
A Formalised First-Order Conuene Proof forthe �-Calulus using One-Sorted Variable Names(Barendregt was right after all ... almost)Ren�e Vestergaard1 and James Brotherston21 CNRS-IML, Marseille, Frane, vester�iml.univ-mrs.fr ?2 University of Edinburgh, Sotland, jjb�ds.ed.a.uk ??Abstrat. We present the titular proof development whih has beenimplemented in Isabelle/HOL. As a �rst, the proof is onduted exlu-sively by the primitive indution priniples of the standard syntax andthe onsidered redution relations: the naive way, so to speak. Curiously,the Barendregt Variable Convention takes on a entral tehnial role inthe proof. We also show (i) that our presentation oinides with Curry'sand Hindley's when terms are onsidered equal up-to � and (ii) that theonuene properties of all onsidered aluli are equivalent.1 IntrodutionThe �-alulus is a higher-order language: terms an be abstrated over terms.It is intended to formalise the onept of a funtion. The terms of the �-alulusare typially generated indutively thus: �var ::= x j �var�var j �x:�varA �-term, e 2 �var, is hene �nite and is either a variable, an appliation ofone term to another, or the funtional abstration (aka binding) of a variableover a term, respetively. On top of the terms, we de�ne redution relations, aswe shall see shortly. Intuitively, we will also want to onsider terms that onlydi�er in the partiular names used to express abstration to be equal. However,this is a slightly triky onstrution as far as the algebra of the syntax goes andwe will only undertake it after mature onsideration.It is ommon, informal pratie to take the variables to belong to a singlein�nite set of names, VN , with a deidable equality relation, =, and that isindeed what we will do. Reent researh [8, 17℄ has shown that there an beformalist advantages to employing a ertain amount of ingenuity on the issueof variable names. Still, we make a point of following the naive approah. Infat, the main ontribution of this paper is to show that it is not only possiblebut also feasible and even instrutive to use this, the naive set-up, for formalpurposes. This is relevant both from a foundational and a pratial perspetive.The latter more-so as we, as a �rst, give a rational reonstrution of the widelyused and very helpful Barendregt Variable Convention (BVC) [1℄.? Supported under EU TMR grant # ERBFMRXCT-980170: LINEAR. Work donein part while visiting LFCS, University of Edinburgh from Heriot-Watt University.?? Supported by a grant from LFCS, University of Edinburgh.



We stress that �var is �rst-order abstrat syntax (FOAS) and therefore omesequipped with a primitive (�rst-order) priniple of strutural indution [2℄:8x:P (x) 8e1; e2:P (e1) ^ P (e2)! P (e1e2) 8x; e:P (e)! P (�x:e)8e:P (e)Similarly, the syntax also omes equipped with a primitive reursion prinipleso we an de�ne auxiliary notions (e.g., free variables) by ase-splitting.The Issues In the set-up of FOAS de�ned over one-sorted variable names(FOASVN ), name-overlaps seem inevitable when omputing. Traditionally, onetherefore renames o�ending binders when appropriate. This has a two-fold neg-ative impat: (i) the notion `sub-term of' on whih strutural indution dependsis typially broken,1 and (ii) as a term an redue in di�erent diretions, theresulting name for a given abstration annot be pre-determined. Consider, e.g.,the following example taken from [11℄ | for preise de�nitions see Setion 1.2:(�y:�x:xy)y �x:xy(�x:(�y:�x:xy)x)y (�x:�z:zx)y �z:zy�C�C �C�CEquational reasoning about FOASVN an thus seemingly only be onduted up-to post-�xed \name-uni�ation". Aside from any tehnial problems this mightpose, the formal properties we establish require some interpretation.The basi problems with FOASVN has diretly resulted in the ineption ofsyntax formalisms (several of them reent) whih overome the issues by nativemeans [4{8, 12℄. In general, they mark a oneptual and formal departure fromthe naive qualities of FOASVN . This is in part unfortunate beause FOASVN isthe de fato standard in programming language theory where, as a result of theproblems, it is ustomary to reason while \assuming the BVC" [1℄:2\2.1.12. Terms that are �-[equivalent℄ are identi�ed."\2.1.13. IfM1; : : : ;Mn our in a ertain mathematial ontext, [their℄bound variables are hosen to be di�erent from the free variables."\2.1.14. Using 2.1.12/13 one an work with �-terms the naive way."Our Contribution We{ show that it is possible and feasible to ondut formal equational proofsabout higher-order languages by simple, �rst-order means{ show that this an be done over FOASVN , as done by hand{ formally justify informal praties; in partiular, the BVC [1, 24℄{ ontribute to a muh needed proof theoretial analysis of binding [8, 9℄{ introdue a quasi-omplete range of positive and negative results about thepreservation and reetion of onuene under a large lass of mappings1 Thanks to Regnier for observing that this need not happen with parallel substitution.2 We make referene to Barendregt beause it is ommon pratie to do so. Manyother people have imposed hygiene onditions on variables.



