
Cyclic Proofs for First-Order Logic
with Inductive Definitions

James Brotherston1

Laboratory for Foundations of Computer Science, Division of Informatics, University
of Edinburgh, James Clerk Maxwell Building, King’s Buildings, Mayfield Road,

Edinburgh EH9 3JZ, Scotland, UK. Email: J.Brotherston@sms.ed.ac.uk

Abstract. We consider a cyclic approach to inductive reasoning in the
setting of first-order logic with inductive definitions. We present a proof
system for this language in which proofs are represented as finite, lo-
cally sound derivation trees with a “repeat function” identifying cyclic
proof sections. Soundness is guaranteed by a well-foundedness condition
formulated globally in terms of traces over the proof tree, following an
idea due to Sprenger and Dam. However, in contrast to their work, our
proof system does not require an extension of logical syntax by ordinal
variables.
A fundamental question in our setting is the strength of the cyclic proof
system compared to the more familiar use of a non-cyclic proof sys-
tem using explicit induction rules. We show that the cyclic proof system
subsumes the use of explicit induction rules. In addition, we provide ma-
chinery for manipulating and analysing the structure of cyclic proofs,
based primarily on viewing them as generating regular infinite trees, and
also formulate a finitary trace condition sufficient (but not necessary) for
soundness, that is computationally and combinatorially simpler than the
general trace condition.

1 Introduction

Induction is essential to computer science, and mathematics in general, as the
fundamental principle by which to reason about many of the structures that
are ubiquitous within the fields. Indeed, any inductively defined structure comes
equipped with corresponding recursion and induction principles that in, e.g.,
a functional programming language, are invoked when defining functions by
recursion on that structure and in proving mathematical properties of these
functions, respectively. Similarly, structures defined by mutual induction give
rise to mutual recursion and induction principles.

The default approach to inductive reasoning is to directly employ the induc-
tion principles associated with the structures under consideration; however, there
has been recent interest [3–5, 7, 9, 15–20] in various forms of cyclic reasoning by
which repeating sections of proof (cycles) are identified and various guardedness
conditions are imposed on proofs to ensure their soundness. These conditions can
be seen as encoding a termination argument or, more pertinently for our pur-
poses, as ensuring well-foundedness of an underlying inductive argument. Forms

of cyclic, or circular, reasoning have been employed in local model checking [3],
theorem proving tools and frameworks [4, 7, 9, 16], in Turchin’s supercompilation
[19] and in program verification based on automata [20]. It has also been studied
in the context of tableau-style proof systems for the µ-calculus by Sprenger and
Dam [17, 18] and Schöpp and Simpson [15], following an approach proposed by
Dam and Gurov [5].

Our aim is to study cyclic reasoning in the relatively simple, yet expressive
context of first-order logic extended with ordinary inductive definitions1. Similar
formalisms typically form the basis of mechanised theorem proving tools [2, 8,
10, 13]. The contribution of this paper is twofold. Firstly, we present a sound,
powerful cyclic proof system that employs only the standard syntax of first-
order logic. It seems the system is most likely to be of use for proving properties
of mutually inductive definitions, for which the usual induction rules are often
highly complex. We examine the relationship of the cyclic proof system to a
standard non-cyclic proof system; specifically, we show that the cyclic proof
system is at least as powerful as the standard one. We conjecture that it is
in fact no more powerful, but whether or not this is true remains open at the
time of writing. (Although Sprenger and Dam give an equivalence result for
cyclic and non-cyclic µ-calculus proof systems [18], the approach taken there
is not obviously applicable to our systems due to significant differences in the
setting, which we discuss later). Secondly, we present machinery for analysing
the structure of cyclic proofs that, as well as being useful for our system for
first-order logic with inductive definitions, should be more generally applicable
to other cyclic proof systems based on analogous trace conditions.

The remainder of this paper is structured as follows. In section 2 we recall
the syntax and semantics of first-order logic with inductive definitions (FOLind).
In section 3 we introduce Gentzen-style sequent calculus rules for this language;
in particular, we give rules for the case-split and induction principles associated
with any inductively defined predicate. In section 4 we define two types of proof:
the usual structural proofs familiar from sequent calculus, which use induction
rules explicitly; and cyclic proofs represented as finite proof trees with a “re-
peat function” identifying cyclic proof sections, together with a global condition
stipulating the existence of a trace on every infinite path through the proof, in-
spired by a similar condition proposed by Sprenger and Dam [17]. This condition
guarantees the soundness of cyclic proofs. We prove that cyclic proofs subsume
structural proofs by giving a translation from structural to cyclic proofs. In
section 5 we present machinery, based on viewing cyclic proofs as generating in-
finite trees, for transforming cyclic proofs into ones having convenient structural
properties. In section 6, we examine the global trace condition (which is the
most general possible) imposed on cyclic proofs and formulate a localised trace
manifold proof condition which, although less general, contains more structural
information. Finally, in section 7 we summarise our progress and outline our
aims for our ongoing work in this area.

