of one-sorted vari-
ables as an isomorphic copy of the natural numbers. In fact, the main reason
for using this isomorphism rather than using the natural numbers directly is
that the syntax we use for substitution -[-:=-] already has a definition on
the natural numbers in Isabelle and so using a new datatype generated from
the naturals avoids the problems caused by overloading operators. In any case
importing ‘Variables’ gives us a type of one-sorted variables which is called var.

The inductive definition of a λ-term can then be implemented as an ML-style
datatype lterm:

datatype lterm = Var var | ‘‘$’’ lterm lterm (infixl 200)

| Abs var lterm

Note that we use the infix symbol $ for application; the use of the infixl

indicates that application associates to the left, and the number 200 is the
precedence of the operator. We can then define the free variables of an lterm

by structural recursion on the datatype exactly as given in chapter 1:

consts

FV :: lterm => var set

primrec

FV Var ‘‘FV(Var x) = {x}’’
FV App ‘‘FV(e1 $ e2) = (FV(e1) Un FV(e2))’’

FV Abs ‘‘FV(Abs x e) = (FV(e) - {x})’’

Note that before we can define the function FV(-) we must first declare its
type in the consts section of the theory file. In the case of FV(-) we need a
function which takes a λ-term and returns the set of free variables which occur
in it, so its type is naturally lterm => var set. Then the keyword primrec

indicates the declaration of a so-called primitive recursive function which is
defined by structural recursion on the constructors of a datatype. Each rule is
given an identifier on the left hand side and the rules themselves are contained in
quotation marks. We then go on to define BV(−), Captx(−), and substitution
in a manner very similar to FV(−) (not given here, but see Appendix B).
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In the corresponding proof script file Lambda.ML, we can now start to prove
some basic properties of the λvar-calculus.

2.2.1 A First Proof

For our first proof in Isabelle we return to our example of section 1.3.3; the
proof of the ‘Proposition of Renaming Sanity’: e[x := x] = e. We state this as
a goal for proof in Isabelle as follows:

Goal ‘‘e[x:=Var x] = e’’;

Isabelle’s response is to make the goal the top level of the proof state:

Level 0 (1 subgoal)

e[x:=Var x] = e

1. e[x:=Var x] = e

We can refine a subgoal in Isabelle by deploying one of its many tactics, which
may incorporate some degree of automation. We saw in chapter 1 that the
obvious way to proceed is by structural induction on the λ-term e. Isabelle
provides a tactic induct tac for just this purpose and we invoke it with the
command by(), stating the term over which the induction is to take place and
also the subgoal upon which the tactic is to operate:

by(induct tac ‘‘e’’ 1);

Level 1 (3 subgoals)

e[x:=Var x] = e

1. !!var. Var var[x:=Var x] = Var var

2. !!lterm1 lterm2.

[| lterm1[x:=Var x] = lterm1; lterm2[x:=Var x] = lterm2 |]
==> (lterm1 $ lterm2)[x:=Var x] = lterm1 $ lterm2

3. !!var lterm.

lterm[x:=Var x] = lterm

==> Abs var lterm[x:=Var x] = Abs var lterm

Let us examine the new Isabelle proof state. The level of the state is simply the
number of tactic invocations used so far. The numbered subgoals are listed after
the statement of the main goal — as one would expect, there are 3 subgoals
corresponding to the 3 cases of the structural induction. Note that the second
and third subgoals contain premises (separated from the required conclusion
by ==>) which are just the inductive hypotheses for the induction. Multiple
premises are separated by semicolons. Note also that the tactic also introduces
(meta-level) universal quantification over the terms in the subgoals, denoted in
Isabelle’s logical framework by !!.

Each of these subgoals is fairly trivial as they can be solved simply by expanding
the definition of substitution. To do this we can either use a simplification or
rewriting tactic such as Asm simp tac to each subgoal in turn, or we can apply
Auto tac, which applies the simplifier to all of the subgoals of the proof state:
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by(Auto tac);

Level 2

e[x:=Var x] = e

No subgoals!

As there are no remaining subgoals, this proof is now finished and we can store
it for future use using the qed command:

qed ‘‘renaming sanity 1’’;

We can now use the proposition e[x:=Var x] = e in future proofs by referring
to it explicitly by name, or we can add it to the set of default simplification
rules with the command Addsimps[renaming sanity 1].

Hopefully the reader will have gained some insight by now into how one might
go about conducting a proof in Isabelle/HOL. Although the proof we have just
considered required only 2 tactic invocations and was almost entirely automatic,
the proofs of later results are very involved and can require many dozens of
tactic invocations. We will therefore only concentrate on the interesting points
of the Isabelle development from now on and refer the interested reader to the
complete development available from the author’s homepage for full details.

We can prove many propositions similar to the one above by employing the
same technique of structural induction followed by automatic simplification.
We call such results propositions of ‘renaming sanity’ because they correspond
to properties of terms (or sets of variables) under substitution which we would
intuitively expect to hold. A selection of these are listed below. (Note that
Isabelle uses : for set membership and ~: for non-membership.)

Proposition 1 (Renaming Sanity) For all raw λ-terms e, e’:

• x ~: FV e ==> e[x:=e’] = e

• y ~: FV e ==> e[x:=Var y][y:=Var x] = e

• Capt x e <= BV e

• x : FV (e[y:=e’]) ==> x : FV e’ | x : FV e

• [| x : FV e; x ~= y |] ==> x : FV (e[y:=e’])

• y ~: FV e ==> Capt y e = {}

• [| y ~: FV e; y ~= z |] ==> y ~: FV (e[x:=Var z])

Proof All automatic by structural induction on e. �
2.3 Substitution lemmas

Armed with our low-level propositions, our first major proof target is a version
of Barendregt’s Substitution Lemma. Recall however that our version of sub-
stitution is only partially correct and so we must impose side-conditions on our
corresponding lemma to ensure correctness of all the involved substitutions.
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Lemma 2 (Substitution) For any λ-terms e1, e2, e3 and variables x,y

we have:

y 6∈ FV(e2) ∧ x 6= y ∧
(Captx(e3) ∩ FV(e2) = ∅) ∧ (Capty(e1) ∩ FV(e3) = ∅)∧
(Captx(e1) ∩ FV(e2) = ∅) ∧ (Captx(e1[y := e3]) ∩ FV(e2) = ∅)
⇓
e1[y := e3][x := e2] = e1[x := e2][y := e3[x := e2]]

The Isabelle formulation of this result is as follows:

[| Capt x e3 Int FV e2 = {}; Capt y e1 Int FV e3 = {};

Capt x e1 Int FV e2 = {}; Capt x (e1[y:=e3]) Int FV e2 = {};

y ~: FV e2; y ~= x |] ==>

e1[x:=e2][y:=e3[x:=e2]] = e1[y:=e3][x:=e2]

Furthermore, if we have that x /∈ FV(e1) then the following alternative result
holds (we omit the mathematical notation):

[| Capt x e3 Int FV e2 = {}; Capt x (e1[y:=e3]) Int FV e2 = {};

Capt y e1 Int FV e3 = {}; Capt y e1 Int FV (e3[x:=e2]) = {};

x ~: FV e1; y ~= x |] ==>

e1[y:=e3[x:=e2]] = e1[y:=e3][x:=e2]

Proof Both results follow by structural induction in the term e1. The vari-
able and application cases are straightforward and the abstraction case follows
by a painstaking case-splitting on variable names and the subcases for correct-
ness of substitution. �
2.4 Diamond property of Parallel β up to BCF-Initiality

We will now move on to consider the notion of reduction in our calculus. Al-
though our eventual goal is confluence of 9 9 Kα∪β , we will start by considering
β-reduction separately and first prove a diamond property of a so-called parallel
reduction relation 9 9qKβ which can contract any number of disjoint β-redexes in
parallel:

Definition 7 (Parallel β-reduction) Parallel β-reduction on raw λ-terms
is defined inductively thus:

x 9 9qKβ x

e 9 9qKβ e′

λx.e 9 9qKβ λx.e′

e1 9 9qKβ e′1 e2 9 9qKβ e′2

e1e2 9 9qKβ e′1e
′

2

e1 9 9qKβ e′1 e2 9 9qKβ e′2 Captx(e′1) ∩ FV(e′2) = ∅

(λx.e1)e2 9 9qKβ e′1[x := e′2]

The Isabelle formulation of this relation is as follows:
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inductive par_beta

intrs

var "Var x -|>B Var x"

abs "s -|>B t ==> Abs x s -|>B Abs x t"

app "[| s -|>B s’; t -|>B t’ |] ==> s $ t -|>B s’ $ t’"

beta "[| s -|>B s’; t -|>B t’; (Capt x s’) Int FV(t’) = {}|]

==> (Abs x s) $ t -|>B s’[x:=t’]"

To define a relation inductively in Isabelle we use the keyword inductive fol-
lowed by the relation identifier; then the (named) introduction rules for the re-
lation follow the keyword intrs. The type for the relation (in this case (lterm

* lterm) set) must also be defined in the consts section of the theory file and
appropriate translations for the syntax -|>B added. Once a relation has been
defined in this way the introduction rules may be added to Isabelle’s classical
reasoner using a command such as AddSIs par beta.intrs.

We now proceed to prove some useful properties of parallel β-reduction.

Lemma 3 (Variable Monotonicity Under 9 9qKβ) For any λ-term t:

• t -|>B t’ ==> FV t’ <= FV t

• t -|>B t’ ==> BV t’ <= BV t

Proof First note there is nothing surprising about this result as, clearly, -|>B
cannot create new bound or free variable names. Both proofs can be conducted
either by structural induction in t or, more efficiently, by rule induction over
the contraction t -|>B t’. The rule induction principle (par beta.induct),
which is supplied automatically by Isabelle, is complex to state but essentially
involves showing that the desired property is preserved over applications of
the introduction rules. We illustrate this technique with an example of its
application for the first monotonicity result above:

Goal ‘‘t -|>B t’ ==> FV t’ <= FV t’’

by(etac par_beta.induct 1);

Level 1 (4 subgoals)

t -|>B t’ ==> FV t’ <= FV t

1. !!x. FV (Var x) <= FV (Var x)

2. !!s t x. [| s -|>B t; FV t <= FV s |]

==> FV (Abs x t) <= FV (Abs x s)

3. !!s s’ t t’.

[| s -|>B s’; FV s’ <= FV s; t -|>B t’; FV t’ <= FV t |]

==> FV (s’ $ t’) <= FV (s $ t)

4. !!s s’ t t’ x.

[| s -|>B s’; FV s’ <= FV s; t -|>B t’; FV t’ <= FV t;

Capt x s’ Int FV t’ = {} |]

==> FV (s’[x:=t’]) <= FV (Abs x s $ t)

Since the induction principle is supplied as an elimination rule by Isabelle
we use the tactic etac to perform elimination resolution with the subgoal.
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As expected, the induction yields one subgoal for each introduction rule of
the relation. Premises occurring in an introduction rule are translated into
appropriate induction hypotheses in the premises of the corresponding subgoals.