1.1 Terminology and ConventionsWe say that a term redues to another if they are related by a redution relationand we denote it by an in�x arrow. The sub-term a redution step ats upon isalled the redex and it is said to be ontrated. A redution relation for whiha redex remains so when ourring in any sub-term position is said to be on-textually losed. We will distinguish raw and real aluli: indutive struturesvs. the former fatored by an equivalene. We use dashed respetively full-linedrelational symbols for them. The �rst 5 of the following notions an be given byproper indutive onstrutions.{ The onverse of a relation, !, is written (!)�1.{ Composition is: a!1;!2  ,def 9b : a!1 b ^ b!2 .{ Given two redution relations !1 and !2, we have: !1[2 =def !1 [ !2.{ Transitive, reexive losures: (!)? =def !! =\def00 = [(!;!!).{ Transitive, reexive, and symmetri losures: =A =def (!A [(!A)�1)?.{ A relation whih is funtional will be written with a based arrow: 7!.{ A term reduing to two terms is alled a divergene.{ Two diverging redution steps, as de�ned above, are said to be o-initial.{ Two redution steps that share their end-term are said to be o-�nal.{ A divergene is resolvable if there exist onneting o-�nal redution steps.{ A relation has the diamond property, �, if any divergene an be resolved.{ A relation, !, is onuent, Con, if �(!!).{ Weak onuene is transitive, reexive resolution of any divergene.{ An abstrat rewrite systems, ARS, is a relation on a set: !� A�A.{ Residuals are the desendants of terms under redution.1.2 Classi Presentations of the �-CalulusWe will here review Curry's seminal formalist presentation of the �-alulus [3℄.We will also review Hindley [11℄ as, to the best of our knowledge, he is the �rstto give serious onsideration to the problems with names in equational proofs.The proess of term substitution epitomises the issues. The two �var-terms: �x:yand �z:y, e.g., have the same intuitive meaning. If we intend to substitute, say,the term x in for y, simple syntati replaement would result in the intuitivelydi�erent terms: �x:x and �z:x. Some subtlety is therefore required.Curry's Presentation Curry [3℄ essentially de�nes the terms of the �-alulusto be �var with the proviso that variable names are ordered linearly. He de�nessubstitution as follows | for free variables, FV(�), see Setion 3, Figure 1:yhx := ei = � e if x = yy otherwise(e1e2)hx := ei = e1hx := eie2hx := ei(�y:e0)hx := ei = 8<:�y:e0 if x = y�y:e0hx := ei if x 6= y ^ (y 62 FV(e) _ x 62 FV(e0))�z:e0hy := zihx := ei o/w; �rst z 62 fxg [ FV(e) [ FV(e0)



Curry is seminal in giving a preise de�nition of substitution whih takes intoaount that soping is stati. He then de�nes the following redution relationsfor � whih are losed ontextually:{ �y:ehx := yi 9 9 K�C �x:e, if y 62 FV(e){ (�x:e)e0 9 9 K�C ehx := e0iUnfortunately, following on from here, Curry makes no further mentioning of �in the proofs of the equational properties of the �-alulus. Instead, all proofsare seemingly onduted impliitly on �-equivalene lasses although these arenot formally introdued.Hindley's Presentation This situation, amongst others, was reti�ed by Hind-ley [11℄. In order to address �-equivalene lasses expliitly, Hindley introdueda restrited �-relation whih we all �H. The relation is given as the ontextuallosure of:{ �x:e 9 9 K�H �y:ehx := yi, if x 6= y, y 62 FV(e) [ BV(e), and x 62 BV(e)The �H-relation has the nie property that the renaming lause of �h� := �iis not invoked, f. Lemma 9. Furthermore, a number of Hindley's results onspireto establish the following property:Lemma 1 (From Lemma 4.7, Lemma 4.8, Corollary 4.8 [11℄)==�C = 9 9 KK�C = 9 9 KK�H = ==�HNotation 2 To have an axiomatisation-independent name for �-equivaleneon �var, we will also refer to the relation of the above lemma as � (read: aleph).With this result in plae, Hindley undertakes a formal study of �-equivalenelasses whih leads to the de�nition of a further �-relation, this time on �H-equivalene lasses: beH =def fe0 j e ==�H e0gbe1H !�H be2H =def 9e01 2 be1H; e02 2 be2H:e01 9 9 K�C e02It is this relation whih Hindley proves onuent albeit with no formal onsid-erations onerning the invoked proof priniples. This puts Hindley's treatmentof the �-alulus �rmly apart from the present artile. Interestingly, Hindley alsopoints out that the obtained (real) onuene result implies onuene of theombined �C- and �C-relation. We are able to formally substantiate this remarkof Hindley, f. Theorem 16.



