
Craig Interpolation in Displayable Logics

James Brotherston1 and Rajeev Goré2
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Abstract. We give a general proof-theoretic method for proving Craig
interpolation for displayable logics, based on an analysis of the individual
proof rules of their display calculi. Using this uniform method, we prove
interpolation for a spectrum of display calculi differing in their structural
rules, including those for multiplicative linear logic, multiplicative addi-
tive linear logic and ordinary classical logic. Our analysis of proof rules
also provides new insights into why interpolation fails, or seems likely to
fail, in many substructural logics. Specifically, contraction appears par-
ticularly problematic for interpolation except in special circumstances.

1 Introduction

I believe or hope that Display logic can be used as a basis for establishing
an interpolation theorem; but that remains to be seen.

Nuel D. Belnap, Display Logic [1], 1982

Craig’s original interpolation theorem for first-order logic [6] states that for
any provable entailment F � G between formulas, an “intermediate formula” or
interpolant I can be found such that both F � I and I � G are provable and
every nonlogical symbol occurring in I occurs in both F and G. This seemingly
innocuous property turns out to have considerable mathematical significance be-
cause Craig interpolation is intimately connected with consistency, compactness
and definability (see [8] for a survey). In computer science, it plays an important
rôle in settings where modular decomposition of complex theories is a concern,
and has been applied to such problems as invariant generation [16], type infer-
ence [12], model checking [5,15] and the decomposition of complex ontologies [13].
Whether a given logic satisfies interpolation is thus of practical importance in
computer science as well as theoretical importance in logic.

In this paper, we give a proof-theoretic method for establishing Craig in-
terpolation in the setting of Belnap’s display logic. Display logic is a general
consecution framework which allows us to combine multiple families of logical
connectives into a single display calculus [1]. Display calculi are characterised by
the availability of a “display-equivalence” relation on consecutions which allows
us to rearrange a consecution so that a selected substructure appears alone on
one side of the proof turnstile. Various authors have shown how to capture large
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classes of modal and substructural logics within this framework [2,11,14,20], and
how to characterise the class of Kripke frame conditions that can be captured by
displayed logics [10]. A major advantage of display calculi is that they enjoy an
extremely general cut-elimination theorem which relies on checking eight simple
conditions on the rules of the calculus. Restall has also shown how decidability
results can be obtained from cut-free display calculi [17].

In the case that a cut-free sequent calculus à la Gentzen is available, inter-
polation for the logic in question can typically be established by induction over
cut-free derivations (see e.g. [4]). Besides its theoretical elegance, this method
has the advantage of being fully constructive. One of the main criticisms lev-
elled against display calculi is that they do not enjoy a true sub-formula property
and hence, in contrast to the situation for sequent calculi, Belnap’s general cut-
elimination theorem cannot be used to prove results like interpolation for display
calculi. Indeed, to our knowledge there are no interpolation theorems for display
calculi in the literature. Here we (partially) rebut the aforementioned criticism
by giving a general Craig interpolation result for a large class of displayed logics.

The main idea of our approach is to construct a set of interpolants at each
step of a given proof, one for every possible “rearrangement” of the consecution
using both display-equivalence and any native associativity principles. Our aim
is then to show that, given interpolants for all rearrangements of the premises
of a rule, one can find interpolants for all rearrangements of its conclusion. This
very general interpolation method applies to a wide range of logics with a display
calculus presentation and is potentially extensible to even larger classes of such
logics. However, some proof rules enjoy the aforementioned property only under
strong restrictions, with contraction being the most problematic among the rules
we study in this paper. This gives a significant new insight into the reasons why
interpolation fails, or appears likely to fail, in many substructural logics.

Section 2 introduces the display calculi that we work with throughout the
paper. We develop our interpolation methodology incrementally in Sections 3, 4
and 5. Section 6 concludes. The proofs in this paper have been abbreviated for
space reasons; detailed proofs can be found in an associated technical report [3].

2 Display Calculus Fundamentals

We now give a basic display calculus which can be customised to various logics by
adding structural rules. In general, one may formulate display calculi for logics
involving arbitrarily many families of formula and structure connectives. To limit
the bureaucracy and technical overhead due to such generality, we limit ourselves
in this paper to display calculi employing only a single family of connectives. For
similar reasons, we also restrict to commutative logics.

Definition 2.1 (Formula, Structure, Consecution). Formulas and struc-
tures are given by the following grammars, where P ranges over a fixed infinite
set of propositional variables, F ranges over formulas, and X over structures:

F ::= P | � | ⊥ | ¬F | F & F | F ∨ F | F → F | �a | ⊥a | F &a F | F ∨a F

X ::= F | ∅ | �X | X ; X
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(The subscript “a” is for “additive”.) A structure is called atomic if it is either
a formula or ∅. When we reason by induction on a structure X , we typically
conflate the cases X = F and X = ∅ into the case where X is atomic. We
use F, G, I etc. to range over formulas, W, X, Y, Z etc. to range over structures,
and A, B etc. to range over atomic structures. We write V(X) for the set of
propositional variables occurring in the structure X . If X and Y are structures
then X � Y is a consecution. We use C, C′ etc. to range over consecutions.

