
A Formalised First-Order Confluence Proof for

the λ-Calculus using One-Sorted Variable Names

René Vestergaard1 and James Brotherston2

1 CNRS-IML, Marseille, France, vester@iml.univ-mrs.fr⋆

2 University of Edinburgh, Scotland, jjb@dai.ed.ac.uk⋆⋆

Abstract. We present the titular proof development which has been
implemented in Isabelle/HOL. As a first, the proof is conducted exclu-
sively by the primitive proof principles of the standard syntax and the
reduction relations: the naive way, so to speak. Curiously, the Baren-
dregt Variable Convention takes on a central technical role in the proof.
We also show (i) that our presentation of the λ-calculus coincides with
Curry’s and Hindley’s when terms are considered equal up-to α and (ii)
that the confluence properties of all considered systems are equivalent.

1 Introduction

The λ-calculus is a higher-order language: terms can be abstracted over terms.
It is intended to formalise the concept of a function. The terms of the λ-calculus
are typically generated inductively as follows:

Λvar ::= x | ΛvarΛvar | λx.Λvar

A λ-term, e ∈ Λvar, is hence finite and is either a variable, an application of
one term to another, or the functional abstraction of a variable over a term,
respectively. The variable names are implicitly taken to belong to a single infinite
set of names, VN , with a decidable equality relation (which canonically extends
to the whole of Λvar). Seen this way, Λvar is first-order abstract syntax: FOASVN ,
or more generally FOAS, and as such comes equipped with a primitive, first-order
principle of structural induction [2]:

∀x.P (x) ∀e1, e2.P (e1) ∧ P (e2)→ P (e1e2) ∀x, e.P (e)→ P (λx.e)

∀e.P (e)

The Λvar-equality is used implicitly in the premises of the induction principle as
e1, e2, and e occur twice within their binding. Along with induction, the syntax
also comes equipped with a primitive recursion principle which, incidentally,

⋆ Supported under EU TMR grant # ERBFMRXCT-980170: LINEAR. Work done
in part while visiting LFCS, University of Edinburgh from Heriot-Watt University.

⋆⋆ Work done with the support of a grant from LFCS, University of Edinburgh.
Presently employed at CISA, University of Edinburgh.

also relies on Λvar-equality. The recursion principle allows us to define auxiliary
notions — like free variables — by case-splitting, aka recursive descent, over
the terms. We will refer to structural induction, recursion, and equality as the
primitive proof principles of Λvar: PPP(Λvar), or more generally PPPFOAS.

On top of the terms we define reduction relations, as we shall see shortly. The
main effect of reduction on Λvar will be to insert arguments to abstractions into
the places designated by the abstracted variable, i.e., to perform (higher-order)
function application. Intuitively, we will therefore want to consider terms that
only differ in the particular names used to express abstraction to be equal, so-
called α-equivalence. On the technical side, we seemingly also need α-equivalence
when “inserting arguments” to avoid unintended overlaps of variable names , see
The Issues and Section 1.2 below. However, α-equivalence is a tricky construc-
tion as far as the algebra of the syntax goes and we will only undertake it
after mature consideration. The problem is that α-equivalence breaks the Λvar-
equality underlying PPPFOASVN .

Although it is PPPFOASVN that typically are said to be invoked when doing
pen-and-paper proofs about the equational properties of the λ-calculus or of
higher-order languages in general, those exact proof principles have so-far failed
to underpin any corresponding formal proof development.1 We resolve this open
issue. Doing so is relevant both from a foundational and a practical perspective.

Foundationally it would be unsettling if our standard pen-and-paper proof
practices could not be formalised, as has seemed to be the case till now. Such
concerns have become highly pertinent by the large amount of alternative
syntax formalisms that have been proposed recently [?]. Many of them, most
noticeably de Bruijn [?], are explicitly justified by formalist (i.e., theorem
proving) considerations

Practically, we show that pen-and-paper proof practices merely are incomplete
(as opposed to incorrect) in a precise sense. To tighten them up to full for-
malist rigour, it suffices to introduce a fairly simple administrative proof
layer on top of the two that are already there: key lemmas about the FOAS
at hand and purely inductive reasoning about relations, seen abstractly. The
fact that the former pen-and-paper proof layer typically carries over un-
changed to a formal setting is by no means obvious. In fact, we consider
substantiating this to be one of the main contributions of the paper.

Central to the administrative proof layer is a (the first, in fact) rational re-
construction of the widely used and very helpful but rather elusive Barendregt
Variable Convention (BVC) [1].

“2.1.12. Terms that are α-[equivalent] are identified.”

“2.1.13. If M1, . . . , Mn occur in a mathematical context, [their] bound
variables are chosen [differently] from the free variables.”

“2.1.14. Using 2.1.12/13 one can work with λ-terms the naive way.”

1 FIXME: Some come close by using induction over the size of terms.

To avoid any misunderstandings about what the BVC is or is not, we stress
that it is uniformly invoked to justify the use of PPPFOASVN while ignoring any
enforced changes to variable names, cf. Section 1. While variable-name changes
respect α-equivalence, they break Λvar-equality and more generally PPPFOASVN ,
thus rendering uses of the BVC formally unjustified as it stands.

The Issues In FOASVN , name-overlaps seem inevitable when substituting a
term into another, e.g., as part of a function application. If we, for example,
wish to apply the function λx.(λy.x) to some argument e, we cannot merely
take λy.e to be the result because e could be, e.g., y. Whereas λy.x and λz.x
intuitively have the same meaning (discard argument, return x), replacing x with
a y lead to different results: the identity function versus discard argument, return
y. Traditionally, one therefore renames offending binders when appropriate. This
has a two-fold negative impact: (i) the notion ‘sub-term of’ on which structural
induction depends is typically broken2 and, more problematically, (ii) as a term
can reduce in different directions, the resulting name for a given abstraction
cannot be pre-determined. Consider, e.g., the following example taken from [11]
— for precise definitions see Section 1.2:

(λy.λx.xy)y λx.xy
(λx.(λy.λx.xy)x)y

(λx.λz.zx)y λz.zy

βC

βC

βC

βC

Equational reasoning about FOASVN can thus seemingly only be conducted up-
to post-fixed “name-unification”. Aside from any technical problems this might
pose (and we refer the reader to [?] for an example), the formal properties we
can establish this way will require some interpretation — for details, we refer
the reader to our Theorem 4 and the discussions surrounding it.

A Closer Look at First-Order Names Recent research has shown that there
can be formalist advantages to employing a certain amount of ingenuity on the
issue of variable names [8, 17].