1.3 Related WorkThere has reently been a substantial amount of work on proof priniples forsyntax that seemingly are more advaned than the �rst-order priniples we use[4{8, 10, 12℄. These lines of work, in partiular the ontinuations of [6, 8, 22℄, areall very interesting but orthogonal to the work we present here. We suggest thata study of the proof-theoretial strength of these di�erent proof priniples mightbe informative and we leave it as potential future work.There are a number of formalisations of �-onuene [13, 17, 18, 22, 23℄. Apartfrom [17℄ whih uses two-sorted variable names to distinguish bound and freevariables, they all use either higher-order abstrat syntax or de Bruijn indexing.We know of no formal proof developments, be it for equational properties orotherwise, that are based on FOASVN . That said, Shroer [21℄ does undertakea hand-proof of onuene of the �-alulus whih expliitly pays attention tovariable names but with its 700+ pages, it is perhaps not as approahable asould be desired. Besides, no partiular attention is paid to the employed proofpriniples and no formalisation is undertaken.1.4 AknowledgementsThe �rst author wishes to thank Olivier Danvy, Jean-Yves Girard, Stefan Kahrs,Don Sannella, Randy Pollak, and in partiular Joe Wells for fruitful disus-sions. The seond author wishes to thank James Margetson, Larry Paulson, andMarkus Wenzel for help and advie on using Isabelle/HOL. Finally, both authorswish to thank LFCS and the anonymous referees.1.5 A Word on our ProofsThe Isabelle/HOL proof development underpinning the present artile was un-dertaken mainly by the seond author in the spae of roughly 9 weeks. It isavailable from the �rst author's homepage. At the time of writing, the onu-ene properties for our �var-alulus (Setion 3) and the �-alulus proper havebeen established. The Isabelle proof development losely follows the presentationwe give here. There are one or two di�erenes whih are exlusively related tothe use of alternative but equivalent indution priniples in ertain situations.We started from srath and learned theorem proving and Isabelle as we wentalong. Our proofs are mainly brute-fore in that Isabelle apparently had prob-lems overoming the fatorial blow-up in searh spae arising from the heavilyonditioned proof goals for our onditional rewrite rules. Presently, the size ofour proof sripts is in the order of 4000 lines of ode.The seond author's Honours projet will ontain more detailed informationabout the proof development itself and will fous in part on the automationissue. The �rst author's thesis will fous more generally on �rst-order equationalreasoning about higher-order languages.



2 Abstrat Proof Tehniques for ConueneWe now present the (new and well-known) abstrat rewriting methods we use.2.1 Preservation and Reetion of ConueneSurprisingly, the results in this setion seems to be new. Although they are verybasi and related to the areas of rewriting modulo and re�nement theory, wehave not found any omprehensive overlaps.3 In any event, the presentation isnovel and instrutive for the present purposes. Before proeeding, we refer thereader to Appendix A for an explanation of our diagram notation.De�nition 3 (Ground ARS Morphism) Assume two ARS: !A� A � Aand !B� B � B. A mapping, M : A �! B, will be said to be a ground ARSmorphism4 from!A to!B if it is total and onto on points and a homomorphismfrom !A to !B: �ÆM(total) Æ�M(onto) � �(homo)� �AM MBAn example of a ground ARS morphism is the funtion that sends an objetto its equivalene lass relative to any equivalene relation (suh as, �- or AC-equivalene): what one would all a \strutural ollapse". Notie that a groundARS morphism presribes surjetivity on objets but not on relations (and, assuh, should not be alled a \strutural ollapse" in itself). Instead, the followingtheorem analyses the various \degrees of relational surjetivity" relative to theonuene property.Theorem 4 Given a ground ARS morphism, M, from !A to !B, we have:51. Æ Æ� �AM MB ) �(!A) 6$ �(!B)2. Æ �� �AM MB ) �(!A) 6$ �(!B)3. � Æ� �AM MB ) �(!A) ! �(!B)^ � (!A) 6 �(!B)4. � �� �AM MB ) �(!A) $ �(!B)Proof The positive results are straightforward to establish. The reexive(!)versions of the following ARS provide ounter-examples for all the negative re-sults, left-to-right and right-to-left, respetively. Reexivity is required to estab-lish the � property in the �rst plae.a1 a2 b2b1a01 a02 b02AA B a1 b1a2 a3 b2A A B3 A speial ase of Theorem 4, 4 is reported in [14℄ and we ontradit a result in [19℄.4 The name is inspired from [20℄.5 In the theorem, the notation 6! (6$) means existene of ounter-examples.