It should be obvious that the first three subgoals are all immediate by induction
and indeed these can be solved automatically by Isabelle. The fourth goal
follows by the induction hypothesis and two of our earlier ‘renaming sanity’
propositions concerning the behaviour of FV(−) under substitution. �
Lemma 4 (Substitutivity of Parallel-β) For any λ-terms s, t:

[| s -|>B s’; t -|>B t’; Capt x s Int FV t = {};

Capt x s’ Int FV t’ = {} |]

==> s[x:=t] -|>B s’[x:=t’]

Proof The most efficient approach is by rule induction in s -|>B s’ although
structural induction on s is also possible. (The proof burden is actually the same
in either case but the case splitting is a little kinder when rule induction is used.)
In order to ensure that the induction takes place over all of the premises the
goal must first be stated in Isabelle as:

s -|>B s’ ==> t -|>B t’ --> Capt x s Int FV t = {} -->

Capt x s’ Int FV t’ = {} --> s[x:=t] -|>B s’[x:=t’]

which, once proved, can easily be manipulated to have the form in the statement
of the lemma above.

Rule induction again yields four subgoals of which the first three follow fairly
straightforwardly by induction. Some work however is needed to show that
the premises of the lemma are also preserved over the induction. For the final
subgoal, we need to substantiate:

Level 25 (1 subgoal)

1. !!s s’ ta t’a xa.

[| s -|>B s’;

t -|>B t’ -->

Capt x s Int FV t = {} -->

Capt x s’ Int FV t’ = {} --> s[x:=t] -|>B s’[x:=t’];

ta -|>B t’a;

t -|>B t’ -->

Capt x ta Int FV t = {} -->

Capt x t’a Int FV t’ = {} --> ta[x:=t] -|>B t’a[x:=t’];

Capt xa s’ Int FV t’a = {}; t -|>B t’;

Capt x (Abs xa s $ ta) Int FV t = {};

Capt x (s’[xa:=t’a]) Int FV t’ = {} |]

==> (Abs xa s $ ta)[x:=t] -|>B s’[xa:=t’a][x:=t’]

which needs considerable work to prove. There are 3 subcases to consider:
xa = x, xa 6= x ∧ xa ∈ FV(t), and xa 6= x ∧ xa /∈ FV(t). This is achieved in
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Isabelle by using the tactic case tac with an appropriate predicate, e.g. for
the first subcase we use:

by(case_tac‘‘xa = x’’ 1);

Each subcase splits into further subcases and uses a Substitution Lemma. The
number of case-splits and level of detail required to prove substitutivity of 9 9qKβ

makes this one of the most challenging technical results of the project. �
In order to prove the diamond property of 9 9qKβ, we follow a proof technique
due to Takahashi [16] which employs the complete development β-relation, 9 9 Kpβ,
so-called because it attempts to contract all of the redexes in a term:

Definition 8 (Complete β-development) Complete β-development on raw
λ-terms is defined inductively thus:

x 9 9 Kpβ x

e 9 9 Kpβ e′

λx.e 9 9 Kpβ λx.e′

e 9 9 Kpβ e′

xe 9 9 Kpβ xe′

e1e2 9 9 Kpβ e′ e3 9 9 Kpβ e′3

(e1e2)e3 9 9 Kpβ e′e′3

e1 9 9 Kpβ e′1 e2 9 9 Kpβ e′2 Captx(e
′

1) ∩ FV(e′2) = ∅

(λx.e1)e2 9 9 Kpβ e′1[x := e′2]

and the corresponding Isabelle definition is:

inductive comp_dev

intrs

var "Var x ->CD Var x"

abs "s ->CD t ==> Abs x s ->CD Abs x t"

appV "s ->CD t ==> Var x $ s ->CD Var x $ t"

appA "[| (t1 $ t2) ->CD t’; s->CD s’ |]

==> ((t1 $ t2) $ s) ->CD (t’ $ s’)"

beta "[| s ->CD s’; t ->CD t’; (Capt x s’) Int FV(t’) = {} |]

==> (Abs x s) $ t ->CD s’[x:=t’]"

It is not too difficult to see that 9 9 Kpβ in fact is only defined for those λ-terms
in which all (potential) redexes satisfy the side condition on the β-contraction
rule. We can show that any term has a complete development provided it is
of a form which, in line with earlier work ([17], [18]), we refer to as Barendregt
Conventional Form (BCF):

Definition 9 (Barendregt Conventional Form) A raw λ-term is said to
be a BCF term if all of the bound variables occurring in it are different and
furthermore are different from all of the free variables.

In Isabelle, we define BCF via an auxiliary predicate UB(−) on terms which is
true iff all of the bound variables in the term are different:

primrec

UB_Var "UB(Var x) = True"
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UB_App "UB(e1 $ e2) = (UB(e1) & UB(e2) & (BV(e1) Int BV(e2) = {}))"

UB_Abs "UB(Abs x e) = (UB(e) & x~:BV(e))"

defs

BCF "BCF(e) == (UB(e) & (FV(e) Int BV(e) = {}))"

It should hopefully be clear that renaming a term to an equivalent BCF term be-
fore reducing it is the ‘natural’ thing to do when working under the Barendregt
Variable Convention. Later, we will show formally that it is always possible to
do so via a sequence of α-reductions. For now, we prove two important lemmas
concerning 9 9 Kpβ and 9 9qKβ:

Lemma 5 (BCF Enables 9 9 Kpβ) For all raw λ-terms s:

BCF(s) ==> (EX t. s ->CD t)

(Note that EX in Isabelle/HOL stands for existential quantification.)

Proof By structural induction in s. When s is an application, s = s1 $ s2,
we need to case-split on the constructors of s1 which can be done using the com-
mand by(case tac ‘‘s1’’ 1);. (In this case case tac automatically recog-
nises s1 as a term rather than a predicate as in earlier proofs.) The only case
which does not follow straightforwardly by induction is the case when s1 is
an abstraction (and hence s is a redex), in which case we use some simple
properties about disjointness of variable names in BCF terms and a variable
monotonicity result for ->CD similar to that for -|>B in Lemma 2. (In fact,
we can use the same lemma and just prove that ->CD <= -|>B, which can be
proved automatically after rule induction on ->CD.) �
Our next result is best understood in our diagram notation(taken from [17])
which should be read as follows: assume the universal quantification of the
terms given as solid circles and reductions given as black arrows, and conclude
the existence of the terms given as empty circles and reductions given as shaded
arrows.

Lemma 6 (CD / Parallel-β Triangle)

•

•

•

β

β||

β

||

s ->CD t’ ==> ALL t. s -|>B t --> t -|>B t’

(Note that ALL in Isabelle/HOL stands for universal quantification. Also note
that --> stands for implication; this should not be confused with ==> which
separates the premises and conclusion of an Isabelle goal.)
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Proof

by(etac comp_dev.induct 1);

by(ALLGOALS strip_tac);

by(ALLGOALS (blast_tac (claset() addSIs[par_beta_subst])));�
The Isabelle proof as given above is very short but contains some interesting

features. The first tactic is just the application of rule induction for ->CD as we
have seen before. The second line uses the special HOL tactic strip tac which
removes all object-level implications and universal quantifications and moves
them to the level of the logical framework, allowing easier manipulation of the
subgoal. For example, applying strip tac to the main goal above would yield:

[| s ->CD t’; s -|>B t |] ==> t -|>B t’

The tactical ALLGOALS applies the specified single-goal tactic to all of the
subgoals in the current proof state. Tacticals are functions for combining tactics;
Isabelle provides many built-in tacticals but new ones may also be constructed
by the user. (All of the proofs presented here use only the standard tactics and
tacticals, however.)

Lastly, we call Isabelle’s classical reasoner on all of the subgoals using the tactic
blast tac. The proof does not work however unless the reasoner ‘knows about’
the substitutivity lemma for -|>Bwhich has the Isabelle identifier par beta subst

(Lemma 3). Therefore we add the lemma as an introduction rule to the set
of rules available to the reasoner (called the claset). We do this within the
tactic invocation and not as a separate command because we wish to add
par beta subst to the claset for the duration of this tactic only. Therefore
we do not permanently alter the claset for future proofs. This is the safest
approach when conducting a large development, as it is not always possible
to determine what the effect on the classical reasoner will be (if any) when
adding new rules to its claset. In the worst case, adding new rules can lead to
non-termination in the automatic tactics employed by the reasoner. It should
never lead to unsoundness since only rules built-in to the logic or derived from
previously proven lemmas may be added to the claset.

Lemma 7 (Diamond property of Parallel-β)

•

• •

◦

(BCF )

β||

β
||

β
||

β

||

[| BCF s; s -|>B t; s -|>B t’ |]

==> EX s’. t -|>B s’ & t’ -|>B s’

Proof The result follows in an aesthetically pleasing manner from the two
previous lemmas. By Lemma 4, since s is a BCF it has a complete development,
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i.e. for some term u, s ->CD u. By two applications of Lemma 5, we then have
that t -|>B u and t’ -|>B u thereby giving the required existential witness
for the proof. The Isabelle proof is similarly concise:

by(dtac BCF_implies_exists_CD 1);

by(etac exE 1);

by(dtac par_beta_CD_triangle 1);

by(Blast_tac 1);

The tactic dtac performs destruct resolution with the subgoal; it matches the
first premise of the specified rule with one of the subgoal premises and replaces
it with the conclusion of the rule. In this case the subgoal premise BCF(s)

is replaced with the conclusion EX u. s ->CD u of Lemma 4 (bound to the
identifier BCF implies exists CD). The elimination rule exE is then applied
to remove the object-level quantifier. To apply Lemma 5 we then perform
destruct-resolution again with the new subgoal premise s ->CD u to give the
new subgoal:

[| s -|>B t; s -|>B t’; ALL t. s -|>B t --> t -|>B ta |]

==> EX s’. t -|>B s’ & t’ -|>B s’

which can now be solved automatically by an invocation of the classical reasoner
(Blast tac) with the default claset. �
One interesting point about our use of Takahashi’s proof methodology employ-
ing the complete development ‘trick’ is that it provides a considerable practical
simplification over a direct proof of the diamond property of 9 9qKβ as well as
being more aesthetically pleasing. The reason for this is that knowing that a
term has a complete development immediately entails, by the induction hypoth-
esis, that no β-contraction on the term can ever be blocked (i.e. for no redex
(Lxe1)e2 do we have Captx(e1) ∩ FV(e2) 6= ∅). Therefore the bulk of the proof
burden is to show that BCF terms have a complete development, which as we
have seen is straightforward by structural induction. A direct proof of ⋄(9 9qKβ),
on the other hand, would require us to justify the enabling of the reductions
needed to close the diagram by reasoning about the behaviour of BCF terms
under reduction. This entails substantial complication in our setup.

In [13], Nipkow proves the diamond property of a parallel-β relation for the
λ-calculus using de Bruijn indices, both directly and via Takahashi’s method.
He postulates:

“[The question is whether] anything has been gained by the for-
malization of Takahashi’s proof. The answer seems to be no . . .
the ingenuity of her approach is wasted in the presence of mindless
search procedures, aka tactics.”

Although this is true for Nipkow’s development — his use of de Bruijn indices
allow the many case distinctions in the direct proof to be dealt with automat-
ically — we feel, for the reasons given above, that this is not true in the case
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of our own development. This is mainly because our use of conditional rules
causes difficulties for Isabelle’s automatic tactics. (We will return to this topic
later in chapter 4.)