In [8] and later articles, Gabbay and Pitts propose the use of so-called
Fraenkel-Mostowski (FM) set theory to model syntax. Key to the proposal is
... permutation model of Zermelo-Fraenkel set theory with atoms, resulting in
a notion of set abstraction that match the notion of function abstraction in
FOAS. Gabbay and Pitts propose to base a theory of programming languages
on PPPFMVN . That said, t

It is not obvious what the exact correspondence between syntax based on
FOAS and FM-sets is. For example, the exact form of variable names, the atoms
underlying the FM-sets, becomes a non-trivial issues. For example, outlines
that due to the provable failure of the axiom of choice in FM set theory, the

2 This need not happen with parallel substitution [?] — thanks to Laurent Regnier
for making the observation and to an anonymous referee for the reference.

addition of an axiom prescribing that a new, fresh variable name always can be
found leads to an inconsistent framework.

FIXME: descriptions. Gabbay-Pitts use PPPFMVN but have not proved results
such as λ-confluence. McKinna-Pollack is based on FOASVN×VN but they do
NOT use PPPFOASVN×VN . Instead they use ... rests on implicit comprehension.

A Closer Look at Syntax Representation The basic problems with FOASVN

has directly resulted in the inception of syntax formalisms (several of them re-
cently) which overcome the issues by native means [4–8, 12]. In general, they
mark a conceptual and formal departure from the naive qualities of FOASVN .

FIXME: descriptions.

A Closer Look at Derived Proof Principles for Λvar FIXME: discussion
of Gordon, Gordon-Melham, Foobar-Mason, Homeier.

Our Contribution We

– show that it is possible and feasible to conduct formal equational proofs
about higher-order languages by simple, first-order means (i.e., PPP)

– show that this can be done over FOASVN , as done by hand

– formally justify informal proof practices, including the BVC [1, 24]

– contribute to a much needed proof-theoretical analysis of binding [8, 9]

– introduce a quasi-complete range of positive and negative results about the
preservation and reflection of confluence under a large class of mappings

1.1 Terminology and Conventions

We say that a term reduces to another if the two are related by a reduction
relation and we denote the relationship by an infix arrow between the two terms.
The “direction” of the reduction should be thought of as being from-left-to-right.
The sub-term of the left-hand side that a reduction step “acts upon” is called
the redex of the reduction and it is said to be contracted. A reduction relation
for which a redex remains so when occurring in any sub-term position is said to
be contextually closed.3

– An abstract rewrite systems, ARS, is a binary relation: →⊆ A×A.

– The converse of a relation, →, is written (→)−1.

– Composition is: a→1;→2 c ⇔def ∃b . a→1 b ∧ b→2 c.

– Given two reduction relations →1 and →2, we have: →1∪2 =def →1 ∪ →2.

3 This informal concept corresponds to a proper, typically inductive, formal notion.

– Any relation has a reflexive closure:4

e1 → e2

e1 −◦ e2 e −◦ e

– Any relation has a reflexive, transitive closure:

e1 → e2

e1 →→ e2 e→→ e

e1 →→ e2 e2 →→ e3

e1 →→ e3

– Any relation has a reflexive, transitive, and symmetric closure:

e1 →A e2

e1 =A e2 e =A e

e1 =A e2 e2 =A e3

e1 =A e3

e1 =A e2

e2 =A e1

– A relation which is functional will be written with a based arrow: 7→.

– The situation of a term reducing to two terms is called a divergence.

– Two diverging reduction steps, as defined above, are said to be co-initial.

– Two reduction steps that share their end-term are said to be co-final.

– Two reduction steps connect if the end-term of one is the other’s start-term.

– A divergence is resolvable if there exist connecting co-final reduction steps.

– A relation has the diamond property, ⋄, if any divergence can be resolved.

– A relation, →, is confluent, Confl, if ⋄(→→).

– Weak confluence is transitive, reflexive resolution of any divergence.

– Residuals are the descendants of terms under reduction [?,?].

Throughout this article, we will distinguish between raw and real calculi:
inductive structures vs. the former factored by an equivalence. In order to tell
them apart, for both technical and conceptual reasons, we use dashed respec-
tively full-lined relational symbols to denote them. Generally, raw calculi have
some measure of PPP whereas real calculi do not.

1.2 Classic Presentations of the λ-Calculus

We will here review Curry’s seminal formalist presentation of the λ-calculus [3].
We will also review Hindley [11] as, to the best of our knowledge, he is the first
to give serious consideration to the problems with names in equational proofs.

4 This and the next two items are immediately associated with primitive induction
principles. Equality, however, is only point-wise (or extensional) and no recursion
principle is possible. For an algebraic approach to rewriting (over an alternative
notion of ARS) with a complete set of primitive proof principle, see [?].

Curry’s Presentation Curry [3] essentially defines the terms of the λ-calculus
to be Λvar with the proviso that variable names are ordered linearly. He defines
substitution as follows — for free variables, FV(−), see Section 3, Figure 1:

y〈x := e〉 =

{

e if x = y
y otherwise

(e1e2)〈x := e〉 = e1〈x := e〉e2〈x := e〉

(λy.e′)〈x := e〉 =

λy.e′ if x = y
λy.e′〈x := e〉 if x 6= y ∧ (y 6∈ FV(e) ∨ x 6∈ FV(e′))
λz.e′〈y := z〉〈x := e〉 o/w; first z 6∈ {x} ∪ FV(e) ∪ FV(e′)

Curry is seminal in giving a precise definition of substitution which takes into
account that binding should be thought of as a syntactic notion: binding does
not change while reducing, so to speak. In the above definition, this is expressed
in the final clause which performs a binder renaming to prevent any free occur-
rences of y in e from becoming bound by the considered abstraction after the
substitution is performed. Curry then defines the following reduction relations
for λ which are closed contextually:

– λy.e〈x := y〉 9 9 KαC λx.e, if y 6∈ FV(e)

– (λx.e)e′ 9 9 KβC e〈x := e′〉

Unfortunately, following on from here, Curry makes no further mentioning of α
in the proofs of the equational properties of the λ-calculus. Instead, all proofs
are seemingly conducted implicitly on α-equivalence classes although these are
not formally introduced.

Hindley’s Presentation This situation, amongst others, was rectified by Hind-
ley [11]. In order to address α-equivalence classes explicitly, Hindley introduced
a restricted α-relation which we call αH. The relation is given as the contextual
closure of:

– λx.e 9 9 KαH λy.e〈x := y〉, if x 6= y, y 6∈ FV(e) ∪ BV(e), and x 6∈ BV(e)

The αH-relation has the nice property that the renaming clause of −〈− :=
−〉 is not invoked, cf. Lemma 10. Furthermore, a number of Hindley’s results
conspire to establish the following property:

Lemma 1 (From Lemma 4.7, Lemma 4.8, Corollary 4.8 [11])

==αC = 9 9 KKαC = 9 9 KKαH = ==αH

Notation 2 To have an axiomatisation-independent name for α-equivalence
on Λvar, we will also refer to the relation of the above lemma as ℵ (read: aleph).