1 However, there is no difficulty in extending our approach to more complex formalisms
such as iterated inductive definitions [11]

Due to space constraints, the proofs of many results in this paper have been
omitted and the proofs that appear are only sketched. Full proofs will appear in
the author’s forthcoming PhD thesis.

2 Syntax and Semantics of FOLind

We assume a fixed first-order signature Σ. Further, we assume that the predi-
cate symbols of Σ are separated into two distinct types: ordinary and inductive
predicate symbols. For convenience, we use vector notation to denote finite se-
quences of variables and terms. For example, if P is a predicate symbol of arity
k, we shall write P t(x) for P (t1(x1, . . . , xn), . . . , tk(x1, . . . , xn)).

We extend the standard syntax and semantics of first-order logic by introduc-
ing a simple definitional mechanism for (mutually) inductive predicates, based
on Martin-Löf’s schema for ordinary productions [11]:

Definition 2.1 (Inductive definition set). An inductive definition set Φ is
a finite set of productions of the form:

P1t1(x) . . . Pmtm(x)

P t(x)

where P is an inductive predicate symbol and P1, . . . , Pm may be either ordinary
or inductive predicate symbols.

Example 2.2. We define the predicates N ,E and O via the productions:

N0

Nx

Nsx E0

Ex

Osx

Ox

Esx

In structures in which all “numerals” sk0 for k ≥ 0 are interpreted as distinct
elements, the predicates N ,E and O correspond to the properties of being a
natural, even and odd number respectively.

We next define the interpretation of inductively defined predicates in a Σ-
structure M with domain D. Given a definition set Φ for predicates P1, . . . , Pn

of arities k1, . . . , kn respectively, writing Pow(A) for the powerset of A, one can
construct a monotone operator ϕΦ with domain and codomain (Pow(Dk1), . . . ,
Pow(Dkn)) whose least fixed point is the n-tuple of least subsets of (tuples of) D
closed under the rules in Φ. This least fixed point can be approached in stages, by
defining an ordinal-indexed sequence (ϕα

Φ) by ϕα
Φ =

⋃
β<α ϕΦ(ϕβ

Φ). Note that we
thus have ϕ0

Φ = ∅. The ith component of ϕα
Φ is then called the αth approximant2

of Pi, written as Pα
i . For a full exposition of the construction of the operator

ϕΦ (which is standard), see e.g. Aczel [1].
2 One can show that for any predicate P defined by our schema, P α = P ω for any

α > ω, so it is sufficient to index approximants by natural numbers. However, the
sequence of approximants does not necessarily close at ω if more complex schemas
are used. We retain the ordinal notation for modularity.

We consider standard first-order formulas over Σ. The semantics of formulas
are defined as usual except for the semantics of atomic formulas, which are now
defined as follows, where ρ is an environment interpreting free variables in M
and PM is the interpretation of the ordinary predicate symbol P in M :

M |=ρ P t ⇐⇒
{

ρ(t) ∈ ⋃
α Pα if P is an inductively defined predicate symbol

ρ(t) ∈ PM otherwise

3 Sequent Calculus Proof Rules for FOLind

We shall consider proof systems for FOLind presented in the sequent calculus
style originally due to Gentzen [6], which is well-established as a convenient for-
malism for proof-theoretic reasoning. Our rules for inductively defined predicates
are essentially sequent-calculus adaptations of Martin-Löf’s natural deduction
rules [11]; McDowell and Miller have considered a similar system [12]. We write
sequents of the form Γ ` ∆, where Γ,∆ are finite multisets of formulas. We
use the standard sequent calculus rules for the propositional connectives and
quantifiers, as well as the following structural rules:

Γ ′ ` ∆′
Γ ′ ⊆ Γ, ∆′ ⊆ ∆ (Wk)

Γ ` ∆
Γ ∩∆ 6= ∅ (Axiom)

Γ ` ∆

Γ, F, F ` ∆
(ContrL)

Γ, F ` ∆

Γ ` F, F, ∆
(ContrR)

Γ ` F, ∆

Γ ` F, ∆ Γ, F ` ∆
(Cut)

Γ ` ∆

Γ ` ∆
(Subst)

Γ [θ] ` ∆[θ]

We also give proof rules governing the inductively defined predicates. First,
for each ordinary production in Φ we obtain a right-introduction rule for an
inductively defined predicate as follows:

P1t1(x) . . . Pmtm(x)

P t(x)
⇒ Γ ` P1t1(t′

1),∆ . . . Γ ` Pmtm(t′
m),∆

(PRr)
Γ ` P t(t′),∆

Example 3.1. The right introduction rules for the predicate N defined in Exam-
ple 2.2 are:

(NR1)
Γ ` N0,∆

Γ ` Nt,∆
(NR2)

Γ ` Nst, ∆

Definition 3.2 (Mutual dependency). Let Φ be a fixed inductive definition
set. Define the binary relation Prem on inductive predicate symbols as the
least relation satisfying: whenever there is a production in Φ containing P in
the conclusion and Q among the premises, then Prem(P,Q) holds. Also define
Prem∗ to be the reflexive-transitive closure of Prem. Then we say two predicate
symbols P and Q are mutually dependent if both Prem∗(P, Q) and Prem∗(Q,P)
hold.

