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Abstract. We present the titular proof development which has been
implemented in Isabelle/HOL. As a first, the proof is conducted exclu-
sively by the primitive induction principles of the standard syntax and
the considered reduction relations: the naive way, so to speak. Curiously,
the Barendregt Variable Convention takes on a central technical role in
the proof. We also show (i) that our presentation coincides with Curry’s
and Hindley’s when terms are considered equal up-to o and (ii) that the
confluence properties of all considered calculi are equivalent.

1 Introduction

The A-calculus is a higher-order language: terms can be abstracted over terms.
It is intended to formalise the concept of a function. The terms of the A-calculus
are typically generated inductively thus: A¥* =z | A2TAV™ | Ag.AV?!

A A-term, e € AY?", is hence finite and is either a variable, an application of
one term to another, or the functional abstraction (aka binding) of a variable
over a term, respectively. On top of the terms, we define reduction relations, as
we shall see shortly. Intuitively, we will also want to consider terms that only
differ in the particular names used to express abstraction to be equal. However,
this is a slightly tricky construction as far as the algebra of the syntax goes and
we will only undertake it after mature consideration.

It is common, informal practice to take the variables to belong to a single
infinite set of names, VN, with a decidable equality relation, =, and that is
indeed what we will do. Recent research [8,17] has shown that there can be
formalist advantages to employing a certain amount of ingenuity on the issue
of variable names. Still, we make a point of following the naive approach. In
fact, the main contribution of this paper is to show that it is not only possible
but also feasible and even instructive to use this, the naive set-up, for formal
purposes. This is relevant both from a foundational and a practical perspective.
The latter more-so as we, as a first, give a rational reconstruction of the widely
used and very helpful Barendregt Variable Convention (BVC) [1].
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We stress that A¥2" is first-order abstract syntax (FOAS) and therefore comes
equipped with a primitive (first-order) principle of structural induction [2]:

Vz.P(xz) Vey,e2.P(e1) A P(e2) = P(eies) Vz,e.P(e) — P(\z.e)
Ve.P(e)

Similarly, the syntax also comes equipped with a primitive recursion principle
so we can define auxiliary notions (e.g., free variables) by case-splitting.

The Issues In the set-up of FOAS defined over one-sorted variable names
(FOASy ), name-overlaps seem inevitable when computing. Traditionally, one
therefore renames offending binders when appropriate. This has a two-fold neg-
ative impact: (i) the notion ‘sub-term of’ on which structural induction depends
is typically broken,! and (ii) as a term can reduce in different directions, the
resulting name for a given abstraction cannot be pre-determined. Consider, e.g.,
the following example taken from [11] — for precise deﬁniti%ns see Section 1.2:

C
_5__) Ay Az.zy)y ——B—> Az.zy
(Az.(Ay-Az.zy)r)y _
ﬂc-) (A\z.Az.zz)y -2 Az.zy

Equational reasoning about FOASy A can thus seemingly only be conducted up-
to post-fixed “name-unification”. Aside from any technical problems this might
pose, the formal properties we establish require some interpretation.

The basic problems with FOASy,,s has directly resulted in the inception of
syntax formalisms (several of them recent) which overcome the issues by native
means [4-8,12]. In general, they mark a conceptual and formal departure from
the naive qualities of FOASy . This is in part unfortunate because FOASy y is
the de facto standard in programming language theory where, as a result of the
problems, it is customary to reason while “assuming the BVC” [1]:2

“2.1.12. Terms that are a-[equivalent] are identified.”

“2.1.18.If My, ..., M, occur in a certain mathematical context, [their]
bound variables are chosen to be different from the free variables.”

“2.1.14. Using 2.1.12/13 one can work with A-terms the naive way.”

Our Contribution We

— show that it is possible and feasible to conduct formal equational proofs
about higher-order languages by simple, first-order means

— show that this can be done over FOASy,y, as done by hand

— formally justify informal practices; in particular, the BVC [1, 24]

— contribute to a much needed proof theoretical analysis of binding [8, 9]

— introduce a quasi-complete range of positive and negative results about the
preservation and reflection of confluence under a large class of mappings

! Thanks to Regnier for observing that this need not happen with parallel substitution.
2 We make reference to Barendregt because it is common practice to do so. Many
other people have imposed hygiene conditions on variables.