With this result in place, Hindley undertakes a formal study of α-equivalence
classes which leads to the definition of a further β-relation, this time on αH-
equivalence classes:

⌊e⌋H =def {e′ | e ==αH e′}

⌊e1⌋H →βH ⌊e2⌋H =def ∃e′1 ∈ ⌊e1⌋H, e′2 ∈ ⌊e2⌋H.e′1 9 9 KβC e′2

It is this relation which Hindley proves confluent albeit with no formal consid-
erations concerning the invoked proof principles. This puts Hindley’s treatment
of the λ-calculus firmly apart from the present article. Interestingly, Hindley also
points out that the obtained (real) confluence result implies confluence of the
combined αC- and βC-relation. We are able to formally substantiate this remark
of Hindley, cf. Theorem 17.

Schroer’s Presentation FIXME: foobar.

FIXME: Where should this go? Surely not here.

1.3 Related Work

1.4 Acknowledgements

The first author wishes to thank Olivier Danvy, Jean-Yves Girard, Stefan Kahrs,
Vincent van Oostrom, Don Sannella, Randy Pollack, and in particular Joe Wells
for fruitful discussions. The second author wishes to thank James Margetson,
Larry Paulson, and Markus Wenzel for help and advice on using Isabelle/HOL.
Finally, both authors wish to thank LFCS and the anonymous referees of [?].

1.5 A Word on our Proofs

The Isabelle/HOL proof development underpinning the present article was un-
dertaken mainly by the second author in the space of roughly 9 weeks. It is
available from our homepages. At the time of writing, the confluence properties
for our λvar-calculus (Section 3) and the λ-calculus proper have been established
(plus what is documented in [?]). The Isabelle proof development closely follows
the presentation we give here. There are one or two differences which are ex-
clusively related to the use of alternative but equivalent induction principles in
certain situations. In particular, the proof developments consistently use left- or
right-transitivity instead of proper reflexive, transitive induction as we do here.
By, e.g., left-transitivity we mean:

e→→ e

e1 → e2 e2 →→ e3

e1 →→ e3

We do so mainly for brevity but also to accommodate the indexed relations we
will introduce shortly. The three are naturally equivalent in terms of expressivity.

We started from scratch and learned theorem proving and Isabelle as we went
along. Our proofs are mainly brute-force in that Isabelle apparently had prob-
lems overcoming the factorial blow-up in search space arising from the heavily
conditioned proof goals for our conditional rewrite rules. The size of our proof
scripts is in the order of 4000 lines of code; over 200 lemmas are proved in total
during the development.

The second author’s Honours dissertation contains more detailed information
about the proof development itself and focuses in part on the automation issue. It
is available from his homepage. The first author’s thesis will focus more generally
on first-order equational reasoning about higher-order languages.

2 Abstract Proof Techniques for Confluence

We now present the abstract rewriting methods we use. Some are new, some are
well-known.

2.1 Preservation and Reflection of Confluence

Surprisingly, the results in this section appear to be new. Although they are
very basic and related to the areas of rewriting modulo and refinement theory,
we have not found any comprehensive overlaps.5 In any event, the presentation
is novel and instructive for the present purposes. Before proceeding, we refer the
reader to Appendix A for an explanation of our diagram notation.

Definition 3 (Ground ARS Morphism) Assume two ARS: →A⊆ A × A
and →B⊆ B × B. A mapping, M : A −→ B, will be said to be a ground ARS
morphism6 from→A to→B if it is total and onto on points and a homomorphism
from →A to →B:

•

◦

M(total)

◦

•

M(onto)

• •

(homo)

• •

A

M M

B

An example of a ground ARS morphism is the function that sends an object
to its equivalence class relative to any equivalence relation (such as, α- or AC-
equivalence): what one would call a “structural collapse”. Notice that a ground
ARS morphism prescribes surjectivity on objects but not on relations and, as
such, should not be called a “structural collapse” in itself. Instead, the following
theorem analyses the various “degrees of relational surjectivity” relative to the
confluence property.

Theorem 4 Given a ground ARS morphism, M, from →A to →B, we have:7

5 A special case of Theorem 4, 4 is reported in [14] and we contradict a result in [19].
6 The name is inspired from [20].
7 In the theorem, the notation 6→ (6↔) means existence of counter-examples.

1.

◦ ◦

• •

A

M M
B

⇒ ⋄(→A) 6↔ ⋄(→B)

2.

◦ •

• •

A

M M
B

⇒ ⋄(→A) 6↔ ⋄(→B)

3.

• ◦

• •

A

M M
B

⇒
⋄(→A) → ⋄(→B)
∧ ⋄ (→A) 6← ⋄(→B)

4.

• •

• •

A

M M
B

⇒ ⋄(→A) ↔ ⋄(→B)

Proof The positive results are straightforward to establish. The reflexive(!)
versions of the following ARS provide counter-examples for all the negative re-
sults, left-to-right and right-to-left, respectively. Reflexivity is required to estab-
lish the ⋄ property in the first place.

a1 a2 b2

b1

a′1 a′2 b′2

A

A

B

a1 b1

a2 a3 b2

A

A B �
The asymmetry between cases 2 and 3 is due to the functionality ofM.

Implications In order to preserve confluence under a “structural collapse”
(i.e., a ground ARS morphism plus a premise from Theorem 4), we see from
Theorem 4, cases 1 and 2 that it is insufficient to simply prove a raw diamond
property which admit an initiality condition on well-formedness of raw terms.
Observe that this is exactly what happens in the wider programming language
community when using the BVC and even in most parts of the formal rea-
soning community when dealing with proof principles derived from FOASVar

or with formalisms, such as HOAS, that have no native support for variable
names although seemingly representing languages based on FOASVar. FIXME:
Mention HOAS, Shankar, Gordon, Gordon-Melham, FooBar-Mason, Homeier.
Outline problem with CR versus Confluence in rewriting modulo [Jouanneaud-
Kirchner,Ohlenbusch].

2.2 The Abstract Proof Burden of Confluence

FIXME: Give due credit to Mitschke at the expense of Takahashi in the follow-
ing: the idea of going for maximal resolution is borrowed from residual theory
[Church-Rosser, Schroer] and was adapted into a secondary tool in [Mitschke].
Takahashi’s use of maximal resolution clearly is inpired from [Mitschke], in par-
ticular. However, it is a lot more general in Takahashi’s case in that Mitschke
only uses it to address inner reductions.

We now sketch the abstract part of the Tait/Martin-Löf proof method for
confluence as formalised by Nipkow [18] plus what we call Takahashi’s Trick [24].

A Formalisation of the Tait/Martin-Löf Method The Tait/Martin-Löf
proof method uses a parallel relation that can contract any number of pre-
existing redexes in one step, cf. Figure 4. The crucial step in applying the method
is the following property of ARS.