We now describe the construction of the induction rule for an inductively de-
fined predicate P . First, for all predicates Pi such that Pi and P are mutually
dependent,we first associate a formula Fiz with Pi, where Pi is a k-ary predicate
and z is a vector of k variables. Then the induction rule schema is:

minor premises Γ, F t ` ∆
(Ind P)

Γ, P t ` ∆

where Fz is the formula associated with P . Then for all productions having in
their conclusion a predicate Pi such that Pi and P are mutually dependent, we
obtain a minor premise as follows3:

P1t1(x) . . . Pmtm(x)

Pit(x)
⇒ Γ, G1t1(x), . . . , Gmtm(x) ` Fit(x),∆

where x 6∈ FV (Γ ∪∆) for all x ∈ x and Gk is defined for each k ∈ {1, . . . , m}
by:

Gk =
{

Fk if Pk and P are mutually dependent
Pk otherwise

Example 3.3. The induction rule for the even number predicate E defined in
Example 2.2 is the following, where F and G are associated with E and O
respectively:

Γ ` F0, ∆ Γ, Fx ` Gsx,∆ Γ, Gx ` Fsx, ∆ Γ, F t ` ∆
(Ind E)

Γ,Et ` ∆

We also consider rules implementing a case-splitting principle on inductively
defined predicates. (Although case-splitting is a much weaker principle than
induction, and indeed is subsumed by it, we shall see in Section 4 that cyclic
reasoning together with the use of case-split rules subsumes explicit use of the
induction rules above.) The case-split rule schema for an inductively defined
predicate P is:

case distinctions
(Case P)

Γ, Py ` ∆

where y is a vector of variables and for each production having predicate P in
its conclusion, we obtain a case distinction as follows:

P1t1(x) . . . Pmtm(x)

P t(x)
⇒ Γ [t(x)/y], P t(x), P1t1(x), . . . , Pmtm(x) ` ∆[t(x)/y]

subject to the restriction that x 6∈ FV (Γ ∪∆) for all x ∈ x. In such rules, the
formulas P1t1(x), . . . , Pmtm(x) are said to be case-descendents of the principal
formula Py in the rule conclusion.
3 Martin-Löf [11] uses a definition of “linkage” between predicate symbols to generate

the minor deductions (corresponding to our minor premises) of his induction rules.
However, his definition can produce redundant minor deductions in some cases. Our
use of Definition 3.2 is intended to avoid this.

Example 3.4. The case-split rule for the natural number predicate N is:

Γ [0/y] ` ∆[0/y] Γ [sx/y], Nsx, Nx ` ∆[sx/y]
(Case N)

Γ, Ny ` ∆

4 Structural and Cyclic Proofs

We now proceed to give definitions of structural proofs familiar from traditional
sequent calculus proof systems, which are finite trees labelled with sequents and
proof rules. We do this with more formality than is usual, based on the notion of
a rule graph, in order to later facilitate a formal comparison between structural
proofs and cyclic proofs. Note that we write f : X ⇀ Y to denote a partial
function and f : X → Y to denote a total function from X to Y .

Definition 4.1 (Rule graph). Let Seqs denote the set of all well-formed se-
quents in some language and Rules denote some set of rules. Also let n ∈ IN be
the maximum number of premises of any R ∈ Rules. Then a rule graph is given
by (V, s, r, p), where:

– V is a set of vertices, s : V → Seqs, r : V ⇀ Rules, and p : V ⇀ V n (we
write pj(v) for the jth component of p(v));

– for all v ∈ V , pj(v) is defined just in case r(v) is a rule with m premises,
1 ≤ j ≤ m and:

s(p1(v)) . . . s(pm(v))

s(v)

is an instance of rule r(v).

A rule graph G can be seen as a conventional graph whose vertex set is V and
whose edge set is E = {(v, pj(v)) | v ∈ V and pj(v) is defined}.

A path in a rule graph is a (possibly infinite) sequence v0j0v1j1v2j2 . . . such
that for each i ≥ 0, vi+1 = pji(vi). (We often write paths simply as v0v1v2 . . .)

Definition 4.2 (Derivation tree). A rule graph D = (V, s, r, p) is a derivation
tree if there is a distinguished node v0 ∈ V such that for all v ∈ V , there is a
unique path in D from v0 to v. v0 is called the root of the tree, written root(D).

Definition 4.3 (Structural proof). A structural proof of Γ ` ∆ is a finite
derivation tree D = (V, s, r, p) such that:

– the codomain of s is the set of all well-formed sequents of FOLind;
– s(root(D)) = Γ ` ∆;
– the codomain of r comprises the rules described in Section 3 above;
– r is a total function on V , i.e. every node in D is the conclusion of some rule

instance. (Note that we consider axioms to be proof rules with 0 premises.)