1.1 Terminology and Conventions

We say that a term reduces to another if they are related by a reduction relation
and we denote it by an infix arrow. The sub-term a reduction step acts upon is
called the redex and it is said to be contracted. A reduction relation for which
a redex remains so when occurring in any sub-term position is said to be con-
textually closed. We will distinguish raw and real calculi: inductive structures
vs. the former factored by an equivalence. We use dashed respectively full-lined
relational symbols for them. The first 5 of the following notions can be given by
proper inductive constructions.

— The converse of a relation, —, is written (—) L.

— Composition is: @ =1; =2 ¢ <% Ib.a =10 A b—s e

— Given two reduction relations —; and —5, we have: —q 2 =def 1y,
— Transitive, reflexive closures: (—)* =df — ="def” — (5, ).

— Transitive, reflexive, and symmetric closures: =4 =4°f (=4 U(—4)"")*.
— A relation which is functional will be written with a based arrow: .

— A term reducing to two terms is called a divergence.

— Two diverging reduction steps, as defined above, are said to be co-initial.
— Two reduction steps that share their end-term are said to be co-final.

— A divergence is resolvable if there exist connecting co-final reduction steps.
— A relation has the diamond property, o, if any divergence can be resolved.
— A relation, —, is confluent, Confl, if o(—»).

— Weak confluence is transitive, reflexive resolution of any divergence.

— An abstract rewrite systems, ARS, is a relation on a set: -C A x A.

— Residuals are the descendants of terms under reduction.

1.2 Classic Presentations of the A-Calculus

We will here review Curry’s seminal formalist presentation of the A-calculus [3].
We will also review Hindley [11] as, to the best of our knowledge, he is the first
to give serious consideration to the problems with names in equational proofs.
The process of term substitution epitomises the issues. The two AY* -terms: Az.y
and \z.y, e.g., have the same intuitive meaning. If we intend to substitute, say,
the term z in for y, simple syntactic replacement would result in the intuitively
different terms: Az.z and Az.z. Some subtlety is therefore required.

Curry’s Presentation Curry [3] essentially defines the terms of the A-calculus
to be AY®" with the proviso that variable names are ordered linearly. He defines
substitution as follows — for free variables, FV(—), see Section 3, Figure 1:

o _Je ifzx=y
ylow =e) = {y otherwise

(e1e2)(x :=€) = e (z :=e)es(z :=¢e)
Ay.e' ifx=y

Ay.e )z =€) =< My.e'{z:=¢) ifx#yA(yg€FV(e) Ve €FV(e))
Az.e/{y = z){(xz :=e) o/w; first z & {x} UFV(e) UFV(e')



Curry is seminal in giving a precise definition of substitution which takes into
account that scoping is static. He then defines the following reduction relations
for A which are closed contextually:

— My.e{x :=y) —+,0 Az.e, if y € FV(e)
— (Az.e)e’ -2 3c e(x =€)

Unfortunately, following on from here, Curry makes no further mentioning of «
in the proofs of the equational properties of the A-calculus. Instead, all proofs
are seemingly conducted implicitly on a-equivalence classes although these are
not formally introduced.

Hindley’s Presentation This situation, amongst others, was rectified by Hind-
ley [11]. In order to address a-equivalence classes explicitly, Hindley introduced
a restricted a-relation which we call af. The relation is given as the contextual
closure of:

— Az.e —rqu Ay.e(z:=y), ifx £y, y FV(e) UBV(e), and = & BV(e)

The atl-relation has the nice property that the renaming clause of —(— := —)
is not invoked, cf. Lemma 9. Furthermore, a number of Hindley’s results conspire
to establish the following property:

Lemma 1 (From Lemma 4.7, Lemma 4.8, Corollary 4.8 [11])

==Ozc = ——-)-)ac = ——-)-)aH = ==_H
Notation 2 To have an aziomatisation-independent name for a-equivalence
on A we will also refer to the relation of the above lemma as X (read: aleph).

