
A Formalised First-Order Con
uen
e Proof forthe �-Cal
ulus using One-Sorted Variable Names(Barendregt was right after all ... almost)Ren�e Vestergaard1 and James Brotherston21 CNRS-IML, Marseille, Fran
e, vester�iml.univ-mrs.fr ?2 University of Edinburgh, S
otland, jjb�d
s.ed.a
.uk ??Abstra
t. We present the titular proof development whi
h has beenimplemented in Isabelle/HOL. As a �rst, the proof is 
ondu
ted ex
lu-sively by the primitive indu
tion prin
iples of the standard syntax andthe 
onsidered redu
tion relations: the naive way, so to speak. Curiously,the Barendregt Variable Convention takes on a 
entral te
hni
al role inthe proof. We also show (i) that our presentation 
oin
ides with Curry'sand Hindley's when terms are 
onsidered equal up-to � and (ii) that the
on
uen
e properties of all 
onsidered 
al
uli are equivalent.1 Introdu
tionThe �-
al
ulus is a higher-order language: terms 
an be abstra
ted over terms.It is intended to formalise the 
on
ept of a fun
tion. The terms of the �-
al
ulusare typi
ally generated indu
tively thus: �var ::= x j �var�var j �x:�varA �-term, e 2 �var, is hen
e �nite and is either a variable, an appli
ation ofone term to another, or the fun
tional abstra
tion (aka binding) of a variableover a term, respe
tively. On top of the terms, we de�ne redu
tion relations, aswe shall see shortly. Intuitively, we will also want to 
onsider terms that onlydi�er in the parti
ular names used to express abstra
tion to be equal. However,this is a slightly tri
ky 
onstru
tion as far as the algebra of the syntax goes andwe will only undertake it after mature 
onsideration.It is 
ommon, informal pra
ti
e to take the variables to belong to a singlein�nite set of names, VN , with a de
idable equality relation, =, and that isindeed what we will do. Re
ent resear
h [8, 17℄ has shown that there 
an beformalist advantages to employing a 
ertain amount of ingenuity on the issueof variable names. Still, we make a point of following the naive approa
h. Infa
t, the main 
ontribution of this paper is to show that it is not only possiblebut also feasible and even instru
tive to use this, the naive set-up, for formalpurposes. This is relevant both from a foundational and a pra
ti
al perspe
tive.The latter more-so as we, as a �rst, give a rational re
onstru
tion of the widelyused and very helpful Barendregt Variable Convention (BVC) [1℄.? Supported under EU TMR grant # ERBFMRXCT-980170: LINEAR. Work donein part while visiting LFCS, University of Edinburgh from Heriot-Watt University.?? Supported by a grant from LFCS, University of Edinburgh.



We stress that �var is �rst-order abstra
t syntax (FOAS) and therefore 
omesequipped with a primitive (�rst-order) prin
iple of stru
tural indu
tion [2℄:8x:P (x) 8e1; e2:P (e1) ^ P (e2)! P (e1e2) 8x; e:P (e)! P (�x:e)8e:P (e)Similarly, the syntax also 
omes equipped with a primitive re
ursion prin
ipleso we 
an de�ne auxiliary notions (e.g., free variables) by 
ase-splitting.The Issues In the set-up of FOAS de�ned over one-sorted variable names(FOASVN ), name-overlaps seem inevitable when 
omputing. Traditionally, onetherefore renames o�ending binders when appropriate. This has a two-fold neg-ative impa
t: (i) the notion `sub-term of' on whi
h stru
tural indu
tion dependsis typi
ally broken,1 and (ii) as a term 
an redu
e in di�erent dire
tions, theresulting name for a given abstra
tion 
annot be pre-determined. Consider, e.g.,the following example taken from [11℄ | for pre
ise de�nitions see Se
tion 1.2:(�y:�x:xy)y �x:xy(�x:(�y:�x:xy)x)y (�x:�z:zx)y �z:zy�C�C �C�CEquational reasoning about FOASVN 
an thus seemingly only be 
ondu
ted up-to post-�xed \name-uni�
ation". Aside from any te
hni
al problems this mightpose, the formal properties we establish require some interpretation.The basi
 problems with FOASVN has dire
tly resulted in the in
eption ofsyntax formalisms (several of them re
ent) whi
h over
ome the issues by nativemeans [4{8, 12℄. In general, they mark a 
on
eptual and formal departure fromthe naive qualities of FOASVN . This is in part unfortunate be
ause FOASVN isthe de fa
to standard in programming language theory where, as a result of theproblems, it is 
ustomary to reason while \assuming the BVC" [1℄:2\2.1.12. Terms that are �-[equivalent℄ are identi�ed."\2.1.13. IfM1; : : : ;Mn o