Lemma 5 (∃ →2 .→1⊆→2⊆→→1 ∧ ⋄ (→2)) ⇒ Confl(→1)

Proof A formalisation is provided in [18] and is re-used here. �
The point is that, since a parallel relation, →2 above, can contract an ar-

bitrary number of redexes in parallel, only one reduction step is required to
contract the unbounded copies of a particular redex that could have been cre-
ated through duplication by a preceding reduction.

Takahashi’s Trick In order to prove the diamond property of a parallel β-
relation, Takahashi [24] introduced the trick of using an inductively defined
complete development relation, cf. Figure 5, rather than proceed by direct means
(i.e., an involved case-splitting on the relative locations of redexes). Instead of
resolving a parallel divergence “minimally” (i.e., by a brute-force case-splitting),
Takahashi’s idea is to go for “maximal” resolution: the term that has all pre-
existing redexes contracted in one step is co-final for any parallel divergence. Ab-
stractly, the following ARS result underpins Takahashi’s idea up-to the guarding
predicates which we have introduced.

Lemma 6 (Takahashi’s Diamond Diagonalisation (Guarded)) For any
predicates, P and Q, and any relations, →a and →b, we have

•

◦

(P)

b ∧

•

•

•

(Q) a

b

a

⇒

•

• •

◦

(P ∧Q)

a a

a a
Proof Straightforward. �
The second premise is often referred to as a Triangle Property.

3 The λvar-Calculus

We will now formally define the λvar-calculus and go on to show that its “struc-
tural collapse” under α is the λ-calculus proper as defined in Section 1.2. A
prominent feature of the definition is the fact that the relations are renaming-
free. Intuitively, one can think of our α- and β-relations as an orthonormal
axiomatisation of the sought-after equational theory.

y[x := e] =

�
e if x = y

y otherwise
(e1e2)[x := e] = e1[x := e]e2[x := e]

(λy.e′)[x := e] =

�
λy.e′[x := e] if x 6= y ∧ y 6∈ FV(e)
λy.e′ otherwise

FV(y) = {y} Captx(y) = ∅
FV(e1e2) = FV(e1) ∪ FV(e2) Captx(e1e2) = Captx(e1) ∪ Captx(e2)

FV(λy.e) = FV(e) \ {y} Captx(λy.e) =

�
{y} ∪ Captx(e) if x 6= y ∧ x ∈ FV(e)
∅ otherwise

Fig. 1. Total but partially correct substitution, −[− := −], free variables, FV(−), and
variables capturing free occurrences of x, Captx(−), for Λvar.

Definition 7 (The λvar-Calculus) The terms of the λvar-calculus are Λvar,
given on page 1. Substitution, free variables and capturing variables of raw
terms are defined in Figure 1. The β- and indexed α-rewriting relations of λvar:9 9 Kβ and

−9 9 Kiα are given inductively in Figure 2. Plain α-rewriting is given as:

e1 9 9 Kα e2 ⇔def ∃y.e1

y9 9 Kiα e2

The central point in the above definition is the use of side-conditions on the
contraction rules in order to avert the need for binder-renaming. The construct
Captx(e) returns all the binding variables in e that have a free occurrence of
x (relative to e) in their scope. Informally, the side-conditions express that the
binders that must be passed in order to reach an actual substitution target
may not capture any free variables in the term being substituted in. The side-
conditions themselves coincide with the all-but-forgotten notion of not free for.

The indexed α-rewriting relation will be used to conduct the ensuing proofs
but is, as such, not needed for defining the λvar-calculus. We will refer to uses of
the induction princples corresponding to the clauses of the relation definitions
as rule induction. We also remind the reader that relation equality is extensional
and that no recursion over relations is possible.

Substitution has been defined the way it has purely to enable us to prove
certain “renaming sanity” properties for it. The following propostion thus estab-
lishes, in order: the identity substitution is indeed the identity, the voided sub-
stitution is indeed void, substitution is exhaustive when Captx(e) ∩ FV(e′) = ∅,
and renaming with any non-free y is reversible. They, and more, are all needed
in the Isabelle/HOL proof development.

Proposition 8 (Renaming Sanity) For all x, y ∈ VN and e, e′ ∈ Λvar:

1. e[x := x] = e

y 6∈ Captx(e) ∪ FV(e)
(iα)

λx.e
y9 9 Kiα λy.e[x := y]

e
y9 9 Kiα e

′

(Liα)
λx.e

y9 9 Kiα λx.e
′

e1

y9 9 Kiα e
′

1

(Aliα)
e1e2

y9 9 Kiα e
′

1e2

e2

y9 9 Kiα e
′

2

(Ariα)
e1e2

y9 9 Kiα e1e
′

2

FV(e2) ∩ Captx(e1) = ∅
(β)

(λx.e1)e2 9 9 Kβ e1[x := e2]

e 9 9 Kβ e
′

(Lβ)
λx.e 9 9 Kβ λx.e

′

e1 9 9 Kβ e
′

1

(Alβ)
e1e2 9 9 Kβ e

′

1e2

e2 9 9 Kβ e
′

2

(Arβ)
e1e2 9 9 Kβ e1e

′

2

Fig. 2. Raw α- (indexed) and β-reduction.

BV(x) = ∅ UB(x) = True
BV(e1e2) = BV(e1) ∪ BV(e2) UB(e1e2) = UB(e1) ∧ UB(e2) ∧ BV(e1) ∩ BV(e2) = ∅
BV(λx.e) = BV(e) ∪ {x} UB(λx.e) = UB(e) ∧ x 6∈ BV(e)

Fig. 3. The bound variables and the uniquely bound predicate for the terms of Λvar.

2. x /∈ FV(e) ⇒ e[x := e′] = e
3. x /∈ FV(e′) ∧ (Captx(e) ∩ FV(e′) = ∅) ⇒ x /∈ FV(e[x := e′])
4. y /∈ FV(e) ⇒ e[x := y][y := x] = e

Proof All proofs are straightforward structural inductions in e. We show the
details of the second property to highlight what this means specifically. We
remark that Isabelle/HOL proves the results fully automatically after being in-
structed to proceed by induction on e.

We aim to prove: x /∈ FV(e)⇒ e[x := e′] = e, and thus assume x /∈ FV(e).

Case e ≡ y: By the assumption and the definition of free variables, we im-
mediately conclude y 6= x. By unravelling the definition of substitution:
y[x := e′] = y, we are done.

Case e ≡ e1e2: By definition of substitution (e1e2)[x := e′] = e1[x := e′]e2[x := e′].
As x 6∈ FV(e1e2) ⇔ x 6∈ FV(e1) ∧ x 6∈ FV(e2), we can apply the induction
hypothesis twice: ei[x := e′]=ei for i = 1, 2, and we are done.