With this result in place, Hindley undertakes a formal study of a-equivalence
classes which leads to the definition of a further A-relation, this time on af-

equivalence classes:

LeJin =2 {e! | e ==y €'}

ler]n —pu Le2]u = 3e| € |e1|n,eh € |ea]n.€} -+ 50 €h

It is this relation which Hindley proves confluent albeit with no formal consid-
erations concerning the invoked proof principles. This puts Hindley’s treatment
of the A-calculus firmly apart from the present article. Interestingly, Hindley also
points out that the obtained (real) confluence result implies confluence of the
combined a®- and $°-relation. We are able to formally substantiate this remark
of Hindley, cf. Theorem 16.



1.3 Related Work

There has recently been a substantial amount of work on proof principles for
syntax that seemingly are more advanced than the first-order principles we use
[4-8,10,12]. These lines of work, in particular the continuations of [6,8, 22], are
all very interesting but orthogonal to the work we present here. We suggest that
a study of the proof-theoretical strength of these different proof principles might
be informative and we leave it as potential future work.

There are a number of formalisations of S-confluence [13,17,18,22,23]. Apart
from [17] which uses two-sorted variable names to distinguish bound and free
variables, they all use either higher-order abstract syntax or de Bruijn indexing.

We know of no formal proof developments, be it for equational properties or
otherwise, that are based on FOASy . That said, Schroer [21] does undertake
a hand-proof of confluence of the A-calculus which explicitly pays attention to
variable names but with its 700+ pages, it is perhaps not as approachable as
could be desired. Besides, no particular attention is paid to the employed proof
principles and no formalisation is undertaken.
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1.5 A Word on our Proofs

The Isabelle/HOL proof development underpinning the present article was un-
dertaken mainly by the second author in the space of roughly 9 weeks. It is
available from the first author’s homepage. At the time of writing, the conflu-
ence properties for our AV -calculus (Section 3) and the A-calculus proper have
been established. The Isabelle proof development closely follows the presentation
we give here. There are one or two differences which are exclusively related to
the use of alternative but equivalent induction principles in certain situations.

We started from scratch and learned theorem proving and Isabelle as we went
along. Our proofs are mainly brute-force in that Isabelle apparently had prob-
lems overcoming the factorial blow-up in search space arising from the heavily
conditioned proof goals for our conditional rewrite rules. Presently, the size of
our proof scripts is in the order of 4000 lines of code.

The second author’s Honours project will contain more detailed information
about the proof development itself and will focus in part on the automation
issue. The first author’s thesis will focus more generally on first-order equational
reasoning about higher-order languages.



2 Abstract Proof Techniques for Confluence

We now present the (new and well-known) abstract rewriting methods we use.

2.1 Preservation and Reflection of Confluence

Surprisingly, the results in this section seems to be new. Although they are very
basic and related to the areas of rewriting modulo and refinement theory, we
have not found any comprehensive overlaps.? In any event, the presentation is
novel and instructive for the present purposes. Before proceeding, we refer the
reader to Appendix A for an explanation of our diagram notation.

Definition 3 (Ground ARS Morphism) Assume two ARS: -4C A x A
and —-C B x B. A mapping, M : A — B, will be said to be a ground ARS
morphism* from — 4 to = if it is total and onto on points and a homomorphism

from — 4 to —>p:
oe——e

M M](homd) M

o———e
B

e o

(total) IM (onto)

An example of a ground ARS morphism is the function that sends an object
to its equivalence class relative to any equivalence relation (such as, a- or AC-
equivalence): what one would call a “structural collapse”. Notice that a ground
ARS morphism prescribes surjectivity on objects but not on relations (and, as
such, should not be called a “structural collapse” in itself). Instead, the following
theorem analyses the various “degrees of relational surjectivity” relative to the
confluence property.

Theorem 4 Given a ground ARS morphism, M, from — 4 to =g, we have?