2.5 Weak α0 / β commutativity

The aim of this section is to develop our theory of α-reduction in λvar in order to
arrive at a result showing that parallel-β reduction commutes with α-renaming
under suitable conditions. We start by translating our definition of α-reduction
(Definition 5) into an appropriate Isabelle relation.

inductive sq_alpha

intrs

alpha "[|x~=y; y~:(FV(e) Un Capt x e)|] ==>

((Abs x e),y) ->sA (Abs y (e[x:=Var y]))"

inductive i_alpha

intrs

index "(s,y) ->sA t ==> (s,y) ->iA t"

aappL "(s,y) ->iA t ==> (s$u,y) ->iA t$u"

aappR "(s,y) ->iA t ==> (u$s,y) ->iA u$t"

aabs "(s,y) ->iA t ==> ((Abs x s),y) ->iA (Abs x t)"

Note that we have used two inductive relations here in order to separate out
the actual α-renaming step from the contextual closure of the relation but this
is, as such, not necessary for conducting proofs and we could equally have
used a single inductive definition as for -|>B. The non-indexed α-relation and
its inverse are defined inductively via ->iA in the obvious way as alpha and
rev alpha respectively (with the infix syntax ->A and A<-). We can thus easily
define α-equality, ==α and the reflexive-transitive closure of α-reduction, 9 9 KKα,
via the following syntax translation:

translations

"s ->>A t" == "(s,t) : alpha^*"

"s =A= t" == "(s,t) : (alpha Un rev_alpha)^*"

where ^ * in Isabelle denotes the Kleene-closure operator.

With these definitions in place we can start to prove some important properties
about α-reduction:

Lemma 8 (9 9 Kα-symmetry)

• •
α

α

For all raw λ-terms e,e’:

e ->A e’ ==> e’ ->A e



2.5. WEAK α0 / β COMMUTATIVITY 29

Proof We prove the equivalent symmetry property for ->iA; symmetry of
->A follows automatically from it.

Goal "((e,y) ->iA e’) ==> (EX x. ((e’,x) ->iA e))";

by(etac i_alpha.induct 1);

All cases of the rule induction can be solved automatically apart from the case
(e,y) ->sA e’, i.e. when e is contracted. To generate the proper inductive hy-
potheses we must invoke a ‘generation lemma’ which we create via the mk cases

function as follows:

val sq_alpha_E = sq_alpha.mk_cases "(e,y) ->sA e’";

This generation lemma, which is supplied as an elimination rule, can then be
applied to the premise (e,y) ->sA e’ using etac sq alpha E in the subgoal
to yield the appropriate induction hypotheses in the subgoal:

[| x ~= y; e = Abs x ea; e’ = Abs y (ea[x:=Var y]); y ~: FV ea;

y ~: Capt x ea |]

==> EX x. (e’, x) ->iA e

The remaining proof burden is then non-trivial but can be resolved using sim-
plification and a number of our “renaming sanity” propositions showing that
side-conditions enabling the “reverse” α-reduction are enabled. �
Lemma 9 (==α is Directable) For all raw λ-terms e, e’:

e =A= e’ ==> e’ ->>A e

Proof This property can easily be seen by symmetry of 9 9 Kα since any path
of α-reductions can be made unidirectional by a finite number of applications
of symmetry. A blackboard proof involving a sketch of a path from e to e’

would be almost direct. In Isabelle, however, we need to prove the property by
induction in the reflexive-transitive generation of =A= (recall that although =A=

is symmetric as well as reflexive and transitive, it is defined as the reflexive-
transitive closure of (->A Un A<-), so we need to induct over this first and then
use the symmetric definition). This is supplied as a built-in induction principle
rtrancl induct in Isabelle:

Goal "(e =A= e’) ==> (e’ ->>A e)";

by(etac rtrancl_induct 1);

by(Full_simp_tac 2);

Level 2 (2 subgoals)

e =A= e’ ==> e’ ->>A e

1. e ->>A e

2. !!y z. [| e =A= y; y ->A z | y A<- z; y ->>A e |]

==> z ->>A e
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When we perform this kind of induction there are always two cases; the reflexive
(or base) case and the transitive (or inductive) case. Since ->>A is reflexive
by definition the first subgoal is trivial. For the transitive case the inductive
hypothesis is y ->>A e; we need to substantiate that in fact z ->>A e given
the disjunction in the subgoal premises. To proceed, we automatically solve the
first subgoal and perform disjunction elimination on the second:

by(Fast_tac 1);

by(etac disjE 1);

Level 4 (2 subgoals)

e =A= e’ ==> e’ ->>A e

1. !!y z. [| e =A= y; y ->>A e; y ->A z |] ==> z ->>A e

2. !!y z. [| e =A= y; y ->>A e; y A<- z |] ==> z ->>A e

For the first subgoal we have that z ->A y by Lemma 8; for the second we also
have that z ->A y by definition of A<-. The conclusion follows in both cases
by applying the induction hypothesis. �
Lemma 10 (Substitutivity of (indexed) 9 9 Kα) For all raw λ-terms s, t:

• [| (s,y) ->iA t; Capt x s Int FV(u) = {};

Capt x t Int FV(u) = {}; x~=y |]

==> (s[x:=u],y) ->iA t[x:=u]

• [|(s,y) ->iA t; x~=y|] ==> (e[x:=s],y) ->iA e[x:=t]

Proof Both properties follow by rule induction on (s,y) ->iA t. The dif-
ficult case for both results is when s is a redex which is contracted, in which
case the conclusion follows by some complex but uninteresting reasoning about
variable names showing the satisfaction of the side-conditions necessary for the
appropriate contractions. For the first result (which is much harder than the
second) a Substitution Lemma is also required. �
We are almost ready now to prove the commutativity result which we seek.
However, we are not quite ready; observe that if we make a bad choice for the
new bound variable name when we α-reduce a term, there is a possibility of
invalidating a β-redex (and hence the two reductions cannot commute):

(λx.(λy.x))z 9 9 Kβ λy.z

(λx.(λy.x))z 9 9 Kα (λx.(λz.x))z

and note that (λx.(λz.x))z does not β-reduce because the side condition is no
longer satisfied. However, this clearly cannot happen if the name chosen for the
alpha-reduction does not appear anywhere in the term. Thus we introduce the
notion of fresh-naming α-reduction, 9 9 Kα0

:
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Definition 10 (α0-reduction) Fresh-naming α-reduction, 9 9 Kα0
, is defined

on raw λ-terms as follows:

e 9 9 Kα0
e′ ⇔def ∃z.e′

e9 9 Kiα0
z ∧ z /∈ FV(e) ∪ BV(e)

We define this as a relation ->A0 in Isabelle via an indexed version of 9 9 Kα0
,

->iA0:

inductive i_alpha0

intrs

ialpha0 "[|(s,y) ->iA t; y~:(FV(s) Un BV(s))|]

==> (s,y) ->iA0 t"

inductive alpha0

intrs

strip "(s,y) ->iA0 t ==> s ->A0 t"

The transitive-reflexive closure of ->A0 is denoted ->>A0.

We are now ready to prove the main result of this section.

Lemma 11 (Weak α0 / Parallel-β Commutativity)

•

• •

◦

β

|| α
0

α

β

||

[| s ->A0 t; s -|>B t’ |] ==> (EX s’. t -|>B s’ & t’ ->>A s’)

Proof By induction in the reflexive-transitive generation of ->>A0. The re-
flexive step is trivial. For the inductive step we need to show that the lemma
holds with ->A0 in place of ->>A0 and the case then goes through easily by
induction. To do so, we first prove the following lemma:

(s,y) ->iA0 t ==> ALL t’. s -|>B t’ -->

(EX s’. t -|>B s’ & (t’,y) ->>iA s’)

which once proved can easily be ‘lifted’ to the non-indexed versions ->A0 and
->>A and put into the required form above. The lemma follows by rule induc-
tion on (s,y) ->iA0 t and then an involved case-splitting on s -|>B t’; the
details are substantial (over 100 tactic invocations) and are omitted here. The
proof relies crucially upon the careful definition of ->>iA, which is not the true
reflexive-transitive closure of ->iA as it can rename many redexes but is lim-
ited to always using the same name each time. Hence it is indexed by a single
variable rather than a vector of variables. This allows both the substitutivity
results of Lemma 10 to be easily lifted from ->iA to ->>iA; these results have
crucial applications in the proof. (NB. it is straightforward to show that ->>iA
is a subset of ->>A so that the lemma holds for ->>A as required.)
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The interested (or concerned!) reader is advised to study the relevant theories
Alpha, AlphaZero, and WeakABComm of the complete Isabelle development
at the author’s homepage for further details. �
2.6 Fresh-naming α-confluence with BCF-Finality

So far we have proved that 9 9qKβ has the diamond property (up to BCF-initiality)
and commutes with 9 9 KKα0

. Our next objective is to show a diamond property
of 9 9 KKα itself, i.e. to show that any two α-divergences from a raw λ-term can
be α-renamed to the same term. In fact, we will show that α0-reduction is
enough to resolve the divergence and that furthermore the resulting term can
be chosen to be a BCF.

NB. In the following lemmas and diagrams the notation 9 9◦α0
is used to denote

the reflexive (not reflexive-transitive) closure of 9 9 Kα0
, and the notation

→

zi to
denote a vector of variable names.

Definition 11 (Reflexive α0-reduction) The reflexively closed fresh-naming
α relation 9 9◦α0

is defined in Isabelle as follows:

inductive i_alpha1 (* reflexive version of i_alpha0 *)

intrs

var "x~=y ==> (Var x,y) ->iA1 Var x"

contr "y~:(BV(Abs x e) Un FV(Abs x e)) ==>

(Abs x e,y) ->iA1 Abs y (e[x:=Var y])"

abs "[|(e,y) ->iA1 e’; x~=y|] ==>

(Abs x e,y) ->iA1 Abs x e’"

appL "[|(e1,y) ->iA1 e1’; y~:(BV(e2) Un FV(e2))|] ==>

(e1 $ e2,y) ->iA1 e1’ $ e2"

appR "[|(e2,y) ->iA1 e2’; y~:(BV(e1) Un FV(e1))|] ==>

(e1 $ e2,y) ->iA1 e1 $ e2’"

inductive cl_ialpha1 (* equivalent to (alpha0)^* *)

intrs

refl "(e,[]) ->>iA1 e"

trans "[|(e1,xs) ->>iA1 e2; (e2,x) ->iA1 e3|]

==> (e1,x#xs) ->>iA1 e3"

Note that the reflexive-transitive closure ->>iA1 is indexed by a list of variables
(as it can choose a different fresh name for each reduction it performs). Hence
it cannot be defined simply as the Kleene closure of ->iA1. It can be proved
however (straightforwardly by rule induction) that ->>iA1 is exactly equivalent
to the non-indexed ->>A0. Thus although we work with the reflexive ->iA1 and
->>iA1, all the results we prove for ->>iA1 automatically hold for ->>A0 so this
need not be a source of concern. The reason for using ->iA1 and not ->iA0 in
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the following lemmas is that some cases of the results require the single-step α0

relation to be reflexively closed in order to go through.