Definition 4.4 (Satisfaction). Let M be a fixed Σ-structure and let ρ be an
environment interpeting free variables in M . We write Γ |=ρ ∆ to mean that
if M |=ρ J for all J ∈ Γ then there is a K ∈ ∆ such that M |=ρ K. We write
Γ |= ∆ if Γ |=ρ ∆ for all ρ.

Theorem 4.5 (Soundness of structural proof). If there is a structural proof
of Γ ` ∆ then Γ |= ∆.

Proof. Routine. ut
Proposition 4.6. For any inductively defined predicate P , the rule (Case P) is
subsumed by the rule (Ind P) in structural proofs. Specifically, any instance of
the rule (Case P) in a structural proof can be replaced by an equivalent derivation
containing an instance of (Ind P) and instances of the standard sequent calculus
rules for first-order logic, only.

The well-known and important cut elimination theorem for sequent calculus
for ordinary first-order logic due to Gentzen [6] says that any use of the (Cut)
rule (which corresponds to the use of auxiliary lemmas) in a derivation can be
avoided. This result should generalise to our structural proof system for FOLind.
However, to our knowledge no proof for such a classical sequent calculus has so
far appeared in the literature , although a proof for a related intuitionistic proof
system appears in McDowell and Miller [12].

4.1 A Cyclic Proof System for FOLind

We now proceed to define a cyclic proof system for FOLind, in which the proof
structures are finite derivation trees together with a function assigning to every
unexpanded node in the proof tree (called a bud) an interior node with an
identical sequent labelling (the companion of the bud). These structures (called
pre-proofs) can then be viewed as cyclic rule graphs:

Definition 4.7 (Bud /companion nodes). Let D = (V, s, r, p) be a deriva-
tion tree. A bud node of D is a vertex B ∈ V such that r(B) is undefined, i.e. B
is not the conclusion of any proof rule instance in D.

A node C ∈ V is said to be a companion for a bud node B if r(C) is defined
and s(C) = s(B).

We remark that we do not require buds to have ancestor nodes as companions,
i.e. C need not appear on the unique path in D from root(D) to B.

Definition 4.8 (Cyclic pre-proof). A cyclic pre-proof (or simply pre-proof)
of Γ ` ∆ is a pair (D = (V, s, r, p),R), where D is a finite derivation tree and:

– the codomain of s is the set of all well-formed sequents of FOLind;
– s(root(D)) = Γ ` ∆;
– the codomain of r comprises the rules described in Section 3 above except

for the induction rules;
– R : V ⇀ V is a function assigning a companion to every bud node in D.

We shall see shortly that our embargo on the explicit use of induction rules in
the cyclic proof system is of no consequence; all induction rules turn out to be
derivable within the system.

Definition 4.9 (Pre-proof graph). Let P = (D,R) be a pre-proof, where
D = (V, s, r, p). Then the graph of P is GP = (V ′, s, r, p), where V ′ is obtained
from V by identifying each bud node B in D with its companion R(B).

We observe that the local soundness of our proof rules is not sufficient to
guarantee that pre-proofs are sound, due to the (possible) cyclicity evident in
their graph representations. In order to give a criterion for soundness, we follow
Sprenger and Dam [17] in formulating the notion of a trace following a path:

Definition 4.10 (Trace). Let P be a pre-proof and let (vi) be a path in GP =
(V ′, s, r, p). A trace following (vi) is a sequence (τi) such that, for all i:

– τi = Piti ∈ Γi, where s(vi) = Γi ` ∆i and Pi is inductively defined;
– if r(vi) is (Subst) then τi = τi+1[Θ], where Θ is the substitution associated

with the rule instance;
– if r(vi) is (Case P) then either τi+1 = τi[t(x)/y], where [t(x)/y] is the sub-

stitution associated with the case distinction at s(vi+1), or τi is the principal
formula Py of the rule instance and τi+1 is a case-descendent of Py. In the
latter case, i is said to be a progress point of the trace;

– if r(vi) is not (Subst) or (Case P), then τi+1 = τi.

An infinitely progressing trace is a (necessarily infinite) trace having infinitely
many progress points.

Informally, a trace follows (a part of) the construction of an inductively de-
fined predicate occurring in the left hand side of the sequents occurring on a path
in a pre-proof. These predicate constructions never become larger as we follow
the trace along the path, and at progress points, they actually decrease. This
property is encapsulated in the following lemma and motivates the subsequent
definition of a cyclic proof :

Lemma 4.11. Suppose we have a pre-proof of Γ0 ` ∆0, but there exists ρ0 such
that Γ0 6|=ρ0 ∆0. Then there is an infinite path (vi)i≥0 in GP and an infinite
sequence of environments (ρi)i≥0 such that:

1. For all i, Γi 6|=ρi ∆i, where s(vi) = Γi ` ∆i;
2. If there is a trace (τi)i≥n following some tail (vi)i≥n of (vi)i≥0, then the se-

quence (αi)i≥n of ordinals defined by αi = (least α s.t. ρi(ti) ∈ Pα
i where τi =

Piti) is non-increasing. Furthermore, if j is a progress point of the trace then
αj+1 < αj.