Case e ≡ λz.e0: We case-split on z.
Case z = x We are immediately done by definition of substitution.
Case z 6= x ∧ z 6∈ FV(e′): By x 6∈ FV(λz.e0), z 6= x, and the definition of

free variables, we have x 6∈ FV(e0). We can therefore apply the induc-
tion hypothesis to the unravelling of the definition of substitution to get
(λz.e0)[x := e′] = λz.e0[x := e′] = λz.e0.

Case z 6= x ∧ z ∈ FV(e′): We are immediately done by unravelling the def-
inition of substitution: (λz.e0)[x := e′] = λz.e0! �

We stress that the last clause of the proof (which “incorrectly” discards the
substitution) merely goes to show an algebraic property of the defined notion of
substitution. In actual uses of substitution, the clause will never be invoked. In
fact, we show next that as far as our use of substitution is concerned, our notion
overlaps with Curry’s.

Proposition 9 FV(e2) ∩ Captx(e1) = ∅ ⇒ e1[x := e2] = e1〈x := e2〉

Proof By structural induction in e1. The only non-trivial case is e1 ≡ λy.e′1
which is handled by a tedious case-splitting on y. The main case is y 6= x and
y ∈ FV(e2). Here, the premise of the proposition means that y 6∈ Captx(λy.e′)
which immediately implies that x 6∈ FV(e′) by y 6= x. We hence avoid −〈− := −〉
performing a binder renaming. �
Lemma 10 9 9 KαH ⊆ 9 9 Kα ⊆ (9 9 KαC)−1

Proof The reasoning in the first case is analogous to the second which we

show; it is done by a rule induction in the
y9 9 Kiα-relation underlying 9 9 Kα.

Case (iα): The premise of the considered rule prescribes, amongst other things,
that y 6∈ FV(e) for given y and λx.e. By definition we therefore have
λx.e (9 9 KαC)−1 λy.e〈x := y〉. As the premise of the rule allows us to invoke
Proposition ??: e[x := y] = e〈x := y〉, we are done.

Cases (Liα), (Aliα), (Ariα): Trivial. �
Lemma 11 (9 9 Kα-Symmetry) • •

α

α
Proof By a straightforward rule induction, using Proposition ??, ??. �
Lemma 12 ℵ = 9 9 KKα = ==α

Proof From Lemmas 1 and 10 respectively Lemma 11. �
Lemma 13 9 9 Kβ ⊆ 9 9 KβC ⊆ 9 9 KKα; 9 9 Kβ

Proof The first inclusion follows from Proposition 9. The second follows by
observing that all the renamings required to perform the βC-induced substitution
preserve αC-equivalence, i.e., ℵ-equivalence. By Lemma 12, they can thus be
expressed by 9 9 KKα. It suffices to observe that no renaming is performed following
the “passing” of the substitution invoked by the β-rule. �
λvar α-Collapses to the Real λ-Calculus With these fundamental results
in place, we have ensured the intuitive soundness of the following definition —
which mimics Hindley’s construction.

Definition 14 (The Real λ-Calculus)

– Λ = Λvar/ ==α

–
⌊−⌋ : Λvar −→ Λ

e 7→ {e′ | e ==α e′}

– ⌊e1⌋ →β ⌊e2⌋ ⇔
def e1 ==α; 9 9 Kβ ; ==α e2

8

Following on from the definition, we see that we have:

Proposition 15 (Point-wise Equivalence)

⌊e⌋ →→β ⌊e
′⌋ ⇔ e (==α; 9 9 Kβ ; ==α)⋆ e′ ∨ e ==α e′

Proof The left-most disjunct is the straightforward transitive version of our
definition of real β. The right-most disjunct comes from the reflexive case, again
by definition. �
We thus arrive at the following, rather appeasing, result.

Lemma 16 (Point-wise Equivalence under Structural Symmetry)

⌊e⌋ →→β ⌊e
′⌋ ⇔ e 9 9 KKα∪β e′ ⇔ e 9 9 KKαC∪βC e′ ⇔ ⌊e⌋H →→βH ⌊e′⌋H

Proof From Lemma 11, it is trivial to see that (==α; 9 9 Kβ ; ==α)⋆ ∪ ==α =9 9 KKα∪β and the first biimplication is established by Proposition 15. The second
biimplication follows by Lemmas 10, 12, and 13. The last biimplication follows
in an analogous manner. �
Equivalence of the Raw and the Real Calculi The technical reason for
calling the above result “appeasing” is that it allows us to prove the equational
equivalence results for the raw and the real calculi we have made reference to.
We consider the second result to be of particular interest.

Theorem 17 (Equational and Confluence Equivalence)

8 This definition is equivalent to the obvious inductive one:
e1 99 Kβ e2

⌊e1⌋ →β ⌊e2⌋
.

x 9 9qKβ x

e 9 9qKβ e
′

λx.e 9 9qKβ λx.e
′

e1 9 9qKβ e
′

1 e2 9 9qKβ e
′

2

e1e2 9 9qKβ e
′

1e
′

2

e1 9 9qKβ e
′

1 e2 9 9qKβ e
′

2 FV(e′2) ∩ Captx(e′1) = ∅

(λx.e1)e2 9 9qKβ e
′

1[x := e
′

2]

Fig. 4. The parallel β-relation: arbitrary, pre-existing β-redexes contracted in parallel.

x 9 9 Kpβ x

e 9 9 Kpβ e
′

λx.e 9 9 Kpβ λx.e
′

e 9 9 Kpβ e
′

xe 9 9 Kpβ xe
′

e1e2 9 9 Kpβ e
′

e3 9 9 Kpβ e
′

3

(e1e2)e3 9 9 Kpβ e
′

e
′

3

e1 9 9 Kpβ e
′

1 e2 9 9 Kpβ e
′

2 FV(e′2) ∩ Captx(e′1) = ∅

(λx.e1)e2 9 9 Kpβ e
′

1[x := e
′

2]

Fig. 5. The complete development β-relation: attempted contraction of all redexes.

– (Λ/ =β) = (Λvar/ ==α∪β) = (Λvar/ ==αC∪βC) = ((Λvar/ ==αH)/ =βH)
– Confl(→β) ↔ Confl(9 9 Kα∪β) ↔ Confl(9 9 KαC∪βC) ↔ Confl(→βH)

Proof The first result is immediate following Lemma 16. As for the second
result, the definitional totality and surjectivity of ⌊−⌋ and ⌊−⌋H combined with
Lemma 16 allow us to apply Theorem 4, case 4 repeatedly. �

Having thus formally convinced ourselves that we are about to solve the right
problem, we will now present the details of the confluence proof.