�The asymmetry between ases 2 and 3 is due to the funtionality ofM.Impliations In order to preserve onuene under a \strutural ollapse"(i.e., a ground ARS morphism plus a premise from Theorem 4), we see fromTheorem 4, ases 1 and 2 that it is insuÆient to simply prove a raw diamondproperty whih admit an initiality ondition on well-formedness of raw terms.Observe that this is exatly what happens in the wider programming languageommunity when using the BVC.2.2 Resolving the Abstrat Proof Burden of ConueneWe now sketh the abstrat part of the Tait/Martin-L�of proof method for on-uene as formalised by Nipkow [18℄ plus what we all Takahashi's Trik [24℄.A Formalisation of the Tait/Martin-L�of Method The Tait/Martin-L�ofproof method uses a parallel relation that an ontrat any number of pre-existing redexes in one step, f. Figure 4. The ruial step in applying the methodis the following property of ARS.Lemma 5 (9 !2 :!1�!2�!!1 ^ � (!2)) ) Con(!1)Proof A formalisation is provided in [18℄ and is re-used here. �The point is that, sine a parallel relation, !2 above, an ontrat an ar-bitrary number of redexes in parallel, only one redution step is required toontrat the unbounded opies of a partiular redex that ould have been re-ated through dupliation by a preeding redution.Takahashi's Trik In order to prove the diamond property of a parallel �-relation, Takahashi [24℄ introdued the trik of using an indutively de�nedomplete development relation, f. Figure 5, rather than proeed by diret means(i.e., an involved ase-splitting on the relative loations of redexes). Instead ofresolving a parallel divergene \minimally" (i.e., by a brute-fore ase-splitting),Takahashi's idea is to go for \maximal" resolution: the term that has all pre-existing redexes ontrated in one step is o-�nal for any parallel divergene. Ab-stratly, the following ARS result underpins Takahashi's idea up-to the guardingprediates whih we have introdued.Lemma 6 (Takahashi's Diamond Diagonalisation (Guarded)) For anyprediates, P and Q, and any relations, !a and !b, we have�Æ(P )b ^ � ��(Q) ab a ) �� �Æ(P ^Q)a aa a



y[x := e℄ = � e if x = yy otherwise(e1e2)[x := e℄ = e1[x := e℄e2[x := e℄(�y:e0)[x := e℄ = ��y:e0[x := e℄ if x 6= y ^ y 62 FV(e)�y:e0 otherwiseFV(y) = fyg Captx(y) = ;FV(e1e2) = FV(e1) [ FV(e2) Captx(e1e2) = Captx(e1) [ Captx(e2)FV(�y:e) = FV(e) n fyg Captx(�y:e) = � fyg [ Captx(e) if x 6= y ^ x 2 FV(e); otherwiseFig. 1. Total but partially orret substitution, �[� := �℄, free variables, FV(�), andvariables apturing free ourrenes of x, Captx(�), for �var.y 62 Captx(e) [ FV(e) (�)�x:e y9 9 Ki� �y:e[x := y℄ FV(e2) \ Captx(e1) = ; (�)(�x:e1)e2 9 9 K� e1[x := e2℄Fig. 2. Raw �- and indexed �-ontration | redution is given by full ontextuallosure. By the premises no invoked substitution will result in free-variable apture.Proof Straightforward. �The seond premise is often alled the triangle property when !b is funtional.3 The �var-CalulusWe will now formally de�ne the �var-alulus and go on to show that its \stru-tural ollapse" under � is the �-alulus proper as de�ned in Setion 1.2.De�nition 7 (The �var-Calulus) The terms of the �var-alulus are �var,given on page 1. Substitution, free variables and apturing variables of rawterms are de�ned in Figure 1. The �- and indexed �-rewriting relations of �var:9 9 K� and �9 9 Ki� are given indutively by ontextual losure from Figure 2. Plain�-rewriting is given as: e1 9 9 K� e2 ,def 9z:e1 z9 9 Ki� e2The indexed �-rewriting relation will be used to ondut the ensuing proofsbut is, as suh, not needed for de�ning the �var-alulus. We stress that the(indutively de�ned) redution relations also ome equipped with �rst-order in-dution priniples. We will typially refer to uses of these as rule indution. Themain novelty in the above de�nition is the side-onditions on the ontrationrules that makes binder-renaming unneessary. The onstrut Captx(e) returnsall the binding variables in e that have a free ourrene of x (relative to e) intheir sope. It oinides with the all but forgotten notion of not free for. Sub-stitution has been de�ned the way it has purely to enable us to prove ertain\renaming sanity" properties for it, whih we however will not present here.