1. M] GIM = o(=a) # o(—n)
2. M[ GIM = o(=a) # o(—=r)
0ol plv = 20 S
b M] GIM = o(—=a) & o(—p)

Proof The positive results are straightforward to establish. The reflexive(!)
versions of the following ARS provide counter-examples for all the negative re-
sults, left-to-right and right-to-left, respectively. Reflexivity is required to estab-
lish the ¢ property in the first place.

al/fQGZ\ """""""" 3by ap\ > by
..... »b B ?*)/ \*7 iB
a'l\'—lgaél-...i._,“..ﬁb; asl--....... ag\ o000 3 by

% A special case of Theorem 4, 4 is reported in [14] and we contradict a result in [19].
* The name is inspired from [20].
® In the theorem, the notation /4 (¢) means existence of counter-examples.



The asymmetry between cases 2 and 3 is due to the functionality of M.

Implications In order to preserve confluence under a “structural collapse”
(i.e., a ground ARS morphism plus a premise from Theorem 4), we see from
Theorem 4, cases 1 and 2 that it is insufficient to simply prove a raw diamond
property which admit an initiality condition on well-formedness of raw terms.
Observe that this is exactly what happens in the wider programming language
community when using the BVC.

2.2 Resolving the Abstract Proof Burden of Confluence

We now sketch the abstract part of the Tait/Martin-Lof proof method for con-
fluence as formalised by Nipkow [18] plus what we call Takahashi’s Trick [24].

A Formalisation of the Tait/Martin-Lof Method The Tait/Martin-Lof
proof method uses a parallel relation that can contract any number of pre-
existing redexes in one step, cf. Figure 4. The crucial step in applying the method
is the following property of ARS.

Lemma 5 (3 5. +1C—=2C—1 A 0(—)2)) = Conﬂ(—)l)
Proof A formalisation is provided in [18] and is re-used here. O

The point is that, since a parallel relation, —5 above, can contract an ar-
bitrary number of redexes in parallel, only one reduction step is required to
contract the unbounded copies of a particular redex that could have been cre-
ated through duplication by a preceding reduction.

Takahashi’s Trick In order to prove the diamond property of a parallel §-
relation, Takahashi [24] introduced the trick of using an inductively defined
complete development relation, cf. Figure 5, rather than proceed by direct means
(i.e., an involved case-splitting on the relative locations of redexes). Instead of
resolving a parallel divergence “minimally” (i.e., by a brute-force case-splitting),
Takahashi’s idea is to go for “maximal” resolution: the term that has all pre-
existing redexes contracted in one step is co-final for any parallel divergence. Ab-
stractly, the following ARS result underpins Takahashi’s idea up-to the guarding
predicates which we have introduced.

Lemma 6 (Takahashi’s Diamond Diagonalisation (Guarded)) For any
predicates, P and Q, and any relations, —, and —, we }zave

PAQ)
(P) ° (Q) ° NG @/.\Q
l N [ = [} [}

o SN N
o o O Qo0 ¢



. Jeifx=y
ylo:=e] = {y otherwise

(ere2)[z := €] = ei[x := e]ez[x := €]
N 1 JAyer=elifx #FyAy & FV(e)
Ay-e)z =] = {)\y.e' otherwise
FV(y) = {y} Capt, (y) =0
FV(eie2) = FV(e1) UFV(e2) Capt,(e1e2) = Capt,(e1) U Capt, (e2)
. _ [{ytuCapt,(e)if z #y Az € FV(e)

FV(Ay.e) =FV(e) \ {y} Capt,(Ay.e) = {@ otherwise
Fig. 1. Total but partially correct substitution, —[— := —], free variables, FV(—), and

variables capturing free occurrences of z, Capt,(—), for A"*".

y ¢ Capt,(e) UFV(e) FV(e2) N Capt,(e1) =0

(8)

a
Az.€ 25 ia Ay.elr = y] (Az.e1)ez —-2+p e1[z := es]

Fig. 2. Raw - and indexed a-contraction — reduction is given by full contextual
closure. By the premises no invoked substitution will result in free-variable capture.