Definition 2.2 (Interpretation of structures). For any structure X we de-
fine the formulas ΨX and ΥX by mutual structural induction on X as:

ΨF = F Ψ∅ = � ΥF = F Υ∅ = ⊥
Ψ�X = ¬ΥX ΨX1;X2 = ΨX1 & ΨX2 Υ�X = ¬ΨX ΥX1;X2 = ΥX1 ∨ ΥX2

For any consecution X � Y we define its formula interpretation to be ΨX � ΥY .

Definition 2.3 (Antecedent and consequent parts). A part of a structure
X is an occurrence of one of its substructures. We classify the parts of X as
either positive or negative in X as follows:

– X is a positive part of itself;
– a negative / positive part of X is a positive / negative part of �X ;
– a positive / negative part of X1 or X2 is a positive / negative part of X1 ; X2.

Z is said to be an antecedent / consequent part of a consecution X � Y if it is a
positive / negative part of X or a negative / positive part of Y .

Definition 2.4 (Display-equivalence). We define display-equivalence ≡D to
be the least equivalence on consecutions containing the (symmetric) relation �D

given by the following display postulates :

X ; Y � Z �D X � �Y ; Z �D Y ; X � Z
X � Y ; Z �D X ; �Y � Z �D X � Z; Y
X � Y �D �Y � �X �D ��X � Y

Note that Defn. 2.4 builds in the commutativity of ; on the left and right of
consecutions, i.e., we are assuming both & and ∨ commutative.

Proposition 2.5 (Display property). For any antecedent / consequent part
Z of a consecution X � Y , one can construct a structure W such that X � Y ≡D

Z � W / X � Y ≡D W � Z, respectively.

Proof. (Sketch) For any X � Y , the display postulates of Defn. 2.4 allow us to
display each of the immediate substructures of X and Y (as the antecedent or
consequent as appropriate). The proposition follows by iterating. 	

Rearranging X � Y into Z � W or W � Z in Prop. 2.5 is called displaying Z.

Figure 1 gives the proof rules of a basic display calculus D0 which only uses the
logical connectives �, ⊥, ¬, &, ∨, and →. Figure 2 presents “structure-free” rules
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Identity rules:

(Id)
P � P

X ′ � Y ′
X � Y ≡D X ′ � Y ′ (≡D)

X � Y

Logical rules:

∅ � X
(�L)

� � X
(�R)

∅ � �
F ; G � X

(&L)
F & G � X

X � F Y � G
(&R)

X ; Y � F & G

(⊥L)
⊥ � ∅

X � ∅
(⊥R)

X � ⊥
F � X G � Y

(∨L)
F ∨ G � X ; Y

X � F ; G
(∨R)

X � F ∨ G

�F � X
(¬L)

¬F � X

X � �F
(¬R)

X � ¬F

X � F G � Y
(→L)

F → G � �X ; Y

X ; F � G
(→R)

X � F → G

Fig. 1. Proof rules for the basic display calculus D0

(⊥aL)
⊥a � X

Fi � X
i ∈ {1, 2} (&aL)

F1 &a F2 � X

F � X G � X
(∨aL)

F ∨a G � X

(�aR)
X � �a

X � F X � G
(&aR)

X � F &a G

X � Fi

i ∈ {1, 2} (∨aR)
X � F1 ∨a F2

Fig. 2. Structure-free proof rules for the “additive” logical connectives

for the additive logical connectives �a, ⊥a, &a and ∨a, and Figure 3 presents
some structural rules governing the behaviour of the structural connectives ∅,
‘;’ and �. The rules in Figures 2 and 3 should be regarded as optional: if D is a
display calculus and R is a list of rules from Figures 2 and 3 then the extension
D+R of D is the display calculus obtained from D by adding all rules in R. We
write D+

0 to abbreviate the extension of D0 with all of the structure-free rules
in Figure 2.

We prove interpolation by induction over cut-free derivations, so we omit the
cut rule from D0. The following theorem says that this omission is harmless.

∅; X � Y
(∅CL)

X � Y

X � Y ; ∅
(∅CR)

X � Y

X � Y
(∅WL)

∅; X � Y

X � Y
(∅WR)

X � Y ; ∅
(W ;X); Y � Z

(α)
W ; (X; Y ) � Z

X � Z
(W)

X; Y � Z

X; X � Y
(C)

X � Y

Fig. 3. Some structural rules
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Theorem 2.6. The following cut rule is admissible in any extension of D0:

X � F F � Y
(Cut)

X � Y

Proof. (Sketch) Given the display property (Prop. 2.5), we verify that the proof
rules in Figures 1–3 meet Belnap’s conditions C1–C8 for cut-elimination [1]. 	


Comment 2.7. Under the formula interpretation of consecutions given by Def-
inition 2.2, certain of our display calculi can be understood as follows:

DMLL = D0+(α), (∅CL), (∅CR), (∅WL), (∅WR) is multiplicative linear logic (LL);
DMALL = D+

0 + (α), (∅CL), (∅CR), (∅WL), (∅WR) is multiplicative additive LL;
DCL = D0 +(α), (∅CL), (∅CR), (W), (C) is standard classical propositional logic.

3 Interpolation: Nullary, Unary and Structure-Free Rules

We now turn to our main topic: whether interpolation holds in our display calculi.