BV(x) = ; UB(x) = TrueBV(e1e2) = BV(e1) [ BV(e2) UB(e1e2) = UB(e1) ^UB(e2) ^ BV(e1) \ BV(e2) = ;BV(�x:e) = BV(e) [ fxg UB(�x:e) = UB(e) ^ x 62 BV(e)Fig. 3. The bound variables and the uniquely bound prediate for the terms of �var.Proposition 8 FV(e2) \ Captx(e1) = ; ) e1[x := e2℄ = e1hx := e2iProof By strutural indution in e1. The only non-trivial ase is e1 � �y:e01whih is handled by a tedious ase-splitting on y. The main ase is y 6= x andy 2 FV(e2). Here, the premise of the proposition means that y 62 Captx(�y:e0)whih immediately implies that x 62 FV(e0) by y 6= x. We hene avoid �h� := �iperforming a binder renaming. �Lemma 9 9 9 K�H � 9 9 K� � (9 9 K�C)�1Proof The �rst inlusion follows as the side-ondition on 9 9 K�H is subsumedby the side-ondition on 9 9 K�. Any invoked substitutions thus oinide by Propo-sition 8 whose premise is established by the latter's side-ondition. The reasoningfor the seond inlusion is analogous. �Lemma 10 (9 9 K�-Symmetry) � ���Lemma 11 � = 9 9 KK� = ==�Proof From Lemmas 1 and 9 and Lemma 10, respetively. �Lemma 12 9 9 K� � 9 9 K�C � 9 9 KK�; 9 9 K�Proof The �rst inlusion follows from Proposition 8. The seond follows byobserving that all the renamings required to perform the �C-indued substitutionpreserve �C-equivalene, i.e., �-equivalene. By Lemma 11, they an thus beexpressed by 9 9 KK�. It suÆes to observe that no renaming is performed followingthe \passing" of the substitution invoked by the �-rule. ��var �-Collapses to the Real �-Calulus With these fundamental resultsin plae, we have ensured the intuitive soundness of the following de�nition |whih mimis Hindley's onstrution.De�nition 13 (The Real �-Calulus){ � = �var= ==�{ b� : �var �! �e 7! fe0 j e ==� e0g{ be !� be0 ,def e ==�; 9 9 K� ; ==� e0



x 9 9qK� x e 9 9qK� e0�x:e 9 9qK� �x:e0 e1 9 9qK� e01 e2 9 9qK� e02e1e2 9 9qK� e01e02e1 9 9qK� e01 e2 9 9qK� e02 FV(e02) \ Captx(e01) = ;(�x:e1)e2 9 9qK� e01[x := e02℄Fig. 4. The parallel �-relation: arbitrary, pre-existing �-redexes ontrated in parallel.Following on from the de�nition, we see that we have:Proposition 14 be !!� be0 , e (==�; 9 9 K� ; ==�)? e0 _ e ==� e0Proof The left-most disjunt is the straightforward transitive version of ourde�nition of real �. The right-most disjunt omes from the reexive ase, againby de�nition. �We thus arrive at the following, rather appeasing, result.Lemma 15 be !!� be0 , e 9 9 KK�[� e0 , e 9 9 KK�C[�C e0 , beH !!�H be0HProof From Lemma 10, it is trivial to see that (==�; 9 9 K� ; ==�)? [ ==� =9 9 KK�[� and the �rst biimpliation is established by Proposition 14. The seondbiimpliation follows by Lemmas 9, 11, and 12. The last biimpliation follows inan analogous manner. �Equivalene of the Raw and the Real Caluli The tehnial reason foralling the above result \appeasing" is that it allows us to prove the equationalequivalene results for the raw and the real aluli we have made referene to.We onsider the seond result to be of partiular interest.Theorem 16{ (�= =�) = (�var= ==�[�) = (�var= ==�C[�C) = ((�var= ==�H)= =�H){ Con(!�) $ Con(9 9 K�[�) $ Con(9 9 K�C[�C) $ Con(!�H)Proof The �rst result is immediate following Lemma 15. As for the seondresult, the de�nitional totality and surjetivity of b� and b�H ombined withLemma 15 allow us to apply Theorem 4, ase 4. �Having thus formally onvined ourselves that we are about to solve the rightproblem, we will now present the details of the onuene proof.4 An Equational �var-Property and �-ConueneAs outlined in Setions 2 and 3, it suÆes to �nd a raw relation over �var whihenjoys the diamond property in order to prove the onuene property for the �-alulus. Taking the lead from the Tait/Martin-L�of method, this relation needsto ontain a notion of parallel �-redution.