Lemma 12 (Semi-confluence of 9 9 KKα0
) For any z and

→

zi such that z 6∈
{zi}:

•

• •

◦

iα
0

z

iα
0

→

zi

iα
0

z

iα
0

→

zi

(e1,zs) ->>iA1 e2 ==> ALL e3. (e1,z) ->iA1 e3 -->

~(z mem zs) --> (EX e4. (e2,z) ->iA1 e4 & (e3,zs) ->>iA1 e4)

(Note that mem in Isabelle is a predicate for list membership.)

Proof By induction in the reflexive-transitive generation of ->>iA1. The
reflexive case is trivial. The induction step is the following, for any z 6= z′:

•

• •

◦

iα
0

z

iα
0

z′

iα
0

z

iα
0

z′

(e1,z1) ->iA1 e2 ==> ALL e3. (e1,z2) ->iA1 e3 -->

z1~=z2 --> (EX e4. (e2,z2) ->iA1 e4 & (e3,z1) ->iA1 e4)

This property is proved by rule induction in (e1,z1) ->iA1 e2. Every case
except the Var rule case is non-trivial; reflexivity is needed for the case where
the divergence is caused by two α0-steps on the same abstraction. The proof
uses a large number of sub-lemmas including a special version of substitutivity
(Lemma 10) in which the substituted term is a variable:

[| (e,z) ->iA1 e’; y~=z; y~:Capt x e |]

==> (e[x:=Var y],z) ->iA1 e’[x:=Var y]

Special cases of the Substitution Lemma (Lemma 2) are also needed. The proof
involves more than 100 tactic invocations and so further details are omitted
here. �
Lemma 13 (Triangle Property of Indexed 9 9 Kα) Where z 6= y and z is
fresh with respect to the initial λ-term:

• •

◦

iαy

iα
0

z

iα
0

z
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(e1,y) ->iA e2 ==> z~:(FV(e1) Un BV(e1) Un {y}) -->

(EX e3. (e1,z) ->iA1 e3 & (e2,z) ->iA1 e3)

Proof By rule induction in (e1,y) ->ia e2. The proof is reasonably con-
cise and uses the first version of the Substitution Lemma (Lemma 2) and the
following two ‘renaming sanity’ propositions:

• [| y ~: FV e; y ~= z |] ==> y ~: FV (e[x:=Var z])

• y ~: BV e ==> y ~: BV (e[x:=Var z]) �
Lemma 14 (Triangle Property of 9 9 KKα)

• •

◦

α
α

0 α 0

e1 ->>A e2 ==> EX e3. e1 ->>A0 e3 & e2 ->>A0 e3

Proof By rule induction in the
→

xi9 9 KKiα-relation underlying 9 9 KKα. The reflexive
case is trivial. The induction step reads as follows:

M1 M2 M3

N1 N2

N3

iα
→

xi iαx0

iα
0

→

zi

iα
0

←

zi

iα
0

z0

iα
0

z0

iα
0

z0

iα
0

←

zi

The quantification of the variables goes as follows: for any xi’s, (Mi’s,) and
zi’s, if there as many zi’s as xi’s, if they are all unique and different from the
xi’s and FV(Mi) ∪BV(Mi), the property holds. Notice how

→

zi gets reversed in
the induction hypothesis and how that matches the uses of z0.

For the Isabelle proof, we define the variable list-indexed reflexive-transitive
closure of ->iA, ->>ciA in a manner analogous to the definition of the fresh-
naming ->>iA1 and prove the Isabelle goal:

(e1,xs) ->>ciA e2 ==> ALL zs. length(zs) = length(xs)

--> uniqlist(zs) --> (ALL z.(z mem zs -->

~(z mem xs) & z~:(BV(e1) Un FV(e1)))) -->

(EX e3. (e1,zs) ->>iA1 e3 & (e2,rev zs) ->>iA1 e3)

which can be refined to the result above using our results concerning equivalence
of ->>iA1 and ->>A0, and of ->>ciA and ->>A. The built-in function on lists
length returns the number of items in a list and the predicate uniqlist (which
we define) returns true iff each variable in the list is different.

The proof of the induction step follows from (1) the induction hypothesis in
the top left corner, (2) by Lemma 14 in the top right corner, and (3) by a
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simple corollary to Lemma 13 in the centre. The proof itself is complicated
hugely by the necessity of showing that the required property of the list zs

is preserved over the induction, requiring us to employ a number of auxiliary
lemmas concerning induction over the corresponding predicate. �
Lemma 15 (Existence of α0-Renaming Sequence to BCF)

• ◦
(BCF )

α0

EX e2. e1 ->>A0 e2 & BCF(e2)

Proof The key result in order to show this lemma is the following — we
write #λ(e) for the number of λ-abstractions in e and ||

→

xi || for the number of

elements in the vector
→

xi:

∀
→

xi, e1. ||
→

xi ||= #λ(e1) ∧ {xi} all different ∧ ({xi} ∩ (FV(e1) ∪ BV(e1)) = ∅)
⇓

∃e2.e1

→

xi9 9 KKiα e2 ∧ BCF(e2) ∧ {xi} = BV(e2)

The Isabelle translation of this property is the following goal:

ALL xs. lambdas e1 = length xs --> uniqlist xs -->

(ALL x. x mem xs --> x ~: FV e1 Un BV e1) -->

(EX e2. (e1, rev xs) ->>iA1 e2 & BCF e2 & BV e2 = set xs)

where lambdas is a function returning the number of abstractions in a given
lterm.

The reason we prove such a complicated goal (compared to the main result) is
that because we use structural induction the proof needs to be fully constructive
— that is to say, the induction goal itself needs to reflect how we build the BCF
term. Consider the case of a naive proof by structural induction where e1 is an
application, e1 = e’ $ e’’; knowing that e’ ->>A0 e1’, e’’ ->>A0 e1’’

and BCF(e1’) & BCF(e1’’) does not enable us to conclude BCF(e1’ $ e1’’)

because we have no way of knowing whether there is a variable overlap between
e1’ and e1’’. We therefore specify the desired properties of the list of variable
names to be used for the renaming (uniqlist xs) and its relationship to the
target BCF term (BV(e2) = set xs)in order to enable the induction to go
through correctly. (Note that set xs returns a set representation of the list xs
in order to enable the comparison with BV(e2).)

The proof itself is very involved but uninteresting and uses a variant of substi-
tutivity (Lemma 10) as well as a host of auxiliary results concerning induction
principles over the involved predicates. The variable case is easy; both the ap-
plication and abstraction cases involve first extracting the induction hypotheses,
then applying the appropriate α0-rewrite rule and showing that the resulting
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term is a BCF, that the bound variables of the term are exactly those in the
list of variables and that the side conditions for the rewrite rule are in fact
satisfied. �
Lemma 16 (Fresh-naming α-confluence with BCF-Finality)

•

• ◦ •

◦(BCF )

αα

α0 α0

α
0

[|e ->>A e1; e ->>A e2|] ==>

EX e3. e1 ->>A0 e3 & e2 ->>A0 e3 & BCF(e3)

Proof Since 9 9 KKα ⊆ ==α, we have that the two divergent terms are α-equal,
i.e. e1 =A= e2. By directability of 9 9 KKα (Lemma 9), we thus have e1 ->>A e2

whence we can first resolve the divergence by Lemma 14, and then rename the
resulting term to a BCF by Lemma 15. �
2.7 Confluence of λvar

We are now ready to prove the confluence property of 9 9 Kα∪β . To do so we first
present (without proof) the following well-known classical result for proving
confluence due to Tait and Martin-Löf. The Isabelle proof of the result is due
to Nipkow [13] and by importing his theory we can re-use it directly in our own
development:

Theorem 17 (Tait/Martin-Löf)

∃ →2 . →1⊆→2⊆→→1 ∧ ⋄ (→2)
⇓
Confl(→1)

[| diamond(R); T <= R; R <= T^* |] ==> confluent(T)

where diamond and confluent have the appropriate translations in Isabelle.

Thus in order to prove confluence of 9 9 Kα∪β it suffices to prove the diamond
property of a relation →2 such that 9 9 Kα∪β ⊆ →2 ⊆ 9 9 KKα∪β . We choose the
composite relation (9 9 KKα; 9 9qKβ) as our →2 and define it in Isabelle as follows:

inductive relation2

intrs

cons "[|e1 ->>A e2; e2 -|>B e3|] ==> e1 ->2 e3"
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We now go about proving that ->2 has the desired properties.

Lemma 18 (α / β Hierarchy)9 9 Kα∪β ⊆ (9 9 KKα; 9 9qKβ) ⊆ 9 9 KKα∪β

• alpha Un beta <= relation2

• relation2 <= (alpha Un beta)^*

Proof First note that although we have not in fact given the Isabelle defini-
tion of 9 9 Kβ (beta), it is just the obvious translation of Definition 4 from the
first chapter. For the first result, we can prove the inclusion beta <= par beta

automatically by rule induction on beta; the result follows easily from this and
the fact that -|>B and ->>A are reflexive. Similarly, the second result follows
straightforwardly from the inclusion par beta <= beta^*, provable by rule
induction on par beta, and a number of small auxiliary lemmas showing the
contextual closure of ->>B. �
Lemma 19 (The α / β Diamond) The relation 9 9 KKα; 9 9qKβ) has the dia-
mond property.

diamond(relation2)

Proof

M

M1 N M2

M ′

1 N ′ M ′

2

N1 N2

N ′′

(BCF )

α α

α0 α0

α
0

β

||

β

||

α αβ

||

β

||

β

||

β

||

For the M ’s given in the above diagram we resolve the divergence by construct-
ing: N ′ by Lemma 16; N1 and N2 by two applications of Lemma 11; and finally
N ′′ by Lemma 7, observing that it can be applied since N ′ is a BCF by con-
struction. The Isabelle proof exactly mirrors this construction, using dtac to
apply each of the lemmas in turn and etac with the rules exE and conjE to
remove object-level existential quantifiers and conjunctions as necessary. �
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Hence all the preconditions for the application of Theorem 17 are satisfied,
allowing us to finally pull the sword from the stone:

Theorem 20 (Confluence of the λvar-Calculus)

Confl(9 9 Kα∪β)

confluent(alpha Un beta)

Proof We instantiate Theorem 17 with the results from Lemmas 18 and 19
as follows:

Goal "confluent(alpha Un beta)";

by(rtac diamond_to_confluence 1);

Level 1 (3 subgoals)

confluent (alpha Un beta)

1. diamond ?R

2. alpha Un beta <= ?R

3. ?R <= (alpha Un beta)^*

The tactic rtac performs resolution between the subgoal and the conclusion of
the named rule (Nipkow’s diamond to confluence) so that the new subgoals
are the premises of the rule. Note that the meta-level object variable ?R rep-
resents an argument which has not yet been instantiated. Unknowns may be
instantiated when we perform resolution. For example, to discharge the new
subgoals we perform resolution again with the rules we generated in the proofs
of Lemmas 18 and 19:

by(rtac relation2_subset_alphabeta 3);

by(rtac alphabeta_subset_relation2 2);

by(rtac diamond_relation2 1);

The first of these resolutions forces the instantiation of ?R to relation2. We
then have no choice over the value of ?R when resolving the remaining subgoals,
so it is important when working with unknonws in a proof state not to acciden-
tally instantiate values to ‘bad’ values which then invalidate other subgoals. (As
relation2 is the correct choice here, however, we have done the right thing.)�
2.8 Confluence of λreal

We have proved, at expenditure of great effort, the confluence property of9 9 Kα∪β in the raw λ-calculus (λvar). Recall however that we consider the
raw calculus to be in some sense representative of the real λ-calculus in which
α-equal terms are identified and for which reduction takes place over the α-
equivalence classes of terms. It would be desirable therefore to prove formally
that the confluence property is not some sort of syntactic ‘miracle’ due to the
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particulars of our presentation and still holds when one considers β-reduction
on the α-equivalence classes of λvar .