Proof Straightforward. O

The second premise is often called the triangle property when —; is functional.

3 The A\V?'-Calculus

We will now formally define the A\¥®"-calculus and go on to show that its “struc-
tural collapse” under « is the A-calculus proper as defined in Section 1.2.

Definition 7 (The A\Y*'-Calculus) The terms of the A\V* -calculus are A",
given on page 1. Substitution, free variables and capturing variables of raw
terms are defined in Figure 1. The 8- and indexed a-rewriting relations of A\V2":

-5 and --» ;o are given inductively by contextual closure from Figure 2. Plain

.. . . z
a-rewriting is given as: e; —3, es <9 Jze; a4 e

The indexed a-rewriting relation will be used to conduct the ensuing proofs
but is, as such, not needed for defining the A'®-calculus. We stress that the
(inductively defined) reduction relations also come equipped with first-order in-
duction principles. We will typically refer to uses of these as rule induction. The
main novelty in the above definition is the side-conditions on the contraction
rules that makes binder-renaming unnecessary. The construct Capt,,(e) returns
all the binding variables in e that have a free occurrence of z (relative to e) in
their scope. It coincides with the all but forgotten notion of not free for. Sub-
stitution has been defined the way it has purely to enable us to prove certain
“renaming sanity” properties for it, which we however will not present here.



BV(z) =10 UB(z) = True
BV(Eleg) = BV(El) U BV(EQ) UB(Eleg) = UB(el) A UB(Ez) A BV(el) n BV(EQ) =0
BV(Az.e) = BV(e) U {z} UB(Az.e) = UB(e) Az € BV(e)
Fig. 3. The bound variables and the uniquely bound predicate for the terms of AY*".

Proposition 8 FV(ex) N Capt,(e1) =0 = ei[r :=e2] = e1{x :=e3)

Proof By structural induction in e;. The only non-trivial case is e; = \y.e}
which is handled by a tedious case-splitting on y. The main case is y # x and
y € FV(es). Here, the premise of the proposition means that y ¢ Capt, (\y.e')
which immediately implies that & FV(e’) by y # z. We hence avoid —(— := —)
performing a binder renaming. a

Lemma 9 --»,u C -3, C (—=3,0)"!

Proof The first inclusion follows as the side-condition on --+ .= is subsumed
by the side-condition on --+,. Any invoked substitutions thus coincide by Propo-
sition 8 whose premise is established by the latter’s side-condition. The reasoning

for the second inclusion is analogous. O
@
Lemma 10 (--»,-Symmetry) er” T T TS
-
Lemma 11 X = --», ===,
Proof From Lemmas 1 and 9 and Lemma 10, respectively. O

Lemma 12 35 C —-350c C ——%,; 33

Proof The first inclusion follows from Proposition 8. The second follows by
observing that all the renamings required to perform the °-induced substitution
preserve a“-equivalence, i.e., N-equivalence. By Lemma 11, they can thus be
expressed by --». It suffices to observe that no renaming is performed following
the “passing” of the substitution invoked by the S-rule. O

AV2T a-Collapses to the Real A-Calculus With these fundamental results
in place, we have ensured the intuitive soundness of the following definition —
which mimics Hindley’s construction.

Definition 13 (The Real A-Calculus)
Ly —
B |—]:A™ — A
e = {e|e==4€}
— le] =g L] @0 e ==y pi==y e

!



’ l ’
€ ~H3¥pg € €1 ~H*pg €1 €2 ~H*g €2

’ o
T -3 T Azx.e -H3g AT.e eres -Hrg ejes

e1 -rg ey es -nsgey  FV(ey) NCapt,(e)) =0

(Az.e1)es -Hag ez := eb)

Fig. 4. The parallel B-relation: arbitrary, pre-existing S-redexes contracted in parallel.

Following on from the definition, we see that we have:

Proposition 14 |e] -3 [€/| & e(z=4;--23;==) €/ V e==, €
Proof The left-most disjunct is the straightforward transitive version of our

definition of real 5. The right-most disjunct comes from the reflexive case, again
by definition. O

We thus arrive at the following, rather appeasing, result.