4 A Raw Diamond Property and λ-Confluence

As suggested by Sections 2 and 3, we are searching for a raw relation over Λvar

which enjoys the diamond property in order to prove the confluence property for
the λ-calculus. Taking the lead from the Tait/Martin-Löf method, this relation
needs to contain a notion of parallel β-reduction. Justified by the fact that we
are reasoning formally, we use Takahashi’s method of defining a one-step parallel
relation directly by induction over terms. The benefit is of course that we, by
doing so, get direct access to the exact inductive proof principle we need for
showing the diamond property we are after.

Definition 18 Parallel β-reduction, 9 9qKβ, is defined in Figure 4.

M

M l
1 N0 Mr

1

M l
2 N1 Mr

2

N l
2 Nr

2

N3

(BCF)

α α

α0 α0

α
0

β

||

β

||

α
αβ

||

β

||

β

||

β

||

Fig. 6. Foo bar

The parallel β-relation admits the contraction of any number (including 0)
of pre-existing β-redexes starting from within as long as no variable renaming is
required.

In order to employ Takahashi’s Trick, we need to ensure that any considered
β-divergence can be resolved by a complete development step.

Definition 19 Complete β-development, 9 9 Kpβ, is defined in Figure 5.

Observe, informally, that 9 9 Kpβ only is defined if all (pseudo-)redexes validate
the side-condition on the β-rule. Or, more precisely, the relation is defined if
it is possible to contract all (pseudo-)β-redexes starting from within — we will
shortly show that this is indeed possible in some cases. For now, we merely
present:

Lemma 20 9 9 Kpβ⊆9 9qKβ

Proof Straightforward. �
The Overall Proof Structure Having thus established the basics, we outline
the proof of the diamond property of the following relation: 9 9 KKα; 9 9qKβ , before
supplying the actual details of the proof. In order to use the BVC in our proof,
we first present it as a predicate on Λvar, cf. Figure 3.

Abstract Reasoning

Administrative Proof Layer

Commutativity Lemma Variable Monotonicity

Substitutivity Lemma Substitution Sanity

Substitution Lemma

Substitution Sanity

Mono. & Sanity

Fig. 7. The proof-layer hierarchy for equational reasoning about λ over FOASVar. The
square up-arrows read “is the key lemma for a main case of” whereas the rounded,
dotted down-arrows are “invokes by using variable monotonicity and substitution sanity
to justify the associated side-conditions”.

Definition 21 (Barendregt Conventional Form)

BCF(e) = UB(e) ∧ (BV(e) ∩ FV(e) = ∅)

Lemma 22 ⋄(9 9 KKα; 9 9qKβ)

Proof For the diverging Ms given, we can construct the resolving Ns in Figure
?? in order. The ensuing sections will detail the individual diagrams. The 9 9 Kα0

-
relation is introduced in Definition 26 as the fresh-naming restriction of 9 9 Kα. It
serves to facilitate the commutativity with β on either side of the diagram. �

We note that the result means that it suffices to address all naming issues
before the combinatorially more complex β-divergence which can be addressed in
isolation due to BCF-initiality. However, it also means that the usual key lemma
and its proof when doing a pen-and-paper β-confluence proof à la FooBarBaz is
used directly in our proof. FIXME: clean up, elaborate.

4.1 The Proof-Layer Hierarchy

The results we need for the full confluence proof can be separated into their
different levels of abstraction, with algebraic properties of the calculus belonging

to the lowest level and abstract rewriting properties to the highest. The resulting
proof layer hierarchy is shown in Figure 7. Typically, the key part of the proof
burden for a result belonging to any proof layer is resolved by lemmas belonging
to the layer immediately above it; the results in the Substitution Sanity class are
proved directly by structural induction (cf. Proposition 8). The hierarchy also
contains feedback loops — denoted in the diagram by dotted downwards arrows
— which arise when a key lemma for a result has associated side conditions
on its application. In such cases these conditions can usually be substantiated
by the application of lemmas from the Sanity and Monotonicity classes. This is
so because the side conditions are specified at the same level of abstraction as
Substitution Sanity, which is to say they specify algebraic properties of sets of
variables.

Substitution Sanity results specify behaviour of terms under substitution,
whereas Variable Monotonicity results specify the behaviour of sets of variables
under reduction. Their purpose when applied in a feedback loop is to justify the
side-conditions on a particular key lemma by extracting the relevant low-level
variable information from the higher-level premises. The Monotonicity result
most often needed is the following:

Proposition 23 (Parallel β Variable Monotonicity)

e 9 9qKβ e′ ⇒ FV(e′) ⊆ FV(e) ∧ BV(e′) ⊆ BV(e)

Proof By rule induction in the 9 9qKβ-reduction with the only non-trivial case
following by the application of Substitution Sanity. �

Substitution Lemmas are concerned with commutativity of (well-behaved)
substitutions, while Substitutivity results show that reductions respect (well-
behaved) substitution. They are non-trivial to prove formally and several of each
are required in the proof development. For our present purposes we will merely
display one of each to give an indication of the style. The key to understanding
the following lemmas is the fact that Captx(e1) ∩ FV(e2) = ∅ is the weakest
predicate ensuring the correctness of substituting e2 into e1 for x.

Lemma 24 (Substitution)

y 6∈ FV(e2) ∧ x 6= y ∧ (Captx(e3) ∩ FV(e2) = ∅) ∧ (Capty(e1) ∩ FV(e3) = ∅)
∧ (Captx(e1) ∩ FV(e2) = ∅) ∧ (Captx(e1[y := e3]) ∩ FV(e2) = ∅)
⇓
e1[y := e3][x := e2] = e1[x := e2][y := e3[x := e2]]

Proof By structural induction in e1 and an exhaustive splitting on the (many)
different substitution cases. Some cases require Substitution Sanity in order to
go through. �
Lemma 25 (Parallel β Substitutivity)

e1 9 9qKβ e′1 ∧ e2 9 9qKβ e′2 ∧ (Captx(e1) ∩ FV(e2)=∅) ∧ (Captx(e′1) ∩ FV(e′2)=∅)
⇓
e1[x := e2] 9 9qKβ e′1[x := e′2]

Proof By rule induction on e1 9 9qKβ e′1. The reduction case splits further into
three subcases, each requiring the use of a Substitution Lemma. The associated
side conditions are resolved by using Monotonicity and Substitution Sanity. �

We refer the interested reader to the complete Isabelle/HOL proof develop-
ment at our homepages for full details.

4.2 Weak α- and β-Commutativity

In this section we prove the lemma that is needed on either side of the diagram
in the proof of Lemma 22. In trying to prove a general α and β commutativity
result, we are immediately stopped by the following naming issue: for virtually all
Λvar-terms, there exist α-reductions that can invalidate a previously validated
side-condition on a β-redex. Fortunately, we can see that the commutativity
result we need concerns arbitrary β-reductions but only α-reductions that suffice
to prove Lemma 22. We therefore define a restricted, fresh-naming α-relation.
The definition is given point-wise but has a straightforward inductive equivalent.