Definition 3.1 (Interpolation). A display calculus D has the interpolation
property if for any D-provable consecution X � Y there is an interpolant formula
I such that X � I and I � Y are both D-provable with V(I) ⊆ V(X) ∩ V(Y ).

We note that, by cut-admissibility (Theorem 2.6), the existence of an interpolant
for a consecution C implies the provability of C.

We aim to emulate the spirit of the classical proof-theoretic approach to in-
terpolation for cut-free sequent calculi such as Gentzen’s LK (see e.g. [4]). That
is, given a cut-free display calculus proof of a consecution, we aim to construct
its interpolant by induction over the structure of the proof. However, the dis-
play postulates introduce a difficulty: for example, given an interpolant I for
X ; Y � Z, it is not clear how to use I to obtain an interpolant for X � �Y ; Z.
In fact, similar problems arise for sequent calculi as well (e.g., in the classical
negation rules of LK), and the usual solution is to simultaneously construct inter-
polants for all possible decompositions of each sequent. We employ an analogue
of this strategy for the setting of display calculi: we simultaneously construct in-
terpolants for all possible rearrangements of each consecution, where the notion
of “rearrangement” is provided by the combination of display-equivalence and,
if it is present in the calculus, the associativity rule (α). The latter inclusion is
necessary for similar reasons to those for the inclusion of the display postulates.

Definition 3.2. Let D be a display calculus and C, C′ be consecutions. We
define C →A C′ to hold iff D includes (α) and C is the premise of an instance of
(α) with conclusion C′. Then the relation →AD is defined to be →A ∪ �D and
the relation ≡AD is defined to be the reflexive-transitive closure of →AD.

Clearly ≡D ⊆≡AD, and ≡AD is exactly ≡D in any display calculus without (α).
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Comment 3.3. The relation ≡AD is indeed an equivalence relation. Further-
more, the following proof rule is derivable in any extension of D0:

X ′ � Y ′
X � Y ≡AD X ′ � Y ′ (≡AD)

X � Y

Our definition of ≡AD gives rise to the following “local AD-interpolation” prop-
erty for display calculus proof rules.

Definition 3.4 (LADI property). A proof rule of a display calculus D with
conclusion C is said to have the local AD-interpolation (LADI) property if, given
that for each premise of the rule Ci we have interpolants for all C′

i ≡AD Ci, we
can construct interpolants for all C′ ≡AD C.

Lemma 3.5. If the proof rules of a display calculus D each have the LADI
property, then D has the interpolation property.

Proof. (Sketch) We require an interpolant for each D-provable consecution C.
We construct interpolants for all C′ ≡AD C by induction on the proof of C, using
LADI for the proof rules at each induction step, giving an interpolant for C. 	

Thus the LADI property gives a sufficient condition, in terms of individual proof
rules, for interpolation to hold in display calculi. In proving this property for a
given rule, we will require to track the atomic parts of a consecution being
rearranged using ≡AD, and possibly substitute other structures for these parts.
It is intuitively obvious how to do this: the next definitions formalise the concept.

Definition 3.6 (Substitution). Let Z be a part of the structure X . We write
the substitution notation X [Y/Z], where Y is a structure, to denote the replace-
ment of Z (which we emphasise is a substructure occurrence) by the structure
Y . We extend substitution to consecutions in the obvious way.

Definition 3.7 (Congruence). Let C →AD C′, whence C and C′ are obtained
by assigning structures to the structure variables occurring in our statement of
some display postulate (see Defn. 2.4) or the rule (α) (see Figure 3). Two atomic
parts A and A′ of C and C′ respectively are said to be congruent if they occupy
the same position in the structure assigned to some structure variable.

(E.g., the two indicated occurrences of F are congruent in X ; (F ; ∅) � Z →AD

X � �(F ; ∅); Z, as are the two indicated occurrences of ∅, because they occupy
the same position in the structure (F ; ∅) assigned to the structure variable Y in
our statement of the display postulate X ; Y � Z �D X � �Y ; Z.)

We extend congruence to atomic parts A and A′ of consecutions C and C′

such that C ≡AD C′ by reflexive-transitive induction on ≡AD in the obvious way.
That is, any atomic part of C is congruent to itself, and if C →AD C′′ ≡AD C′

then A and A′ are congruent if there is an atomic part A′′ of C′′ such that A is
congruent to A′′ and A′′ is congruent to A′.

Finally, we extend congruence to non-atomic parts of consecutions as follows.
If C ≡AD C′ and Z, Z ′ are parts of C, C′ respectively then Z and Z ′ are congruent
if every atomic part A of Z is congruent to an atomic part A′ of Z ′, such that
the position of A in Z is identical to the position of A′ in Z ′.
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Comment 3.8. If C ≡AD C′ then, for any atomic part of C, there is a unique
congruent atomic part of C′. Moreover, congruent parts of C and C′ are oc-
currences of the same structure. We use identical names for parts of ≡AD-
related consecutions to mean that those parts are congruent. E.g., we write
C[Z/A] ≡AD C′[Z/A] to mean that the two indicated parts A are congruent.

Lemma 3.9 (Substitution lemma). If C ≡AD C′ and A is an atomic part of
C then, for any structure Z, we have C[Z/A] ≡AD C′[Z/A].

Proof. (Sketch) Since the display postulates and the associativity rule (α) are
each closed under substitution of an arbitrary structure for congruent atomic
parts, this follows by an easy reflexive-transitive induction on C ≡AD C′. 	