Proof. (Sketch) One constructs (vi) and (ρi) inductively by assuming sequences
(vi)0≤i≤k and (ρi)0≤i≤k satisfying the two properties of the lemma and construct-
ing vk+1 and ρk+1. The proof proceeds by a case analysis on the rule r(vk); the
main interesting case is when r(v) is a case-split rule. ut
Definition 4.12 (Cyclic proof). A pre-proof P is said to be a cyclic proof if,
for every infinite path in GP , there is an infinitely progressing trace following
some tail of the path.

Theorem 4.13 (Soundness of cyclic proof). If the sequent Γ ` ∆ has a
cyclic proof then Γ |= ∆.

Proof. (Sketch) If Γ 6|= ∆ then we can apply Lemma 4.11 to construct infinite
sequences (vi) and (ρi) satisfying the two properties of the lemma. By Defini-
tion 4.12 there is an infinitely progressing trace following some tail of (vi), so by
the second property of the lemma we can construct an infinite descending chain
of ordinals, which is a contradiction. ut

Importantly, the property of being a cyclic proof is decidable; the problem
can be reduced to the problem of checking the language of a certain Büchi
automaton for emptiness. A thorough analysis of automata-theoretic decision
methods is given by Sprenger and Dam [17].

Example 4.14. The following is a cyclic proof of the statement Ex ∨ Ox ` Nx,
where N ,E and O are as defined in Example 2.2 (we omit applications of weak-
ening):

(NR1)` N0

Ox ` Nx (†)
(Subst)

Oy ` Ny
(NR2)

Oy ` Nsy
(Case E)

Ex ` Nx (∗)

(∗) Ex ` Nx
(Subst)

Ey ` Ny
(NR2)

Ey ` Nsy
(Case O)

(†) Ox ` Nx
(∨L)

Ex ∨Ox ` Nx

We use pairs of identical symbols (∗) and (†) above to indicate the pairing of
buds with companions; we remark that this is an example of a proof in which bud
nodes have non-ancestor nodes as companions. To see that this satisfies the cyclic
proof condition, observe that any infinite path through the pre-proof necessarily
has a tail consisting of repetitions of the “figure-of-8” loop in this proof, and there
is a trace following this path: (Ex, Oy,Oy, Ox ≡ Ox,Ey, Ey, Ex) (starting from
(∗)) that progresses at Ex and at Ox. We can thus concatenate copies of this
trace to obtain an infinitely progressing trace as required.

Next, we address the fundamental question of the relative strengths of the
standard structural proof system and the cyclic proof system. Our first result
establishes that cyclic proofs are at least as powerful as structural proofs:

Theorem 4.15. If there is a structural proof of Γ ` ∆ then there is a cyclic
proof of Γ ` ∆.

Proof. (Sketch) One shows that any use of an induction rule within a struc-
tural proof can be replaced with a derivation in our cyclic proof system. Each
derivation contains a cyclic proof, constructed using the minor premises of the
induction rule, which essentially is an explicit justification of local soundness.
Moreover, as each of these cyclic proofs is self-contained, it follows easily that
the result of uniformly substituting these derivations for induction rules is also
a cyclic proof.

We illustrate the procedure by demonstrating the derivation of the rule
(Ind E) given in Example 3.3. First of all, define the set of formulas ME =
{F0,∀x.Fx → Gsx, ∀x.Gx → Fsx}. We start as follows:

ME , Ey ` Fy
(Subst)

ME , Et ` Ft
(∧L)

...
(∧L)V

ME , Et ` Ft
(Wk)V

ME , Γ, Et ` Ft, ∆

minor premises
...

Γ ` VME , ∆
(Wk)

Γ, Et ` VME , F t, ∆
(Cut)

Γ, Et ` Ft, ∆

Γ, F t ` ∆
(Wk)

Γ, Et, F t ` ∆
(Cut)

Γ, Et ` ∆

Obtaining the minor premises of (Ind E) from Γ ` ∧
ME , ∆ is straightforward.

We continue by providing a cyclic proof of the sequent ME , Ey ` Fy occurring
on the leftmost branch as follows (omitting applications of weakening):

(Ax)
ME ` F0

(Ax)
Fsx ` Fsx

(Ax)
Gsy ` Gsy ME , Ey ` Fy (∗)

(→L)
ME , Fy → Gsy, Ey ` Gsy

(∀L)
ME , ∀x.Fx → Gsx, Ey ` Gsy

(ContrL)
ME , Ey ` Gsy

(Case O)
ME , Ox ` Gx

(→L)
ME , Gx → Fsx, Ox ` Fsx

(∀L)
ME ,∀x.Gx → Fsx, Ox ` Fsx

(ContrL)
ME , Ox ` Fsx

(Case E)
ME , Ey ` Fy (∗)

To the single bud node of this derivation we assign the root sequent as companion
(indicated by (∗)). As there is a progressing trace from the companion to the
bud, this is easily seen to be a cyclic proof.