x 9 9 Kp� x e 9 9 Kp� e0�x:e 9 9 Kp� �x:e0 e 9 9 Kp� e0xe 9 9 Kp� xe0 e1e2 9 9 Kp� e0 e3 9 9 Kp� e03(e1e2)e3 9 9 Kp� e0e03e1 9 9 Kp� e01 e2 9 9 Kp� e02 FV(e02) \ Captx(e01) = ;(�x:e1)e2 9 9 Kp� e01[x := e02℄Fig. 5. The omplete development �-relation: attempted ontration of all redexes.De�nition 17 Parallel �-redution, 9 9qK�, is de�ned in Figure 4.The parallel �-relation admits the ontration of any number (inluding 0)of pre-existing �-redexes starting from within as long as no variable renaming isrequired. To give an impression of the level of detail of the formalisation, we anmention that the property whih we need the most in the proof development isthe following variable monotoniity result about the parallel �-relation:Proposition 18 e 9 9qK� e0 ) FV(e0) � FV(e) ^ BV(e0) � BV(e)In order to employ Takahashi's Trik, we need to ensure that any onsidered�-divergene an be resolved by a omplete development step.De�nition 19 Complete �-development, 9 9 Kp�, is de�ned in Figure 5.Observe, informally, that 9 9 Kp� only is de�ned if all (pseudo-)redexes validatethe side-ondition on the �-rule. Or, more preisely, the relation is de�ned ifit is possible to ontrat all (pseudo-)�-redexes starting from within | we willshortly show that this is indeed possible. For now, we merely present:Lemma 20 9 9 Kp��9 9qK�Proof Straightforward. �The Overall Proof Struture Having thus established the basis, we outlinethe proof of the diamond property of the following relation: 9 9 KK�; 9 9qK� , beforesupplying the atual details of the proof. The relation is inspired by the de�ni-tional reetion of the weak onuene property for the �-alulus proper overthe strutural (�-)ollapse of �var. In order to use the BVC in our proof, we �rstpresent it as a prediate on �var, f. Figure 3.De�nition 21 (Barendregt Conventional Form)BCF(e) = UB(e) ^ (BV(e) \ FV(e) = ;)Lemma 22 �(9 9 KK�; 9 9qK�)



ProofFor the Ms given, we an onstrutthe Ns in the divergene resolutionon the right in order. The ensuingsetions will detail the individual di-agrams. The 9 9 K�0-relation is intro-dued in De�nition 25 as the fresh-naming restrition of 9 9 K�. It servesto failitate the ommutativity with� on either side of the diagram. Wenote that the result means that it suf-�es to address all naming issues be-fore the ombinatorially more omplex�-divergene whih an be addressedin isolation due to BCF-initiality.

MM1 N0 M2M 01 N1 M 02N 02 N 002N3
(BCF)� ��0 �0� 0� jj �jj� �� jj �jj� jj�jj �4.1 Substitutivity and Substitution ResultsWhen proving a ommutativity result about two relations, you typially proeedby rule indution over one of the relations. In what amounts to the non-trivialsub-ases of suh a proof you therefore typially need to show that a substitutionfrom the ase-instantiated relation \distributes" over the other relation. Suh re-sults are alled Substitutivity Lemmas. The non-trivial sub-ases of Substitutiv-ity Lemmas, in turn, are alled Substitution Lemmas. They establish ommuta-tivity of the substitutions from both the ase-instantiations. Substitutivity andSubstitution Lemmas are non-trivial to prove formally. For our present purposeswe will merely display one of eah to give an indiation of the style. The key tounderstanding the following lemmas is the fat that Captx(e1) \ FV(e2) = ; isthe weakest prediate ensuring the orretness of substituting e2 into e1 for x.Lemma 23 (Substitution)y 62 FV(e2) ^ x 6= y ^ (Captx(e3) \ FV(e2) = ;) ^ (Capty(e1) \ FV(e3) = ;)^ (Captx(e1) \ FV(e2) = ;) ^ (Captx(e1[y := e3℄) \ FV(e2) = ;)+e1[y := e3℄[x := e2℄ = e1[x := e2℄[y := e3[x := e2℄℄Lemma 24 (Parallel � Substitutivity)e1 9 9qK� e01 ^ e2 9 9qK� e02 ^ (Captx(e1) \ FV(e2)=;) ^ (Captx(e01) \ FV(e02)=;)+e1[x := e2℄ 9 9qK� e01[x := e02℄We refer the interested reader to the omplete Isabelle/HOL proof develop-ment at the homepage of the �rst author for full details.