Proposition 3.10. The proof rules (≡D), (Id), (�L), (�R), (⊥L), (⊥R), (¬L),
(¬R), (&L), (∨R), and (→R) each have the LADI property in any extension
of D0. Furthermore, the associativity rule (α) has the LADI property in any
extension of D0+(α), and the structure-free rules (�aR), (⊥aL), (&aL), (&aR),
(∨aL), and (∨aR) each have the LADI property in any extension of D+

0 .

Proof. (Sketch) We treat each rule separately, noting that (≡D) and (α) are more
or less immediate by assumption. We just show one case here, the structure-free
rule (∨aL). In that case, we must produce interpolants for all W � Z ≡AD

F ∨a G � X . We distinguish two subcases: either the indicated F ∨a G oc-
curs in W or in Z. We suppose it occurs in Z, so that by Lemma 3.9 we
have F � X ≡AD W � Z[F/F ∨a G] and G � X ≡AD W � Z[G/F ∨a G]. Let
I1 and I2 be the interpolants given by assumption for W � Z[F/F ∨a G] and
W � Z[G/F ∨a G] respectively. We claim that I1 &a I2 is an interpolant1 for
W � Z. The variable condition is easily seen to hold, so it remains to check
the provability conditions. Given that W � I1 and W � I2 are provable by as-
sumption, we can derive W � I1 &a I2 by a single application of (&aR). Fi-
nally, given that I1 � Z[F/F ∨a G] and I2 � Z[G/F ∨a G] are provable by as-
sumption, we must show that I1 &a I2 � Z is provable. First, since the indi-
cated F ∨a G occurs in Z by assumption, we have I1 &a I2 � Z ≡D F ∨a G � U
for some U by the display property (Prop. 2.5). Thus by Lemma 3.9 we have
I1 &a I2 � Z[F/F ∨a G] ≡D F � U and I1 &a I2 � Z[G/F ∨a G] ≡D G � U . So
we can derive I1 &a I2 � Z as follows:

···
I1 � Z[F/F ∨a G]

(&aL)
I1 &a I2 � Z[F/F ∨a G]

(≡D)
F � U

···
I2 � Z[G/F ∨a G]

(&aL)
I1 &a I2 � Z[G/F ∨a G]

(≡D)
G � U

(∨aL)
F ∨a G � U

(≡D)
I1 &a I2 � Z

If the indicated F ∨a G instead occurs in W , then the argument is similar but we
pick the interpolant to be I1 ∨a I2. This completes the case, and the proof. 	

1 Equivalently, ¬(¬I1 ∨a ¬I2) also works. Note that, because of the display postulate

X � Y �D �Y � �X , it is not possible to construct ¬-free interpolants in general.



Craig Interpolation in Displayable Logics 95

4 Interpolation: Binary Logical Rules

We now extend our basic method for proving LADI of display calculus proof rules
to the binary logical rules of D0. These cases are considerably harder than the
simple rules considered in the previous section because they combine arbitrary
structures from the two premises, leading to many new ≡AD-rearrangements of
the conclusion compared to the premises. To deal with this complexity, we will
require several technical substitutivity lemmas for ≡AD.

The following notion of deletion of a part of a structure is similar to that used
by Restall [17]. We write �n for a string of n occurrences of �. Recall that identical
names are used to denote congruent parts of ≡AD-equivalent consecutions.

Definition 4.1 (Deletion). A part Z of a structure X is delible from X if X
is not of the form �nZ for some n ≥ 0, i.e., X contains a substructure occurrence
of the form �nZ; W (up to commutativity of “;”). If Z is delible from X , we
write X \ Z for the structure X [W/(�nZ; W )], the result of deleting Z from X .

A part Z of a consecution C is delible from C if it can be deleted from the
side of C of which it is a part, and we write C \ Z for the consecution obtained
by deleting Z from the appropriate side of C.

The following lemma says that ≡AD-rearrangement is (essentially) preserved
under deletion of congruent parts. This is crucial to the subsequent substitutivity
Lemmas 4.3 and 4.5, which say that ≡AD-rearrangement does not depend on the
presence of “contextual” structure not directly affected by the rearrangement.

Lemma 4.2 (Deletion lemma). Let C be a consecution and let A be an atomic
part of C. If C ≡AD C′ and A is delible from C then the following hold:

1. if A is delible from C′ then C \ A ≡AD C′ \ A;
2. if A is not delible from C′ then one side of C′ is of the form �m(Z1; Z2) and

we have C \ A ≡AD Z1 � �Z2 if (Z1; Z2) is an antecedent part of C′, and
C \ A ≡AD �Z1 � Z2 if (Z1; Z2) is a consequent part of C′.

Proof. (Sketch) By reflexive-transitive induction on C ≡AD C′. In the reflexive
case we have C′ = C and are trivially done. In the transitive case we have C ≡AD

C′′ →AD C′, and we distinguish subcases on C′′ →AD C′. The nonstraightforward
subcases are those where A is delible from C′′ but not from C′ or vice versa. For
example, consider the case S; T � U →AD S � �T ; U , and suppose (for 1) that A
is delible from S � �T ; U but not from S; T � U . Then we must have U = �nA,
whence we have by part 2 of the induction hypothesis that (S; T � U) \ A ≡AD

S � �T (because S; T is an antecedent part of S; T � U). Then 1 holds as required
because, given U = �nA, we have S � �T = (S � �T ; U) \ A. 	