We remark at this juncture that, although structural rules such as weakening
or contraction are admissible in ordinary FOL sequent calculus, they clearly
are essential to the cyclic proof system as we have formulated it here, as their
removal can break the required syntactic identity between bud nodes and their
companions.

Theorem 4.15 gives rise to the obvious question of whether its converse also
holds:

Conjecture 4.16. If there is a cyclic proof of Γ ` ∆ then there is a structural
proof of Γ ` ∆.

This is the main open question of our current research. An equivalence result
for cyclic and non-cyclic proof systems for µ-calculus with explicit approxima-
tions, given by Sprenger and Dam [18], gives some hope that it can be answered
positively. However, this result is based on reducing cyclic reasoning with a
syntax extended by ordinal variables to a principle of transfinite induction also
expressed using ordinal variables. The problem of reducing cyclic reasoning on or-
dinary syntax to induction over predicate definitions seems significantly harder.
The most promising line of inquiry appears to be to establish a translation from
cyclic to structural proofs. (A semantic proof would also be of interest, but we
have no idea how to obtain one.)

5 Unfolding and Folding of Cyclic Proofs

In this section and the subsequent one we study the structure of cyclic proofs,
which we view here as finite representations of infinite regular proof trees. As
many different cyclic proofs can represent the same infinite tree, these trees give
us a natural notion of equivalence on cyclic proofs. We give machinery based on
infinite trees for transforming cyclic proofs into equivalent ones having simpler
combinatorial structure. We hope that such concerns may be useful in eventually
establishing a translation from cyclic to structural proofs.

Definition 5.1 (Associated tree). Let P = (D,R) be a pre-proof with graph
GP = (V ′, s, r, p). Define Path(GP) to be the set of finite paths through GP
starting from v0 = root(D). Then the tree of P is TP = (Path(GP), s∗, r∗, p∗),
where s∗((vi)0≤i≤n) = s(vn), r∗((vi)0≤i≤n) = r(vn), and:

p∗j ((vi)0≤i≤n) =
{

((vi)0≤i≤n.pj(vn)) if pj(vn) defined
undefined otherwise

Proposition 5.2. For any pre-proof P, TP is a derivation tree.

We write f(x) ' g(x), where f and g are partial functions, to mean that
f(x) is defined iff g(x) is defined, and if f(x) is defined then f(x) = g(x).

Definition 5.3 (Rule graph homomorphism). Let G = (V, s, r, p) and H =
(V ′, s′, r′, p′) be rule graphs. A rule graph homomorphism from G to H is a
map f : V → V ′ satisfying, for all v ∈ V , s′(f(v)) = s(v), r′(f(v)) ' r(v) and
p′j(f(v))) ' f(pj(v)).

We say two rule graphs G and H are isomorphic, written G ∼= H, if there
exist rule graph homomorphisms f : G → H and g : H → G such that f ◦ g =
g ◦ f = id, where id is the identity function.

Lemma 5.4. For any pre-proof P = (D,R), there is a surjective rule graph
homomorphism fP : TP → GP such that fP(root(TP)) = root(D).

Lemma 5.5. If TP ∼= TP′ then P is a cyclic proof if and only if P ′ is.

Theorem 5.6. Let G be a rule graph, let T1, T2 be derivation trees, and let f1 :
T1 → G and f2 : T2 → G be rule graph homomorphisms such that f1(root(T1)) =
f2(root(T2)). Then T1

∼= T2.

The following is a useful general theorem for extracting a pre-proof from a
(possibly infinite) proof tree:

Theorem 5.7. Let T = (V, s, r, p) be a derivation tree with no bud nodes and
with root node v0, let G be a finite rule graph, and let f : T → G be a surjective
rule graph homomorphism. Also, for each infinite branch π = v0v1v2 . . . in T ,
let mπ < nπ be numbers such that f(vmπ

) = f(vnπ
). Then we define D =

(V ′, s′, r′, p′) and R by “folding down” T as follows:

– V ′ = {v ∈ V | for all infinite π = v0v1v2 if ∃k.v = vk then k ≤ nπ}
– s′(v) = s(v) for all v ∈ V ′(⊂ V)
– if v ∈ V ′ and ∃π = v0v1v2 . . . s.t. v = vnπ

, then r′(v) and p′(v) are undefined,
i.e. v is a bud node of D and we define R(v) = vmπ

. (If there is more than one
branch π meeting this criterion, we may choose any suitable vmπ

.) Otherwise
we define r′(v) = r(v) and p′(v) = p(v).