Lemma 15 |e| =3 [e'] & e -—»,up e & e —»,cupc e & ey —»pn [€|n

Proof From Lemma 10, it is trivial to see that (==4;--2g;==0)* U == =
--»,ug and the first biimplication is established by Proposition 14. The second
biimplication follows by Lemmas 9, 11, and 12. The last biimplication follows in
an analogous manner. O

Equivalence of the Raw and the Real Calculi The technical reason for
calling the above result “appeasing” is that it allows us to prove the equational
equivalence results for the raw and the real calculi we have made reference to.
We consider the second result to be of particular interest.

Theorem 16

— (A =p) = (A™) ==aup) = (A" ==qcygc) = ((A™/ ==4n)/ =pn)

— Confl(=3) ¢ Confl(--+,u3) < Confl(--»,0pc) < Confl(—=4n)
Proof The first result is immediate following Lemma 15. As for the second

result, the definitional totality and surjectivity of |—] and |—]|g combined with
Lemma 15 allow us to apply Theorem 4, case 4. a

Having thus formally convinced ourselves that we are about to solve the right
problem, we will now present the details of the confluence proof.

4 An Equational A¥*-Property and A-Confluence

As outlined in Sections 2 and 3, it suffices to find a raw relation over AY®" which
enjoys the diamond property in order to prove the confluence property for the A-
calculus. Taking the lead from the Tait/Martin-Lof method, this relation needs
to contain a notion of parallel S-reduction.



I I I I
e ———)IB e e ——-)IB e €1€2 ——-)IB e €3 ——-)IB €3

! ! o
T T Agp.e —-dg Ax.e  Te —-»g xe (ere2)es ——»i5 €'e3

e1 —-sg ey es—-sigey  FV(ey) N Capt,(ey) =0

(Az.e1)es --+1g e} [z 1= eb]

Fig. 5. The complete development (B-relation: attempted contraction of all redexes.

Definition 17 Parallel 5-reduction, -t+3, is defined in Figure 4.

The parallel S-relation admits the contraction of any number (including 0)
of pre-existing f-redexes starting from within as long as no variable renaming is
required. To give an impression of the level of detail of the formalisation, we can
mention that the property which we need the most in the proof development is
the following variable monotonicity result about the parallel S-relation:

Proposition 18 e -#+ge’ = FV(e') CFV(e) A BV(e') CBV(e)

In order to employ Takahashi’s Trick, we need to ensure that any considered
B-divergence can be resolved by a complete development step.

Definition 19 Complete S-development, -3, is defined in Figure 5.

Observe, informally, that —-3 only is defined if all (pseudo-)redexes validate
the side-condition on the S-rule. Or, more precisely, the relation is defined if
it is possible to contract all (pseudo-)S-redexes starting from within — we will
shortly show that this is indeed possible. For now, we merely present:

Lemma 20 --s3C-H3g
Proof Straightforward. O

The Overall Proof Structure Having thus established the basics, we outline
the proof of the diamond property of the following relation: --+,; -#+3, before
supplying the actual details of the proof. The relation is inspired by the defini-
tional reflection of the weak confluence property for the A-calculus proper over
the structural (a-)collapse of A", In order to use the BVC in our proof, we first
present it as a predicate on AY®' cf. Figure 3.

Definition 21 (Barendregt Conventional Form)
BCF(e) = UB(e) A (BV(e) NFV(e) = 0)

Lemma 22 o(-—-»4;-t43)



Proof
For the Ms given, we can construct

the Ns in the divergence resolution
on the right in order. The ensuing
sections will detail the individual di-
agrams. The --»,,-relation is intro-
duced in Definition 25 as the fresh-
naming restriction of --+,. It serves
to facilitate the commutativity with
B on either side of the diagram. We
note that the result means that it suf-
fices to address all naming issues be-
fore the combinatorially more complex
B-divergence which can be addressed
in isolation due to BCF-initiality.