Lemma 4.3 (Substitutivity I). For all W, X, Y, Z, if W � X ≡AD W � Y
then Z � X ≡AD Z � Y , and if X � W ≡AD Y � W then X � Z ≡AD Y � Z.

Proof. (Sketch) By Lemma 3.9 it suffices to consider the case in which Z is a
formula F . We prove both implications simultaneously by structural induction
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on W . The atomic case follows by Lemma 3.9. The case W = �W ′ is straightfor-
ward by induction hypothesis. In the case W = W1; W2 we obtain, for the first
implication, F ; G � X ≡AD F ; G � Y using the induction hypothesis. Thus we
obtain, by Lemma 4.2, (F ; G � X) \ G ≡AD (F ; G � Y ) \ G, i.e. F � X = F � Y
as required. The second implication is similar. 	

Definition 4.4. Let C ≡AD C′ and let Z, Z ′ be parts of C and C′ respectively.
We write Z ′ � Z if every atomic part of Z ′ is congruent to an atomic part of Z.

Lemma 4.5 (Substitutivity II). For all structures W, W ′, X, Y and for any
atomic structure A, all of the following hold:

1. if W � X ≡AD W ′ � Y and W ′ � W then ∃U. W � A ≡AD W ′ � U ;
2. if X � W ≡AD W ′ � Y and W ′ � W then ∃U. A � W ≡AD W ′ � U ;
3. if W � X ≡AD Y � W ′ and W ′ � W then ∃U. W � A ≡AD U � W ′;
4. if X � W ≡AD Y � W ′ and W ′ � W then ∃U. A � W ≡AD U � W ′.

(Also, in each case we still have W ′ � W under the replacement of X by A.)

Proof. (Sketch) We show all four implications simultaneously by structural in-
duction on X . The atomic case follows from Lemma 3.9. The case X = �X ′ is
straightforward by induction hypothesis. In the case X = X1; X2 we obtain, for
the first implication, W � A; A ≡AD W ′ � V for some V using the induction hy-
pothesis (twice). Since W ′ � W , both indicated occurrences of A must occur in,
and be delible from V . Thus by Lemma 4.2, we have W � A ≡AD W ′ � (V \ A)
and are done by taking U = V \ A. The other implications are similar. 	

Our final lemma says that if two separate structures have been “mixed up” by
≡AD, then the resulting structure can be “filtered” into its component parts.

Lemma 4.6 (Filtration). Let X ; Y � U ≡AD W � Z, where W � X ; Y but
W � X and W � Y . Then there exist W1 and W2 such that W � Z ≡AD

W1; W2 � Z with W1 � X and W2 � Y . Similarly, if X ; Y � U ≡AD Z � W with
W � X ; Y but W � X and W � Y , then there exist W1 and W2 such that
Z � W ≡AD Z � W1; W2 with W1 � X and W2 � Y .

Proof. (Sketch) We prove both implications simultaneously by structural induc-
tion on W . The difficult case is when W = W1; W2. If W1 � X and W2 � Y
or vice versa then we are done. If not, in the case of the first implication we
have X ; Y � U ≡AD W1; W2 � Z where W1; W2 � X ; Y and either W1 � X and
W1 � Y , or W2 � X and W2 � Y (we assume both here). It is clear by inspection
of the display postulates that this situation can only arise when the rule (α) is
present. Using the induction hypotheses, we obtain W ′

1�X , W ′′
1 �Y , W ′

2�X and
W ′′

2 � Y such that W1; W2 � Z ≡AD (W ′
1; W

′′
1 ); (W ′

2; W
′′
2 ) � Z. Thus, given that

≡AD incorporates (α), we obtain W1; W2 � Z ≡AD (W ′
1; W ′

2); (W ′′
1 ; W ′′

2 ) � Z
where (W ′

1; W
′
2) � X and (W ′′

1 ; W ′′
2 ) � Y as required. 	


Theorem 4.7 (Binary rules). The rules (&R), (∨L) and (→L) all have the
local AD-interpolation property in any extension of D0.
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Proof. (Sketch) We consider the case (&R), in which case we must produce
interpolants for all W � Z ≡AD X ; Y � F&G. We suppose the indicated F&G
occurs in Z, in which case W � X ; Y , and distinguish three subcases: W � X ;
W �Y ; and W � X , W � Y . We just show the last case, the hardest. By the first
part of Lemma 4.6 there exist W1 and W2 such that W � Z ≡AD W1; W2 � Z
with W1 �X and W2 �Y . Thus we have X � �Y ; F & G ≡AD W1 � �W2; Z with
W1 �X , and Y � �X ; F & G ≡AD W2 � �W1; Z with W2 �Y . Hence by part 1 of
Lemma 4.5 we have X � F ≡AD W1 � U1 for some U1 and Y � G ≡AD W2 � U2

for some U2. Let I1, I2 be the interpolants given by assumption for W1 � U1 and
W2 � U2 respectively. We claim that I1 & I2 is an interpolant for W � Z.