ur in a 
ertain mathemati
al 
ontext, [their℄bound variables are 
hosen to be di�erent from the free variables."\2.1.14. Using 2.1.12/13 one 
an work with �-terms the naive way."Our Contribution We{ show that it is possible and feasible to 
ondu
t formal equational proofsabout higher-order languages by simple, �rst-order means{ show that this 
an be done over FOASVN , as done by hand{ formally justify informal pra
ti
es; in parti
ular, the BVC [1, 24℄{ 
ontribute to a mu
h needed proof theoreti
al analysis of binding [8, 9℄{ introdu
e a quasi-
omplete range of positive and negative results about thepreservation and re
e
tion of 
on
uen
e under a large 
lass of mappings1 Thanks to Regnier for observing that this need not happen with parallel substitution.2 We make referen
e to Barendregt be
ause it is 
ommon pra
ti
e to do so. Manyother people have imposed hygiene 
onditions on variables.



1.1 Terminology and ConventionsWe say that a term redu
es to another if they are related by a redu
tion relationand we denote it by an in�x arrow. The sub-term a redu
tion step a
ts upon is
alled the redex and it is said to be 
ontra
ted. A redu
tion relation for whi
ha redex remains so when o

urring in any sub-term position is said to be 
on-textually 
losed. We will distinguish raw and real 
al
uli: indu
tive stru
turesvs. the former fa
tored by an equivalen
e. We use dashed respe
tively full-linedrelational symbols for them. The �rst 5 of the following notions 
an be given byproper indu
tive 
onstru
tions.{ The 
onverse of a relation, !, is written (!)�1.{ Composition is: a!1;!2 
 ,def 9b : a!1 b ^ b!2 
.{ Given two redu
tion relations !1 and !2, we have: !1[2 =def !1 [ !2.{ Transitive, re
exive 
losures: (!)? =def !! =\def00 = [(!;!!).{ Transitive, re
exive, and symmetri
 
losures: =A =def (!A [(!A)�1)?.{ A relation whi
h is fun
tional will be written with a based arrow: 7!.{ A term redu
ing to two terms is 
alled a divergen
e.{ Two diverging redu
tion steps, as de�ned above, are said to be 
o-initial.{ Two redu
tion steps that share their end-term are said to be 
o-�nal.{ A divergen
e is resolvable if there exist 
onne
ting 
o-�nal redu
tion steps.{ A relation has the diamond property, �, if any divergen
e 
an be resolved.{ A relation, !, is 
on
uent, Con
, if �(!!).{ Weak 
on
uen
e is transitive, re
exive resolution of any divergen
e.{ An abstra
t rewrite systems, ARS, is a relation on a set: !� A�A.{ Residuals are the des
endants of terms under redu
tion.1.2 Classi
 Presentations of the �-Cal
ulusWe will here review Curry's seminal formalist presentation of the �-
al
ulus [3℄.We will also review Hindley [11℄ as, to the best of our knowledge, he is the �rstto give serious 
onsideration to the problems with names in equational proofs.The pro
ess of term substitution epitomises the issues. The two �var-terms: �x:yand �z:y, e.g., have the same intuitive meaning. If we intend to substitute, say,the term x in for y, simple synta
ti
 repla
ement would result in the intuitivelydi�erent terms: �x:x and �z:x. Some subtlety is therefore required.Curry's Presentation Curry [3℄ essentially de�nes the terms of the �-
al
ulusto be �var with the proviso that variable names are ordered linearly. He de�nessubstitution as follows | for free variables, FV(�), see Se
tion 3, Figure 1:yhx := ei = � e if x = yy otherwise(e1e2)hx := ei = e1hx := eie2hx := ei(�y:e0)hx := ei = 8<:�y:e0 if x = y�y:e0hx := ei if x 6= y ^ (y 62 FV(e) _ x 62 FV(e0))�z:e0hy := zihx := ei o/w; �rst z 62 fxg [ FV(e) [ FV(e0)