The relationship between the raw and real λ-calculi we consider is characterised
by the notion of structural collapse:

Definition 12 (Structural Collapse) Assume two relations with explicit car-
rier sets: →A ⊆ A × A and →B ⊆ B × B. A mapping, C : A −→ B, will be
said to be a structural collapse if it is total, onto and a homomorphism between
→A and →B:

•

◦

C(total)

◦

•

C(onto)

• •

(homo)

• •

A

C C

B

In Isabelle, totality of functions is automatic since all functions must be totally
defined on their declared domain. We formalise the notion of structural collapse
as follows. (We include the type definitions as well in order to highlight the fact
that our definition is independent of all the definitions of λvar.)

consts

onto :: "[’a => ’b, ’a set, ’b set] => bool"

homo :: "[’a => ’b, ’a set, ’b set, (’a * ’a) set,

(’b * ’b) set] => bool"

struct_coll :: "[’a => ’b, ’a set, ’b set, (’a * ’a) set,

(’b * ’b) set] => bool"

defs

onto_def "onto F A B == ALL y. y:B --> (EX x. x:A & F(x)=y)"

homo_def "homo F A B RelA RelB == RelA <= A<*>A &

RelB <= (B<*>B) & (ALL x x’ y y’. ((x,y):RelA -->

F(x)=x’ --> F(y)=y’ --> (x’,y’):RelB))"

struct_coll_def "struct_coll F A B RelA RelB == onto F A B &

homo F A B RelA RelB"

We now present a new result about abstract rewrite systems (ARS) under struc-
tural collapse, due to Vestergaard in [17].

Theorem 21 (Preservation / Reflection of Diamond) Given a structural
collapse, C, from →A to →B, we have the following implications:

1.

• ◦

• •

A

C C
B

⇒ Diamond(→A) → Diamond(→B)

2.

• •

• •

A

C C
B

⇒ Diamond(→A) ↔ Diamond(→B)

We prove both results in Isabelle (see theory AbstractRewrites); the formula-
tion of the second result is as follows:

[|struct_coll F A B RelA RelB & (ALL x y x’ y’. (x’,y’):RelB &
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F(x)=x’ & F(y)=y’ --> (x,y):RelA)|]

==> diamond(RelB) = diamond(RelA)

Proof Both directions of the biimplication are straightforward to establish by
a simple back-and-forth style argument. For example, assuming Diamond(→A)
and given a →B-divergence in B, we use onto-ness of F to find corresponding
terms in A which are related by →A by the case premise. This divergence
can then be resolved by Diamond(→A) and so we can close the →B-divergence
by the homomorphism property of F. The Isabelle proof exactly mirrors this
argument. �
NB. One might reasonably ask whether the conditions above are necessary (al-
though clearly they are sufficient) for the preservation and reflection of the dia-
mond property to hold between relations. In [17] it is shown that if we weaken
the premise then there are counter-examples to both directions of the biim-
plication. The conditions given above may therefore be thought of as weakly
necessary.

The next aim of our proof development should now be clear; to define β-
reduction, →β, on α-equivalence classes of λvar and show that the α-collapse
function satisfies the conditions for Theorem 21 to hold between 9 9 Kα∪β and
→β. To define real β-reduction on α-equivalence classes, we first define a func-
tion returning the α-equivalence class of an lterm and then use it to define a
new type acls of α-equivalence classes by set comprehension:

defs

alphaclass "alphaclass(e) == {e’. e’ =A= e}"

typedef acls = "{y. EX (x::lterm). y = alphaclass x}"

Two conversion functions Rep acls and Abs acls are provided by Isabelle au-
tomatically from the type definition above. They can be thought of as the func-
tions which explicitly convert an acls to the corresponding lterm set, and vice
versa respectively. With this in mind we can define the real β-reduction relation
as well as a membership function for α-equivalence classes and the composite
(raw) relation ==α; 9 9 Kβ; ==α as shown below. We include the type declarations
as well to highlight the different domains involved.

consts

real_beta :: "(acls * acls) set"

beta_mod_alpha :: "(lterm * lterm) set"

mem_ac :: "lterm => acls => bool"

defs mem_ac_def "mem_ac e A == (Rep_acls A = alphaclass e)"

inductive beta_mod_alpha

intrs

cons "[|s =A= s’; s’ ->B t’; t’ =A= t|] ==> s -ABA-> t"

inductive real_beta
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intrs

lift "s ->B t ==>

Abs_acls(alphaclass s) =>B Abs_acls(alphaclass t)"

and we define the transitive-reflexive closures of -ABA-> and =>B with double-
headed arrows in the usual way.

The main result relating real β-reduction and reduction in the raw λvar-calculus
is then the following, where ⌊e⌋ is used to denote the α-equivalence class gen-
erated by the raw term e:

Proposition 22 (Raw Characterisation of Real β)

⌊e⌋ →→β ⌊e′⌋ ⇔ e (==α; 9 9 Kβ; ==α)⋆ e′ ∨ e ==α e′

Abs_acls(alphaclass(e)) =>>B Abs_acls(alphaclass(e’)) =

(e -ABA->> e’ | e =A= e’)

Proof The reverse implication is straightforward; the case e =A= e’ is trivial
and the case e -ABA->> e’ is dealt with by induction on the reflexive-transitive
generation of -ABA->> whence the implication follows by the induction hypoth-
esis and the definition of alphaclass.

For the forward implication, we prove the following result, where e in ac1 is
syntactic sugar for mem ac e ac1:

ac1 =>>B ac2 ==> ALL e e’. (e in ac1 --> e’ in ac2 -->

(e -ABA->> e’ | e =A= e’))

which once proved can be manipulated to have the required form. The prop-
erty is proved by reflexive-transitive induction on ac1 =>>B ac2. The proof is
fairly uninteresting and relies on careful manipulation of the involved sets of
α-equivalent terms. �
Proposition 23 (Raw Characterisation Equivalence)

(==α; 9 9 Kβ ; ==α)⋆ ∪ ==α = 9 9 KKα∪β

(beta_mod_alpha)^* Un (alpha Un rev_alpha)^* = (alpha Un beta)^*

Proof On applying the rules for proving inclusions and applying the simpli-
fier, we see that the proposition amounts to showing:

Level 5 (3 subgoals)

beta_mod_alpha^* Un (alpha Un rev_alpha)^* = (alpha Un beta)^*

1. !!a b. a -ABA->> b ==> a ->>AB b

2. !!a b. a =A= b ==> a ->>AB b

3. !!a b. a ->>AB b ==> a -ABA->> b | a =A= b

(Note that ->>AB is the Isabelle translation of 9 9 Kα∪β.) Each of the subgoals
is proved by a separate induction on the reflexive-transitive generation of the
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relation appearing in the subgoal premise. The first two subgoals are very
straightforward and rely heavily on directability of =A= (Lemma 9). The third
is longer to prove but the proof itself involves no special effort. �
Proposition 24 (Second Raw Characterisation of Real β)

⌊e⌋ →→β ⌊e′⌋ ⇔ e 9 9 Kα∪β e′

Abs_acls(alphaclass(e)) =>>B Abs_acls(alphaclass(e’)) = e ->>AB e’

Proof Immediate from the previous two propositions. �
It is now straightforward to show that the function alphaclass is indeed a
structural collapse:

Lemma 25 (⌊−⌋ is a Structural Collapse) ⌊−⌋ is a structural collapse from
λvar to λreal with respect to the rewrite relations 9 9 Kα∪β and →β. Furthermore,
⌊−⌋ satisfies the condition for case 2 of Theorem 21 to hold.

• struct_coll (Abs_acls o alphaclass) (UNIV::lterm set)

(UNIV::acls set) ((alpha Un beta)^*) (real_beta^*)

• ALL x y x’ y’. (x’,y’):(real_beta^*) &

(Abs_acls o alphaclass)(x)=x’ & (Abs_acls o alphaclass)(y)=y’

--> (x,y):((alpha Un beta)^*)

Proof The proofs of the two results are very similar and we will only consider
the first here. First note that textttAbs acls o alphaclass is just the composition
of the two functions, i.e. the function which given an lterm, computes the lterm
set of α-equivalent terms and casts it to the desired type acls. The keyword
UNIV in the HOL framework is used to denote the universal set; we consider
a mapping from the set of all raw terms to the set of all α-equivalence classes
so the two sets A and B in Theorem 21 must be given the appropriate types,
which we do using the casting operator ::.

In order to simplify the first goal we wish to expand out the definition of
struct coll and any definitions upon which it relies. One way to do so is
to use the following rewriting tactic:

by(rewrite_goals_tac [struct_coll_def, onto_def]);

which expands all occurrences of the definitions struct coll and onto through-
out all the goals of the proof state. If we wish to restrict the rewriting to just
one of the subgoals we can use the SELECT GOAL tactical as follows:

by(SELECT_GOAL (rewrite_goals_tac [struct_coll_def]) 1);

After expanding the definitions appropriately and applying the simplifier, we
find that the proof burden of the lemma boils down to:
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Level 1 (2 subgoals)

struct_coll (Abs_acls o alphaclass) UNIV UNIV

((alpha Un beta)^*) (real_beta^*)

1. !!y. EX x. Abs_acls (alphaclass x) = y

2. !!x y. x ->>AB y ==>

Abs_acls (alphaclass x) =>>B Abs_acls (alphaclass y)

whence the second subgoal follows by Proposition 23 and the first follows from
the rules automatically generated from the type definition of acls. (These rules
are rather technical and the interested reader is advised to consult FIXME:reference
for details.) �
In conclusion, we therefore have:

Theorem 26 (Confluence of the Real λ-Calculus)

Confl(→β)

confluent(real_beta)

Proof By Lemma 25 applied to Theorem 21. �
2.9 Paying the cost to be the boss

We have chosen to concentrate on the main points of the proof structure here
while simultaneously attempting to provide some insight into the specifics of
the Isabelle/HOL formalisation. However, for reasons of space and perspicuity
it has been necessary to omit many of the fine details and auxiliary results of
the confluence proof. The full Isabelle proof development contains the proofs
of over 200 individual lemmas and is approximately 4000 lines of code in size
(including comments).