Ml———»NO«———MQ
’ Qo | "o N

2, . A

°N, (BCF) Mj

7 N\ /

N AN 2 Q(/

A\ N
Q@ Né % Py Né/ [od
N R4

L
4

4.1 Substitutivity and Substitution Results

When proving a commutativity result about two relations, you typically proceed
by rule induction over one of the relations. In what amounts to the non-trivial
sub-cases of such a proof you therefore typically need to show that a substitution
from the case-instantiated relation “distributes” over the other relation. Such re-
sults are called Substitutivity Lemmas. The non-trivial sub-cases of Substitutiv-
ity Lemmas, in turn, are called Substitution Lemmas. They establish commuta-
tivity of the substitutions from both the case-instantiations. Substitutivity and
Substitution Lemmas are non-trivial to prove formally. For our present purposes
we will merely display one of each to give an indication of the style. The key to
understanding the following lemmas is the fact that Capt,(e1) NFV(ez) = 0 is
the weakest predicate ensuring the correctness of substituting e into e; for x.

Lemma 23 (Substitution)

y€FV(ea) Nz #y /; (Capt,(e3) NFV(ez) = 0) A (Capt,(e1) NFV(ez) = 0)

A (Capt,(e1) NFV(e
4

eily = e[z := e3] = e1][z 1= ][y :=e3[x :

Lemma 24 (Parallel 3 Substitutivity)

0) A (Capt, (exly :=

e3]) NFV(es) = 0)

ea]|

e1 -Hrg €} Aes -trg ey A (Capt,(er) NFV(ea)=0) A (Capt, (e]) NFV(ey) =0)

U

e[z := es] -t €[z := eb]

We refer the interested reader to the complete Isabelle/HOL proof develop-
ment at the homepage of the first author for full details.



4.2 Weak a- and B-Commutativity

In this section we prove the lemma that is needed on either side of the diagram
in the proof of Lemma 22. In trying to prove a general a and 8 commutativity
result, we are immediately stopped by the following naming issue: for virtually all
AY?'-terms, there exist a-reductions that can invalidate a previously validated
side-condition on a B-redex. Fortunately, we can see that the commutativity
result we need concerns arbitrary S-reductions but only a-reductions that suffice
to prove Lemma 22. We therefore define a restricted, fresh-naming a-relation.
The definition can also be given inductively.

Definition 25 € --»o, ¢/ <% 3ze-Z5,, ¢ A 2z ¢ FV(e) UBV(e)
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Proof By rule induction in --#,, with the induction step going through
painlessly by freshness of the relevant z. O

4.3 The Diamond Property of Parallel 3 up-to BVC-Initiality

We will now establish the lower part of the diagram in the proof of Lemma 22.
It is proved using Takahashi’s Trick, cf. Lemma 6. Initially, we thus need to
establish the conditional existence of a non-renaming complete S-development.

Lemma 27 (BCF)e - o
Proof By structural ind@lction using Proposition 18 and Lemma 20. a

We stress that the proof is straightforward using the referenced variable
monotonicity results as --si3 is inductively defined to contract from within. No
complicated considerations concerning residuals are required. However, BCF-
initiality is crucial for the property. The terms (Az.Ay.z)y and Ay.(Az.Ay.z)y
fail to enjoy free/bound variable disjointness and unique binding, respectively,
and neither completely develop. BCF-initiality is thus sufficient for the existence
of a complete development but only necessary in a weak sense: breaking either
conjunct of the BCF-predicate can prevent renaming-free complete development.
Still, some non-BCFs completely develop, e.g., (Az.z)z and \z.(Az.x)x.