Definition 26 e 9 9 Kα0
e′ ⇔def ∃z.e

z9 9 Kiα e′ ∧ z 6∈ FV(e) ∪ BV(e)

Lemma 27

• •

• ◦

β
||

α
0

αβ
||

Proof By reflexive-transitive induction in 9 9 KKα0
. The reflexive and transitive

cases are trivial. Now consider the base case:

• •

• ◦

β
||

α
0

αβ
||

This property follows by rule induction in
y9 9 Kiα0

and then an involved case-
splitting on 9 9qKβ ; the details are substantial and are omitted here. The proof
relies crucially on the fact that y is fresh and furthermore takes advantage of the
fact that it suffices to use the same y at each step in the 9 9 KKiα-resolution. �
4.3 The Diamond Property of Parallel β up-to BVC-Initiality

We will now establish the lower part of the diagram in the proof of Lemma 22.
It is proved using Takahashi’s Trick, cf. Lemma 6. Initially, we thus need to
establish the conditional existence of a non-renaming complete β-development.

Lemma 28 • ◦(BCF)
β

Proof By structural induction using Proposition 23 and Lemma 20. �
We stress that the proof is straightforward using the referenced variable

monotonicity results as 9 9 Kpβ is inductively defined to contract from within. No
complicated considerations concerning residuals are required. However, BCF-
initiality is crucial for the property. The terms (λx.λy.x)y and λy.(λx.λy.x)y
fail to enjoy free/bound variable disjointness and unique binding, respectively,
and neither completely develop. BCF-initiality is thus sufficient for the existence
of a complete development but only necessary in a weak sense: breaking either
conjunct of the BCF-predicate can prevent renaming-free complete development.
Still, some non-BCFs completely develop, e.g., (λx.x)x and λx.(λx.x)x.

The second of the two required results for the application of Lemma 6 must
establish that any parallel β-step always can “catch up” with a completely de-
veloping β-step by a parallel β-step, with no renaming involved.

Lemma 29

• •

•

β

β
|| β||

Proof By rule induction in 9 9 Kpβ using Lemma 25. �
It is interesting that the above property requires no initiality conditions, like

the BCF-predicate, to be provable — except, that is, from well-definedness of9 9 Kpβ in any non-trivial cases. This is mainly due to our use of the weakest pos-
sible side-condition on β-contraction to make β renaming free (i.e., FV(−) ∩
Capt−(−) = ∅). Had we instead required that the free variables of the argument
were disjoint from the full set of bound variables in the body of the applied
function (i.e., FV(−) ∩ BV(−) = ∅), the property would not have been true.
A counter-example is (λy.(λx.y)z)λz.z. It takes advantage of complete develop-
ments contracting from within. Contracting the outermost redex first (e.g., by a
parallel step) blocks the contraction of the residual of the innermost redex when
the stronger side-condition is imposed: (λx.λz.z)z. No variable conflict is created
between two residuals of the same term due to Hyland’s Disjointness Property
[15].9

Lemma 30

• •

• ◦

(BCF)

β
||

β
||

β
||

β
||

Proof From Lemmas 28 and 29 by using Takahashi’s Trick, Lemma 6. �
9 “Any two residuals of some sub-term in a residual of the original term are disjoint”.

4.4 Fresh-Naming α-Confluence with BVC-Finality

The last result we need for the proof of Lemma 22 is the top triangle with its leg.
Intuitively the proof is easy: two α-equivalent terms have the same “structure”
so it suffices to find enough fresh variable names and rename with them in the
same order for the two terms. Formally, however, there are a number of problems
with this approach, not least in trying to quantify the notion of “structure” as
well as in coming up with formal proof principles that can be applied to it. The
approach we take instead is to proceed as dictated by the proof principles we
have introduced. The proofs might not provide much insight into the overall con-
fluence proof we are presenting but they do show-case what rule and structural
induction really means.

The biggest technical problem we encounter is that we have neither ⋄(9 9 Kα0
)

nor ⋄(9 9◦α0
), and thus cannot conclude the needed ⋄(9 9 KKα0

) in a straightforward
manner. A counter-example is the following, with x, y, and z all different:

λz.λx.xz
λy.λx.xy

λy.λz.zy

iα0

iα0

The problem is that both steps use the fresh z but in different positions.
We therefore necessarily have to proceed while doing low-level reasoning over
the indexes. A slightly anomalous indexing scheme for composed versions of α0

turns out to be useful in order to do so. It allows us to retain an index in the
reflexive case, i.e., when performing an “empty” step. It uses lists of indexes:

→
zi.

We write z for the list with one element, {zi} for the set of elements in a list,
juxtaposition for list extension, and || − || for the length of a list.

Definition 31 (Index-Anomalous Reflexive, Transitive iα0)
10

e1

z9 9 Kiα0
e2

e1

z9 9 KKiα0
e2

z 6∈ FV(e) ∪ BV(e)

e
z9 9 KKiα0

e

e1

→
zi9 9 KKiα0

e2 e2

→
zj9 9 KKiα0

e3

e1

→
zi

→
zj9 9 KKiα0

e3

Lemma 32 (Quasi-Confl(9 9 Kα0
)) For

→
zi and

→
zj such that {zi} ∩ {zj} = ∅:

• •

• ◦

iα
0

→
zi

iα0

→
zj iα

0

→
zi

iα0

→
zj

Proof By two nested reflexive-transitive inductions. The only non-trivial case
is the following, for any z1 6= z2:

• •

• ◦

iα
0

z1

iα0

z2

iα
0

z1

iα0

z2

10 Reflexive closure,
z9 9◦iα0

, is defined analogously.

This property is proved by rule induction in
z9 9 Kiα0

. Every case except the
variable case requires intricate reasoning with names; reflexivity is needed for the
case where the divergence is caused by two α0-steps on the same abstraction.�
Lemma 33 (Fresh-Naming Confl(9 9 Kα))

• •

• ◦

α

α

α
0

α0

Proof By Lemma ??, it suffices to prove:

• •

◦

α

α
0 α 0

The proof is a reflexive, transitive induction in
→
xi9 9 KKiα. The base case asserts, for

any x 6= z, that

• •

◦

iα
x

iα
0

z

iα
0

z

The proof is straightforward. The reflexive case is trivial whereas the transitive
case is proved as follows

M1 M2 M3

N1 N2

N3

iα
→
xi iα

→
xj

iα
0→

zi

iα0
←
zi

iα
0→

zj

iα0
←
zj

iα
0→

zj

iα0
←
zi

The quantification of the above variables states that {xi, xj}, {zi}, and {zj}
all are pairwise disjoint. The upper triangles exist by induction hypothesis. The
lower diamond is Lemma ??. Notice the reversal of the resolving indexes. �
The final result we need to prove is the existence of the “leg” in the proof of
Lemma ??.