Curry is seminal in giving a pre
ise de�nition of substitution whi
h takes intoa

ount that s
oping is stati
. He then de�nes the following redu
tion relationsfor � whi
h are 
losed 
ontextually:{ �y:ehx := yi 9 9 K�C �x:e, if y 62 FV(e){ (�x:e)e0 9 9 K�C ehx := e0iUnfortunately, following on from here, Curry makes no further mentioning of �in the proofs of the equational properties of the �-
al
ulus. Instead, all proofsare seemingly 
ondu
ted impli
itly on �-equivalen
e 
lasses although these arenot formally introdu
ed.Hindley's Presentation This situation, amongst others, was re
ti�ed by Hind-ley [11℄. In order to address �-equivalen
e 
lasses expli
itly, Hindley introdu
eda restri
ted �-relation whi
h we 
all �H. The relation is given as the 
ontextual
losure of:{ �x:e 9 9 K�H �y:ehx := yi, if x 6= y, y 62 FV(e) [ BV(e), and x 62 BV(e)The �H-relation has the ni
e property that the renaming 
lause of �h� := �iis not invoked, 
f. Lemma 9. Furthermore, a number of Hindley's results 
onspireto establish the following property:Lemma 1 (From Lemma 4.7, Lemma 4.8, Corollary 4.8 [11℄)==�C = 9 9 KK�C = 9 9 KK�H = ==�HNotation 2 To have an axiomatisation-independent name for �-equivalen
eon �var, we will also refer to the relation of the above lemma as � (read: aleph).With this result in pla
e, Hindley undertakes a formal study of �-equivalen
e
lasses whi
h leads to the de�nition of a further �-relation, this time on �H-equivalen
e 
lasses: be
H =def fe0 j e ==�H e0gbe1
H !�H be2
H =def 9e01 2 be1
H; e02 2 be2
H:e01 9 9 K�C e02It is this relation whi
h Hindley proves 
on
uent albeit with no formal 
onsid-erations 
on
erning the invoked proof prin
iples. This puts Hindley's treatmentof the �-
al
ulus �rmly apart from the present arti
le. Interestingly, Hindley alsopoints out that the obtained (real) 
on
uen
e result implies 
on
uen
e of the
ombined �C- and �C-relation. We are able to formally substantiate this remarkof Hindley, 
f. Theorem 16.



1.3 Related WorkThere has re
ently been a substantial amount of work on proof prin
iples forsyntax that seemingly are more advan
ed than the �rst-order prin
iples we use[4{8, 10, 12℄. These lines of work, in parti
ular the 
ontinuations of [6, 8, 22℄, areall very interesting but orthogonal to the work we present here. We suggest thata study of the proof-theoreti
al strength of these di�erent proof prin
iples mightbe informative and we leave it as potential future work.There are a number of formalisations of �-
on
uen
e [13, 17, 18, 22, 23℄. Apartfrom [17℄ whi
h uses two-sorted variable names to distinguish bound and freevariables, they all use either higher-order abstra
t syntax or de Bruijn indexing.We know of no formal proof developments, be it for equational properties orotherwise, that are based on FOASVN . That said, S
hroer [21℄ does undertakea hand-proof of 
on
uen
e of the �-
al
ulus whi
h expli
itly pays attention tovariable names but with its 700+ pages, it is perhaps not as approa
hable as
ould be desired. Besides, no parti
ular attention is paid to the employed proofprin
iples and no formalisation is undertaken.1.4 A
knowledgementsThe �rst author wishes to thank Olivier Danvy, Jean-Yves Girard, Stefan Kahrs,Don Sannella, Randy Polla
k, and in parti
ular Joe Wells for fruitful dis
us-sions. The se
ond author wishes to thank James Margetson, Larry Paulson, andMarkus Wenzel for help and advi
e on using Isabelle/HOL. Finally, both authorswish to thank LFCS and the anonymous referees.1.5 A Word on our ProofsThe Isabelle/HOL proof development underpinning the present arti
le was un-dertaken mainly by the se
ond author in the spa
e of roughly 9 weeks. It isavailable from the �rst author's homepage. At the time of writing, the 
on
u-en
e properties for our �var-
al
ulus (Se
tion 3) and the �-
al
ulus proper havebeen established. The Isabelle proof development 
losely follows the presentationwe give here. There are one or two di�eren
es whi
h are ex
lusively related tothe use of alternative but equivalent indu
tion prin
iples in 
ertain situations.We started from s
rat
h and learned theorem proving and Isabelle as we wentalong. Our proofs are mainly brute-for
e in that Isabelle apparently had prob-lems over
oming the fa
torial blow-up in sear
h spa
e arising from the heavily
onditioned proof goals for our 
onditional rewrite rules. Presently, the size ofour proof s
ripts is in the order of 4000 lines of 
ode.The se
ond author's Honours proje
t will 
ontain more detailed informationabout the proof development itself and will fo
us in part on the automationissue. The �rst author's thesis will fo
us more generally on �rst-order equationalreasoning about higher-order languages.