Then P = (D,R) is a pre-proof and there are surjective rule graph homo-
morphisms T → GP → G. Furthermore, the homomorphism from T to GP maps
v0 = root(T) to v0 = root(D).

Our intended application of Theorem 5.7 is to obtain a cyclic proof P ′ with
convenient structural properties from a given cyclic proof P by “folding down”
TP . This application is illustrated by our next result.

Definition 5.8 (Cycle normal form). Let P = (D,R) be a cyclic pre-proof.
P is said to be in cycle normal form if, for every bud node B in D, its companion
R(B) is a (strict) ancestor of B.

Theorem 5.9. Let P be a cyclic proof and for each infinite branch π = v0v1v2 . . .
in TP , let mπ < nπ be numbers such that fP(mπ) = fP(nπ). Then any pre-proof
obtained from Theorem 5.7 by “folding down” TP is a cyclic proof, and further-
more is in cycle normal form.

Proof. As there is a surjective rule graph homomorphism from TP to GP by
Lemma 5.4, we can apply Theorem 5.7 to obtain a pre-proof P ′ = (D′,R′),
and by the theorem, there is a surjective rule graph homomorphism g : TP →
GP′ such that g(root(TP)) = root(D′). As there is also a surjective rule graph
homomorphism fP′ : TP′ → GP′ such that fP′(root(TP)) = root(D′), again by
Lemma 5.4, we can apply Theorem 5.6 to conclude TP ∼= TP′ , and since P is a
cyclic proof, so is P ′ by Lemma 5.5.

To see that P ′ is in cycle normal form, we simply observe that the construc-
tion of Theorem 5.7 ensures R′(B) is always an ancestor of B for any bud node
B. ut

We remark that we also have a direct proof of cycle-normalisation (the trans-
formation of an arbitrary cyclic proof to one in cycle normal form), which will
appear in the author’s PhD thesis.

6 Trace-Based Proof Conditions

The general trace condition (cf. Definition 4.12) qualifying pre-proofs as cyclic
proofs is both computationally and combinatorially complex. In order to simplify
our analysis of cyclic proof structures, we consider the formulation of alternative
trace conditions that are sufficient for pre-proofs to be cyclic proofs, and that
also provide a greater degree of explicit structural information on pre-proofs.

We present one definition of such a condition — the existence of a so-called
trace manifold for a pre-proof — which is apparently less general than Defini-
tion 4.12 and formulated with respect to a so-called induction order (a notion
introduced by Schöpp [14] and crucially employed by Sprenger and Dam [18]).
A trace manifold consists of finite trace segments together with conditions en-
suring that for any infinite path, the segments can be “glued together” to yield
an infinitely progressing trace on that path.

Definition 6.1 (Strong / weak connectivity). A directed graph G = (V, E)
is said to be strongly connected if for any v, v′ ∈ V , there is a path in G from v
to v′. G is said to be weakly connected if (V, E ∪ E−1) is strongly connected.

Definition 6.2 (Structural connectivity). Let P = (D,R) be a pre-proof in
cycle normal form and denote the set of bud nodes occuring in D by B. Define
the relation ≤P on B by: B2 ≤P B1 if R(B2) appears on the unique D-path
R(B1) . . . B1.

Definition 6.3 (Induction order). A partial order C on B is said to be an
induction order for P if C is forest-like, i.e. (B C B1 ∧ B C B2) implies (B1 =
B2 ∨ B1 C B2 ∨ B2 C B1), and every weakly ≤P -connected set S ⊆ B has a
C-greatest element.

Definition 6.4 (Trace manifold). Let P = (D,R) be a pre-proof in cycle
normal form, let B = {B1, . . . , Bn} be the set of bud nodes occurring in P and
let C be an induction order for P. A trace manifold with respect to C is a set
of traces: {τij |Bi, Bj ∈ B, Bi C Bj} satisfying:

– τij follows the D-path R(Bi) . . . Bi in S;
– τij(Bi) = τij(R(Bi));
– Bj ≤P Bi C Bk implies τjk(R(Bj)) = τik(R(Bj));
– for each i, τii has at least one progress point.

Lemma 6.5. Let P be a pre-proof in cycle normal form and let C be an induc-
tion order for P. If P has a trace manifold with respect to C, then P is a cyclic
proof.

Proof. (Sketch) Definition 4.12 can be reformulated as quantified over strongly
connected subgraphs of GP . It can then be shown that, since P is in cycle normal
form, such subgraphs can be characterised as D-paths of the form R(B) . . . B
whose bud endpoints are weakly ≤P -connected. From this one can analyse the
composition of any infinite path through GP and construct an infinitely progress-
ing trace using the appropriate components given by the trace manifold. ut

We remark that, in fact, our translation from structural to cyclic proofs
(cf. Theorem 4.15) transforms structural proofs into cyclic proofs with trace
manifolds.