Lemma 34 (Existence of α0-Renaming Sequence to BCF)

• ◦
(BCF)

α0

Proof The key result in order to show this lemma is the following — we write
#λ(e) for the number of λ-abstractions in e:

∀
→
zi, e1. ||

→
zi ||= #λ(e1) ∧ {zi} all different ∧ ({zi} ∩ (FV(e1) ∪BV(e1)) = ∅)

⇓

∃e2.e1

→
zi9 9 KKiα0

e2 ∧ BCF(e2) ∧ {zi} = BV(e2)

The result follows by a lengthy structural induction in e1. �
To see why we need all the variable information in the listed property, con-

sider the case of a naive proof by structural induction where e1 is an application:
e′e′′; knowing that e′ 9 9 KKα0

e′1, e′′ 9 9 KKα0
e′′1 and BCF(e′1) & BCF(e′′1) does not

enable us to conclude BCF(e′1e
′′
1) and we are stuck.

4.5 Confluence

We have thus completed the proof of Lemma 22 and only one more lemma is
needed before we can conclude our main result.

Lemma 35 9 9 Kα∪β⊆9 9 KKα; 9 9qKβ⊆9 9 KKα∪β

Proof By rule induction observing that both 9 9 KKα and 9 9qKβ are reflexive. The
proofs of the inclusions: 9 9 Kβ⊆9 9qKβ⊆9 9 KKβ, go through straightforwardly. �
Theorem 36 (Confluence of the Raw and Real λ-Calculi)

Confl(9 9 Kα∪β) ∧ Confl(→β) ∧ Confl(9 9 KαC∪βC) ∧ Confl(→βH)

Proof By Lemmas 5, 22, and 35 and then Theorem 17. �
5 Conclusion

We have completed a confluence proof applying to several raw and real λ-calculi.
It has been done by using first-order induction principles over Λvar and reduc-
tion relations, only. It is the first proof we know of which clearly makes the raw-
/real-calculi distinction. It does so by introducing a new result about preserva-
tion/reflection of confluence. It is also the first formalised equational result about
a higher-order language which proceeds by PPPFOASVN , as done informally by
hand.

A Rational Reconstruction of the BVC We proved two results about paral-
lel and completely developing β-reduction, Lemmas 28 and 29, in order to apply
Takahashi’s Trick. In summary, they say that irrespective of which pre-existing
β-redexes in a BCF-term you contract in parallel and without performing re-
naming, it is possible to contract the residuals of the rest in parallel and without
performing renaming and arrive at the completely developed term. All in all,
the residual theory of 9 9 Kβ in λvar is renaming-free up-to BCF-initiality. This is
partly a consequence of Hyland’s Disjointness Property [15] and partly due to
our careful use of substitution. Said differently, Barendregt’s moral:

“2.1.14. Using 2.1.12/13 one can work with λ-terms the naive way.”

is formally justifiable and is, in fact, an entirely reasonable way to conduct
equational proofs about the λ-calculus when due care is taken to clarify the raw
vs. real status of the established property.

References

1. Barendregt: The Lambda Calculus — Syntax and Semantics. North-Holland, 1984.

2. Burstall: Proving properties of programs by struct. ind. Comp.J., 12, 1967.

3. Curry, Feys: Combinatory Logic. North-Holland, 1958.

4. de Bruijn: Lambda calculus notation with nameless dummies, a tool for auto.
formula manipulation, with appl. to the CR Theorem. Indag. Math., 34, 1972.

5. Despeyroux, Hirschowitz: HOAS with ind. in COQ. LPAR, 1994. LNAI 822.

6. Despeyroux, Pfenning, Schürmann: Prim. rec. for HOAS. TLCA, 1997. LNCS 1210.

7. Fiore, Plotkin, Turi: Abstract syntax and variable binding. In Longo [16].

8. Gabbay, Pitts: A new approach to abstract syntax involving binders. In Longo [16].

9. Girard: From the rules of logic to the logic of rules. To appear in MSCS.

10. Gordon, Melham: Five axioms of alpha-conversion. TPHOL, 1996. LNCS 1125.

11. Hindley: The CR Prop. and a Result in Comb. Logic. PhD thesis, Newcastle, 1964.

12. Hofmann: Semantical analysis of HOAS. In Longo [16].

13. Huet: Residual theory in λ-calculus: A formal development. JFP, 4(3), 1994.

14. Jouannaud, Kirchner: Compl. of a set of rules mod. a set of eq. SIAM, 15, 1986.

15. Klop: Combinatory Reduction Systems. Mathematical Centre Tracts 127, 1980.

16. Longo (ed.): LICS-14, 1999. IEEE Computer Society Press.

17. McKinna, Pollack: Some lambda calculus and TT formalized. To appear in JAR.

18. Nipkow: More CR proofs (in Isabelle/HOL). CADE-13, 1996. LNCS 1104.

19. Rose: Explicit substitution – tutorial & survey. BRICS-LS-96-13, 1996.

20. Rutten: A calc. of transition systems (towards univ. coalg.). CWI-CS-R9503, 1995.

21. David E. Schroer. The Church-Rosser theorem. PhD thesis, Cornell, June 1965.

22. Schürmann: Automating the Meta Theory of Ded. Syst. PhD thesis, CMU, 2000.

23. Shankar: A mechanical proof of the Church-Rosser Theorem. J. ACM, 35(3), 1988.

24. Takahashi: Parallel reductions in λ-calculus. I. and C., 118, 1995.

A Commutative Diagrams

Formally, a commutative diagram is a set of vertices and a set of directed edges between
pairs of vertices. A vertex is written as either • or ◦. Informally, this denotes quantifica-
tion modes over terms, universal respectively existential. A vertex may be guarded by
a predicate. Edges are written as the relational symbol they pertain to and are either
full-coloured (black) or half-coloured (gray). Informally, the colour indicates assumed
and concluded relations, respectively. An edge connected to a ◦ must be half-coloured.
A diagram must be type-correct on domains. A property is read off of a diagram thus:

1. write universal quantifications for all •s (over the relevant domains)
2. assume the full-coloured relations and the validation of any guard for a •
3. conclude the guarded existence of all ◦s and their relations

The following diagram and property correspond to each other (for →⊆ A × A).

• •

• ◦

(P)

(Q)

∀e1, e2, e3 ∈ A . e1 → e2 ∧ e1 → e3 ∧ P (e1)
⇓
∃e4 ∈ A . e2 → e4 ∧ e3 → e4 ∧ Q(e4)

We will often leave quantification domains implicit and furthermore assume the stan-
dard disambiguating conventions for binding strength and associativity of connectives.