2 Abstra
t Proof Te
hniques for Con
uen
eWe now present the (new and well-known) abstra
t rewriting methods we use.2.1 Preservation and Re
e
tion of Con
uen
eSurprisingly, the results in this se
tion seems to be new. Although they are verybasi
 and related to the areas of rewriting modulo and re�nement theory, wehave not found any 
omprehensive overlaps.3 In any event, the presentation isnovel and instru
tive for the present purposes. Before pro
eeding, we refer thereader to Appendix A for an explanation of our diagram notation.De�nition 3 (Ground ARS Morphism) Assume two ARS: !A� A � Aand !B� B � B. A mapping, M : A �! B, will be said to be a ground ARSmorphism4 from!A to!B if it is total and onto on points and a homomorphismfrom !A to !B: �ÆM(total) Æ�M(onto) � �(homo)� �AM MBAn example of a ground ARS morphism is the fun
tion that sends an obje
tto its equivalen
e 
lass relative to any equivalen
e relation (su
h as, �- or AC-equivalen
e): what one would 
all a \stru
tural 
ollapse". Noti
e that a groundARS morphism pres
ribes surje
tivity on obje
ts but not on relations (and, assu
h, should not be 
alled a \stru
tural 
ollapse" in itself). Instead, the followingtheorem analyses the various \degrees of relational surje
tivity" relative to the
on
uen
e property.Theorem 4 Given a ground ARS morphism, M, from !A to !B, we have:51. Æ Æ� �AM MB ) �(!A) 6$ �(!B)2. Æ �� �AM MB ) �(!A) 6$ �(!B)3. � Æ� �AM MB ) �(!A) ! �(!B)^ � (!A) 6 �(!B)4. � �� �AM MB ) �(!A) $ �(!B)Proof The positive results are straightforward to establish. The re
exive(!)versions of the following ARS provide 
ounter-examples for all the negative re-sults, left-to-right and right-to-left, respe
tively. Re
exivity is required to estab-lish the � property in the �rst pla
e.a1 a2 b2b1a01 a02 b02AA B a1 b1a2 a3 b2A A B3 A spe
ial 
ase of Theorem 4, 4 is reported in [14℄ and we 
ontradi
t a result in [19℄.4 The name is inspired from [20℄.5 In the theorem, the notation 6! (6$) means existen
e of 
ounter-examples.



�The asymmetry between 
ases 2 and 3 is due to the fun
tionality ofM.Impli
ations In order to preserve 
on
uen
e under a \stru
tural 
ollapse"(i.e., a ground ARS morphism plus a premise from Theorem 4), we see fromTheorem 4, 
ases 1 and 2 that it is insuÆ
ient to simply prove a raw diamondproperty whi
h admit an initiality 
ondition on well-formedness of raw terms.Observe that this is exa
tly what happens in the wider programming language
ommunity when using the BVC.2.2 Resolving the Abstra
t Proof Burden of Con
uen
eWe now sket
h the abstra
t part of the Tait/Martin-L�of proof method for 
on-
uen
e as formalised by Nipkow [18℄ plus what we 
all Takahashi's Tri
k [24℄.A Formalisation of the Tait/Martin-L�of Method The Tait/Martin-L�ofproof method uses a parallel relation that 
an 
ontra
t any number of pre-existing redexes in one step, 
f. Figure 4. The 
ru
ial step in applying the methodis the following property of ARS.Lemma 5 (9 !2 :!1�!2�!!1 ^ � (!2)) ) Con
(!1)Proof A formalisation is provided in [18℄ and is re-used here. �The point is that, sin
e a parallel relation, !2 above, 
an 
ontra
t an ar-bitrary number of redexes in parallel, only one redu
tion step is required to
ontra
t the unbounded 
opies of a parti
ular redex that 
ould have been 
re-ated through dupli
ation by a pre
eding redu
tion.Takahashi's Tri
k In order to prove the diamond property of a parallel �-relation, Takahashi [24℄ introdu
ed the tri
k of using an indu
tively de�ned
omplete development relation, 
f. Figure 5, rather than pro
eed by dire
t means(i.e., an involved 
ase-splitting on the relative lo
ations of redexes). Instead ofresolving a parallel divergen
e \minimally" (i.e., by a brute-for
e 
ase-splitting),Takahashi's idea is to go for \maximal" resolution: the term that has all pre-existing redexes 
ontra
ted in one step is 
o-�nal for any parallel divergen
e. Ab-stra
tly, the following ARS result underpins Takahashi's idea up-to the guardingpredi
ates whi
h we have introdu
ed.Lemma 6 (Takahashi's Diamond Diagonalisation (Guarded)) For anypredi
ates, P and Q, and any relations, !a and !b, we have�Æ(P )b ^ � ��(Q) ab a ) �� �Æ(P ^Q)a aa a



y[x := e℄ = � e if x = yy otherwise(e1e2)[x := e℄ = e1[x := e℄e2[x := e℄(�y:e0)[x := e℄ = ��y:e0[x := e℄ if x 6= y ^ y 62 FV(e)�y:e0 otherwiseFV(y) = fyg Captx(y) = ;FV(e1e2) = FV(e1) [ FV(e2) Captx(e1e2) = Captx(e1) [ Captx(e2)FV(�y:e) = FV(e) n fyg Captx(�y:e) = � fyg [ Captx(e) if x 6= y ^ x 2 FV(e); otherwiseFig. 1. Total but partially 
orre
t substitution, �[� := �℄, free variables, FV(�), andvariables 
apturing free o