It is worth noting that Nipkow provides a proof of confluence in the λ-calculus
using a de Bruijn-style presentation [13], for which the Isabelle proof of β-
confluence is of the order of 500 lines of code. This gulf between the sizes of
the two proofs is probably due in part to Nipkow’s expertise with the Isabelle
system, but is mainly a result of the more complicated setup in which we choose
to work. Because the concept of α-reduction (and thus the raw / real calculi
distinction) is made redundant by the use of de Bruijn indices, it is sufficient
to prove the diamond property of 9 9qKβ and then apply the Tait/Martin-Löf
theorem directly. In contrast, we must not only prove the diamond property of9 9qKβ with our more complex conditional rules, but then prove several equally
substantial results showing commutativity of α-renaming with itself and with
β-reduction. Furthermore, in order to show that confluence in this calculus is
meaningful we must then explicitly show that the confluence property maps
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onto the α-collapse of the raw calculus. However, our proof methodology has
substantial advantages too. We have shown, as a first, that it is possible to
conduct fully formal reasoning with the λ-calculus at the level of FOASV N

(as one would do by hand) — and feasibly so, although the cost of the proof is
reasonably high. Furthermore, we showed in Lemma 7 the crucial role played by
our formal variant of the Barendregt Variable Convention (the BCF predicate),
thus providing a so-called rational reconstruction of the BVC. We would also
add that much of our proof effort goes into results which collectively suffice to
prove most equational properties of β (for example, commutativity of α / β)
and so the cost we have paid can be considered a ‘one-time expense’.



3. Barendregt-Style Reasoning is
Correct, Sometimes

In chapter 2 we showed that it is possible to prove at least one substantial
equational result (confluence) for the λ-calculus over FOASV N in full formality
and including a proper treatment of variable-renaming issues. To do so, we
needed to show the ‘traditional’ key lemma for the result (diamond property of9 9qKβ) and then to construct lemmas showing that α-renaming commutes with
itself and with the involved ‘computational’ relation (β-reduction) in order to a
construct a similar key lemma for a relation incorporating α-reduction (in our
case (9 9 KKα; 9 9qKβ)). In other words, there is apparently no reason why a similar
methodology would work for any other equational result in λ-calculus theory.
The aim of this chapter is to prove a result in Isabelle which suggests that our
method is indeed applicable to other equational results of the calculus.

Before moving on to the specifics of the result and its proof, let us informally
consider what it is that we would like to be able to prove. Suppose it could be
shown that, for a large class of (raw) λ-terms, no β-reduction can ever block
the β-reduction of all of the other redexes in the term. This would immediately
imply that a host of properties of the λ-calculus involving β-reduction can also
be proved for λvar using our first-order proof technology, since no α-renaming
is then required for the property to hold. To establish such a property for the
real λ-calculus would still require the relevant α-commutativity lemmas but
these can be thought of as forming an intermediate proof layer between the key
lemma and the abstract reasoning required to lift the result to the real level —
the point is that α-renaming is not required for the key lemma to hold and so
can be proved (and formalised) directly in our λvar.

Of course, for the “renaming freeness” result to be meaningful, we would need
to prove it for a class of λ-terms such that the proofs of most equational prop-
erties do not move ‘outside’ of the class. For this reason, we now work in the
residual theory of the λ-calculus, in which (pseudo-)redexes may be marked
and, furthermore, only these marked redexes may be contracted. A marked
λ-term is said to be a residual of another term if they are related by a number
of residual β-contractions (which by definition reduce only marked redexes).
It is well-known that the proofs of most equational results in the λ-calculus
respect the residual theory in the sense that they do not need to ‘move outside
it’, i.e. no redexes which do not appear in the original term need be contracted.
Therefore, working with residuals is the approach we take towards establishing
our desired result.

As before, we start by defining a marked variant of the λvar-calculus we worked
with in Chapters 1 and 2, and then move towards the renaming freeness result
we seek by building a theory of intermediate lemmas about the behaviour of
the calculus under substitution and reduction.

45
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3.1 The Marked λvar-Calculus

Definition 13 (The Raw, Marked λ-Calculus) The terms of the raw, marked
λvar-calculus are defined inductively as follows:

Λvar
res ::= x | Λvar

resΛ
var
res | λx.Λvar

res | (λx.Λvar
res )@ Λvar

res

We refer to the final clause of this definition as a marked redex. When we define
(residual) β-reduction later we will allow only marked redexes to be contracted.

In Isabelle we may reuse our theory of one-sorted variables but otherwise may
not reuse any code from Chapter 2 as all predicates and relations must now be
defined over a new inductive datatype, mlterm, for raw marked λ-terms. We
therefore start by defining a new theory as follows:

MarkedLambda = Variables

datatype mlterm = Var var

| "$" mlterm mlterm (infixl 200)

| Abs var mlterm

| Redex var mlterm mlterm

("<Abs _ _> @ _ " [200,0,0] 200)

Note that the definition is exactly like our earlier definition of lterm except for
the new constructor Redex for marked redexes. The expression following the
definition of Redex gives a syntactic translation; instead of Redex x e e’ we
may instead write <Abs x e> @ e’.

We proceed to define FV(−), BV(−), Captx(−), substitution −[− := −], and
the BCF predicate exactly as for ordinary lterms. For the marked redex case,
we define each of these functions to have the same value as it would for an
ordinary unmarked redex, so, for example, FV((λx.e) @ e′) = FV((λx.e)e′).
Below is the Isabelle definition of FV(−) on mlterms (the other definitions are
made in similar fashion):

primrec

FV_Var "FV(Var x) = {x}"

FV_App "FV(e1 $ e2) = (FV(e1) Un FV(e2))"

FV_Abs "FV(Abs x e) = (FV(e) - {x})"

FV_Red "FV(<Abs x e1> @ e2) = (FV(e1) - {x}) Un FV(e2)"

With our definition of the marked λvar-calculus, all of the auxiliary results (not
involving reduction) of the ordinary λvar from our previous development can
be re-proven in the new marked case by straightforward structural induction,
including Proposition 1(Renaming Sanity) and Lemma 2 (Substitution) from
Chapter 2. However, the proofs are a little more difficult because we are now
forced to consider an extra inductive case when the term is a marked redex;
typically the proof is much like the abstraction case but with a more complex
inductive hypothesis. We must also be more careful when using automatic
tactics such as Auto tac which are applied to all subgoals by default, as the
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complicated function definitions for the redex case sometimes prove too much
for Isabelle and lead to non-termination.

3.2 Non-Blocked β-Residual Theory

Once the legwork of tediously re-proving various facts about the marked ver-
sion of the λvar calculus is complete, we turn our attention to the more inter-
esting concept of reduction in this calculus. We consider two β-reduction rela-
tions here: a single-step residual-β reduction relation (which may only contract
marked redexes) and the completely developing residual-β reduction relation,
which contracts all of the marked redexes in a term.

Definition 14 (Residual-β reduction) Single-step residual-β reduction on
raw, marked λ-terms is defined inductively thus:

Captx(e1) ∩ FV(e2) = ∅
(βres)

(λx.e1)@ e2 9 9 Kβres e1[x := e2]

e1 9 9 Kβres e′1

e1e2 9 9 Kβres e′1e2

e1 9 9 Kβres e′1

(λx.e1)@ e2 9 9 Kβres (λx.e′1) @ e2

e2 9 9 Kβres e′2

e1e2 9 9 Kβres e1e
′

2

e2 9 9 Kβres e′2

(λx.e1)@ e2 9 9 Kβres (λx.e1) @ e′2

e 9 9 Kβres e′

λx.e 9 9 Kβres λx.e′

In our Isabelle development this translates to:

inductive res_beta

intrs

rbeta "(Capt x s) Int FV(t) = {} ==>

(<Abs x s> @ t ->RB s[x:=t])"

rbappL "s ->RB t ==> s$u ->RB t$u"

rbappR "s ->RB t ==> u$s ->RB u$t"

rbabs "s ->RB t ==> Abs x s ->RB Abs x t"

rbredL "s ->RB t ==> <Abs x s> @ u ->RB <Abs x t> @ u"

rbredR "s ->RB t ==> <Abs x u> @ s ->RB <Abs x u> @ t"

and as usual we also define ->>RB to be the reflexive-transitive closure of ->RB.

Notice that this relation is essentially no different from the single-step β-reduction
defined in Chapter 1 (except that only marked redexes may be contracted). The
greater number of introduction rules is necessary to enforce the contextual clo-
sure over the set of marked terms (which has more constructors than the set of
unmarked terms).
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In contrast, the completely developing residual-β relation defined below has at
least one substantial difference from the complete development relation intro-
duced in Section 2.4:

Definition 15 (Completely Developing Residual-beta Reduction) The
completely developing residual-beta reduction relation on raw, marked λ-terms
is defined inductively as follows:

e1 9 9 Kpβres e′1 e2 9 9 Kpβres e′2 Captx(e′1) ∩ FV(e′2) = ∅ x ∈ FV(e′1)
(βresKp)

(λx.e1) @ e2 9 9 Kpβres e′1[x := e′2]

e1 9 9 Kpβres e′1 x 6∈ FV(e′1)
(βres

lazy
Kp)

(λx.e1) @ e2 9 9 Kpβres e′1

(VarβresKp )
x 9 9 Kpβres x

e 9 9 Kpβres e′

(LβresKp )
λx.e 9 9 Kpβres λx.e′

e1 9 9 Kpβres e′1 e2 9 9 Kpβres e′2
(AβresKp )

e1e2 9 9 Kpβres e′1e
′

2

The Isabelle translation is as follows:

inductive comp_res_beta

intrs

crbeta1 "[|s ->|RB s’; t ->|RB t’;

(Capt x s’) Int FV(t’) = {}; x:FV(s’)|]

==> <Abs x s> @ t ->|RB s’[x:=t’]"

crbeta2 "[|s ->|RB s’; x~:FV(s’)|] ==> <Abs x s> @ t ->|RB s’"

crbvar "Var x ->|RB Var x"

crbapp "[|s ->|RB s’; t ->|RB t’|] ==> s$t ->|RB s’$t’"

crbabs "s ->|RB t ==> Abs x s ->|RB Abs x t"

Notice that although the complete development relation 9 9 Kpβres contracts all
marked redexes, it does so using one of two possible rules, depending on whether
the abstracted variable x occurs free in the contraction term e′1. If it does,
the usual contraction side-conditions apply; if not, we may simply discard
the substitution (and the related side-conditions) since in this case we have
e′1[x := e′2] = e′1. Neither do we require that e2 actually contracts, as it will be
discarded in any case. The reason for introducing this rule is rather technical,
having to do with the proof of substitutivity for 9 9 Kpβres , and we will return to
it shortly.