First, we show that W � I1 & I2 is provable. We have W1 � I1 and W2 � I2

provable by assumption, so W1; W2 � I1 & I2 is provable by applying (&R).
Since W1; W2 � Z ≡AD W � Z, we have W1; W2 � I1 & I2 ≡AD W � I1 & I2

by Lemma 4.3, and so W � I1 & I2 is provable by applying the rule (≡AD).
Next, we must show that I1 & I2 � Z is derivable, given that I1 � U1 and

I2 � U2 are derivable. First, note that because X � F ≡AD W1 � U1 and W1�X ,
the indicated F is a part of U1, and thus I1 � U1 ≡D V1 � F for some V1 by
Prop. 2.5. Similarly, I2 � U2 ≡D V2 � G for some V2. Next, using Lemma 3.9, we
have W1 � �W2; Z ≡AD W1 � U1[(�Y ; F & G)/F ]. Thus by Lemma 4.3 we have
I1 � �W2; Z ≡AD I1 � U1[(�Y ; F & G)/F ]. Since I1 � U1 ≡D V1 � F we have,
using Lemma 3.9, I1 � �W2; Z ≡AD V1; Y � F & G. Now, since Y � G ≡AD

W2 � U2 we obtain using Lemma 3.9 W2 � �I1; Z ≡AD W2 � U2[(�V1; F & G)/G].
So by applying Lemma 4.3 we have I2 � �I1; Z ≡AD I2 � U2[�V1; F & G/G].
Since I2 � U2 ≡D V2 � G we obtain I1; I2 � Z ≡AD V1; V2 � F & G (again using
Lemma 3.9). This enables us to derive I1 & I2 � Z as follows:

···
I1 � U1

(≡D)
V1 � F

···
I2 � U2

(≡D)
V2 � G

(&R)
V1; V2 � F & G

(≡AD)
I1; I2 � Z

(&L)
I1 & I2 � Z

Finally, we check the variable condition. We have V(I1) ⊆ V(W1) ∩ V(U1) and
V(I2) ⊆ V(W2) ∩ V(U2). It is clear that V(W1) ⊆ V(W ) and V(W2) ⊆ V(W )
because W � Z ≡AD W1; W2 � Z. Moreover, V(U1) ⊆ V(Z) because we have
X � F ≡AD W1 � U1 and X � �Y ; F & G ≡AD W1 � �W2; Z while W1 � X and
W2 � Y (or, alternatively, it is clear by inspection of the derivation above).
Similarly V(U2) ⊆ V(Z) and thus V(I1 & I2) ⊆ V(W ) ∩ V(Z) as required.

The subcases W � X and W � Y are similar except that we directly use the
interpolant given by just one of the premises. If the indicated F&G occurs in
W rather than Z we again distinguish three subcases and take the interpolant
I1 ∨ I2 in the analogue of the subcase above. This completes the proof. 	
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Corollary 4.8. For any D ∈ {D0,D+
0 ,D0 + (α),D+

0 + (α)}, the proof rules of
D all have the LADI property in (any extension of) D, and thus D has the
interpolation property.

Proof. LADI for the proof rules of D in any extension of D is given by Prop. 3.10
and Theorem 4.7. Interpolation for D then follows by Lemma 3.5. 	


5 Interpolation: Structural Rules

We now examine the LADI property for the structural rules given in Figure 3.

Proposition 5.1 (Unit contraction rules). The unit left-contraction rule
(∅CL) has the LADI property in any extension of D0 + (∅CL). Similarly, the
rule (∅CR) has the LADI property in any extension of D0 + (∅CR).

Proof. (Sketch) We consider (∅CL) here; (∅CR) is similar. We require to con-
struct interpolants for all W � Z ≡AD X � Y . First, by reflexive-transitive in-
duction on W � Z ≡AD X � Y , we show that ∅; X � Y ≡AD (W � Z)[(∅; U)/U ]
or ∅; X � Y ≡AD (W � Z)[(�∅; U)/U ] for some U . We claim that the assumed
interpolant I for W ′ � Z ′ is an interpolant for W � Z. The variable condition is
easily seen to be satisfied, so it remains to check the provability conditions. We
assume without loss of generality that U is a part of Z, so that W � I is provable
by assumption. To prove I � Z, we start with the assumed derivation of I � Z ′

and use Prop. 2.5 to display the structure ∅; U or �∅; U . We then remove the ∅
using (∅CL) and obtain I � Z by inverting the previous display moves. 	

Proposition 5.2 (Unit weakening rules). The unit weakening rule (∅WL)
has the LADI property in any extension of D0+(∅WL). Similarly, the rule (∅WR)
has the LADI property in any extension of D0 + (∅WR).

Proof. (Sketch) We just consider (∅WL), as (∅WR) is similar. We require to
find interpolants for all W � Z ≡AD ∅; X � Y . We distinguish two cases. First
of all, if the indicated ∅ is not delible from W � Z, then W or Z is of the
form �n∅. We suppose Z = �n∅ in which case n must be odd (because the
indicated ∅ is an antecedent part of ∅; X � Y and thus of W � Z) and we pick
the interpolant for W � Z to be ¬�. The variable condition is trivially satisfied,
and ¬� � Z = ¬� � �n∅ is easily provable. W � ¬� is provable from the premise
X � Y using the rule (∅WL) and the derived rule (≡AD) by observing that
∅; X � Y ≡AD ∅ � �W . The case where W = �n∅ is symmetric.