urren
es of x, Captx(�), for �var.y 62 Captx(e) [ FV(e) (�)�x:e y9 9 Ki� �y:e[x := y℄ FV(e2) \ Captx(e1) = ; (�)(�x:e1)e2 9 9 K� e1[x := e2℄Fig. 2. Raw �- and indexed �-
ontra
tion | redu
tion is given by full 
ontextual
losure. By the premises no invoked substitution will result in free-variable 
apture.Proof Straightforward. �The se
ond premise is often 
alled the triangle property when !b is fun
tional.3 The �var-Cal
ulusWe will now formally de�ne the �var-
al
ulus and go on to show that its \stru
-tural 
ollapse" under � is the �-
al
ulus proper as de�ned in Se
tion 1.2.De�nition 7 (The �var-Cal
ulus) The terms of the �var-
al
ulus are �var,given on page 1. Substitution, free variables and 
apturing variables of rawterms are de�ned in Figure 1. The �- and indexed �-rewriting relations of �var:9 9 K� and �9 9 Ki� are given indu
tively by 
ontextual 
losure from Figure 2. Plain�-rewriting is given as: e1 9 9 K� e2 ,def 9z:e1 z9 9 Ki� e2The indexed �-rewriting relation will be used to 
ondu
t the ensuing proofsbut is, as su
h, not needed for de�ning the �var-
al
ulus. We stress that the(indu
tively de�ned) redu
tion relations also 
ome equipped with �rst-order in-du
tion prin
iples. We will typi
ally refer to uses of these as rule indu
tion. Themain novelty in the above de�nition is the side-
onditions on the 
ontra
tionrules that makes binder-renaming unne
essary. The 
onstru
t Captx(e) returnsall the binding variables in e that have a free o

urren
e of x (relative to e) intheir s
ope. It 
oin
ides with the all but forgotten notion of not free for. Sub-stitution has been de�ned the way it has purely to enable us to prove 
ertain\renaming sanity" properties for it, whi
h we however will not present here.



BV(x) = ; UB(x) = TrueBV(e1e2) = BV(e1) [ BV(e2) UB(e1e2) = UB(e1) ^UB(e2) ^ BV(e1) \ BV(e2) = ;BV(�x:e) = BV(e) [ fxg UB(�x:e) = UB(e) ^ x 62 BV(e)Fig. 3. The bound variables and the uniquely bound predi
ate for the terms of �var.Proposition 8 FV(e2) \ Captx(e1) = ; ) e1[x := e2℄ = e1hx := e2iProof By stru
tural indu
tion in e1. The only non-trivial 
ase is e1 � �y:e01whi
h is handled by a tedious 
ase-splitting on y. The main 
ase is y 6= x andy 2 FV(e2). Here, the premise of the proposition means that y 62 Captx(�y:e0)whi
h immediately implies that x 62 FV(e0) by y 6= x. We hen
e avoid �h� := �iperforming a binder renaming. �Lemma 9 9 9 K�H � 9 9 K� � (9 9 K�C)�1Proof The �rst in
lusion follows as the side-
ondition on 9 9 K�H is subsumedby the side-
ondition on 9 9 K�. Any invoked substitutions thus 
oin
ide by Propo-sition 8 whose premise is established by the latter's side-
ondition. The reasoningfor the se
ond in
lusion is analogous. �Lemma 10 (9 9 K�-Symmetry) � ���Lemma 11 � = 9 9 KK� = ==�Proof From Lemmas 1 and 9 and Lemma 10, respe
tively. �Lemma 12 9 9 K� � 9 9 K�C � 9 9 KK�; 9 9 K�Proof The �rst in
lusion follows from Proposition 8. The se
ond follows byobserving that all the renamings required to perform the �C-indu
ed substitutionpreserve �C-equivalen
e, i.e., �-equivalen
e. By Lemma 11, they 
an thus beexpressed by 9 9 KK�. It suÆ
es to observe that no renaming is performed followingthe \passing" of the substitution invoked by the �-rule. ��var �-Collapses to the Real �-Cal
ulus With these fundamental resultsin pla
e, we have ensured the intuitive soundness of the following de�nition |whi
h mimi
s Hindley's 
onstru
tion.De�nition 13 (The Real �-Cal
ulus){ � = �var= ==�{ b�
 : �var �! �e 7! fe0 j e ==� e0g{ be
 !� be0
 ,def e ==�; 9 9 K� ; ==� e0