Meanwhile, we first prove some other important properties of 9 9 Kpβres which
should be familiar from Section 2.4:

Lemma 27 (Variable Monotonicity Under 9 9 Kpβres) For any marked λ-term
t:

• t ->|RB t’ ==> FV t’ <= FV t
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• t ->|RB t’ ==> BV t’ <= BV t

Proof By rule induction in t ->|RB t’. The proof is exactly like that of the
equivalent property of -|>B (Lemma 3). �
Lemma 28 (Residual-Completion of BCF ’s)

• ◦(BCF )
βres

BCF(s) ==> (EX t. s ->|RB t)

Proof By structural induction in s. The proof is like that of Chapter 2’s
Lemma 5 except that we need not perform case-splitting when s is an applica-
tion. Instead, we perform a case-splitting on the appropriate variable condition
when s is a marked redex case in order to determine which of the two contraction
rules should be used. The case for the lazy contraction rule is straightforward
by induction and for the non-lazy contraction rule we use Lemma 27 combined
with the BCF variable disjointness property to justify the satisfaction of the
necessary side-conditions. �
Lemma 29 (Substitutivity of C.D. Residual-β) For any marked λ-terms
s,t:

• [| s1 ->|RB t1; s2 ->|RB t2; Capt x s1 Int FV s2 = {};

Capt x t1 Int FV t2 = {} |] ==> s1[x:=s2] ->|RB t1[x:=t2]

• [| s1 ->|RB t1; x ~: FV t1; Capt x s1 Int FV t = {} |]

==> s1[x:=t] ->|RB t1

Proof Both by rule induction on s -|>RB s’. The proof of the first result
is very similar to that for the substitutivity property of -|>B and uses all
the same auxiliary lemmas, including the corresponding Substitution Lemmas
(Lemma 2). However, the proof cannot work in exactly the same way since
some of the (degenerate) cases for the -|>B result rely upon the reflexivity of
that relation, and the complete development ->|RB cannot be reflexive since by
definition it must contract all of the redexes in a term. This is why we need
the lazy contraction rule — it allows the contraction of a redex to go ahead in
degenerate cases when the resulting substitution is discarded and as a result we
cannot possibly justify the side-conditions on the normal contraction rule. An
exposition of even the interesting cases of the proof is not possible here due to
their complexity, but for the interested reader the proofs of all the results in this
chapter are available at http://www.dcs.ed.ac.uk/˜ jjb/mech Barendregt VB/
.
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Also, as we now have two contraction rules it is necessary to prove a the second
substitutivity lemma above which pertains to the lazy contraction rule. The
proof is much easier than that of the first result; all of the inductive cases are
straightforward except that for the normal contraction rule, which follows from
a case-splitting on variable names and does not require any major auxiliaries
(such as Substitution Lemmas).

N.B. Notice that as the first substitutivity result pertains to the normal con-
traction rule for ->|RB we will only ever need to apply it when x:FV t1. Adding
this fact as a premise to the first result would almost certainly eliminate some
of the subcases of the proof, making it shorter and more efficient. However,
in practice we choose to prove it in the above form because we can reuse the
structure (and large parts of the tactic sequence) of the Isabelle proof of Lemma
4. Altering the premises of a complicated goal can have substantial repercus-
sions with respect to the structure of the proof and the exact formulation of
the required auxiliary lemmas, which is why we have chosen not to do so in this
instance. �
As was the case when we investigated parallel-β reduction, we find that substi-
tutivity is the main proof burden of a crucial ‘triangle lemma’ for 9 9 Kβres and9 9 Kpβres :

Lemma 30 (Completion-Absorption of Residual β)

• •

•

βres

β res

β
res

s ->>RB t ==> s ->|RB u --> t ->|RB u

Proof By induction in the reflexive-transitive generation of s ->>RB t. The
reflexive case is trivial; for the transitive case, by induction it suffices to prove
the equivalent property for one-step residual-β reduction:

• •

•

βres

β res
β
res

s ->|RB u ==> ALL t. s ->RB t --> t ->|RB u

The proof is by rule induction in s ->|RB u. The interesting cases are those
for the two contraction rules, each of which follows immediately by application
of the appropriate Substitutivity Lemma (Lemma 29). �
Let us informally summarise the meaning of Lemmas 28 and 30. Between them,
they say that:

• for any raw, marked λ-term which is a BCF, one may contract all of the
marked redexes in a term using the complete development relation 9 9 Kpβres ,
and:
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• if any raw, marked λ-term has a complete development, then for any
number of residual-β reductions performed on that term, the complete
development relation is still enabled on the resulting term.

From this it follows that the complete development residual-β reduction relation9 9 Kpβres can never be blocked by any number of residual-β contractions on BCF
terms. We make this precise with the following theorem:

Theorem 31 (Non-Blocked β-Residual Theory)

• • ◦BCF
βres βres

[| BCF(s); s ->>RB t |] ==> EX u. t ->|RB u

Proof Immediate by Lemmas 28 and 30. �
At the start of this chapter we stated our intention to prove a result (in the
β-residual theory) which would suggest the general applicability of our proof
methodology employed in chapter 2. To what extent has this been achieved
by our Theorem 31? We already know that it is always possible to construct
BCF terms from any raw λ-term (Lemma 15). Theorem 31 says that for any
residual of a BCF term you can contract all of the marked redexes (except,
possibly, for those which are discarded by the lazy contraction rule) without
disabling the complete development, i.e. without causing any variable clash. In
other words, the β-residual theory of the λvar-calculus is renaming-free up to
BCF-initiality. This implies that a host of equational results which ‘respect’ the
residual theory can be proved (up to BCF-initiality) by first-order means and
thus that our proof methodology can indeed be applied more generally. In fact,
Vestergaard has used the result in [18] to show both the confluence property
of β and the strong (finite) development property in a non-standard, yet very
simple manner.

NB. We conjecture that Theorem 31 would still hold if the lazy contraction
rule were not used in the definition of 9 9 Kpβres . In that case we could conclude
that we could contract all of the marked redexes without causing a variable
clash. However, as we have seen when discussing the proof of substitutivity of9 9 Kpβres (Lemma 29), the absence of the lazy contraction rule would have severe
repercussions for the proof of this lemma as the discharging of certain subcases
would only be achievable by building a BCF predicate or similar condition into
the premises of the lemma. We would then have to show that the condition
was preserved over the reflexive-transitive generation of 9 9 Kβres in the proof of
Lemma 30 in order to apply substitutivity, greatly complicating the induction.
Thus we leave the conjecture as a question to be (possibly) answered in the
future.
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4. Automatibility of Isabelle Proofs

In the two previous chapters detailing our Isabelle developments, we saw some
situations in which we made use of Isabelle’s automatic tactics in order to reduce
(or even eliminate totally) the effort we needed to expend on the proof (cf.
Lemmas 1, 3, 6, 7, 18). However, most of the time we use sequences of manual
tactics (although we frequently call upon the simplifier to perform equational
rewriting automatically) and apply the classical reasoner only when we have
reduced the goal to trivial subgoals. In some cases dozens or even hundreds of
tactic invocations are necessary in order to solve particular goals (cf. Lemmas
4, 11, 12, 15). A natural question, then, is how one might determine whether
or not a particular proof is amenable to automation in Isabelle.

Developing new techniques and heuristics for proof search strategies and for
making proofs more amenable to automation is an ongoing area of research.
Our focus during this project has been to achieve the Isabelle formalisation
of the results we have presented and not to achieve any particular level of
efficiency in doing so. There are many reasons why you might want to use
a theorem prover; our main motivation for doing so is to add formal weight
to the λ-calculus results we present. If they had not been machine-proved
in full formality, it would be difficult for a reader to convince themselves that
some obscure subcase of one of the (many) lemmata had not been overlooked or
incorrectly dealt with. Providing one is prepared to trust the theorem prover we
work with, the mechanisation of the proofs goes a long way towards assuaging
this doubt.

However, our adventures in Isabelle have given some insight as to why certain
proofs will not yield to the system’s automatic tactics and in this chapter we
attempt to summarise our findings. Although to the best of our knowledge
there are no hard and fast rules as to whether or not a particular proof can be
mechanised, we discuss some factors that can increase the difficulty of doing so.

4.1 Safe vs. unsafe rules

We have already seen that Isabelle incorporates a component called the classical
reasoner which can be invoked by the user to search for a proof of a subgoal.
This invocation occurs in the form of a call to one of several automatic tactics,
each of which uses a slightly different search strategy (e.g. depth-first, best-first,
iterative deepening) and may in turn appeal to the simplifier, which performs
left-to-right equational rewriting. Whichever tactic is chosen, the corresponding
proof search takes place over a collection of logical rules which we call the claset.
The default claset contains just the standard (basic and derived) rules of HOL
[14], but the user may freely add rules to, or delete rules from, the claset to suit
their own needs.
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Rules in the claset fall into two categories: safe rules and unsafe rules. Gen-
erally speaking, a rule is considered to be safe if it never reduces a provable
goal to unprovable subgoals. For example, the rule for conjunction elimination
(&-E) in first-order propositional logic is safe since if a goal is provable using
the premise A&B, then certainly it is also provable using the separate premises
A,B. When searching for a proof, safe rules may therefore be applied more or
less indiscriminately.

The classification of unsafe rules is somewhat less clear (as some rules are far
more unsafe than others!) but there are certain properties of inference rules
which allow them to be classified as unsafe. Any rule is unsafe if it leads to
a loss of information in the proof state. For example, the rule for disjunction
introduction (v-I1) in first-order propositional logic is unsafe because it reduces
a goal of the form A|B to the new goal A. A rule can also be considered
unsafe if it can be applied infinitely many times (and so cause the search en-
gine to loop). An example of such a rule is the basic HOL identity-symmetry
rule sym: s = t ==> t = s, which can clearly be applied repeatedly to any
subgoal premise of the form x = y. These are the two most common types of
unsafe rules but there are other cases. For example, any rule which instantiates
an unknown in the proof state (e.g. the standard resolution-with-instantiation
tactic res inst tac) is unsafe as it can falsify subgoals (as we discussed in the
proof of Theorem 20 in Chapter 2). Any rule which can lead to an explosion
of the proof state space, such as a large number of applications of (v-E), can
also be considered unsafe as it can make the proof intractable. Finally, such
special rules as those for case splitting and induction are particularly unsafe as
it is generally impossible for the classical reasoner to ‘guess’ the variables over
which the induction or case-splitting should take place.

Clearly, however, the classical reasoner cannot be expected to provide much
help if it is not permitted to use any unsafe rules! The way the reasoner works
is rather complicated (for a more detailed exposition consult Chapter 11 of [15])
and depends on the tactic / search strategy invoked but basically comes down
to the following: rules in the claset are explicitly defined as safe or unsafe, and
the reasoner allows each search to use a (usually unlimited) number of safe
rule applications combined with a bounded number of unsafe rule applications.
Safe rules are usually given priority over those which instantiate unknowns,
which in turn have priority over loss-of-information rules; the safe / unsafe
distinction, which in any case is blurred, may thus be viewed simply as a way
of assigning precedences to the inference rules. Many of the automatic tactics
allow the user to specify the number of unsafe applications that are permitted
in order to speed up the proof process. Some tactics also employ iterative
deepening whereby the number of unsafe rule applications increases after each
unsuccessful proof attempt.

What is the conclusion then with regards to our own Isabelle developments?
Simply put, if one of our proofs requires the use of many unsafe rules (perhaps
in a very specific order) then the chances of the classical reasoner finding a
proof is smaller because it will always prefer applying safe rules to unsafe ones.
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We could always try to classify a needed unsafe rule as safe but then the danger
would be that the rule is applied too early and falsifies the subgoal. On the
other hand, we could try to manually apply as many of the necessary unsafe
rules as possible before invoking the classical reasoner. Note that this in fact
happens in virtually all of our proofs to a small extent; most of our reasoning is
carried out inductively and we always apply the appropriate induction tactics
before we attempt any further steps (manual or automatic). It often happens
then that the cases which follow straightforwardly by induction can then be
solved automatically by Isabelle. However, in the non-trivial inductive cases we
typically require careful reasoning involving unsafe rules which are non-trivial
to automate.

4.2 Explicit instantiations

When conducting an Isabelle proof, unknowns often arise in the proof state,
either quantified at the object level — using the Isabelle/HOL syntax EX x.