If the indicated ∅ is delible from W � Z then, by Lemma 4.2, we have X � Y =
(∅; X � Y ) \ ∅ ≡AD (W � Z) \ ∅. We claim that the interpolant I given for
(W � Z) \ ∅ by assumption is also an interpolant for W � Z. Without loss of
generality, we assume that the indicated ∅ occurs in Z, so that (W � Z) \ ∅ =
W � (Z \ ∅). It is easy to see that the required variable condition holds. It re-
mains to check the provability conditions. We have W � I provable by assump-
tion, so it just remains to show that I � Z is provable, given that I � (Z \ ∅)
is provable. By the definition of deletion (Defn. 4.1), Z \ ∅ = Z[U/(�n∅; U)] for
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some U . Thus, by Prop. 2.5, and assuming (�n∅; U) an antecedent part of Z, we
have I � Z ≡D ∅; U � V and I � (Z \ ∅) ≡D U � V for some V (note that the
same V is obtained in both cases). Thus we can derive I � Z from I � (Z \ ∅)
by applications of (≡D) and (∅WL). 	

Theorem 5.3 (Weakening). The weakening rule (W) has the LADI property
in any extension of D0 + (W), (∅CL) or D0 + (W), (∅CR).

Proof. (Sketch) We require to find interpolants for all W � Z ≡AD X ; X ′ � Y .
We distinguish three cases: W � X ′; Z � X ′; and W � X ′, Z � X ′. In the case
W �X ′, we choose the interpolant I to be � if (∅CL) is available (which guaran-
tees W � � is provable), or ¬⊥ if (∅CR) is available (which guarantees W � ¬⊥ is
provable). To see that I � Z is provable, note that W � Z ≡AD X ′ � �X ; Y with
(�X ; Y )�Z. Thus, using part 4 of Lemma 4.5, we have I � Z ≡AD X ; U � Y for
some U , whence we can derive I � Z from the premise X � Y by applying (W)
and the derived rule (≡AD). The case Z � X ′ is symmetric. In the case W � X ′

and Z � X ′, we first show that there are atomic parts A1, . . . , An of X ′ with

X � Y ≡AD (. . . (((W � Z) \ A1) \ A2) . . .) \ An = W ′ � Z ′

(This can be proven by structural induction on X ′, using Lemma 4.2 in the
atomic case.) We claim that the interpolant I for W ′ � Z ′ given by assumption
is also an interpolant for W � Z. First we check the variable condition. We have
V(I) ⊆ V(W ′) ∩ V(Z ′) by assumption. It is clear that V(W ′) ⊆ V(W ) and
V(Z ′) ⊆ V(Z) since W ′ and Z ′ are obtained by deleting some parts of W and
Z respectively. Thus V(I) ⊆ V(W ) ∩ V(Z) as required.

It remains to check the provability conditions. We have W ′ � I provable by
assumption. By the definition of deletion (Defn. 4.1), W ′ is obtained from W
by replacing a number of substructure occurrences of the form �nA; S by S.
We obtain the required derivation of W � I by, working backwards, using the
display property (Prop. 2.5) to display each such �nA; S and then removing �nA
using (W). (Formally, we proceed by induction on the number of substructure
occurrences deleted from W to obtain W ′.) Deriving I � Z is similar. 	

Proposition 5.4 (Contraction). The contraction rule (C) has the LADI prop-
erty in any extension of D0 + (α).

Proof. (Sketch) We require to find interpolants for all W � Z ≡AD X � Y . First,
using the fact that ≡AD contains (α) by assumption, we show that there exist
atomic parts A1, . . . , An of X such that

X ; X � Y ≡AD (W � Z)[(A1; A1)/A1, . . . , (An; An)/An] = W ′ � Z ′

(This is proven by structural induction on X , using Lemma 3.9 in the atomic
case.) We claim that the interpolant I for W ′ � Z ′ given by assumption is also
an interpolant for W � Z. We have V(I) ⊆ V(W ′) ∩ V(Z ′) by assumption and,
clearly, V(W ) = V(W ′) and V(Z) = V(Z ′), so we easily have the required
variable condition V(I) ⊆ V(W ) ∩ V(Z).
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D(+)
0

Cor. 4.8

(α)
Cor. 4.8

(∅CL)
Prop. 5.1

(∅CR)
Prop. 5.1

(∅WL)
Prop. 5.2

(∅WR)
Prop. 5.2

(C)
Prop. 5.4

(W)
Thm. 5.3

Fig. 4. Diagrammatic summary of our results. Local AD-interpolation of the proof
rule(s) at a node holds in a calculus with all of the proof rules at its ancestor nodes.

Next we check the provability conditions. We have W ′ � I provable by as-
sumption, and W ′ is obtained from W by replacing a number of its atomic parts
A by the structure A; A. We obtain the required derivation of W � I by, working
backwards, using the display property (Prop. 2.5) to display each such A and
then duplicating it using (C). (Formally, we proceed by induction on the number
of atomic parts of W duplicated to obtain W ′.) Deriving I � Z is similar. 	