x 9 9qK� x e 9 9qK� e0�x:e 9 9qK� �x:e0 e1 9 9qK� e01 e2 9 9qK� e02e1e2 9 9qK� e01e02e1 9 9qK� e01 e2 9 9qK� e02 FV(e02) \ Captx(e01) = ;(�x:e1)e2 9 9qK� e01[x := e02℄Fig. 4. The parallel �-relation: arbitrary, pre-existing �-redexes 
ontra
ted in parallel.Following on from the de�nition, we see that we have:Proposition 14 be
 !!� be0
 , e (==�; 9 9 K� ; ==�)? e0 _ e ==� e0Proof The left-most disjun
t is the straightforward transitive version of ourde�nition of real �. The right-most disjun
t 
omes from the re
exive 
ase, againby de�nition. �We thus arrive at the following, rather appeasing, result.Lemma 15 be
 !!� be0
 , e 9 9 KK�[� e0 , e 9 9 KK�C[�C e0 , be
H !!�H be0
HProof From Lemma 10, it is trivial to see that (==�; 9 9 K� ; ==�)? [ ==� =9 9 KK�[� and the �rst biimpli
ation is established by Proposition 14. The se
ondbiimpli
ation follows by Lemmas 9, 11, and 12. The last biimpli
ation follows inan analogous manner. �Equivalen
e of the Raw and the Real Cal
uli The te
hni
al reason for
alling the above result \appeasing" is that it allows us to prove the equationalequivalen
e results for the raw and the real 
al
uli we have made referen
e to.We 
onsider the se
ond result to be of parti
ular interest.Theorem 16{ (�= =�) = (�var= ==�[�) = (�var= ==�C[�C) = ((�var= ==�H)= =�H){ Con
(!�) $ Con
(9 9 K�[�) $ Con
(9 9 K�C[�C) $ Con
(!�H)Proof The �rst result is immediate following Lemma 15. As for the se
ondresult, the de�nitional totality and surje
tivity of b�
 and b�
H 
ombined withLemma 15 allow us to apply Theorem 4, 
ase 4. �Having thus formally 
onvin
ed ourselves that we are about to solve the rightproblem, we will now present the details of the 
on
uen
e proof.4 An Equational �var-Property and �-Con
uen
eAs outlined in Se
tions 2 and 3, it suÆ
es to �nd a raw relation over �var whi
henjoys the diamond property in order to prove the 
on
uen
e property for the �-
al
ulus. Taking the lead from the Tait/Martin-L�of method, this relation needsto 
ontain a notion of parallel �-redu
tion.



x 9 9 Kp� x e 9 9 Kp� e0�x:e 9 9 Kp� �x:e0 e 9 9 Kp� e0xe 9 9 Kp� xe0 e1e2 9 9 Kp� e0 e3 9 9 Kp� e03(e1e2)e3 9 9 Kp� e0e03e1 9 9 Kp� e01 e2 9 9 Kp� e02 FV(e02) \ Captx(e01) = ;(�x:e1)e2 9 9 Kp� e01[x := e02℄Fig. 5. The 
omplete development �-relation: attempted 
ontra
tion of all redexes.De�nition 17 Parallel �-redu
tion, 9 9qK�, is de�ned in Figure 4.The parallel �-relation admits the 
ontra
tion of any number (in
luding 0)of pre-existing �-redexes starting from within as long as no variable renaming isrequired. To give an impression of the level of detail of the formalisation, we 
anmention that the property whi
h we need the most in the proof development isthe following variable monotoni
ity result about the parallel �-relation:Proposition 18 e 9 9qK� e0 ) FV(e0) � FV(e) ^ BV(e0) � BV(e)In order to employ Takahashi's Tri
k, we need to ensure that any 
onsidered�-divergen
e 
an be resolved by a 
omplete development step.De�nition 19 Complete �-development, 9 9 Kp�, is de�ned in Figure 5.Observe, informally, that 9 9 Kp� only is de�ned if all (pseudo-)redexes validatethe side-
ondition on the �-rule. Or, more pre
isely, the relation is de�ned ifit is possible to 
ontra
t all (pseudo-)�-redexes starting from within | we willshortly show that this is indeed possible. For now, we merely present:Lemma 20 9 9 Kp��9 9qK�Proof Straightforward. �The Overall Proof Stru
ture Having thus established the basi
s, we outlinethe proof of the diamond property of the following relation: 9 9 KK�; 9 9qK� , beforesupplying the a
tual details of the proof. The relation is inspired by the de�ni-tional re
e
tion of the weak 
on
uen
e property for the �-
al
ulus proper overthe stru
tural (�-)
ollapse of �var. In order to use the BVC in our proof, we �rstpresent it as a predi
ate on �var, 
f. Figure 3.De�nition 21 (Barendregt Conventional Form)BCF(e) = UB(e) ^ (BV(e) \ FV(e) = ;)Lemma 22 �(9 9 KK�; 9 9qK�)



ProofFor the Ms given, we 
an 
onstru
tthe Ns in the divergen
e resolutionon the right in order. The ensuingse
tions will detail the individual di-agrams. The 9 9 K�0-relation is intro-du
ed in De�nition 25 as the fresh-naming restri
tion of 9 9 K�. It servesto fa
ilitate the 
ommutativity with� on either side of the diagram. Wenote that the result means that it suf-�
es to address all naming issues be-fore the 
ombinatorially more 
omplex�-divergen
e whi
h 
an be addressedin isolation due to BCF-initiality.