P(x) where P is a predicate — or at the meta-level of the logical framework. In
the latter case the unknown is denoted by a question mark, possibly followed by
a number of variables indicating the allowed form of the unknown. For example,
the unknown expression ?s.x e e is used to denote an unknown expression ?s

involving (at most) the variables x, e and e’. Although there are several
technical differences between the two types, we consider them to be essentially
the same here since we can always convert one into the other using the HOL
rules. The most important difference is that meta-level unknowns are permitted
to be instantiated when we perform resolution on a subgoal, whereas object-
level, existentially quantified unknowns must be instantiated explicitly by the
user (although sometimes the automatic tactics will attempt to do this, usually
in trivial cases).

Unknowns may be explicitly stated in proof goals (cf. Lemmas 7, 11, 16)
as existentially quantified variables or, more often, may be introduced in a
proof state at the meta-level as the result of a rule application (c.f. proof of
Theorem 20). When this happens, the unknowns will almost certainly have to
be instantiated at some point during the proof. Sometimes Isabelle can ‘guess’
the right instantiation for the proof; for example the instantation for a goal like:

Level 29 (1 subgoal)

BCF s --> (EX t. s ->CD t)

1. !!var lterm t.

[| BCF(Abs var lterm); lterm ->CD s |] ==>

EX t. Abs var lterm ->CD t

which arises as one of the inductive cases of Lemma 5, is not difficult to guess!
On the other hand, if we wanted to explicitly give the required witness for the
proof then we could use the resolution-with-instantiation tactic with the rule
for existential introduction:



56 4. AUTOMATIBILITY OF ISABELLE PROOFS

by(res_inst_tac [("x","Abs var t")] exI 1);

Level 30 (1 subgoal)

BCF s --> (EX t. s ->CD t)

1. !!var lterm t.

[| BCF(Abs var lterm); lterm ->CD s |] ==>

Abs var lterm ->CD Abs var s

Although in the above example the result follows immediately from the def-
inition of the complete development relation ->CD (and so can be solved by
Blast tac either before or after the instantiation), in general we might have
considerable work to do even after we provide the witness for a proof. In our
development, often we will prove that a reduction exists (to close a diagram,
for example) by specifying the witness for the proof halfway through and then
working backwards to show that the claimed reduction is enabled, which can
be non-trivial. In such situations, the classical reasoner tends to perform badly.

Even worse is the situation which often arises in complex proofs where crucial
lemmas must be introduced into the premises of a subgoal at specific stages of
the proof. Typically the lemma will take the form of a destruction rule which
contains more unknowns than the premise with which it resolves; the ‘extra’
unknowns are introduced into the proof state and must usually be explicitly
instantiated to facilitate the intended usage of the lemma. Here is a simple
example. Consider the ‘renaming sanity’ lemma x : FV e ==> e[x:=e’] =

e and a proof goal of the form:

Level 0 (1 subgoal)

x ~: FV s ==> P

1. x ~: FV s ==> P

where P is some formula to be proved. Suppose that we intend to replace
the premise of the goal with the new premise s[x:=t] = s, which follows by
our renaming lemma. We try performing ordinary destruct-resolution with the
lemma on the subgoal as follows:

by(dtac renaming_sanity_2 1);

Level 1 (1 subgoal)

x ~: FV s ==> P

1. s[x:=?e’] = s ==> P

We see that one unknown has been introduced by the rule application. In trivial
cases Isabelle can usually find the right instantiation but, if the goal contains
several substitution expressions, the unknown ?e’ may be bound to the wrong
identifier. To ensure that this cannot happen, we may use the corresponding
instantiation tactic instead:

by(dres_inst_tac [("e’","t")] renaming_sanity_2 1);

Level 1 (1 subgoal)

x ~: FV s ==> P
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1. s[x:=t] = s ==> P

which gives us the premise we need to complete the proof. The key point is
that the classical reasoner (clearly) cannot apply this sort of step because there
are simply too many choices for the expression which may be instantiated.
Furthermore, in some proofs we will ‘cut in’ a tautology to the premises of a
subgoal. For example, we might decide to add an instance of reflexivity of -|>B
as follows:

by(cut_inst_tac [("e","s")] par_beta_refl 1);

Level 2 (1 subgoal)

x ~: FV s ==> P

1. [| s[x:=?e’] = s; s -|>B s |] ==> P

Although the classical reasoner may well use the rule par beta refl to resolve
a particular subgoal, it will never simply decide to add it to the premises with
a particular instantiation this way. For the sake of evenhandedness, we should
point out that this kind of forward reasoning is not strictly necessary to con-
duct proofs; ordinary (backward) resolution suffices. However, using a strictly
top-down proof strategy can greatly complicate the proof and lead to an ex-
plosion of the search space. Therefore, if a proof incorporates uses of these
‘explicit instantiation’ tactics then in our experience this is a strong indication
that the classical reasoner will encounter difficulties in solving the goal under
consideration.

4.3 Side-conditions on rule application

When we originally defined the λvar-calculus in Chapter 1, we observed that
the cost of working with one-sorted variable names (as opposed to de Bruijn
indices or some other variant) was that we were forced to impose side-conditions
on the α- and β-contraction rules ensuring the correctness of the involved sub-
stitutions. Unsurprisingly, we then saw that virtually all of our major results
involved inductive cases with premises ensuring the appropriate substitutions or
reductions were enabled. Apart from the complication of the proofs themselves,
the involvement of these premises has a number of immediate consequences for
our Isabelle proof developments.

Firstly, performing induction over a goal with a number of premises means
that the premises themselves form part of the induction hypothesis. Usually
it is a non-trivial matter to show that the premises are conserved over the
induction. Furthermore, in many of our proofs we perform case-splits within
particular inductive cases, increasing the number of assumptions in the corre-
sponding subgoals. When we have a complicated subgoal to prove, there may
be a dozen or more assumptions involved and it is often the case that more
than one assumption will match the premise of an inference rule we wish to
apply. Since resolution by elimination or destruction always operates on the
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leftmost matching assumption of the subgoal, in such cases we are forced to
explicitly rotate the assumptions in order to apply the rule correctly by using
rotate tac or a similar ‘subgoal management’ tactic. For manual proofs this is
nothing more than an inconvenient detail (although it does add to the ‘brittle-
ness’ of a proof). For the automatic tactics, however, it can lead to a factorial
blowup in the search space because for each rule application there are several
premises to which it may ‘sensibly’ be applied. Furthermore, the number of
rules themselves which may be applied is greater because at each stage the
classical reasoner may operate on any of several premises, each of which may
enable many inference rule applications.

One might ask, given that rules are applied to the leftmost applicable assump-
tion, whether it would be possible to preorder the assumptions before invoking
the reasoner such that the automatic tactics always operate on the ‘right’ as-
sumption before trying the other possibilities. In our experience, this can work
in some cases; putting a particular assumption first in the subgoal can improve
the performance of Blast tac and other tactics. However, it should be clear
that it simply is not practical in general because assumptions are constantly
created and destroyed by the application of inference rules.

4.4 Inherent complexity

We have given some ‘rules of thumb’ for determining whether or not the fully
automatic tactics of Isabelle are likely to succeed. We remark that in order
to ascertain whether these heuristics are applicable, one does need to know
something about the structure of the proof itself (and hence whether or not
many premises are involved, whether explicit instantiations are heavily required
and so on). We also note that, in one sense, the heuristics we have given are
essentially measures of the “inherent complexity” of a proof. In other words,
a proof which is inherently ‘hard’ (for humans) is more likely to involve many
unsafe rule applications, to contain many assumptions and to require the usage
of more auxiliary lemmas which may need to be instantiated appropriately,
than a proof which is inherently ‘easy’.

The type of proofs at which Isabelle excels are those in which there are many in-
ductive cases but in which each case is relatively straightforward, which would
be laborious by hand but is easily solved by the classical reasoner. In con-
trast, we often work with proofs which are quite deep (in the literal as well as
metaphorical sense!) and in the non-trivial inductive cases require many man-
ual tactic applications to prove. We feel that it is unreasonable to expect such
proofs to be amenable to “mindless search procedures (aka tactics)” (Nipkow).
On the other hand, one should note that Isabelle does provide many semi-
automatic tactics, which apply both the classical reasoner and the simplifier
in a limited manner to perform all safe logical inferences and / or equational
rewrites, and we make liberal use of these throughout our development. Addi-
tionally, one may create customised automatic or semi-automatic strategies in
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Isabelle either by writing ones own tactics from scratch or by combining tactics
using (built-in or user-defined) tacticals. We have not explored this possibility
during the project and leave it as a possible direction for further study.
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5. Conclusion

In chapter 1 we introduced the untyped λ-calculus as a model of computa-
tion particularly useful for characterising the notion of a function. We then
examined a few alternative presentations of the λ-calculus with reference to
formalisation of machine proofs. Notably, well-known equational properties of
the simplest presentation of the calculus — first order abstract syntax with
one-sorted variable names — have, to the best of our knowledge, resisted ma-
chine formalisation in a setup relying only on the standard (inductive) proof
principles of the calculus and its defined reduction relations. We explained the
major issues pertaining to formalisation in this setting and defined the raw
λvar-calculus with which we conduct our proofs.

The main contribution of this dissertation is an account of the Isabelle for-
malisation of the first proof of β-confluence in the λ-calculus using one-sorted
variable names, which was first published by Rene Vestergaard and the author
in [17]. In chapter 2 we presented the main steps of the proof and accounted for
some of the specifics of their corresponding Isabelle mechanisations, introducing
new syntax and concepts as we proceeded. In particular, we saw in section 2.8
how we deduced confluence of the real λ-calculus by forming the equivalence
classes of terms modulo α and applying a completely abstract result concerning
preservation and reflection of confluence across a structural collapse between
two rewrite systems.

The proof methodology we use is fairly complex and not obviously applicable
to other results in the literature; in chapter 3 we presented a technical property
of the residual theory of λvar (again published by Vestergaard and the author
in [18]) showing that no α-renaming steps are required on BCF terms in proofs
which respect the residual theory. This shows that other equational properties
of the calculus are amenable to formalisation along the lines of our confluence
proof.

Finally, noting that our Isabelle/HOL implementation of the results of Chapters
2 & 3 is rather large and complex, we asked why our proof goals were not always
amenable to the automatic proof tactics provided by Isabelle. Although we were
not able to provide hard and fast answers, we highlighted some characteristics
of many of our proofs and attempted to explain on a technical level why these
posed problems for Isabelle’s classical reasoning engine. We also suggested that
these characteristics could be taken as a measure of the inherent difficulty of
a proof (which naturally only makes sense when discussing proofs in Isabelle).
We did not fully account for this conjecture and for now we leave it for others
to investigate.

One potential direction for future research would be to attempt the Isabelle
formalisation of other equational properties in the λ-calculus, using our own
theory files as a basis for the development. Such properties could include
strong normalisation, confluence of β∪η, and the η-over-β Postponement Theo-
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rem. Another possibility might be the development of custom tactics and proof
strategies to increase the extent to which automation of our proof development
is feasible.
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Appendix A

The following appendix contains the transcripts of theories comprising the com-
plete Isabelle development of the results presented in the dissertation. For each
theory of the development, the associated transcript lists the contents of the
theory files (i.e. the type, function and relation definitions) and the statements
of the lemmas proved. The full tactic scripts are not included here but are
available online from http://www.dcs.ed.ac.uk/˜ jjb/.
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