The second of the two required results for the application of Lemma 6 must
establish that any parallel S-step always can “catch up” with a completely de-
veloping (-step by a parallel 8-step, with no renaming involved.
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Proof By rule induction in --+3 using Lemma 24. a

It is interesting that the above property requires no initiality conditions, like
the BCF-predicate, to be provable — except, that is, from well-definedness of
--»3. This is mainly due to our use of the weakest possible side-condition on
B-contraction to make 3 renaming free (i.e., FV(=) N Capt_(—) = 0). Had we
instead required that the free variables of the argument were disjoint from the
full set of bound variables in the body of the applied function (i.e., FV(=) N
BV(-) = 0), the property would not have been true. A counter-example is
(Ay.(Az.y)z)Az.z. It takes advantage of complete developments contracting from
within. Contracting the outermost redex first (e.g., by a parallel step) blocks
the contraction of the residual of the innermost redex when the stronger side-
condition is imposed: (Az.Az.z)z. No variable conflict is created between two
residuals of the same term due to Hyland’s Disjointness Property [15].°

Lemma 29 (BCF) o _‘H‘B’ .
1 1

=T BT
o — - 0

Proof From Lemmas 27 and 28 by using Takahashi’s Trick, Lemma 6. a

4.4 Fresh-Naming a-Confluence with BVC-Finality

The last result we need for the proof of Lemma, 22 is the top triangle with its
leg. We prove it as two results (mainly out of formalisation considerations)—
the first form suffices by Lemma 10:

C;;‘Oé(g o——a»oo(BCF)

The proofs do not provide any insights and have been omitted.

4.5 Confluence

We have thus completed the proof of Lemma 22 and only one more lemma is
needed before we can conclude our main result.

Lemma 30 --»q3C--»q; 1230403
Proof By rule induction observing that both --+, and -1+ are reflexive. The
proofs of the inclusions: --+gC-#+3C -3, go through straightforwardly. O

Theorem 31 (Confluence of the Raw and Real A-Calculi)

Confl(--+aup) A Confl(—3) A Confl(--+,cupc) A Confl(—gn)
Proof By Lemmas 5, 22, and 30 and then Theorem 16. (|

6 “Any two residuals of some sub-term in a residual of the original term are disjoint”.



5 Conclusion

We have completed a confluence proof applying to several raw and real A-calculi.
It has been done by using first-order induction principles over A" and reduc-
tion relations, only. It is the first proof we know of which clearly makes the raw-
/real-calculi distinction. It does so by introducing a new result about preserva-
tion/reflection of confluence. It is also the first formalised equational result about
a higher-order language which conducts its inductive reasoning over FOASy, 7,
as you do informally by hand.

A Rational Reconstruction of the BVC We proved two results about paral-
lel and completely developing g-reduction, Lemmas 27 and 28, in order to apply
Takahashi’s Trick. In summary, they say that irrespective of which pre-existing
B-redexes in a BCF-term you contract in parallel and without performing re-
naming, it is possible to contract the residuals of the rest in parallel and without
performing renaming and arrive at the completely developed term. All in all,
the residual theory of --»+3 in AY?" is renaming-free up-to BCF-initiality. This is
partly a consequence of Hyland’s Disjointness Property [15] and partly due to
our careful use of substitution. Said differently, Barendregt’s moral:

“2.1.14. Using 2.1.12/13 one can work with A-terms the naive way.”

is formally justifiable and is, in fact, an entirely reasonable way to conduct
equational proofs about the A-calculus when due care is taken to clarify the raw
vs. real status of the established property.
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A Commutative Diagrams

Formally, a commutative diagram is a set of vertices and a set of directed edges between
pairs of vertices. A vertex is written as either e or o. Informally, this denotes quantifica-
tion modes over terms, universal respectively existential. A vertex may be guarded by
a predicate. Edges are written as the relational symbol they pertain to and are either
full-coloured (black) or half-coloured (gray). Informally, the colour indicates assumed
and concluded relations, respectively. An edge connected to a o must be half-coloured.
A diagram must be type-correct on domains. A property is read off of a diagram thus:

1. write universal quantifications for all es (over the relevant domains)
2. assume the full-coloured relations and the validation of any guard for a e
3. conclude the guarded existence of all os and their relations

The following diagram and property correspond to each other (for -C A x A).

(P).—>. V61,62,63€A.61—)62 /\61—)63/\P(61)
Ll U
e —0(Q) Jes € A.ea v ea A ez —>es A Qles)

We will often leave quantification domains implicit and furthermore assume the stan-
dard disambiguating conventions for binding strength and associativity of connectives.