MM1 N0 M2M 01 N1 M 02N 02 N 002N3
(BCF)� ��0 �0� 0� jj �jj� �� jj �jj� jj�jj �4.1 Substitutivity and Substitution ResultsWhen proving a 
ommutativity result about two relations, you typi
ally pro
eedby rule indu
tion over one of the relations. In what amounts to the non-trivialsub-
ases of su
h a proof you therefore typi
ally need to show that a substitutionfrom the 
ase-instantiated relation \distributes" over the other relation. Su
h re-sults are 
alled Substitutivity Lemmas. The non-trivial sub-
ases of Substitutiv-ity Lemmas, in turn, are 
alled Substitution Lemmas. They establish 
ommuta-tivity of the substitutions from both the 
ase-instantiations. Substitutivity andSubstitution Lemmas are non-trivial to prove formally. For our present purposeswe will merely display one of ea
h to give an indi
ation of the style. The key tounderstanding the following lemmas is the fa
t that Captx(e1) \ FV(e2) = ; isthe weakest predi
ate ensuring the 
orre
tness of substituting e2 into e1 for x.Lemma 23 (Substitution)y 62 FV(e2) ^ x 6= y ^ (Captx(e3) \ FV(e2) = ;) ^ (Capty(e1) \ FV(e3) = ;)^ (Captx(e1) \ FV(e2) = ;) ^ (Captx(e1[y := e3℄) \ FV(e2) = ;)+e1[y := e3℄[x := e2℄ = e1[x := e2℄[y := e3[x := e2℄℄Lemma 24 (Parallel � Substitutivity)e1 9 9qK� e01 ^ e2 9 9qK� e02 ^ (Captx(e1) \ FV(e2)=;) ^ (Captx(e01) \ FV(e02)=;)+e1[x := e2℄ 9 9qK� e01[x := e02℄We refer the interested reader to the 
omplete Isabelle/HOL proof develop-ment at the homepage of the �rst author for full details.



4.2 Weak �- and �-CommutativityIn this se
tion we prove the lemma that is needed on either side of the diagramin the proof of Lemma 22. In trying to prove a general � and � 
ommutativityresult, we are immediately stopped by the following naming issue: for virtually all�var-terms, there exist �-redu
tions that 
an invalidate a previously validatedside-
ondition on a �-redex. Fortunately, we 
an see that the 
ommutativityresult we need 
on
erns arbitrary �-redu
tions but only �-redu
tions that suÆ
eto prove Lemma 22. We therefore de�ne a restri
ted, fresh-naming �-relation.The de�nition 
an also be given indu
tively.De�nition 25 e 9 9 K�0 e0 ,def 9z:e z9 9 Ki� e0 ^ z 62 FV(e) [ BV(e)Lemma 26 � �� Æ�jj�0 ��jjProof By rule indu
tion in 9 9 KK�0 with the indu
tion step going throughpainlessly by freshness of the relevant z. �4.3 The Diamond Property of Parallel � up-to BVC-InitialityWe will now establish the lower part of the diagram in the proof of Lemma 22.It is proved using Takahashi's Tri
k, 
f. Lemma 6. Initially, we thus need toestablish the 
onditional existen
e of a non-renaming 
omplete �-development.Lemma 27 � Æ(BCF) �Proof By stru
tural indu
tion using Proposition 18 and Lemma 20. �We stress that the proof is straightforward using the referen
ed variablemonotoni
ity results as 9 9 Kp� is indu
tively de�ned to 
ontra
t from within. No
ompli
ated 
onsiderations 
on
erning residuals are required. However, BCF-initiality is 
ru
ial for the property. The terms (�x:�y:x)y and �y:(�x:�y:x)yfail to enjoy free/bound variable disjointness and unique binding, respe
tively,and neither 
ompletely develop. BCF-initiality is thus suÆ
ient for the existen
eof a 
omplete development but only ne
essary in a weak sense: breaking either
onjun
t of the BCF-predi
ate 
an prevent renaming-free 
omplete development.Still, some non-BCFs 
ompletely develop, e.g., (�x:x)x and �x:(�x:x)x.The se
ond of the two required results for the appli
ation of Lemma 6 mustestablish that any parallel �-step always 
an \
at
h up" with a 
ompletely de-veloping �-step by a parallel �-step, with no renaming involved.Lemma 28 � �� ��jj �jj