7 Conclusions and Future Work

We have formulated a cyclic proof system for first-order logic with ordinary in-
ductive definitions that, importantly, uses only the standard syntax of sequent
calculus for first-order logic and the standard sequent calculus proof rules, to-
gether with simple unfolding rules for inductively defined predicates. A global
condition formulated in terms of traces over infinite paths in the proof is used to
guarantee soundness. This approach essentially amounts to a postponement in
the choice of induction principle; induction principles are not chosen within the
proof itself, but rather implicitly via eventual satisfaction of the trace condition.

Cyclic proofs have been demonstrated to subsume the usual structural proofs
that use explicit induction rules. Establishing the status of our Conjecture 4.16
— that cyclic proofs are no more powerful than structural proofs in terms of what
can be proved — appears very difficult due to the complexity inherent in the
trace condition on cyclic proofs and in our definition schema. We have developed
tools for analysing the structure of cyclic proofs: in particular, a general theorem
allowing cyclic proofs to be transformed via a folding operation on infinite trees.
The useful result of cycle-normalisation is a simple corollary of this theorem.

We can also define cyclic proof more locally in terms of trace manifolds at
the (possible) expense of some generality. We have observed that any structural
proof can be transformed into a cyclic proof with a trace manifold. So struc-
tural provability ⇒ trace manifold provability ⇒ cyclic provability. Establishing
whether either of these implications hold in reverse is clearly of interest but
appears very difficult. The main problem with the latter — transforming an ar-
bitrary cyclic proof into one having a trace manifold — is that as traces on two
infinite paths can behave entirely differently, it is not obvious that a manifold
need exist. It may be possible to use our “tree-folding” machinery of Section
5 in conjunction with a combinatorial argument about traces to establish this
property, and we are looking into this presently. As for the former problem —
translating cyclic proofs with trace manifolds into structural proofs — the main
difficulty appears to lie in resolving the case-splits that represent trace progress
points with cases of explicit induction rules.

Acknowledgements

The author wishes to thank, primarily, his supervisor, Alex Simpson. Thanks
are also due to Alan Bundy, Lucas Dixon, Geoff Hamilton, Alberto Momigliano,
Alan Smaill, and Rene Vestergaard for fruitful discussions, and to the anonymous
referees.

References

1. Peter Aczel. An introduction to inductive definitions. In Jon Barwise, editor,
Handbook of Mathematical Logic, pages 739–782. North-Holland, 1977.

2. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-
velopment. EATCS: Texts in Theoretical Computer Science. Springer-Verlag, 2004.

3. Julian Bradfield and Colin Stirling. Local model checking for infinite state spaces.
Theoretical Computer Science, 96:157–174, 1992.

4. Thierry Coquand. Infinite objects in type theory. In H. Barendregt and T. Nipkow,
editors, Types for Proofs and Programs, pages 62–78. Springer, 1993.

5. Mads Dam and Dilian Gurov. µ-calculus with explicit points and approximations.
Journal of Logic and Computation, 12(2):255–269, April 2002.

6. Gerhard Gentzen. Investigations into logical deduction. In M.E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland, 1969.

7. Eduardo Giménez. A Calculus of Infinite Constructions and its application to the
verification of communicating systems. PhD thesis, Ecole Normale Supérieure de
Lyon, 1996.

8. M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

9. Geoff Hamilton. Póıtin: Distilling theorems from conjectures. To appear.
10. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided

Reasoning: An Approach. Kluwer Academic Publishers, June 2000.
11. Per Martin-Löf. Haupstatz for the intuitionistic theory of iterated inductive def-

initions. In J.E. Fenstad, editor, Proceedings of the Second Scandinavian Logic
Symposium. North-Holland, 1971.

12. Raymond McDowell and Dale Miller. Cut-elimination for a logic with definitions
and induction. Theoretical Computer Science, 232:91–119, 2000.

13. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2002.

14. Ulrich Schöpp. Formal verification of processes. Master’s thesis, University of
Edinburgh, 2001.

15. Ulrich Schöpp and Alex Simpson. Verifying temporal properties using explicit
approximants: Completeness for context-free processes. In Foundations of Software
Science and Computation Structure: Proceedings of FoSSaCS 2002, volume 2303
of Lecture Notes in Computer Science, pages 372–386. Springer-Verlag, 2002.

16. Carsten Schürmann. Automating the Meta-Theory of Deductive Systems. PhD
thesis, Carnegie-Mellon University, 2000.

17. Christoph Sprenger and Mads Dam. A note on global induction mechanisms in a
µ-calculus with explicit approximations. Theoretical Informatics and Applications,
July 2003. Full version of FICS ’02 paper.

18. Christoph Sprenger and Mads Dam. On the structure of inductive reasoning:
circular and tree-shaped proofs in the µ-calculus. In Proceedings of FOSSACS
2003, volume 2620 of Lecture Notes in Computer Science, pages 425–440, 2003.

19. Valentin Turchin. The concept of a supercompiler. ACM Transactions on Pro-
gramming Languages and Systems, 8:90–121, 1986.

20. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. Logic in Computer Science, LICS ’86, pages 322–331, 1986.