4.2 Weak �- and �-CommutativityIn this setion we prove the lemma that is needed on either side of the diagramin the proof of Lemma 22. In trying to prove a general � and � ommutativityresult, we are immediately stopped by the following naming issue: for virtually all�var-terms, there exist �-redutions that an invalidate a previously validatedside-ondition on a �-redex. Fortunately, we an see that the ommutativityresult we need onerns arbitrary �-redutions but only �-redutions that suÆeto prove Lemma 22. We therefore de�ne a restrited, fresh-naming �-relation.The de�nition an also be given indutively.De�nition 25 e 9 9 K�0 e0 ,def 9z:e z9 9 Ki� e0 ^ z 62 FV(e) [ BV(e)Lemma 26 � �� Æ�jj�0 ��jjProof By rule indution in 9 9 KK�0 with the indution step going throughpainlessly by freshness of the relevant z. �4.3 The Diamond Property of Parallel � up-to BVC-InitialityWe will now establish the lower part of the diagram in the proof of Lemma 22.It is proved using Takahashi's Trik, f. Lemma 6. Initially, we thus need toestablish the onditional existene of a non-renaming omplete �-development.Lemma 27 � Æ(BCF) �Proof By strutural indution using Proposition 18 and Lemma 20. �We stress that the proof is straightforward using the referened variablemonotoniity results as 9 9 Kp� is indutively de�ned to ontrat from within. Noompliated onsiderations onerning residuals are required. However, BCF-initiality is ruial for the property. The terms (�x:�y:x)y and �y:(�x:�y:x)yfail to enjoy free/bound variable disjointness and unique binding, respetively,and neither ompletely develop. BCF-initiality is thus suÆient for the existeneof a omplete development but only neessary in a weak sense: breaking eitheronjunt of the BCF-prediate an prevent renaming-free omplete development.Still, some non-BCFs ompletely develop, e.g., (�x:x)x and �x:(�x:x)x.The seond of the two required results for the appliation of Lemma 6 mustestablish that any parallel �-step always an \ath up" with a ompletely de-veloping �-step by a parallel �-step, with no renaming involved.Lemma 28 � �� ��jj �jj



Proof By rule indution in 9 9 Kp� using Lemma 24. �It is interesting that the above property requires no initiality onditions, likethe BCF-prediate, to be provable | exept, that is, from well-de�nedness of9 9 Kp�. This is mainly due to our use of the weakest possible side-ondition on�-ontration to make � renaming free (i.e., FV(�) \ Capt�(�) = ;). Had weinstead required that the free variables of the argument were disjoint from thefull set of bound variables in the body of the applied funtion (i.e., FV(�) \BV(�) = ;), the property would not have been true. A ounter-example is(�y:(�x:y)z)�z:z. It takes advantage of omplete developments ontrating fromwithin. Contrating the outermost redex �rst (e.g., by a parallel step) bloksthe ontration of the residual of the innermost redex when the stronger side-ondition is imposed: (�x:�z:z)z. No variable onit is reated between tworesiduals of the same term due to Hyland's Disjointness Property [15℄.6Lemma 29 � �� Æ(BCF)� jj �jj �jj�jjProof From Lemmas 27 and 28 by using Takahashi's Trik, Lemma 6. �4.4 Fresh-Naming �-Conuene with BVC-FinalityThe last result we need for the proof of Lemma 22 is the top triangle with itsleg. We prove it as two results (mainly out of formalisation onsiderations)|the �rst form suÆes by Lemma 10:� �Æ ��0 �0 � Æ (BCF)�0The proofs do not provide any insights and have been omitted.4.5 ConueneWe have thus ompleted the proof of Lemma 22 and only one more lemma isneeded before we an onlude our main result.Lemma 30 9 9 K�[��9 9 KK�; 9 9qK��9 9 KK�[�Proof By rule indution observing that both 9 9 KK� and 9 9qK� are reexive. Theproofs of the inlusions: 9 9 K��9 9qK��9 9 KK�, go through straightforwardly. �Theorem 31 (Conuene of the Raw and Real �-Caluli)Con(9 9 K�[�) ^ Con(!�) ^ Con(9 9 K�C[�C) ^ Con(!�H)Proof By Lemmas 5, 22, and 30 and then Theorem 16. �6 \Any two residuals of some sub-term in a residual of the original term are disjoint".