Proof By rule indu
tion in 9 9 Kp� using Lemma 24. �It is interesting that the above property requires no initiality 
onditions, likethe BCF-predi
ate, to be provable | ex
ept, that is, from well-de�nedness of9 9 Kp�. This is mainly due to our use of the weakest possible side-
ondition on�-
ontra
tion to make � renaming free (i.e., FV(�) \ Capt�(�) = ;). Had weinstead required that the free variables of the argument were disjoint from thefull set of bound variables in the body of the applied fun
tion (i.e., FV(�) \BV(�) = ;), the property would not have been true. A 
ounter-example is(�y:(�x:y)z)�z:z. It takes advantage of 
omplete developments 
ontra
ting fromwithin. Contra
ting the outermost redex �rst (e.g., by a parallel step) blo
ksthe 
ontra
tion of the residual of the innermost redex when the stronger side-
ondition is imposed: (�x:�z:z)z. No variable 
on
i
t is 
reated between tworesiduals of the same term due to Hyland's Disjointness Property [15℄.6Lemma 29 � �� Æ(BCF)� jj �jj �jj�jjProof From Lemmas 27 and 28 by using Takahashi's Tri
k, Lemma 6. �4.4 Fresh-Naming �-Con
uen
e with BVC-FinalityThe last result we need for the proof of Lemma 22 is the top triangle with itsleg. We prove it as two results (mainly out of formalisation 
onsiderations)|the �rst form suÆ
es by Lemma 10:� �Æ ��0 �0 � Æ (BCF)�0The proofs do not provide any insights and have been omitted.4.5 Con
uen
eWe have thus 
ompleted the proof of Lemma 22 and only one more lemma isneeded before we 
an 
on
lude our main result.Lemma 30 9 9 K�[��9 9 KK�; 9 9qK��9 9 KK�[�Proof By rule indu
tion observing that both 9 9 KK� and 9 9qK� are re
exive. Theproofs of the in
lusions: 9 9 K��9 9qK��9 9 KK�, go through straightforwardly. �Theorem 31 (Con
uen
e of the Raw and Real �-Cal
uli)Con
(9 9 K�[�) ^ Con
(!�) ^ Con
(9 9 K�C[�C) ^ Con
(!�H)Proof By Lemmas 5, 22, and 30 and then Theorem 16. �6 \Any two residuals of some sub-term in a residual of the original term are disjoint".



5 Con
lusionWe have 
ompleted a 
on
uen
e proof applying to several raw and real �-
al
uli.It has been done by using �rst-order indu
tion prin
iples over �var and redu
-tion relations, only. It is the �rst proof we know of whi
h 
learly makes the raw-/real-
al
uli distin
tion. It does so by introdu
ing a new result about preserva-tion/re
e
tion of 
on
uen
e. It is also the �rst formalised equational result abouta higher-order language whi
h 
ondu
ts its indu
tive reasoning over FOASVN ,as you do informally by hand.A Rational Re
onstru
tion of the BVC We proved two results about paral-lel and 
ompletely developing �-redu
tion, Lemmas 27 and 28, in order to applyTakahashi's Tri
k. In summary, they say that irrespe
tive of whi
h pre-existing�-redexes in a BCF-term you 
ontra
t in parallel and without performing re-naming, it is possible to 
ontra
t the residuals of the rest in parallel and withoutperforming renaming and arrive at the 
ompletely developed term. All in all,the residual theory of 9 9 K� in �var is renaming-free up-to BCF-initiality. This ispartly a 
onsequen
e of Hyland's Disjointness Property [15℄ and partly due toour 
areful use of substitution. Said di�erently, Barendregt's moral:\2.1.14. Using 2.1.12/13 one 
an work with �-terms the naive way."is formally justi�able and is, in fa
t, an entirely reasonable way to 
ondu
tequational proofs about the �-
al
ulus when due 
are is taken to 
larify the rawvs. real status of the established property.Referen
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al
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al
ulus. I. and C., 118, 1995.A Commutative DiagramsFormally, a 
ommutative diagram is a set of verti
es and a set of dire
ted edges betweenpairs of verti
es. A vertex is written as either � or Æ. Informally, this denotes quanti�
a-tion modes over terms, universal respe
tively existential. A vertex may be guarded bya predi
ate. Edges are written as the relational symbol they pertain to and are eitherfull-
oloured (bla
k) or half-
oloured (gray). Informally, the 
olour indi
ates assumedand 
on
luded relations, respe
tively. An edge 
onne
ted to a Æ must be half-
oloured.A diagram must be type-
orre
t on domains. A property is read o� of a diagram thus:1. write universal quanti�
ations for all �s (over the relevant domains)2. assume the full-
oloured relations and the validation of any guard for a �3. 
on
lude the guarded existen
e of all Æs and their relationsThe following diagram and property 
orrespond to ea
h other (for !� A�A).� �� Æ(P ) (Q) 8e1; e2; e3 2 A : e1 ! e2 ^ e1 ! e3 ^ P (e1)+9e4 2 A : e2 ! e4 ^ e3 ! e4 ^ Q(e4)We will often leave quanti�
ation domains impli
it and furthermore assume the stan-dard disambiguating 
onventions for binding strength and asso
iativity of 
onne
tives.