Our reliance on the presence of the associativity rule (α) in Prop. 5.4 can be
motivated by considering the following instance of contraction:

(X1; X2); (X1; X2) � Y

X1; X2 � Y

For the LADI property, we need in particular an interpolant for X1 � �X2; Y ≡D

X1; X2 � Y . However, without associativity, we cannot rearrange the premise
into X1; X1 � (�X2; �X2); Y as would otherwise be provided by Prop. 5.4. The
best we can do without associativity is X1 � �X2; (�(X1; X2); Y ), whose inter-
polant I is too weak to serve as an interpolant for X1 � �X2; Y both in terms of
provability and in terms of the variable condition. A similar problem occurs if
there is more than one binary structural connective, even if both are associative.

The various conditions for the LADI property to hold of each proof rule are
set out in Figure 4. In consequence, we have the following interpolation results.

Theorem 5.5 (Interpolation). Let D be an extension of D0 where: if D con-
tains (C) it must also contain (α), and if D contains (W) then it must also
contain either (∅CL) or (∅CR). Then D has the interpolation property.

Proof. By Lemma 3.5 it suffices to prove the LADI property in D for each proof
rule of D. The rules of D0, and (α) if applicable, satisfy the LADI property in
D by Corollary 4.8. The other structural rules of D, if applicable, satisfy LADI
in D by Theorem 5.3 and Propositions 5.1, 5.2 and 5.4.

Drawing on the observations in Comment 2.7, Thm 5.5 yields the following:

Corollary 5.6. DMLL, DMALL and DCL all have the interpolation property.
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6 Related and Future Work

Our central contribution is a general, fully constructive proof-theoretic method
for proving Craig interpolation in a large class of displayable logics, based upon
an analysis of the individual rules of the display calculi. This analysis is “as
local as possible” in that the LADI property required for each proof rule typ-
ically depends only on the presence of certain other rules in the calculus, and
the syntax of the rule itself. The practicality and generality of our method is
demonstrated by its application to a fairly large family of display calculi differ-
ing in their structural rules (and the presence or otherwise of additive logical
connectives). We obtain by this uniform method the interpolation property for
MLL, MALL and ordinary classical logic, as well as numerous variants of these
logics. To our knowledge, ours are the first interpolation results based on display
calculi, thereby answering positively Belnap’s long-standing open question (see
p1) about this possibility.

While interpolation based on display calculi appears to be new, interpolation
for substructural logics is of course not new. The closest work to ours is probably
Roorda’s on interpolation for various fragments of classical linear logic [18], using
induction over cut-free sequent calculus proofs. Roorda also identifies fragments
where interpolation fails (usually because certain logical connectives are unavail-
able). Many of Roorda’s positive interpolation results overlap with our own but
we cover some additional logics (e.g., nonassociative, strict or affine variants,
plus full classical logic) and offer an analysis of the roles played by individual
structural rules. An entirely different approach to interpolation for substructural
logics is offered by Galatos and Ono [9], who establish very general interpolation
theorems for certain substructural logics extending the Lambek calculus, based
on their algebraisations.

Our methodology transfers easily to calculi for intuitionistic logics in which our
“classical” display postulates (Defn. 2.4) are replaced by “residuated” ones of the
form X, Y � Z �D X � Y, Z �D Y, X � Z (where the comma is interpreted as
conjunction in antecedent position and as implication in consequent position). A
more challenging technical extension is to the case where we have such a family
of structural connectives alongside the first, as is typically needed to display
relevant logics [17] or bunched logics [2]. Here, the main technical obstacle is in
extending the substitutivity principles in Section 4 to the more complex notion
of display-equivalence induced by this extension. Other possible extensions to
our calculi include the addition of modalities, quantifiers or linear exponentials.
In the main, these extensions appear more straightforward than adding new
connective families, since they necessitate little or no modification to display-
equivalence. We also note that our notion of interpolant in this paper is relatively
blunt since it does not distinguish between positive and negative occurrences of
variables. It should be possible to read off a sharpened version of interpolation,
that does make this distinction, more or less directly from our proof.

As well as showing interpolation for a variety of substructural logics, our proof
gives insights into the reasons why interpolation fails in some logics. Specifi-
cally, we identify contraction as being just as problematic for interpolation as it



102 J. Brotherston and R. Goré

typically is for decidability (and even weakening causes an issue for interpola-
tion when the logic lacks strong units). Our interpolation method is bound to fail
for any multiple-family display calculus including a contraction rule, due to our
observation that contraction generally has the required LADI property only in
circumstances which are precluded by the presence of multiple binary structural
connectives. This observation is in keeping with the fact that interpolation fails
for the relevant logic R, as shown by Urquhart [19], since its display calculus
employs two families of connectives and a contraction rule. We conjecture that
interpolation might fail in bunched logics such as BI for similar reasons.

The technical overhead of our method is fairly substantial, but the tech-
niques themselves are elementary: we mainly appeal to structural and reflexive-
transitive inductions. This means that our proofs are good candidates for mech-
anisation in a theorem proving assistant. Dawson is currently working on an
Isabelle formalisation of our proofs, based upon earlier work on mechanising dis-
play calculus with Goré [7]. As well as providing the greatest possible degree
of confidence in our proofs, such a mechanisation might eventually provide the
basis for an automated interpolation tool.
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10. Goré, R.: Gaggles, Gentzen and Galois: How to display your favourite substructural
logic. Logic Journal of the IGPL 6(5), 669–694 (1998)
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