5 ConlusionWe have ompleted a onuene proof applying to several raw and real �-aluli.It has been done by using �rst-order indution priniples over �var and redu-tion relations, only. It is the �rst proof we know of whih learly makes the raw-/real-aluli distintion. It does so by introduing a new result about preserva-tion/reetion of onuene. It is also the �rst formalised equational result abouta higher-order language whih onduts its indutive reasoning over FOASVN ,as you do informally by hand.A Rational Reonstrution of the BVC We proved two results about paral-lel and ompletely developing �-redution, Lemmas 27 and 28, in order to applyTakahashi's Trik. In summary, they say that irrespetive of whih pre-existing�-redexes in a BCF-term you ontrat in parallel and without performing re-naming, it is possible to ontrat the residuals of the rest in parallel and withoutperforming renaming and arrive at the ompletely developed term. All in all,the residual theory of 9 9 K� in �var is renaming-free up-to BCF-initiality. This ispartly a onsequene of Hyland's Disjointness Property [15℄ and partly due toour areful use of substitution. Said di�erently, Barendregt's moral:\2.1.14. Using 2.1.12/13 one an work with �-terms the naive way."is formally justi�able and is, in fat, an entirely reasonable way to ondutequational proofs about the �-alulus when due are is taken to larify the rawvs. real status of the established property.Referenes1. Barendregt: The Lambda Calulus | Syntax and Semantis. North-Holland, 1984.2. Burstall: Proving properties of programs by strut. ind. Comp.J., 12, 1967.3. Curry, Feys: Combinatory Logi. North-Holland, 1958.4. de Bruijn: Lambda alulus notation with nameless dummies, a tool for auto.formula manipulation, with appl. to the CR Theorem. Indag. Math., 34, 1972.5. Despeyroux, Hirshowitz: HOAS with ind. in COQ. LPAR, 1994. LNAI 822.6. Despeyroux, Pfenning, Sh�urmann: Prim. re. for HOAS. TLCA, 1997. LNCS 1210.7. Fiore, Plotkin, Turi: Abstrat syntax and variable binding. In Longo [16℄.8. Gabbay, Pitts: A new approah to abstrat syntax involving binders. In Longo [16℄.9. Girard: From the rules of logi to the logi of rules. To appear in MSCS.10. Gordon, Melham: Five axioms of alpha-onversion. TPHOL, 1996. LNCS 1125.11. Hindley: The CR Prop. and a Result in Comb. Logi. PhD thesis, Newastle, 1964.12. Hofmann: Semantial analysis of HOAS. In Longo [16℄.13. Huet: Residual theory in �-alulus: A formal development. JFP, 4(3), 1994.14. Jouannaud, Kirhner: Compl. of a set of rules mod. a set of eq. SIAM, 15, 1986.15. Klop: Combinatory Redution Systems. Mathematial Centre Trats 127, 1980.16. Longo (ed.): LICS-14, 1999. IEEE Computer Soiety Press.17. MKinna, Pollak: Some lambda alulus and TT formalized. To appear in JAR.18. Nipkow: More CR proofs (in Isabelle/HOL). CADE-13, 1996. LNCS 1104.



19. Rose: Expliit substitution { tutorial & survey. BRICS-LS-96-13, 1996.20. Rutten: A al. of transition systems (towards univ. oalg.). CWI-CS-R9503, 1995.21. David E. Shroer. The Churh-Rosser theorem. PhD thesis, Cornell, June 1965.22. Sh�urmann: Automating the Meta Theory of Ded. Syst. PhD thesis, CMU, 2000.23. Shankar: A mehanial proof of the Churh-Rosser Theorem. J. ACM, 35(3), 1988.24. Takahashi: Parallel redutions in �-alulus. I. and C., 118, 1995.A Commutative DiagramsFormally, a ommutative diagram is a set of verties and a set of direted edges betweenpairs of verties. A vertex is written as either � or Æ. Informally, this denotes quanti�a-tion modes over terms, universal respetively existential. A vertex may be guarded bya prediate. Edges are written as the relational symbol they pertain to and are eitherfull-oloured (blak) or half-oloured (gray). Informally, the olour indiates assumedand onluded relations, respetively. An edge onneted to a Æ must be half-oloured.A diagram must be type-orret on domains. A property is read o� of a diagram thus:1. write universal quanti�ations for all �s (over the relevant domains)2. assume the full-oloured relations and the validation of any guard for a �3. onlude the guarded existene of all Æs and their relationsThe following diagram and property orrespond to eah other (for !� A�A).� �� Æ(P ) (Q) 8e1; e2; e3 2 A : e1 ! e2 ^ e1 ! e3 ^ P (e1)+9e4 2 A : e2 ! e4 ^ e3 ! e4 ^ Q(e4)We will often leave quanti�ation domains impliit and furthermore assume the stan-dard disambiguating onventions for binding strength and assoiativity of onnetives.


